mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-04 11:40:22 +00:00
Replace list and vector sorting with TIMSORT algorithm
* src/Makefile.in (base_obj): Add sort.o. * src/deps.mk (fns.o): Add sort.c. * src/lisp.h: Add prototypes for inorder, tim_sort. * src/sort.c: New file providing tim_sort. * src/fns.c: Remove prototypes for removed routines. (merge_vectors, sort_vector_inplace, sort_vector_copy): Remove. (sort_list, sort_vector): Use tim_sort. * test/src/fns-tests.el (fns-tests-sort): New sorting unit tests.
This commit is contained in:
parent
e091bee8db
commit
9ff2f0be32
@ -434,7 +434,7 @@ base_obj = dispnew.o frame.o scroll.o xdisp.o menu.o $(XMENU_OBJ) window.o \
|
||||
minibuf.o fileio.o dired.o \
|
||||
cmds.o casetab.o casefiddle.o indent.o search.o regex-emacs.o undo.o \
|
||||
alloc.o pdumper.o data.o doc.o editfns.o callint.o \
|
||||
eval.o floatfns.o fns.o font.o print.o lread.o $(MODULES_OBJ) \
|
||||
eval.o floatfns.o fns.o sort.o font.o print.o lread.o $(MODULES_OBJ) \
|
||||
syntax.o $(UNEXEC_OBJ) bytecode.o comp.o $(DYNLIB_OBJ) \
|
||||
process.o gnutls.o callproc.o \
|
||||
region-cache.o sound.o timefns.o atimer.o \
|
||||
|
@ -279,7 +279,7 @@ eval.o: eval.c commands.h keyboard.h blockinput.h atimer.h systime.h frame.h \
|
||||
dispextern.h lisp.h globals.h $(config_h) coding.h composite.h xterm.h \
|
||||
msdos.h
|
||||
floatfns.o: floatfns.c syssignal.h lisp.h globals.h $(config_h)
|
||||
fns.o: fns.c commands.h lisp.h $(config_h) frame.h buffer.h character.h \
|
||||
fns.o: fns.c sort.c commands.h lisp.h $(config_h) frame.h buffer.h character.h \
|
||||
keyboard.h keymap.h window.h $(INTERVALS_H) coding.h ../lib/md5.h \
|
||||
../lib/sha1.h ../lib/sha256.h ../lib/sha512.h blockinput.h atimer.h \
|
||||
systime.h xterm.h ../lib/unistd.h globals.h
|
||||
|
135
src/fns.c
135
src/fns.c
@ -39,9 +39,6 @@ along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
||||
#include "puresize.h"
|
||||
#include "gnutls.h"
|
||||
|
||||
static void sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
|
||||
Lisp_Object src[restrict VLA_ELEMS (len)],
|
||||
Lisp_Object dest[restrict VLA_ELEMS (len)]);
|
||||
enum equal_kind { EQUAL_NO_QUIT, EQUAL_PLAIN, EQUAL_INCLUDING_PROPERTIES };
|
||||
static bool internal_equal (Lisp_Object, Lisp_Object,
|
||||
enum equal_kind, int, Lisp_Object);
|
||||
@ -2107,8 +2104,11 @@ See also the function `nreverse', which is used more often. */)
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Sort LIST using PREDICATE, preserving original order of elements
|
||||
considered as equal. */
|
||||
|
||||
/* Stably sort LIST ordered by PREDICATE using the TIMSORT
|
||||
algorithm. This converts the list to a vector, sorts the vector,
|
||||
and returns the result converted back to a list. The input list is
|
||||
destructively reused to hold the sorted result. */
|
||||
|
||||
static Lisp_Object
|
||||
sort_list (Lisp_Object list, Lisp_Object predicate)
|
||||
@ -2116,112 +2116,43 @@ sort_list (Lisp_Object list, Lisp_Object predicate)
|
||||
ptrdiff_t length = list_length (list);
|
||||
if (length < 2)
|
||||
return list;
|
||||
|
||||
Lisp_Object tem = Fnthcdr (make_fixnum (length / 2 - 1), list);
|
||||
Lisp_Object back = Fcdr (tem);
|
||||
Fsetcdr (tem, Qnil);
|
||||
|
||||
return merge (Fsort (list, predicate), Fsort (back, predicate), predicate);
|
||||
}
|
||||
|
||||
/* Using PRED to compare, return whether A and B are in order.
|
||||
Compare stably when A appeared before B in the input. */
|
||||
static bool
|
||||
inorder (Lisp_Object pred, Lisp_Object a, Lisp_Object b)
|
||||
{
|
||||
return NILP (call2 (pred, b, a));
|
||||
}
|
||||
|
||||
/* Using PRED to compare, merge from ALEN-length A and BLEN-length B
|
||||
into DEST. Argument arrays must be nonempty and must not overlap,
|
||||
except that B might be the last part of DEST. */
|
||||
static void
|
||||
merge_vectors (Lisp_Object pred,
|
||||
ptrdiff_t alen, Lisp_Object const a[restrict VLA_ELEMS (alen)],
|
||||
ptrdiff_t blen, Lisp_Object const b[VLA_ELEMS (blen)],
|
||||
Lisp_Object dest[VLA_ELEMS (alen + blen)])
|
||||
{
|
||||
eassume (0 < alen && 0 < blen);
|
||||
Lisp_Object const *alim = a + alen;
|
||||
Lisp_Object const *blim = b + blen;
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (inorder (pred, a[0], b[0]))
|
||||
{
|
||||
*dest++ = *a++;
|
||||
if (a == alim)
|
||||
{
|
||||
if (dest != b)
|
||||
memcpy (dest, b, (blim - b) * sizeof *dest);
|
||||
return;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
*dest++ = *b++;
|
||||
if (b == blim)
|
||||
{
|
||||
memcpy (dest, a, (alim - a) * sizeof *dest);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Using PRED to compare, sort LEN-length VEC in place, using TMP for
|
||||
temporary storage. LEN must be at least 2. */
|
||||
static void
|
||||
sort_vector_inplace (Lisp_Object pred, ptrdiff_t len,
|
||||
Lisp_Object vec[restrict VLA_ELEMS (len)],
|
||||
Lisp_Object tmp[restrict VLA_ELEMS (len >> 1)])
|
||||
{
|
||||
eassume (2 <= len);
|
||||
ptrdiff_t halflen = len >> 1;
|
||||
sort_vector_copy (pred, halflen, vec, tmp);
|
||||
if (1 < len - halflen)
|
||||
sort_vector_inplace (pred, len - halflen, vec + halflen, vec);
|
||||
merge_vectors (pred, halflen, tmp, len - halflen, vec + halflen, vec);
|
||||
}
|
||||
|
||||
/* Using PRED to compare, sort from LEN-length SRC into DST.
|
||||
Len must be positive. */
|
||||
static void
|
||||
sort_vector_copy (Lisp_Object pred, ptrdiff_t len,
|
||||
Lisp_Object src[restrict VLA_ELEMS (len)],
|
||||
Lisp_Object dest[restrict VLA_ELEMS (len)])
|
||||
{
|
||||
eassume (0 < len);
|
||||
ptrdiff_t halflen = len >> 1;
|
||||
if (halflen < 1)
|
||||
dest[0] = src[0];
|
||||
else
|
||||
{
|
||||
if (1 < halflen)
|
||||
sort_vector_inplace (pred, halflen, src, dest);
|
||||
if (1 < len - halflen)
|
||||
sort_vector_inplace (pred, len - halflen, src + halflen, dest);
|
||||
merge_vectors (pred, halflen, src, len - halflen, src + halflen, dest);
|
||||
Lisp_Object *result;
|
||||
USE_SAFE_ALLOCA;
|
||||
SAFE_ALLOCA_LISP (result, length);
|
||||
Lisp_Object tail = list;
|
||||
for (ptrdiff_t i = 0; i < length; i++)
|
||||
{
|
||||
result[i] = Fcar (tail);
|
||||
tail = XCDR (tail);
|
||||
}
|
||||
tim_sort (predicate, result, length);
|
||||
|
||||
ptrdiff_t i = 0;
|
||||
tail = list;
|
||||
while (CONSP (tail))
|
||||
{
|
||||
XSETCAR (tail, result[i]);
|
||||
tail = XCDR (tail);
|
||||
i++;
|
||||
}
|
||||
SAFE_FREE ();
|
||||
return list;
|
||||
}
|
||||
}
|
||||
|
||||
/* Sort VECTOR in place using PREDICATE, preserving original order of
|
||||
elements considered as equal. */
|
||||
/* Stably sort VECTOR ordered by PREDICATE using the TIMSORT
|
||||
algorithm. */
|
||||
|
||||
static void
|
||||
sort_vector (Lisp_Object vector, Lisp_Object predicate)
|
||||
{
|
||||
ptrdiff_t len = ASIZE (vector);
|
||||
if (len < 2)
|
||||
ptrdiff_t length = ASIZE (vector);
|
||||
if (length < 2)
|
||||
return;
|
||||
ptrdiff_t halflen = len >> 1;
|
||||
Lisp_Object *tmp;
|
||||
USE_SAFE_ALLOCA;
|
||||
SAFE_ALLOCA_LISP (tmp, halflen);
|
||||
for (ptrdiff_t i = 0; i < halflen; i++)
|
||||
tmp[i] = make_fixnum (0);
|
||||
sort_vector_inplace (predicate, len, XVECTOR (vector)->contents, tmp);
|
||||
SAFE_FREE ();
|
||||
|
||||
tim_sort (predicate, XVECTOR (vector)->contents, length);
|
||||
}
|
||||
|
||||
DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
|
||||
@ -2267,7 +2198,7 @@ merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
|
||||
}
|
||||
|
||||
Lisp_Object tem;
|
||||
if (inorder (pred, Fcar (l1), Fcar (l2)))
|
||||
if (!NILP (call2 (pred, Fcar (l1), Fcar (l2))))
|
||||
{
|
||||
tem = l1;
|
||||
l1 = Fcdr (l1);
|
||||
|
@ -3939,6 +3939,9 @@ extern Lisp_Object string_to_multibyte (Lisp_Object);
|
||||
extern Lisp_Object string_make_unibyte (Lisp_Object);
|
||||
extern void syms_of_fns (void);
|
||||
|
||||
/* Defined in sort.c */
|
||||
extern void tim_sort (Lisp_Object, Lisp_Object *, const ptrdiff_t);
|
||||
|
||||
/* Defined in floatfns.c. */
|
||||
verify (FLT_RADIX == 2 || FLT_RADIX == 16);
|
||||
enum { LOG2_FLT_RADIX = FLT_RADIX == 2 ? 1 : 4 };
|
||||
|
974
src/sort.c
Normal file
974
src/sort.c
Normal file
@ -0,0 +1,974 @@
|
||||
/* Timsort for sequences.
|
||||
|
||||
Copyright (C) 2022 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GNU Emacs.
|
||||
|
||||
GNU Emacs is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or (at
|
||||
your option) any later version.
|
||||
|
||||
GNU Emacs is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
||||
|
||||
/* This is a version of the cpython code implementing the TIMSORT
|
||||
sorting algorithm described in
|
||||
https://github.com/python/cpython/blob/main/Objects/listsort.txt.
|
||||
This algorithm identifies and pushes naturally ordered sublists of
|
||||
the original list, or "runs", onto a stack, and merges them
|
||||
periodically according to a merge strategy called "powersort".
|
||||
State is maintained during the sort in a merge_state structure,
|
||||
which is passed around as an argument to all the subroutines. A
|
||||
"stretch" structure includes a pointer to the run BASE of length
|
||||
LEN along with its POWER (a computed integer used by the powersort
|
||||
merge strategy that depends on this run and the succeeding run.) */
|
||||
|
||||
|
||||
#include <config.h>
|
||||
#include "lisp.h"
|
||||
|
||||
|
||||
/* MAX_MERGE_PENDING is the maximum number of entries in merge_state's
|
||||
pending-stretch stack. For a list with n elements, this needs at most
|
||||
floor(log2(n)) + 1 entries even if we didn't force runs to a
|
||||
minimal length. So the number of bits in a ptrdiff_t is plenty large
|
||||
enough for all cases. */
|
||||
|
||||
#define MAX_MERGE_PENDING (sizeof (ptrdiff_t) * 8)
|
||||
|
||||
/* Once we get into galloping mode, we stay there as long as both runs
|
||||
win at least GALLOP_WIN_MIN consecutive times. */
|
||||
|
||||
#define GALLOP_WIN_MIN 7
|
||||
|
||||
/* A small temp array of size MERGESTATE_TEMP_SIZE is used to avoid
|
||||
malloc when merging small lists. */
|
||||
|
||||
#define MERGESTATE_TEMP_SIZE 256
|
||||
|
||||
struct stretch
|
||||
{
|
||||
Lisp_Object *base;
|
||||
ptrdiff_t len;
|
||||
int power;
|
||||
};
|
||||
|
||||
struct reloc
|
||||
{
|
||||
Lisp_Object **src;
|
||||
Lisp_Object **dst;
|
||||
ptrdiff_t *size;
|
||||
int order; /* -1 while in merge_lo; +1 while in merg_hi; 0 otherwise. */
|
||||
};
|
||||
|
||||
|
||||
typedef struct
|
||||
{
|
||||
Lisp_Object *listbase;
|
||||
ptrdiff_t listlen;
|
||||
|
||||
/* PENDING is a stack of N pending stretches yet to be merged.
|
||||
Stretch #i starts at address base[i] and extends for len[i]
|
||||
elements. */
|
||||
|
||||
int n;
|
||||
struct stretch pending[MAX_MERGE_PENDING];
|
||||
|
||||
/* The variable MIN_GALLOP, initialized to GALLOP_WIN_MIN, controls
|
||||
when we get *into* galloping mode. merge_lo and merge_hi tend to
|
||||
nudge it higher for random data, and lower for highly structured
|
||||
data. */
|
||||
|
||||
ptrdiff_t min_gallop;
|
||||
|
||||
/* 'A' is temporary storage, able to hold ALLOCED elements, to help
|
||||
with merges. 'A' initially points to TEMPARRAY, and subsequently
|
||||
to newly allocated memory if needed. */
|
||||
|
||||
Lisp_Object *a;
|
||||
ptrdiff_t alloced;
|
||||
specpdl_ref count;
|
||||
Lisp_Object temparray[MERGESTATE_TEMP_SIZE];
|
||||
|
||||
/* If an exception is thrown while merging we might have to relocate
|
||||
some list elements from temporary storage back into the list.
|
||||
RELOC keeps track of the information needed to do this. */
|
||||
|
||||
struct reloc reloc;
|
||||
|
||||
/* PREDICATE is the lisp comparison predicate for the sort. */
|
||||
|
||||
Lisp_Object predicate;
|
||||
} merge_state;
|
||||
|
||||
|
||||
/* Return true iff (PREDICATE A B) is non-nil. */
|
||||
|
||||
static inline bool
|
||||
inorder (const Lisp_Object predicate, const Lisp_Object a, const Lisp_Object b)
|
||||
{
|
||||
return !NILP (call2 (predicate, a, b));
|
||||
}
|
||||
|
||||
|
||||
/* Sort the list starting at LO and ending at HI using a stable binary
|
||||
insertion sort algorithm. On entry the sublist [LO, START) (with
|
||||
START between LO and HIGH) is known to be sorted (pass START == LO
|
||||
if you are unsure). Even in case of error, the output will be some
|
||||
permutation of the input (nothing is lost or duplicated). */
|
||||
|
||||
static void
|
||||
binarysort (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
|
||||
Lisp_Object *start)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (lo <= start && start <= hi);
|
||||
if (lo == start)
|
||||
++start;
|
||||
for (; start < hi; ++start)
|
||||
{
|
||||
Lisp_Object *l = lo;
|
||||
Lisp_Object *r = start;
|
||||
Lisp_Object pivot = *r;
|
||||
|
||||
eassume (l < r);
|
||||
do {
|
||||
Lisp_Object *p = l + ((r - l) >> 1);
|
||||
if (inorder (pred, pivot, *p))
|
||||
r = p;
|
||||
else
|
||||
l = p + 1;
|
||||
} while (l < r);
|
||||
eassume (l == r);
|
||||
for (Lisp_Object *p = start; p > l; --p)
|
||||
p[0] = p[-1];
|
||||
*l = pivot;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Find and return the length of the "run" (the longest
|
||||
non-decreasing sequence or the longest strictly decreasing
|
||||
sequence, with the Boolean *DESCENDING set to 0 in the former
|
||||
case, or to 1 in the latter) beginning at LO, in the slice [LO,
|
||||
HI) with LO < HI. The strictness of the definition of
|
||||
"descending" ensures there are no equal elements to get out of
|
||||
order so the caller can safely reverse a descending sequence
|
||||
without violating stability. */
|
||||
|
||||
static ptrdiff_t
|
||||
count_run (merge_state *ms, Lisp_Object *lo, const Lisp_Object *hi,
|
||||
bool *descending)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (lo < hi);
|
||||
*descending = 0;
|
||||
++lo;
|
||||
ptrdiff_t n = 1;
|
||||
if (lo == hi)
|
||||
return n;
|
||||
|
||||
n = 2;
|
||||
if (inorder (pred, lo[0], lo[-1]))
|
||||
{
|
||||
*descending = 1;
|
||||
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
||||
{
|
||||
if (!inorder (pred, lo[0], lo[-1]))
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (lo = lo + 1; lo < hi; ++lo, ++n)
|
||||
{
|
||||
if (inorder (pred, lo[0], lo[-1]))
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/* Locate and return the proper insertion position of KEY in a sorted
|
||||
vector: if the vector contains an element equal to KEY, return the
|
||||
position immediately to the left of the leftmost equal element.
|
||||
[GALLOP_RIGHT does the same except it returns the position to the
|
||||
right of the rightmost equal element (if any).]
|
||||
|
||||
'A' is a sorted vector of N elements. N must be > 0.
|
||||
|
||||
Elements preceding HINT, a non-negative index less than N, are
|
||||
skipped. The closer HINT is to the final result, the faster this
|
||||
runs.
|
||||
|
||||
The return value is the int k in [0, N] such that
|
||||
|
||||
A[k-1] < KEY <= a[k]
|
||||
|
||||
pretending that *(A-1) precedes all values and *(A+N) succeeds all
|
||||
values. In other words, the first k elements of A should precede
|
||||
KEY, and the last N-k should follow KEY. */
|
||||
|
||||
static ptrdiff_t
|
||||
gallop_left (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
||||
const ptrdiff_t n, const ptrdiff_t hint)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (a && n > 0 && hint >= 0 && hint < n);
|
||||
|
||||
a += hint;
|
||||
ptrdiff_t lastofs = 0;
|
||||
ptrdiff_t ofs = 1;
|
||||
if (inorder (pred, *a, key))
|
||||
{
|
||||
/* When a[hint] < key, gallop right until
|
||||
a[hint + lastofs] < key <= a[hint + ofs]. */
|
||||
const ptrdiff_t maxofs = n - hint; /* This is one after the end of a. */
|
||||
while (ofs < maxofs)
|
||||
{
|
||||
if (inorder (pred, a[ofs], key))
|
||||
{
|
||||
lastofs = ofs;
|
||||
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
||||
ofs = (ofs << 1) + 1;
|
||||
}
|
||||
else
|
||||
break; /* Here key <= a[hint+ofs]. */
|
||||
}
|
||||
if (ofs > maxofs)
|
||||
ofs = maxofs;
|
||||
/* Translate back to offsets relative to &a[0]. */
|
||||
lastofs += hint;
|
||||
ofs += hint;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* When key <= a[hint], gallop left, until
|
||||
a[hint - ofs] < key <= a[hint - lastofs]. */
|
||||
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
||||
while (ofs < maxofs)
|
||||
{
|
||||
if (inorder (pred, a[-ofs], key))
|
||||
break;
|
||||
/* Here key <= a[hint - ofs]. */
|
||||
lastofs = ofs;
|
||||
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
||||
ofs = (ofs << 1) + 1;
|
||||
}
|
||||
if (ofs > maxofs)
|
||||
ofs = maxofs;
|
||||
/* Translate back to use positive offsets relative to &a[0]. */
|
||||
ptrdiff_t k = lastofs;
|
||||
lastofs = hint - ofs;
|
||||
ofs = hint - k;
|
||||
}
|
||||
a -= hint;
|
||||
|
||||
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
||||
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
|
||||
right of lastofs but no farther right than ofs. Do a binary
|
||||
search, with invariant a[lastofs-1] < key <= a[ofs]. */
|
||||
++lastofs;
|
||||
while (lastofs < ofs)
|
||||
{
|
||||
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
||||
|
||||
if (inorder (pred, a[m], key))
|
||||
lastofs = m + 1; /* Here a[m] < key. */
|
||||
else
|
||||
ofs = m; /* Here key <= a[m]. */
|
||||
}
|
||||
eassume (lastofs == ofs); /* Then a[ofs-1] < key <= a[ofs]. */
|
||||
return ofs;
|
||||
}
|
||||
|
||||
|
||||
/* Locate and return the proper position of KEY in a sorted vector
|
||||
exactly like GALLOP_LEFT, except that if KEY already exists in
|
||||
A[0:N] find the position immediately to the right of the rightmost
|
||||
equal value.
|
||||
|
||||
The return value is the int k in [0, N] such that
|
||||
|
||||
A[k-1] <= KEY < A[k]. */
|
||||
|
||||
static ptrdiff_t
|
||||
gallop_right (merge_state *ms, const Lisp_Object key, Lisp_Object *a,
|
||||
const ptrdiff_t n, const ptrdiff_t hint)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (a && n > 0 && hint >= 0 && hint < n);
|
||||
|
||||
a += hint;
|
||||
ptrdiff_t lastofs = 0;
|
||||
ptrdiff_t ofs = 1;
|
||||
if (inorder (pred, key, *a))
|
||||
{
|
||||
/* When key < a[hint], gallop left until
|
||||
a[hint - ofs] <= key < a[hint - lastofs]. */
|
||||
const ptrdiff_t maxofs = hint + 1; /* Here &a[0] is lowest. */
|
||||
while (ofs < maxofs)
|
||||
{
|
||||
if (inorder (pred, key, a[-ofs]))
|
||||
{
|
||||
lastofs = ofs;
|
||||
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
||||
ofs = (ofs << 1) + 1;
|
||||
}
|
||||
else /* Here a[hint - ofs] <= key. */
|
||||
break;
|
||||
}
|
||||
if (ofs > maxofs)
|
||||
ofs = maxofs;
|
||||
/* Translate back to use positive offsets relative to &a[0]. */
|
||||
ptrdiff_t k = lastofs;
|
||||
lastofs = hint - ofs;
|
||||
ofs = hint - k;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* When a[hint] <= key, gallop right, until
|
||||
a[hint + lastofs] <= key < a[hint + ofs]. */
|
||||
const ptrdiff_t maxofs = n - hint; /* Here &a[n-1] is highest. */
|
||||
while (ofs < maxofs)
|
||||
{
|
||||
if (inorder (pred, key, a[ofs]))
|
||||
break;
|
||||
/* Here a[hint + ofs] <= key. */
|
||||
lastofs = ofs;
|
||||
eassume (ofs <= (PTRDIFF_MAX - 1) / 2);
|
||||
ofs = (ofs << 1) + 1;
|
||||
}
|
||||
if (ofs > maxofs)
|
||||
ofs = maxofs;
|
||||
/* Translate back to use offsets relative to &a[0]. */
|
||||
lastofs += hint;
|
||||
ofs += hint;
|
||||
}
|
||||
a -= hint;
|
||||
|
||||
eassume (-1 <= lastofs && lastofs < ofs && ofs <= n);
|
||||
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
|
||||
right of lastofs but no farther right than ofs. Do a binary
|
||||
search, with invariant a[lastofs-1] <= key < a[ofs]. */
|
||||
++lastofs;
|
||||
while (lastofs < ofs)
|
||||
{
|
||||
ptrdiff_t m = lastofs + ((ofs - lastofs) >> 1);
|
||||
|
||||
if (inorder (pred, key, a[m]))
|
||||
ofs = m; /* Here key < a[m]. */
|
||||
else
|
||||
lastofs = m + 1; /* Here a[m] <= key. */
|
||||
}
|
||||
eassume (lastofs == ofs); /* Now a[ofs-1] <= key < a[ofs]. */
|
||||
return ofs;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
merge_init (merge_state *ms, const ptrdiff_t list_size, Lisp_Object *lo,
|
||||
const Lisp_Object predicate)
|
||||
{
|
||||
eassume (ms != NULL);
|
||||
|
||||
ms->a = ms->temparray;
|
||||
ms->alloced = MERGESTATE_TEMP_SIZE;
|
||||
|
||||
ms->n = 0;
|
||||
ms->min_gallop = GALLOP_WIN_MIN;
|
||||
ms->listlen = list_size;
|
||||
ms->listbase = lo;
|
||||
ms->predicate = predicate;
|
||||
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
||||
}
|
||||
|
||||
|
||||
/* The dynamically allocated memory may hold lisp objects during
|
||||
merging. MERGE_MARKMEM marks them so they aren't reaped during
|
||||
GC. */
|
||||
|
||||
static void
|
||||
merge_markmem (void *arg)
|
||||
{
|
||||
merge_state *ms = arg;
|
||||
eassume (ms != NULL);
|
||||
|
||||
if (ms->reloc.size != NULL && *ms->reloc.size > 0)
|
||||
{
|
||||
eassume (ms->reloc.src != NULL);
|
||||
mark_objects (*ms->reloc.src, *ms->reloc.size);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Free all temp storage. If an exception occurs while merging,
|
||||
relocate any lisp elements in temp storage back to the original
|
||||
array. */
|
||||
|
||||
static void
|
||||
cleanup_mem (void *arg)
|
||||
{
|
||||
merge_state *ms = arg;
|
||||
eassume (ms != NULL);
|
||||
|
||||
/* If we have an exception while merging, some of the list elements
|
||||
might only live in temp storage; we copy everything remaining in
|
||||
the temp storage back into the original list. This ensures that
|
||||
the original list has all of the original elements, although
|
||||
their order is unpredictable. */
|
||||
|
||||
if (ms->reloc.order != 0 && *ms->reloc.size > 0)
|
||||
{
|
||||
eassume (*ms->reloc.src != NULL && *ms->reloc.dst != NULL);
|
||||
ptrdiff_t n = *ms->reloc.size;
|
||||
ptrdiff_t shift = ms->reloc.order == -1 ? 0 : n - 1;
|
||||
memcpy (*ms->reloc.dst - shift, *ms->reloc.src, n * word_size);
|
||||
}
|
||||
|
||||
/* Free any remaining temp storage. */
|
||||
xfree (ms->a);
|
||||
}
|
||||
|
||||
|
||||
/* Allocate enough temp memory for NEED array slots. Any previously
|
||||
allocated memory is first freed, and a cleanup routine is
|
||||
registered to free memory at the very end of the sort, or on
|
||||
exception. */
|
||||
|
||||
static void
|
||||
merge_getmem (merge_state *ms, const ptrdiff_t need)
|
||||
{
|
||||
eassume (ms != NULL);
|
||||
|
||||
if (ms->a == ms->temparray)
|
||||
{
|
||||
/* We only get here if alloc is needed and this is the first
|
||||
time, so we set up the unwind protection. */
|
||||
specpdl_ref count = SPECPDL_INDEX ();
|
||||
record_unwind_protect_ptr_mark (cleanup_mem, ms, merge_markmem);
|
||||
ms->count = count;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We have previously alloced storage. Since we don't care
|
||||
what's in the block we don't use realloc which would waste
|
||||
cycles copying the old data. We just free and alloc
|
||||
again. */
|
||||
xfree (ms->a);
|
||||
}
|
||||
ms->a = xmalloc (need * word_size);
|
||||
ms->alloced = need;
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
needmem (merge_state *ms, ptrdiff_t na)
|
||||
{
|
||||
if (na > ms->alloced)
|
||||
merge_getmem (ms, na);
|
||||
}
|
||||
|
||||
|
||||
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
||||
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
||||
Require that SSA[NA-1] belongs at the end of the merge, and NA <=
|
||||
NB. */
|
||||
|
||||
static void
|
||||
merge_lo (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na, Lisp_Object *ssb,
|
||||
ptrdiff_t nb)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (ms && ssa && ssb && na > 0 && nb > 0);
|
||||
eassume (ssa + na == ssb);
|
||||
needmem (ms, na);
|
||||
memcpy (ms->a, ssa, na * word_size);
|
||||
Lisp_Object *dest = ssa;
|
||||
ssa = ms->a;
|
||||
|
||||
ms->reloc = (struct reloc){&ssa, &dest, &na, -1};
|
||||
|
||||
*dest++ = *ssb++;
|
||||
--nb;
|
||||
if (nb == 0)
|
||||
goto Succeed;
|
||||
if (na == 1)
|
||||
goto CopyB;
|
||||
|
||||
ptrdiff_t min_gallop = ms->min_gallop;
|
||||
for (;;)
|
||||
{
|
||||
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
||||
|
||||
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
||||
|
||||
for (;;)
|
||||
{
|
||||
eassume (na > 1 && nb > 0);
|
||||
if (inorder (pred, *ssb, *ssa))
|
||||
{
|
||||
*dest++ = *ssb++ ;
|
||||
++bcount;
|
||||
acount = 0;
|
||||
--nb;
|
||||
if (nb == 0)
|
||||
goto Succeed;
|
||||
if (bcount >= min_gallop)
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
*dest++ = *ssa++;
|
||||
++acount;
|
||||
bcount = 0;
|
||||
--na;
|
||||
if (na == 1)
|
||||
goto CopyB;
|
||||
if (acount >= min_gallop)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* One run is winning so consistently that galloping may be a
|
||||
huge speedup. We try that, and continue galloping until (if
|
||||
ever) neither run appears to be winning consistently
|
||||
anymore. */
|
||||
++min_gallop;
|
||||
do {
|
||||
eassume (na > 1 && nb > 0);
|
||||
min_gallop -= min_gallop > 1;
|
||||
ms->min_gallop = min_gallop;
|
||||
ptrdiff_t k = gallop_right (ms, ssb[0], ssa, na, 0);
|
||||
acount = k;
|
||||
if (k)
|
||||
{
|
||||
memcpy (dest, ssa, k * word_size);
|
||||
dest += k;
|
||||
ssa += k;
|
||||
na -= k;
|
||||
if (na == 1)
|
||||
goto CopyB;
|
||||
/* While na==0 is impossible for a consistent comparison
|
||||
function, we shouldn't assume that it is. */
|
||||
if (na == 0)
|
||||
goto Succeed;
|
||||
}
|
||||
*dest++ = *ssb++ ;
|
||||
--nb;
|
||||
if (nb == 0)
|
||||
goto Succeed;
|
||||
|
||||
k = gallop_left (ms, ssa[0], ssb, nb, 0);
|
||||
bcount = k;
|
||||
if (k)
|
||||
{
|
||||
memmove (dest, ssb, k * word_size);
|
||||
dest += k;
|
||||
ssb += k;
|
||||
nb -= k;
|
||||
if (nb == 0)
|
||||
goto Succeed;
|
||||
}
|
||||
*dest++ = *ssa++;
|
||||
--na;
|
||||
if (na == 1)
|
||||
goto CopyB;
|
||||
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
||||
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
||||
ms->min_gallop = min_gallop;
|
||||
}
|
||||
Succeed:
|
||||
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
||||
|
||||
if (na)
|
||||
memcpy (dest, ssa, na * word_size);
|
||||
return;
|
||||
CopyB:
|
||||
eassume (na == 1 && nb > 0);
|
||||
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
||||
|
||||
/* The last element of ssa belongs at the end of the merge. */
|
||||
memmove (dest, ssb, nb * word_size);
|
||||
dest[nb] = ssa[0];
|
||||
}
|
||||
|
||||
|
||||
/* Stably merge (in-place) the NA elements starting at SSA with the NB
|
||||
elements starting at SSB = SSA + NA. NA and NB must be positive.
|
||||
Require that SSA[NA-1] belongs at the end of the merge, and NA >=
|
||||
NB. */
|
||||
|
||||
static void
|
||||
merge_hi (merge_state *ms, Lisp_Object *ssa, ptrdiff_t na,
|
||||
Lisp_Object *ssb, ptrdiff_t nb)
|
||||
{
|
||||
Lisp_Object pred = ms->predicate;
|
||||
|
||||
eassume (ms && ssa && ssb && na > 0 && nb > 0);
|
||||
eassume (ssa + na == ssb);
|
||||
needmem (ms, nb);
|
||||
Lisp_Object *dest = ssb;
|
||||
dest += nb - 1;
|
||||
memcpy(ms->a, ssb, nb * word_size);
|
||||
Lisp_Object *basea = ssa;
|
||||
Lisp_Object *baseb = ms->a;
|
||||
ssb = ms->a + nb - 1;
|
||||
ssa += na - 1;
|
||||
|
||||
ms->reloc = (struct reloc){&baseb, &dest, &nb, 1};
|
||||
|
||||
*dest-- = *ssa--;
|
||||
--na;
|
||||
if (na == 0)
|
||||
goto Succeed;
|
||||
if (nb == 1)
|
||||
goto CopyA;
|
||||
|
||||
ptrdiff_t min_gallop = ms->min_gallop;
|
||||
for (;;) {
|
||||
ptrdiff_t acount = 0; /* The # of consecutive times A won. */
|
||||
ptrdiff_t bcount = 0; /* The # of consecutive times B won. */
|
||||
|
||||
for (;;) {
|
||||
eassume (na > 0 && nb > 1);
|
||||
if (inorder (pred, *ssb, *ssa))
|
||||
{
|
||||
*dest-- = *ssa--;
|
||||
++acount;
|
||||
bcount = 0;
|
||||
--na;
|
||||
if (na == 0)
|
||||
goto Succeed;
|
||||
if (acount >= min_gallop)
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
*dest-- = *ssb--;
|
||||
++bcount;
|
||||
acount = 0;
|
||||
--nb;
|
||||
if (nb == 1)
|
||||
goto CopyA;
|
||||
if (bcount >= min_gallop)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* One run is winning so consistently that galloping may be a huge
|
||||
speedup. Try that, and continue galloping until (if ever)
|
||||
neither run appears to be winning consistently anymore. */
|
||||
++min_gallop;
|
||||
do {
|
||||
eassume (na > 0 && nb > 1);
|
||||
min_gallop -= min_gallop > 1;
|
||||
ms->min_gallop = min_gallop;
|
||||
ptrdiff_t k = gallop_right (ms, ssb[0], basea, na, na - 1);
|
||||
k = na - k;
|
||||
acount = k;
|
||||
if (k)
|
||||
{
|
||||
dest += -k;
|
||||
ssa += -k;
|
||||
memmove(dest + 1, ssa + 1, k * word_size);
|
||||
na -= k;
|
||||
if (na == 0)
|
||||
goto Succeed;
|
||||
}
|
||||
*dest-- = *ssb--;
|
||||
--nb;
|
||||
if (nb == 1)
|
||||
goto CopyA;
|
||||
|
||||
k = gallop_left (ms, ssa[0], baseb, nb, nb - 1);
|
||||
k = nb - k;
|
||||
bcount = k;
|
||||
if (k)
|
||||
{
|
||||
dest += -k;
|
||||
ssb += -k;
|
||||
memcpy(dest + 1, ssb + 1, k * word_size);
|
||||
nb -= k;
|
||||
if (nb == 1)
|
||||
goto CopyA;
|
||||
/* While nb==0 is impossible for a consistent comparison
|
||||
function we shouldn't assume that it is. */
|
||||
if (nb == 0)
|
||||
goto Succeed;
|
||||
}
|
||||
*dest-- = *ssa--;
|
||||
--na;
|
||||
if (na == 0)
|
||||
goto Succeed;
|
||||
} while (acount >= GALLOP_WIN_MIN || bcount >= GALLOP_WIN_MIN);
|
||||
++min_gallop; /* Apply a penalty for leaving galloping mode. */
|
||||
ms->min_gallop = min_gallop;
|
||||
}
|
||||
Succeed:
|
||||
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
||||
if (nb)
|
||||
memcpy (dest - nb + 1, baseb, nb * word_size);
|
||||
return;
|
||||
CopyA:
|
||||
eassume (nb == 1 && na > 0);
|
||||
ms->reloc = (struct reloc){NULL, NULL, NULL, 0};
|
||||
/* The first element of ssb belongs at the front of the merge. */
|
||||
memmove (dest + 1 - na, ssa + 1 - na, na * word_size);
|
||||
dest += -na;
|
||||
ssa += -na;
|
||||
dest[0] = ssb[0];
|
||||
}
|
||||
|
||||
|
||||
/* Merge the two runs at stack indices I and I+1. */
|
||||
|
||||
static void
|
||||
merge_at (merge_state *ms, const ptrdiff_t i)
|
||||
{
|
||||
eassume (ms != NULL);
|
||||
eassume (ms->n >= 2);
|
||||
eassume (i >= 0);
|
||||
eassume (i == ms->n - 2 || i == ms->n - 3);
|
||||
|
||||
Lisp_Object *ssa = ms->pending[i].base;
|
||||
ptrdiff_t na = ms->pending[i].len;
|
||||
Lisp_Object *ssb = ms->pending[i + 1].base;
|
||||
ptrdiff_t nb = ms->pending[i + 1].len;
|
||||
eassume (na > 0 && nb > 0);
|
||||
eassume (ssa + na == ssb);
|
||||
|
||||
/* Record the length of the combined runs. The current run i+1 goes
|
||||
away after the merge. If i is the 3rd-last run now, slide the
|
||||
last run (which isn't involved in this merge) over to i+1. */
|
||||
ms->pending[i].len = na + nb;
|
||||
if (i == ms->n - 3)
|
||||
ms->pending[i + 1] = ms->pending[i + 2];
|
||||
--ms->n;
|
||||
|
||||
/* Where does b start in a? Elements in a before that can be
|
||||
ignored (they are already in place). */
|
||||
ptrdiff_t k = gallop_right (ms, *ssb, ssa, na, 0);
|
||||
eassume (k >= 0);
|
||||
ssa += k;
|
||||
na -= k;
|
||||
if (na == 0)
|
||||
return;
|
||||
|
||||
/* Where does a end in b? Elements in b after that can be ignored
|
||||
(they are already in place). */
|
||||
nb = gallop_left (ms, ssa[na - 1], ssb, nb, nb - 1);
|
||||
if (nb == 0)
|
||||
return;
|
||||
eassume (nb > 0);
|
||||
/* Merge what remains of the runs using a temp array with size
|
||||
min(na, nb) elements. */
|
||||
if (na <= nb)
|
||||
merge_lo (ms, ssa, na, ssb, nb);
|
||||
else
|
||||
merge_hi (ms, ssa, na, ssb, nb);
|
||||
}
|
||||
|
||||
|
||||
/* Compute the "power" of the first of two adjacent runs begining at
|
||||
index S1, with the first having length N1 and the second (starting
|
||||
at index S1+N1) having length N2. The run has total length N. */
|
||||
|
||||
static int
|
||||
powerloop (const ptrdiff_t s1, const ptrdiff_t n1, const ptrdiff_t n2,
|
||||
const ptrdiff_t n)
|
||||
{
|
||||
eassume (s1 >= 0);
|
||||
eassume (n1 > 0 && n2 > 0);
|
||||
eassume (s1 + n1 + n2 <= n);
|
||||
/* The midpoints a and b are
|
||||
a = s1 + n1/2
|
||||
b = s1 + n1 + n2/2 = a + (n1 + n2)/2
|
||||
|
||||
These may not be integers because of the "/2", so we work with
|
||||
2*a and 2*b instead. It makes no difference to the outcome,
|
||||
since the bits in the expansion of (2*i)/n are merely shifted one
|
||||
position from those of i/n. */
|
||||
ptrdiff_t a = 2 * s1 + n1;
|
||||
ptrdiff_t b = a + n1 + n2;
|
||||
int result = 0;
|
||||
/* Emulate a/n and b/n one bit a time, until their bits differ. */
|
||||
for (;;)
|
||||
{
|
||||
++result;
|
||||
if (a >= n)
|
||||
{ /* Both quotient bits are now 1. */
|
||||
eassume (b >= a);
|
||||
a -= n;
|
||||
b -= n;
|
||||
}
|
||||
else if (b >= n)
|
||||
{ /* a/n bit is 0 and b/n bit is 1. */
|
||||
break;
|
||||
} /* Otherwise both quotient bits are 0. */
|
||||
eassume (a < b && b < n);
|
||||
a <<= 1;
|
||||
b <<= 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/* Update the state upon identifying a run of length N2. If there's
|
||||
already a stretch on the stack, apply the "powersort" merge
|
||||
strategy: compute the topmost stretch's "power" (depth in a
|
||||
conceptual binary merge tree) and merge adjacent runs on the stack
|
||||
with greater power. */
|
||||
|
||||
static void
|
||||
found_new_run (merge_state *ms, const ptrdiff_t n2)
|
||||
{
|
||||
eassume (ms != NULL);
|
||||
if (ms->n)
|
||||
{
|
||||
eassume (ms->n > 0);
|
||||
struct stretch *p = ms->pending;
|
||||
ptrdiff_t s1 = p[ms->n - 1].base - ms->listbase;
|
||||
ptrdiff_t n1 = p[ms->n - 1].len;
|
||||
int power = powerloop (s1, n1, n2, ms->listlen);
|
||||
while (ms->n > 1 && p[ms->n - 2].power > power)
|
||||
{
|
||||
merge_at (ms, ms->n - 2);
|
||||
}
|
||||
eassume (ms->n < 2 || p[ms->n - 2].power < power);
|
||||
p[ms->n - 1].power = power;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Unconditionally merge all stretches on the stack until only one
|
||||
remains. */
|
||||
|
||||
static void
|
||||
merge_force_collapse (merge_state *ms)
|
||||
{
|
||||
struct stretch *p = ms->pending;
|
||||
|
||||
eassume (ms != NULL);
|
||||
while (ms->n > 1)
|
||||
{
|
||||
ptrdiff_t n = ms->n - 2;
|
||||
if (n > 0 && p[n - 1].len < p[n + 1].len)
|
||||
--n;
|
||||
merge_at (ms, n);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Compute a good value for the minimum run length; natural runs
|
||||
shorter than this are boosted artificially via binary insertion.
|
||||
|
||||
If N < 64, return N (it's too small to bother with fancy stuff).
|
||||
Otherwise if N is an exact power of 2, return 32. Finally, return
|
||||
an int k, 32 <= k <= 64, such that N/k is close to, but strictly
|
||||
less than, an exact power of 2. */
|
||||
|
||||
static ptrdiff_t
|
||||
merge_compute_minrun (ptrdiff_t n)
|
||||
{
|
||||
ptrdiff_t r = 0; /* r will become 1 if any non-zero bits are
|
||||
shifted off. */
|
||||
|
||||
eassume (n >= 0);
|
||||
while (n >= 64)
|
||||
{
|
||||
r |= n & 1;
|
||||
n >>= 1;
|
||||
}
|
||||
return n + r;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
reverse_vector (Lisp_Object *s, const ptrdiff_t n)
|
||||
{
|
||||
for (ptrdiff_t i = 0; i < n >> 1; i++)
|
||||
{
|
||||
Lisp_Object tem = s[i];
|
||||
s[i] = s[n - i - 1];
|
||||
s[n - i - 1] = tem;
|
||||
}
|
||||
}
|
||||
|
||||
/* Sort the array SEQ with LENGTH elements in the order determined by
|
||||
PREDICATE. */
|
||||
|
||||
void
|
||||
tim_sort (Lisp_Object predicate, Lisp_Object *seq, const ptrdiff_t length)
|
||||
{
|
||||
if (SYMBOLP (predicate))
|
||||
{
|
||||
/* Attempt to resolve the function as far as possible ahead of time,
|
||||
to avoid having to do it for each call. */
|
||||
Lisp_Object fun = XSYMBOL (predicate)->u.s.function;
|
||||
if (SYMBOLP (fun))
|
||||
/* Function was an alias; use slow-path resolution. */
|
||||
fun = indirect_function (fun);
|
||||
/* Don't resolve to an autoload spec; that would be very slow. */
|
||||
if (!NILP (fun) && !(CONSP (fun) && EQ (XCAR (fun), Qautoload)))
|
||||
predicate = fun;
|
||||
}
|
||||
|
||||
merge_state ms;
|
||||
Lisp_Object *lo = seq;
|
||||
|
||||
merge_init (&ms, length, lo, predicate);
|
||||
|
||||
/* March over the array once, left to right, finding natural runs,
|
||||
and extending short natural runs to minrun elements. */
|
||||
const ptrdiff_t minrun = merge_compute_minrun (length);
|
||||
ptrdiff_t nremaining = length;
|
||||
do {
|
||||
bool descending;
|
||||
|
||||
/* Identify the next run. */
|
||||
ptrdiff_t n = count_run (&ms, lo, lo + nremaining, &descending);
|
||||
if (descending)
|
||||
reverse_vector (lo, n);
|
||||
/* If the run is short, extend it to min(minrun, nremaining). */
|
||||
if (n < minrun)
|
||||
{
|
||||
const ptrdiff_t force = nremaining <= minrun ?
|
||||
nremaining : minrun;
|
||||
binarysort (&ms, lo, lo + force, lo + n);
|
||||
n = force;
|
||||
}
|
||||
eassume (ms.n == 0 || ms.pending[ms.n - 1].base +
|
||||
ms.pending[ms.n - 1].len == lo);
|
||||
found_new_run (&ms, n);
|
||||
/* Push the new run on to the stack. */
|
||||
eassume (ms.n < MAX_MERGE_PENDING);
|
||||
ms.pending[ms.n].base = lo;
|
||||
ms.pending[ms.n].len = n;
|
||||
++ms.n;
|
||||
/* Advance to find the next run. */
|
||||
lo += n;
|
||||
nremaining -= n;
|
||||
} while (nremaining);
|
||||
|
||||
merge_force_collapse (&ms);
|
||||
eassume (ms.n == 1);
|
||||
eassume (ms.pending[0].len == length);
|
||||
lo = ms.pending[0].base;
|
||||
|
||||
if (ms.a != ms.temparray)
|
||||
unbind_to (ms.count, Qnil);
|
||||
}
|
@ -204,6 +204,76 @@
|
||||
[-1 2 3 4 5 5 7 8 9]))
|
||||
(should (equal (sort (vector 9 5 2 -1 5 3 8 7 4) (lambda (x y) (> x y)))
|
||||
[9 8 7 5 5 4 3 2 -1]))
|
||||
;; Sort a reversed list and vector.
|
||||
(should (equal
|
||||
(sort (reverse (number-sequence 1 1000)) (lambda (x y) (< x y)))
|
||||
(number-sequence 1 1000)))
|
||||
(should (equal
|
||||
(sort (reverse (vconcat (number-sequence 1 1000)))
|
||||
(lambda (x y) (< x y)))
|
||||
(vconcat (number-sequence 1 1000))))
|
||||
;; Sort a constant list and vector.
|
||||
(should (equal
|
||||
(sort (make-vector 100 1) (lambda (x y) (> x y)))
|
||||
(make-vector 100 1)))
|
||||
(should (equal
|
||||
(sort (append (make-vector 100 1) nil) (lambda (x y) (> x y)))
|
||||
(append (make-vector 100 1) nil)))
|
||||
;; Sort a long list and vector with every pair reversed.
|
||||
(let ((vec (make-vector 100000 nil))
|
||||
(logxor-vec (make-vector 100000 nil)))
|
||||
(dotimes (i 100000)
|
||||
(aset logxor-vec i (logxor i 1))
|
||||
(aset vec i i))
|
||||
(should (equal
|
||||
(sort logxor-vec (lambda (x y) (< x y)))
|
||||
vec))
|
||||
(should (equal
|
||||
(sort (append logxor-vec nil) (lambda (x y) (< x y)))
|
||||
(append vec nil))))
|
||||
;; Sort a list and vector with seven swaps.
|
||||
(let ((vec (make-vector 100 nil))
|
||||
(swap-vec (make-vector 100 nil)))
|
||||
(dotimes (i 100)
|
||||
(aset vec i (- i 50))
|
||||
(aset swap-vec i (- i 50)))
|
||||
(mapc (lambda (p)
|
||||
(let ((tmp (elt swap-vec (car p))))
|
||||
(aset swap-vec (car p) (elt swap-vec (cdr p)))
|
||||
(aset swap-vec (cdr p) tmp)))
|
||||
'((48 . 94) (75 . 77) (33 . 41) (92 . 52)
|
||||
(10 . 96) (1 . 14) (43 . 81)))
|
||||
(should (equal
|
||||
(sort (copy-sequence swap-vec) (lambda (x y) (< x y)))
|
||||
vec))
|
||||
(should (equal
|
||||
(sort (append swap-vec nil) (lambda (x y) (< x y)))
|
||||
(append vec nil))))
|
||||
;; Check for possible corruption after GC.
|
||||
(let* ((size 3000)
|
||||
(complex-vec (make-vector size nil))
|
||||
(vec (make-vector size nil))
|
||||
(counter 0)
|
||||
(my-counter (lambda ()
|
||||
(if (< counter 500)
|
||||
(cl-incf counter)
|
||||
(setq counter 0)
|
||||
(garbage-collect))))
|
||||
(rand 1)
|
||||
(generate-random
|
||||
(lambda () (setq rand
|
||||
(logand (+ (* rand 1103515245) 12345) 2147483647)))))
|
||||
;; Make a complex vector and its sorted version.
|
||||
(dotimes (i size)
|
||||
(let ((r (funcall generate-random)))
|
||||
(aset complex-vec i (cons r "a"))
|
||||
(aset vec i (cons r "a"))))
|
||||
;; Sort it.
|
||||
(should (equal
|
||||
(sort complex-vec
|
||||
(lambda (x y) (funcall my-counter) (< (car x) (car y))))
|
||||
(sort vec 'car-less-than-car))))
|
||||
;; Check for sorting stability.
|
||||
(should (equal
|
||||
(sort
|
||||
(vector
|
||||
|
Loading…
Reference in New Issue
Block a user