1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-01-04 11:40:22 +00:00

Replace list and vector sorting with TIMSORT algorithm

* src/Makefile.in (base_obj): Add sort.o.
* src/deps.mk (fns.o): Add sort.c.
* src/lisp.h: Add prototypes for inorder, tim_sort.
* src/sort.c: New file providing tim_sort.
* src/fns.c:  Remove prototypes for removed routines.
(merge_vectors, sort_vector_inplace, sort_vector_copy): Remove.
(sort_list, sort_vector): Use tim_sort.
* test/src/fns-tests.el (fns-tests-sort): New sorting unit tests.
This commit is contained in:
Andrew G Cohen 2022-03-10 09:30:00 +08:00
parent e091bee8db
commit 9ff2f0be32
6 changed files with 1082 additions and 104 deletions

View File

@ -434,7 +434,7 @@ base_obj = dispnew.o frame.o scroll.o xdisp.o menu.o $(XMENU_OBJ) window.o \
minibuf.o fileio.o dired.o \
cmds.o casetab.o casefiddle.o indent.o search.o regex-emacs.o undo.o \
alloc.o pdumper.o data.o doc.o editfns.o callint.o \
eval.o floatfns.o fns.o font.o print.o lread.o $(MODULES_OBJ) \
eval.o floatfns.o fns.o sort.o font.o print.o lread.o $(MODULES_OBJ) \
syntax.o $(UNEXEC_OBJ) bytecode.o comp.o $(DYNLIB_OBJ) \
process.o gnutls.o callproc.o \
region-cache.o sound.o timefns.o atimer.o \

View File

@ -279,7 +279,7 @@ eval.o: eval.c commands.h keyboard.h blockinput.h atimer.h systime.h frame.h \
dispextern.h lisp.h globals.h $(config_h) coding.h composite.h xterm.h \
msdos.h
floatfns.o: floatfns.c syssignal.h lisp.h globals.h $(config_h)
fns.o: fns.c commands.h lisp.h $(config_h) frame.h buffer.h character.h \
fns.o: fns.c sort.c commands.h lisp.h $(config_h) frame.h buffer.h character.h \
keyboard.h keymap.h window.h $(INTERVALS_H) coding.h ../lib/md5.h \
../lib/sha1.h ../lib/sha256.h ../lib/sha512.h blockinput.h atimer.h \
systime.h xterm.h ../lib/unistd.h globals.h

135
src/fns.c
View File

@ -39,9 +39,6 @@ along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
#include "puresize.h"
#include "gnutls.h"
static void sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
Lisp_Object src[restrict VLA_ELEMS (len)],
Lisp_Object dest[restrict VLA_ELEMS (len)]);
enum equal_kind { EQUAL_NO_QUIT, EQUAL_PLAIN, EQUAL_INCLUDING_PROPERTIES };
static bool internal_equal (Lisp_Object, Lisp_Object,
enum equal_kind, int, Lisp_Object);
@ -2107,8 +2104,11 @@ See also the function `nreverse', which is used more often. */)
return new;
}
/* Sort LIST using PREDICATE, preserving original order of elements
considered as equal. */
/* Stably sort LIST ordered by PREDICATE using the TIMSORT
algorithm. This converts the list to a vector, sorts the vector,
and returns the result converted back to a list. The input list is
destructively reused to hold the sorted result. */
static Lisp_Object
sort_list (Lisp_Object list, Lisp_Object predicate)
@ -2116,112 +2116,43 @@ sort_list (Lisp_Object list, Lisp_Object predicate)
ptrdiff_t length = list_length (list);
if (length < 2)
return list;
Lisp_Object tem = Fnthcdr (make_fixnum (length / 2 - 1), list);
Lisp_Object back = Fcdr (tem);
Fsetcdr (tem, Qnil);
return merge (Fsort (list, predicate), Fsort (back, predicate), predicate);
}
/* Using PRED to compare, return whether A and B are in order.
Compare stably when A appeared before B in the input. */
static bool
inorder (Lisp_Object pred, Lisp_Object a, Lisp_Object b)
{
return NILP (call2 (pred, b, a));
}
/* Using PRED to compare, merge from ALEN-length A and BLEN-length B
into DEST. Argument arrays must be nonempty and must not overlap,
except that B might be the last part of DEST. */
static void
merge_vectors (Lisp_Object pred,
ptrdiff_t alen, Lisp_Object const a[restrict VLA_ELEMS (alen)],
ptrdiff_t blen, Lisp_Object const b[VLA_ELEMS (blen)],
Lisp_Object dest[VLA_ELEMS (alen + blen)])
{
eassume (0 < alen && 0 < blen);
Lisp_Object const *alim = a + alen;
Lisp_Object const *blim = b + blen;
while (true)
{
if (inorder (pred, a[0], b[0]))
{
*dest++ = *a++;
if (a == alim)
{
if (dest != b)
memcpy (dest, b, (blim - b) * sizeof *dest);
return;
}
}
else
{
*dest++ = *b++;
if (b == blim)
{
memcpy (dest, a, (alim - a) * sizeof *dest);
return;
}
}
}
}
/* Using PRED to compare, sort LEN-length VEC in place, using TMP for
temporary storage. LEN must be at least 2. */
static void
sort_vector_inplace (Lisp_Object pred, ptrdiff_t len,
Lisp_Object vec[restrict VLA_ELEMS (len)],
Lisp_Object tmp[restrict VLA_ELEMS (len >> 1)])
{
eassume (2 <= len);
ptrdiff_t halflen = len >> 1;
sort_vector_copy (pred, halflen, vec, tmp);
if (1 < len - halflen)
sort_vector_inplace (pred, len - halflen, vec + halflen, vec);
merge_vectors (pred, halflen, tmp, len - halflen, vec + halflen, vec);
}
/* Using PRED to compare, sort from LEN-length SRC into DST.
Len must be positive. */
static void
sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
Lisp_Object src[restrict VLA_ELEMS (len)],
Lisp_Object dest[restrict VLA_ELEMS (len)])
{
eassume (0 < len);
ptrdiff_t halflen = len >> 1;
if (halflen < 1)
dest[0] = src[0];
else
{
if (1 < halflen)
sort_vector_inplace (pred, halflen, src, dest);
if (1 < len - halflen)
sort_vector_inplace (pred, len - halflen, src + halflen, dest);
merge_vectors (pred, halflen, src, len - halflen, src + halflen, dest);
Lisp_Object *result;
USE_SAFE_ALLOCA;
SAFE_ALLOCA_LISP (result, length);
Lisp_Object tail = list;
for (ptrdiff_t i = 0; i < length; i++)
{
result[i] = Fcar (tail);
tail = XCDR (tail);
}
tim_sort (predicate, result, length);
ptrdiff_t i = 0;
tail = list;
while (CONSP (tail))
{
XSETCAR (tail, result[i]);
tail = XCDR (tail);
i++;
}
SAFE_FREE ();
return list;
}
}
/* Sort VECTOR in place using PREDICATE, preserving original order of
elements considered as equal. */
/* Stably sort VECTOR ordered by PREDICATE using the TIMSORT
algorithm. */
static void
sort_vector (Lisp_Object vector, Lisp_Object predicate)
{
ptrdiff_t len = ASIZE (vector);
if (len < 2)
ptrdiff_t length = ASIZE (vector);
if (length < 2)
return;
ptrdiff_t halflen = len >> 1;
Lisp_Object *tmp;
USE_SAFE_ALLOCA;
SAFE_ALLOCA_LISP (tmp, halflen);
for (ptrdiff_t i = 0; i < halflen; i++)
tmp[i] = make_fixnum (0);
sort_vector_inplace (predicate, len, XVECTOR (vector)->contents, tmp);
SAFE_FREE ();
tim_sort (predicate, XVECTOR (vector)->contents, length);
}
DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
@ -2267,7 +2198,7 @@ merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
}
Lisp_Object tem;
if (inorder (pred, Fcar (l1), Fcar (l2)))
if (!NILP (call2 (pred, Fcar (l1), Fcar (l2))))
{
tem = l1;
l1 = Fcdr (l1);

View File

@ -3939,6 +3939,9 @@ extern Lisp_Object string_to_multibyte (Lisp_Object);
extern Lisp_Object string_make_unibyte (Lisp_Object);
extern void syms_of_fns (void);
/* Defined in sort.c */
extern void tim_sort (Lisp_Object, Lisp_Object *, const ptrdiff_t);
/* Defined in floatfns.c. */
verify (FLT_RADIX == 2 || FLT_RADIX == 16);
enum { LOG2_FLT_RADIX = FLT_RADIX == 2 ? 1 : 4 };

974
src/sort.c Normal file
View File

@ -0,0 +1,974 @@
/* Timsort for sequences.
Copyright (C) 2022 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
/* This is a version of the cpython code implementing the TIMSORT
sorting algorithm described in
https://github.com/python/cpython/blob/main/Objects/listsort.txt.
This algorithm identifies and pushes naturally ordered sublists of
the original list, or "runs", onto a stack, and merges them
periodically according to a merge strategy called "powersort".
State is maintained during the sort in a merge_state structure,
which is passed around as an argument to all the subroutines. A
"stretch" structure includes a pointer to the run BASE of length
LEN along with its POWER (a computed integer used by the powersort
merge strategy that depends on this run and the succeeding run.) */
#include <config.h>
#include "lisp.h"
/* MAX_MERGE_PENDING is the maximum number of entries in merge_state's
pending-stretch stack. For a list with n elements, this needs at most
floor(log2(n)) + 1 entries even if we didn't force runs to a
minimal length. So the number of bits in a ptrdiff_t is plenty large
enough for all cases. */
#define MAX_MERGE_PENDING (sizeof (ptrdiff_t) * 8)
/* Once we get into galloping mode, we stay there as long as both runs
win at least GALLOP_WIN_MIN consecutive times. */
#define GALLOP_WIN_MIN 7
/* A small temp array of size MERGESTATE_TEMP_SIZE is used to avoid
malloc when merging small lists. */
#define MERGESTATE_TEMP_SIZE 256
struct stretch
{
Lisp_Object *base;
ptrdiff_t len;
int power;
};
struct reloc
{
Lisp_Object **src;
Lisp_Object **dst;
ptrdiff_t *size;
int order; /* -1 while in merge_lo; +1 while in merg_hi; 0 otherwise. */
};
typedef struct
{
Lisp_Object *listbase;
ptrdiff_t listlen;
/* PENDING is a stack of N pending stretches yet to be merged.
Stretch #i starts at address base[i] and extends for len[i]
elements. */
int n;
struct stretch pending[MAX_MERGE_PENDING];
/* The variable MIN_GALLOP, initialized to GALLOP_WIN_MIN, controls
when we get *into* galloping mode. merge_lo and merge_hi tend to
nudge it higher for random data, and lower for highly structured
data. */
ptrdiff_t min_gallop;
/* 'A' is temporary storage, able to hold ALLOCED elements, to help
with merges. 'A' initially points to TEMPARRAY, and subsequently
to newly allocated memory if needed. */
Lisp_Object *a;
ptrdiff_t alloced;
specpdl_ref count;
Lisp_Object temparray[MERGESTATE_TEMP_SIZE];
/* If an exception is thrown while merging we might have to relocate
some list elements from temporary storage back into the list.
RELOC keeps track of the information needed to do this. */
struct reloc reloc;
/* PREDICATE is the lisp comparison predicate for the sort. */
Lisp_Object predicate;
} merge_state;
/* Return true iff (PREDICATE A B) is non-nil. */
static inline bool
inorder (const Lisp_Object predicate, const Lisp_Object a, const Lisp_Object b)
{
return !NILP (call2 (predicate, a, b));
}
/* Sort the list starting at LO and ending at HI using a stable binary
insertion sort algorithm. On entry the sublist [LO, START) (with
START between LO and HIGH) is known to be sorted (pass START == LO
if you are unsure). Even in case of error, the output will be some
permutation of the input (nothing is lost or duplicated). */
static void
binarysort (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
Lisp_Object *start)
{
Lisp_Object pred = ms->predicate;
eassume (lo <= start && start <= hi);
if (lo == start)
++start;
for (; start < hi; ++start)
{
Lisp_Object *l = lo;
Lisp_Object *r = start;
Lisp_Object pivot = *r;
eassume (l < r);
do {
Lisp_Object *p = l + ((r - l) >> 1);
if (inorder (pred, pivot, *p))
r = p;
else
l = p + 1;
} while (l < r);
eassume (l == r);
for (Lisp_Object *p = start; p > l; --p)
p[0] = p[-1];
*l = pivot;
}
}
/* Find and return the length of the "run" (the longest
non-decreasing sequence or the longest strictly decreasing
sequence, with the Boolean *DESCENDING set to 0 in the former
case, or to 1 in the latter) beginning at LO, in the slice [LO,
HI) with LO < HI. The strictness of the definition of
"descending" ensures there are no equal elements to get out of
order so the caller can safely reverse a descending sequence
without violating stability. */
static ptrdiff_t
count_run (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
bool *descending)
{
Lisp_Object pred = ms->predicate;
eassume (lo < hi);
*descending = 0;
++lo;
ptrdiff_t n = 1;
if (lo == hi)
return n;
n = 2;
if (inorder (pred, lo[0], lo[-1]))
{
*descending = 1;
for (lo = lo + 1; lo < hi; ++lo, ++n)
{
if (!inorder (pred, lo[0], lo[-1]))
break;
}
}
else
{
for (lo = lo + 1; lo < hi; ++lo, ++n)
{
if (inorder (pred, lo[0], lo[-1]))
break;
}
}
return n;
}
/* Locate and return the proper insertion position of KEY in a sorted
vector: if the vector contains an element equal to KEY, return the
position immediately to the left of the leftmost equal element.
[GALLOP_RIGHT does the same except it returns the position to the
right of the rightmost equal element (if any).]
'A' is a sorted vector of N elements. N must be > 0.
Elements preceding HINT, a non-negative index less than N, are
skipped. The closer HINT is to the final result, the faster this
runs.
The return value is the int k in [0, N] such that
A[k-1] < KEY <= a[k]
pretending that *(A-1) precedes all values and *(A+N) succeeds all
values. In other words, the first k elements of A should precede
KEY, and the last N-k should follow KEY. */
static ptrdiff_t
gallop_left (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
const ptrdiff_t n, const ptrdiff_t hint)
{
Lisp_Object pred = ms->predicate;
eassume (a && n > 0 && hint >= 0 && hint < n);
a += hint;
ptrdiff_t lastofs = 0;
ptrdiff_t ofs = 1;
if (inorder (pred, *a, key))
{
/* When a[hint] < key, gallop right until
a[hint + lastofs] < key <= a[hint + ofs]. */
const ptrdiff_t maxofs = n - hint; /* This is one after the end of a. */
while (ofs < maxofs)
{
if (inorder (pred, a[ofs], key))
{
lastofs = ofs;
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
ofs = (ofs << 1) + 1;
}
else
break; /* Here key <= a[hint+ofs]. */
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
else
{
/* When key <= a[hint], gallop left, until
a[hint - ofs] < key <= a[hint - lastofs]. */
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
while (ofs < maxofs)
{
if (inorder (pred, a[-ofs], key))
break;
/* Here key <= a[hint - ofs]. */
lastofs = ofs;
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
ofs = (ofs << 1) + 1;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to use positive offsets relative to &a[0]. */
ptrdiff_t k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
a -= hint;
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
right of lastofs but no farther right than ofs. Do a binary
search, with invariant a[lastofs-1] < key <= a[ofs]. */
++lastofs;
while (lastofs < ofs)
{
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
if (inorder (pred, a[m], key))
lastofs = m + 1; /* Here a[m] < key. */
else
ofs = m; /* Here key <= a[m]. */
}
eassume (lastofs == ofs); /* Then a[ofs-1] < key <= a[ofs]. */
return ofs;
}
/* Locate and return the proper position of KEY in a sorted vector
exactly like GALLOP_LEFT, except that if KEY already exists in
A[0:N] find the position immediately to the right of the rightmost
equal value.
The return value is the int k in [0, N] such that
A[k-1] <= KEY < A[k]. */
static ptrdiff_t
gallop_right (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
const ptrdiff_t n, const ptrdiff_t hint)
{
Lisp_Object pred = ms->predicate;
eassume (a && n > 0 && hint >= 0 && hint < n);
a += hint;
ptrdiff_t lastofs = 0;
ptrdiff_t ofs = 1;
if (inorder (pred, key, *a))
{
/* When key < a[hint], gallop left until
a[hint - ofs] <= key < a[hint - lastofs]. */
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
while (ofs < maxofs)
{
if (inorder (pred, key, a[-ofs]))
{
lastofs = ofs;
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
ofs = (ofs << 1) + 1;
}
else /* Here a[hint - ofs] <= key. */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to use positive offsets relative to &a[0]. */
ptrdiff_t k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
else
{
/* When a[hint] <= key, gallop right, until
a[hint + lastofs] <= key < a[hint + ofs]. */
const ptrdiff_t maxofs = n - hint; /* Here &a[n-1] is highest. */
while (ofs < maxofs)
{
if (inorder (pred, key, a[ofs]))
break;
/* Here a[hint + ofs] <= key. */
lastofs = ofs;
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
ofs = (ofs << 1) + 1;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to use offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
a -= hint;
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
right of lastofs but no farther right than ofs. Do a binary
search, with invariant a[lastofs-1] <= key < a[ofs]. */
++lastofs;
while (lastofs < ofs)
{
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
if (inorder (pred, key, a[m]))
ofs = m; /* Here key < a[m]. */
else
lastofs = m + 1; /* Here a[m] <= key. */
}
eassume (lastofs == ofs); /* Now a[ofs-1] <= key < a[ofs]. */
return ofs;
}
static void
merge_init (merge_state *ms, const ptrdiff_t list_size, Lisp_Object *lo,
const Lisp_Object predicate)
{
eassume (ms != NULL);
ms->a = ms->temparray;
ms->alloced = MERGESTATE_TEMP_SIZE;
ms->n = 0;
ms->min_gallop = GALLOP_WIN_MIN;
ms->listlen = list_size;
ms->listbase = lo;
ms->predicate = predicate;
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
}
/* The dynamically allocated memory may hold lisp objects during
merging. MERGE_MARKMEM marks them so they aren't reaped during
GC. */
static void
merge_markmem (void *arg)
{
merge_state *ms = arg;
eassume (ms != NULL);
if (ms->reloc.size != NULL && *ms->reloc.size > 0)
{
eassume (ms->reloc.src != NULL);
mark_objects (*ms->reloc.src, *ms->reloc.size);
}
}
/* Free all temp storage. If an exception occurs while merging,
relocate any lisp elements in temp storage back to the original
array. */
static void
cleanup_mem (void *arg)
{
merge_state *ms = arg;
eassume (ms != NULL);
/* If we have an exception while merging, some of the list elements
might only live in temp storage; we copy everything remaining in
the temp storage back into the original list. This ensures that
the original list has all of the original elements, although
their order is unpredictable. */
if (ms->reloc.order != 0 && *ms->reloc.size > 0)
{
eassume (*ms->reloc.src != NULL && *ms->reloc.dst != NULL);
ptrdiff_t n = *ms->reloc.size;
ptrdiff_t shift = ms->reloc.order == -1 ? 0 : n - 1;
memcpy (*ms->reloc.dst - shift, *ms->reloc.src, n * word_size);
}
/* Free any remaining temp storage. */
xfree (ms->a);
}
/* Allocate enough temp memory for NEED array slots. Any previously
allocated memory is first freed, and a cleanup routine is
registered to free memory at the very end of the sort, or on
exception. */
static void
merge_getmem (merge_state *ms, const ptrdiff_t need)
{
eassume (ms != NULL);
if (ms->a == ms->temparray)
{
/* We only get here if alloc is needed and this is the first
time, so we set up the unwind protection. */
specpdl_ref count = SPECPDL_INDEX ();
record_unwind_protect_ptr_mark (cleanup_mem, ms, merge_markmem);
ms->count = count;
}
else
{
/* We have previously alloced storage. Since we don't care
what's in the block we don't use realloc which would waste
cycles copying the old data. We just free and alloc
again. */
xfree (ms->a);
}
ms->a = xmalloc (need * word_size);
ms->alloced = need;
}
static inline void
needmem (merge_state *ms, ptrdiff_t na)
{
if (na > ms->alloced)
merge_getmem (ms, na);
}
/* Stably merge (in-place) the NA elements starting at SSA with the NB
elements starting at SSB = SSA + NA. NA and NB must be positive.
Require that SSA[NA-1] belongs at the end of the merge, and NA <=
NB. */
static void
merge_lo (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na, Lisp_Object *ssb,
ptrdiff_t nb)
{
Lisp_Object pred = ms->predicate;
eassume (ms && ssa && ssb && na > 0 && nb > 0);
eassume (ssa + na == ssb);
needmem (ms, na);
memcpy (ms->a, ssa, na * word_size);
Lisp_Object *dest = ssa;
ssa = ms->a;
ms->reloc = (struct reloc){&ssa, &dest, &na, -1};
*dest++ = *ssb++;
--nb;
if (nb == 0)
goto Succeed;
if (na == 1)
goto CopyB;
ptrdiff_t min_gallop = ms->min_gallop;
for (;;)
{
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
for (;;)
{
eassume (na > 1 && nb > 0);
if (inorder (pred, *ssb, *ssa))
{
*dest++ = *ssb++ ;
++bcount;
acount = 0;
--nb;
if (nb == 0)
goto Succeed;
if (bcount >= min_gallop)
break;
}
else
{
*dest++ = *ssa++;
++acount;
bcount = 0;
--na;
if (na == 1)
goto CopyB;
if (acount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may be a
huge speedup. We try that, and continue galloping until (if
ever) neither run appears to be winning consistently
anymore. */
++min_gallop;
do {
eassume (na > 1 && nb > 0);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
ptrdiff_t k = gallop_right (ms, ssb[0], ssa, na, 0);
acount = k;
if (k)
{
memcpy (dest, ssa, k * word_size);
dest += k;
ssa += k;
na -= k;
if (na == 1)
goto CopyB;
/* While na==0 is impossible for a consistent comparison
function, we shouldn't assume that it is. */
if (na == 0)
goto Succeed;
}
*dest++ = *ssb++ ;
--nb;
if (nb == 0)
goto Succeed;
k = gallop_left (ms, ssa[0], ssb, nb, 0);
bcount = k;
if (k)
{
memmove (dest, ssb, k * word_size);
dest += k;
ssb += k;
nb -= k;
if (nb == 0)
goto Succeed;
}
*dest++ = *ssa++;
--na;
if (na == 1)
goto CopyB;
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
++min_gallop; /* Apply a penalty for leaving galloping mode. */
ms->min_gallop = min_gallop;
}
Succeed:
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
if (na)
memcpy (dest, ssa, na * word_size);
return;
CopyB:
eassume (na == 1 && nb > 0);
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
/* The last element of ssa belongs at the end of the merge. */
memmove (dest, ssb, nb * word_size);
dest[nb] = ssa[0];
}
/* Stably merge (in-place) the NA elements starting at SSA with the NB
elements starting at SSB = SSA + NA. NA and NB must be positive.
Require that SSA[NA-1] belongs at the end of the merge, and NA >=
NB. */
static void
merge_hi (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na,
Lisp_Object *ssb, ptrdiff_t nb)
{
Lisp_Object pred = ms->predicate;
eassume (ms && ssa && ssb && na > 0 && nb > 0);
eassume (ssa + na == ssb);
needmem (ms, nb);
Lisp_Object *dest = ssb;
dest += nb - 1;
memcpy(ms->a, ssb, nb * word_size);
Lisp_Object *basea = ssa;
Lisp_Object *baseb = ms->a;
ssb = ms->a + nb - 1;
ssa += na - 1;
ms->reloc = (struct reloc){&baseb, &dest, &nb, 1};
*dest-- = *ssa--;
--na;
if (na == 0)
goto Succeed;
if (nb == 1)
goto CopyA;
ptrdiff_t min_gallop = ms->min_gallop;
for (;;) {
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
for (;;) {
eassume (na > 0 && nb > 1);
if (inorder (pred, *ssb, *ssa))
{
*dest-- = *ssa--;
++acount;
bcount = 0;
--na;
if (na == 0)
goto Succeed;
if (acount >= min_gallop)
break;
}
else
{
*dest-- = *ssb--;
++bcount;
acount = 0;
--nb;
if (nb == 1)
goto CopyA;
if (bcount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may be a huge
speedup. Try that, and continue galloping until (if ever)
neither run appears to be winning consistently anymore. */
++min_gallop;
do {
eassume (na > 0 && nb > 1);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
ptrdiff_t k = gallop_right (ms, ssb[0], basea, na, na - 1);
k = na - k;
acount = k;
if (k)
{
dest += -k;
ssa += -k;
memmove(dest + 1, ssa + 1, k * word_size);
na -= k;
if (na == 0)
goto Succeed;
}
*dest-- = *ssb--;
--nb;
if (nb == 1)
goto CopyA;
k = gallop_left (ms, ssa[0], baseb, nb, nb - 1);
k = nb - k;
bcount = k;
if (k)
{
dest += -k;
ssb += -k;
memcpy(dest + 1, ssb + 1, k * word_size);
nb -= k;
if (nb == 1)
goto CopyA;
/* While nb==0 is impossible for a consistent comparison
function we shouldn't assume that it is. */
if (nb == 0)
goto Succeed;
}
*dest-- = *ssa--;
--na;
if (na == 0)
goto Succeed;
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
++min_gallop; /* Apply a penalty for leaving galloping mode. */
ms->min_gallop = min_gallop;
}
Succeed:
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
if (nb)
memcpy (dest - nb + 1, baseb, nb * word_size);
return;
CopyA:
eassume (nb == 1 && na > 0);
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
/* The first element of ssb belongs at the front of the merge. */
memmove (dest + 1 - na, ssa + 1 - na, na * word_size);
dest += -na;
ssa += -na;
dest[0] = ssb[0];
}
/* Merge the two runs at stack indices I and I+1. */
static void
merge_at (merge_state *ms, const ptrdiff_t i)
{
eassume (ms != NULL);
eassume (ms->n >= 2);
eassume (i >= 0);
eassume (i == ms->n - 2 || i == ms->n - 3);
Lisp_Object *ssa = ms->pending[i].base;
ptrdiff_t na = ms->pending[i].len;
Lisp_Object *ssb = ms->pending[i + 1].base;
ptrdiff_t nb = ms->pending[i + 1].len;
eassume (na > 0 && nb > 0);
eassume (ssa + na == ssb);
/* Record the length of the combined runs. The current run i+1 goes
away after the merge. If i is the 3rd-last run now, slide the
last run (which isn't involved in this merge) over to i+1. */
ms->pending[i].len = na + nb;
if (i == ms->n - 3)
ms->pending[i + 1] = ms->pending[i + 2];
--ms->n;
/* Where does b start in a? Elements in a before that can be
ignored (they are already in place). */
ptrdiff_t k = gallop_right (ms, *ssb, ssa, na, 0);
eassume (k >= 0);
ssa += k;
na -= k;
if (na == 0)
return;
/* Where does a end in b? Elements in b after that can be ignored
(they are already in place). */
nb = gallop_left (ms, ssa[na - 1], ssb, nb, nb - 1);
if (nb == 0)
return;
eassume (nb > 0);
/* Merge what remains of the runs using a temp array with size
min(na, nb) elements. */
if (na <= nb)
merge_lo (ms, ssa, na, ssb, nb);
else
merge_hi (ms, ssa, na, ssb, nb);
}
/* Compute the "power" of the first of two adjacent runs begining at
index S1, with the first having length N1 and the second (starting
at index S1+N1) having length N2. The run has total length N. */
static int
powerloop (const ptrdiff_t s1, const ptrdiff_t n1, const ptrdiff_t n2,
const ptrdiff_t n)
{
eassume (s1 >= 0);
eassume (n1 > 0 && n2 > 0);
eassume (s1 + n1 + n2 <= n);
/* The midpoints a and b are
a = s1 + n1/2
b = s1 + n1 + n2/2 = a + (n1 + n2)/2
These may not be integers because of the "/2", so we work with
2*a and 2*b instead. It makes no difference to the outcome,
since the bits in the expansion of (2*i)/n are merely shifted one
position from those of i/n. */
ptrdiff_t a = 2 * s1 + n1;
ptrdiff_t b = a + n1 + n2;
int result = 0;
/* Emulate a/n and b/n one bit a time, until their bits differ. */
for (;;)
{
++result;
if (a >= n)
{ /* Both quotient bits are now 1. */
eassume (b >= a);
a -= n;
b -= n;
}
else if (b >= n)
{ /* a/n bit is 0 and b/n bit is 1. */
break;
} /* Otherwise both quotient bits are 0. */
eassume (a < b && b < n);
a <<= 1;
b <<= 1;
}
return result;
}
/* Update the state upon identifying a run of length N2. If there's
already a stretch on the stack, apply the "powersort" merge
strategy: compute the topmost stretch's "power" (depth in a
conceptual binary merge tree) and merge adjacent runs on the stack
with greater power. */
static void
found_new_run (merge_state *ms, const ptrdiff_t n2)
{
eassume (ms != NULL);
if (ms->n)
{
eassume (ms->n > 0);
struct stretch *p = ms->pending;
ptrdiff_t s1 = p[ms->n - 1].base - ms->listbase;
ptrdiff_t n1 = p[ms->n - 1].len;
int power = powerloop (s1, n1, n2, ms->listlen);
while (ms->n > 1 && p[ms->n - 2].power > power)
{
merge_at (ms, ms->n - 2);
}
eassume (ms->n < 2 || p[ms->n - 2].power < power);
p[ms->n - 1].power = power;
}
}
/* Unconditionally merge all stretches on the stack until only one
remains. */
static void
merge_force_collapse (merge_state *ms)
{
struct stretch *p = ms->pending;
eassume (ms != NULL);
while (ms->n > 1)
{
ptrdiff_t n = ms->n - 2;
if (n > 0 && p[n - 1].len < p[n + 1].len)
--n;
merge_at (ms, n);
}
}
/* Compute a good value for the minimum run length; natural runs
shorter than this are boosted artificially via binary insertion.
If N < 64, return N (it's too small to bother with fancy stuff).
Otherwise if N is an exact power of 2, return 32. Finally, return
an int k, 32 <= k <= 64, such that N/k is close to, but strictly
less than, an exact power of 2. */
static ptrdiff_t
merge_compute_minrun (ptrdiff_t n)
{
ptrdiff_t r = 0; /* r will become 1 if any non-zero bits are
shifted off. */
eassume (n >= 0);
while (n >= 64)
{
r |= n & 1;
n >>= 1;
}
return n + r;
}
static void
reverse_vector (Lisp_Object *s, const ptrdiff_t n)
{
for (ptrdiff_t i = 0; i < n >> 1; i++)
{
Lisp_Object tem = s[i];
s[i] = s[n - i - 1];
s[n - i - 1] = tem;
}
}
/* Sort the array SEQ with LENGTH elements in the order determined by
PREDICATE. */
void
tim_sort (Lisp_Object predicate, Lisp_Object *seq, const ptrdiff_t length)
{
if (SYMBOLP (predicate))
{
/* Attempt to resolve the function as far as possible ahead of time,
to avoid having to do it for each call. */
Lisp_Object fun = XSYMBOL (predicate)->u.s.function;
if (SYMBOLP (fun))
/* Function was an alias; use slow-path resolution. */
fun = indirect_function (fun);
/* Don't resolve to an autoload spec; that would be very slow. */
if (!NILP (fun) && !(CONSP (fun) && EQ (XCAR (fun), Qautoload)))
predicate = fun;
}
merge_state ms;
Lisp_Object *lo = seq;
merge_init (&ms, length, lo, predicate);
/* March over the array once, left to right, finding natural runs,
and extending short natural runs to minrun elements. */
const ptrdiff_t minrun = merge_compute_minrun (length);
ptrdiff_t nremaining = length;
do {
bool descending;
/* Identify the next run. */
ptrdiff_t n = count_run (&ms, lo, lo + nremaining, &descending);
if (descending)
reverse_vector (lo, n);
/* If the run is short, extend it to min(minrun, nremaining). */
if (n < minrun)
{
const ptrdiff_t force = nremaining <= minrun ?
nremaining : minrun;
binarysort (&ms, lo, lo + force, lo + n);
n = force;
}
eassume (ms.n == 0 || ms.pending[ms.n - 1].base +
ms.pending[ms.n - 1].len == lo);
found_new_run (&ms, n);
/* Push the new run on to the stack. */
eassume (ms.n < MAX_MERGE_PENDING);
ms.pending[ms.n].base = lo;
ms.pending[ms.n].len = n;
++ms.n;
/* Advance to find the next run. */
lo += n;
nremaining -= n;
} while (nremaining);
merge_force_collapse (&ms);
eassume (ms.n == 1);
eassume (ms.pending[0].len == length);
lo = ms.pending[0].base;
if (ms.a != ms.temparray)
unbind_to (ms.count, Qnil);
}

View File

@ -204,6 +204,76 @@
[-1 2 3 4 5 5 7 8 9]))
(should (equal (sort (vector 9 5 2 -1 5 3 8 7 4) (lambda (x y) (> x y)))
[9 8 7 5 5 4 3 2 -1]))
;; Sort a reversed list and vector.
(should (equal
(sort (reverse (number-sequence 1 1000)) (lambda (x y) (< x y)))
(number-sequence 1 1000)))
(should (equal
(sort (reverse (vconcat (number-sequence 1 1000)))
(lambda (x y) (< x y)))
(vconcat (number-sequence 1 1000))))
;; Sort a constant list and vector.
(should (equal
(sort (make-vector 100 1) (lambda (x y) (> x y)))
(make-vector 100 1)))
(should (equal
(sort (append (make-vector 100 1) nil) (lambda (x y) (> x y)))
(append (make-vector 100 1) nil)))
;; Sort a long list and vector with every pair reversed.
(let ((vec (make-vector 100000 nil))
(logxor-vec (make-vector 100000 nil)))
(dotimes (i 100000)
(aset logxor-vec i (logxor i 1))
(aset vec i i))
(should (equal
(sort logxor-vec (lambda (x y) (< x y)))
vec))
(should (equal
(sort (append logxor-vec nil) (lambda (x y) (< x y)))
(append vec nil))))
;; Sort a list and vector with seven swaps.
(let ((vec (make-vector 100 nil))
(swap-vec (make-vector 100 nil)))
(dotimes (i 100)
(aset vec i (- i 50))
(aset swap-vec i (- i 50)))
(mapc (lambda (p)
(let ((tmp (elt swap-vec (car p))))
(aset swap-vec (car p) (elt swap-vec (cdr p)))
(aset swap-vec (cdr p) tmp)))
'((48 . 94) (75 . 77) (33 . 41) (92 . 52)
(10 . 96) (1 . 14) (43 . 81)))
(should (equal
(sort (copy-sequence swap-vec) (lambda (x y) (< x y)))
vec))
(should (equal
(sort (append swap-vec nil) (lambda (x y) (< x y)))
(append vec nil))))
;; Check for possible corruption after GC.
(let* ((size 3000)
(complex-vec (make-vector size nil))
(vec (make-vector size nil))
(counter 0)
(my-counter (lambda ()
(if (< counter 500)
(cl-incf counter)
(setq counter 0)
(garbage-collect))))
(rand 1)
(generate-random
(lambda () (setq rand
(logand (+ (* rand 1103515245) 12345) 2147483647)))))
;; Make a complex vector and its sorted version.
(dotimes (i size)
(let ((r (funcall generate-random)))
(aset complex-vec i (cons r "a"))
(aset vec i (cons r "a"))))
;; Sort it.
(should (equal
(sort complex-vec
(lambda (x y) (funcall my-counter) (< (car x) (car y))))
(sort vec 'car-less-than-car))))
;; Check for sorting stability.
(should (equal
(sort
(vector