1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-02 08:22:22 +00:00
emacs/src/alloc.c
Richard M. Stallman 06c5fe0034 (make_pure_string): If we USE_TEXT_PROPERTIES, set the
interval of the pure string to NULL_INTERVAL.
1993-11-10 19:55:18 +00:00

2231 lines
58 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Storage allocation and gc for GNU Emacs Lisp interpreter.
Copyright (C) 1985, 1986, 1988, 1993 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <signal.h>
#include <config.h>
#include "lisp.h"
#include "intervals.h"
#include "puresize.h"
#ifndef standalone
#include "buffer.h"
#include "window.h"
#include "frame.h"
#include "blockinput.h"
#endif
#include "syssignal.h"
#define max(A,B) ((A) > (B) ? (A) : (B))
/* Macro to verify that storage intended for Lisp objects is not
out of range to fit in the space for a pointer.
ADDRESS is the start of the block, and SIZE
is the amount of space within which objects can start. */
#define VALIDATE_LISP_STORAGE(address, size) \
do \
{ \
Lisp_Object val; \
XSET (val, Lisp_Cons, (char *) address + size); \
if ((char *) XCONS (val) != (char *) address + size) \
{ \
xfree (address); \
memory_full (); \
} \
} while (0)
/* Number of bytes of consing done since the last gc */
int consing_since_gc;
/* Number of bytes of consing since gc before another gc should be done. */
int gc_cons_threshold;
/* Nonzero during gc */
int gc_in_progress;
#ifndef VIRT_ADDR_VARIES
extern
#endif /* VIRT_ADDR_VARIES */
int malloc_sbrk_used;
#ifndef VIRT_ADDR_VARIES
extern
#endif /* VIRT_ADDR_VARIES */
int malloc_sbrk_unused;
/* Two limits controlling how much undo information to keep. */
int undo_limit;
int undo_strong_limit;
/* Non-nil means defun should do purecopy on the function definition */
Lisp_Object Vpurify_flag;
#ifndef HAVE_SHM
int pure[PURESIZE / sizeof (int)] = {0,}; /* Force it into data space! */
#define PUREBEG (char *) pure
#else
#define pure PURE_SEG_BITS /* Use shared memory segment */
#define PUREBEG (char *)PURE_SEG_BITS
/* This variable is used only by the XPNTR macro when HAVE_SHM is
defined. If we used the PURESIZE macro directly there, that would
make most of emacs dependent on puresize.h, which we don't want -
you should be able to change that without too much recompilation.
So map_in_data initializes pure_size, and the dependencies work
out. */
int pure_size;
#endif /* not HAVE_SHM */
/* Index in pure at which next pure object will be allocated. */
int pureptr;
/* If nonzero, this is a warning delivered by malloc and not yet displayed. */
char *pending_malloc_warning;
/* Maximum amount of C stack to save when a GC happens. */
#ifndef MAX_SAVE_STACK
#define MAX_SAVE_STACK 16000
#endif
/* Buffer in which we save a copy of the C stack at each GC. */
char *stack_copy;
int stack_copy_size;
/* Non-zero means ignore malloc warnings. Set during initialization. */
int ignore_warnings;
static void mark_object (), mark_buffer ();
static void clear_marks (), gc_sweep ();
static void compact_strings ();
/* Versions of malloc and realloc that print warnings as memory gets full. */
Lisp_Object
malloc_warning_1 (str)
Lisp_Object str;
{
Fprinc (str, Vstandard_output);
write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
return Qnil;
}
/* malloc calls this if it finds we are near exhausting storage */
malloc_warning (str)
char *str;
{
pending_malloc_warning = str;
}
display_malloc_warning ()
{
register Lisp_Object val;
val = build_string (pending_malloc_warning);
pending_malloc_warning = 0;
internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
}
/* Called if malloc returns zero */
memory_full ()
{
error ("Memory exhausted");
}
/* like malloc routines but check for no memory and block interrupt input. */
long *
xmalloc (size)
int size;
{
register long *val;
BLOCK_INPUT;
val = (long *) malloc (size);
UNBLOCK_INPUT;
if (!val && size) memory_full ();
return val;
}
long *
xrealloc (block, size)
long *block;
int size;
{
register long *val;
BLOCK_INPUT;
/* We must call malloc explicitly when BLOCK is 0, since some
reallocs don't do this. */
if (! block)
val = (long *) malloc (size);
else
val = (long *) realloc (block, size);
UNBLOCK_INPUT;
if (!val && size) memory_full ();
return val;
}
void
xfree (block)
long *block;
{
BLOCK_INPUT;
free (block);
UNBLOCK_INPUT;
}
/* Arranging to disable input signals while we're in malloc.
This only works with GNU malloc. To help out systems which can't
use GNU malloc, all the calls to malloc, realloc, and free
elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
pairs; unfortunately, we have no idea what C library functions
might call malloc, so we can't really protect them unless you're
using GNU malloc. Fortunately, most of the major operating can use
GNU malloc. */
#ifndef SYSTEM_MALLOC
extern void * (*__malloc_hook) ();
static void * (*old_malloc_hook) ();
extern void * (*__realloc_hook) ();
static void * (*old_realloc_hook) ();
extern void (*__free_hook) ();
static void (*old_free_hook) ();
static void
emacs_blocked_free (ptr)
void *ptr;
{
BLOCK_INPUT;
__free_hook = old_free_hook;
free (ptr);
__free_hook = emacs_blocked_free;
UNBLOCK_INPUT;
}
static void *
emacs_blocked_malloc (size)
unsigned size;
{
void *value;
BLOCK_INPUT;
__malloc_hook = old_malloc_hook;
value = (void *) malloc (size);
__malloc_hook = emacs_blocked_malloc;
UNBLOCK_INPUT;
return value;
}
static void *
emacs_blocked_realloc (ptr, size)
void *ptr;
unsigned size;
{
void *value;
BLOCK_INPUT;
__realloc_hook = old_realloc_hook;
value = (void *) realloc (ptr, size);
__realloc_hook = emacs_blocked_realloc;
UNBLOCK_INPUT;
return value;
}
void
uninterrupt_malloc ()
{
old_free_hook = __free_hook;
__free_hook = emacs_blocked_free;
old_malloc_hook = __malloc_hook;
__malloc_hook = emacs_blocked_malloc;
old_realloc_hook = __realloc_hook;
__realloc_hook = emacs_blocked_realloc;
}
#endif
/* Interval allocation. */
#ifdef USE_TEXT_PROPERTIES
#define INTERVAL_BLOCK_SIZE \
((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
struct interval_block
{
struct interval_block *next;
struct interval intervals[INTERVAL_BLOCK_SIZE];
};
struct interval_block *interval_block;
static int interval_block_index;
INTERVAL interval_free_list;
static void
init_intervals ()
{
interval_block
= (struct interval_block *) malloc (sizeof (struct interval_block));
interval_block->next = 0;
bzero (interval_block->intervals, sizeof interval_block->intervals);
interval_block_index = 0;
interval_free_list = 0;
}
#define INIT_INTERVALS init_intervals ()
INTERVAL
make_interval ()
{
INTERVAL val;
if (interval_free_list)
{
val = interval_free_list;
interval_free_list = interval_free_list->parent;
}
else
{
if (interval_block_index == INTERVAL_BLOCK_SIZE)
{
register struct interval_block *newi
= (struct interval_block *) xmalloc (sizeof (struct interval_block));
VALIDATE_LISP_STORAGE (newi, sizeof *newi);
newi->next = interval_block;
interval_block = newi;
interval_block_index = 0;
}
val = &interval_block->intervals[interval_block_index++];
}
consing_since_gc += sizeof (struct interval);
RESET_INTERVAL (val);
return val;
}
static int total_free_intervals, total_intervals;
/* Mark the pointers of one interval. */
static void
mark_interval (i, dummy)
register INTERVAL i;
Lisp_Object dummy;
{
if (XMARKBIT (i->plist))
abort ();
mark_object (&i->plist);
XMARK (i->plist);
}
static void
mark_interval_tree (tree)
register INTERVAL tree;
{
/* No need to test if this tree has been marked already; this
function is always called through the MARK_INTERVAL_TREE macro,
which takes care of that. */
/* XMARK expands to an assignment; the LHS of an assignment can't be
a cast. */
XMARK (* (Lisp_Object *) &tree->parent);
traverse_intervals (tree, 1, 0, mark_interval, Qnil);
}
#define MARK_INTERVAL_TREE(i) \
do { \
if (!NULL_INTERVAL_P (i) \
&& ! XMARKBIT ((Lisp_Object) i->parent)) \
mark_interval_tree (i); \
} while (0)
/* The oddity in the call to XUNMARK is necessary because XUNMARK
expands to an assignment to its argument, and most C compilers don't
support casts on the left operand of `='. */
#define UNMARK_BALANCE_INTERVALS(i) \
{ \
if (! NULL_INTERVAL_P (i)) \
{ \
XUNMARK (* (Lisp_Object *) (&(i)->parent)); \
(i) = balance_intervals (i); \
} \
}
#else /* no interval use */
#define INIT_INTERVALS
#define UNMARK_BALANCE_INTERVALS(i)
#define MARK_INTERVAL_TREE(i)
#endif /* no interval use */
/* Floating point allocation. */
#ifdef LISP_FLOAT_TYPE
/* Allocation of float cells, just like conses */
/* We store float cells inside of float_blocks, allocating a new
float_block with malloc whenever necessary. Float cells reclaimed by
GC are put on a free list to be reallocated before allocating
any new float cells from the latest float_block.
Each float_block is just under 1020 bytes long,
since malloc really allocates in units of powers of two
and uses 4 bytes for its own overhead. */
#define FLOAT_BLOCK_SIZE \
((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
struct float_block
{
struct float_block *next;
struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
};
struct float_block *float_block;
int float_block_index;
struct Lisp_Float *float_free_list;
void
init_float ()
{
float_block = (struct float_block *) malloc (sizeof (struct float_block));
float_block->next = 0;
bzero (float_block->floats, sizeof float_block->floats);
float_block_index = 0;
float_free_list = 0;
}
/* Explicitly free a float cell. */
free_float (ptr)
struct Lisp_Float *ptr;
{
XFASTINT (ptr->type) = (int) float_free_list;
float_free_list = ptr;
}
Lisp_Object
make_float (float_value)
double float_value;
{
register Lisp_Object val;
if (float_free_list)
{
XSET (val, Lisp_Float, float_free_list);
float_free_list = (struct Lisp_Float *) XFASTINT (float_free_list->type);
}
else
{
if (float_block_index == FLOAT_BLOCK_SIZE)
{
register struct float_block *new = (struct float_block *) xmalloc (sizeof (struct float_block));
VALIDATE_LISP_STORAGE (new, sizeof *new);
new->next = float_block;
float_block = new;
float_block_index = 0;
}
XSET (val, Lisp_Float, &float_block->floats[float_block_index++]);
}
XFLOAT (val)->data = float_value;
XFLOAT (val)->type = 0; /* bug chasing -wsr */
consing_since_gc += sizeof (struct Lisp_Float);
return val;
}
#endif /* LISP_FLOAT_TYPE */
/* Allocation of cons cells */
/* We store cons cells inside of cons_blocks, allocating a new
cons_block with malloc whenever necessary. Cons cells reclaimed by
GC are put on a free list to be reallocated before allocating
any new cons cells from the latest cons_block.
Each cons_block is just under 1020 bytes long,
since malloc really allocates in units of powers of two
and uses 4 bytes for its own overhead. */
#define CONS_BLOCK_SIZE \
((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
struct cons_block
{
struct cons_block *next;
struct Lisp_Cons conses[CONS_BLOCK_SIZE];
};
struct cons_block *cons_block;
int cons_block_index;
struct Lisp_Cons *cons_free_list;
void
init_cons ()
{
cons_block = (struct cons_block *) malloc (sizeof (struct cons_block));
cons_block->next = 0;
bzero (cons_block->conses, sizeof cons_block->conses);
cons_block_index = 0;
cons_free_list = 0;
}
/* Explicitly free a cons cell. */
free_cons (ptr)
struct Lisp_Cons *ptr;
{
XFASTINT (ptr->car) = (int) cons_free_list;
cons_free_list = ptr;
}
DEFUN ("cons", Fcons, Scons, 2, 2, 0,
"Create a new cons, give it CAR and CDR as components, and return it.")
(car, cdr)
Lisp_Object car, cdr;
{
register Lisp_Object val;
if (cons_free_list)
{
XSET (val, Lisp_Cons, cons_free_list);
cons_free_list = (struct Lisp_Cons *) XFASTINT (cons_free_list->car);
}
else
{
if (cons_block_index == CONS_BLOCK_SIZE)
{
register struct cons_block *new = (struct cons_block *) xmalloc (sizeof (struct cons_block));
VALIDATE_LISP_STORAGE (new, sizeof *new);
new->next = cons_block;
cons_block = new;
cons_block_index = 0;
}
XSET (val, Lisp_Cons, &cons_block->conses[cons_block_index++]);
}
XCONS (val)->car = car;
XCONS (val)->cdr = cdr;
consing_since_gc += sizeof (struct Lisp_Cons);
return val;
}
DEFUN ("list", Flist, Slist, 0, MANY, 0,
"Return a newly created list with specified arguments as elements.\n\
Any number of arguments, even zero arguments, are allowed.")
(nargs, args)
int nargs;
register Lisp_Object *args;
{
register Lisp_Object len, val, val_tail;
XFASTINT (len) = nargs;
val = Fmake_list (len, Qnil);
val_tail = val;
while (!NILP (val_tail))
{
XCONS (val_tail)->car = *args++;
val_tail = XCONS (val_tail)->cdr;
}
return val;
}
DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
"Return a newly created list of length LENGTH, with each element being INIT.")
(length, init)
register Lisp_Object length, init;
{
register Lisp_Object val;
register int size;
if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
length = wrong_type_argument (Qnatnump, length);
size = XINT (length);
val = Qnil;
while (size-- > 0)
val = Fcons (init, val);
return val;
}
/* Allocation of vectors */
struct Lisp_Vector *all_vectors;
DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
"Return a newly created vector of length LENGTH, with each element being INIT.\n\
See also the function `vector'.")
(length, init)
register Lisp_Object length, init;
{
register int sizei, index;
register Lisp_Object vector;
register struct Lisp_Vector *p;
if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
length = wrong_type_argument (Qnatnump, length);
sizei = XINT (length);
p = (struct Lisp_Vector *) xmalloc (sizeof (struct Lisp_Vector) + (sizei - 1) * sizeof (Lisp_Object));
VALIDATE_LISP_STORAGE (p, 0);
XSET (vector, Lisp_Vector, p);
consing_since_gc += sizeof (struct Lisp_Vector) + (sizei - 1) * sizeof (Lisp_Object);
p->size = sizei;
p->next = all_vectors;
all_vectors = p;
for (index = 0; index < sizei; index++)
p->contents[index] = init;
return vector;
}
DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
"Return a newly created vector with specified arguments as elements.\n\
Any number of arguments, even zero arguments, are allowed.")
(nargs, args)
register int nargs;
Lisp_Object *args;
{
register Lisp_Object len, val;
register int index;
register struct Lisp_Vector *p;
XFASTINT (len) = nargs;
val = Fmake_vector (len, Qnil);
p = XVECTOR (val);
for (index = 0; index < nargs; index++)
p->contents[index] = args[index];
return val;
}
DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
"Create a byte-code object with specified arguments as elements.\n\
The arguments should be the arglist, bytecode-string, constant vector,\n\
stack size, (optional) doc string, and (optional) interactive spec.\n\
The first four arguments are required; at most six have any\n\
significance.")
(nargs, args)
register int nargs;
Lisp_Object *args;
{
register Lisp_Object len, val;
register int index;
register struct Lisp_Vector *p;
XFASTINT (len) = nargs;
if (!NILP (Vpurify_flag))
val = make_pure_vector (len);
else
val = Fmake_vector (len, Qnil);
p = XVECTOR (val);
for (index = 0; index < nargs; index++)
{
if (!NILP (Vpurify_flag))
args[index] = Fpurecopy (args[index]);
p->contents[index] = args[index];
}
XSETTYPE (val, Lisp_Compiled);
return val;
}
/* Allocation of symbols.
Just like allocation of conses!
Each symbol_block is just under 1020 bytes long,
since malloc really allocates in units of powers of two
and uses 4 bytes for its own overhead. */
#define SYMBOL_BLOCK_SIZE \
((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
struct symbol_block
{
struct symbol_block *next;
struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
};
struct symbol_block *symbol_block;
int symbol_block_index;
struct Lisp_Symbol *symbol_free_list;
void
init_symbol ()
{
symbol_block = (struct symbol_block *) malloc (sizeof (struct symbol_block));
symbol_block->next = 0;
bzero (symbol_block->symbols, sizeof symbol_block->symbols);
symbol_block_index = 0;
symbol_free_list = 0;
}
DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
"Return a newly allocated uninterned symbol whose name is NAME.\n\
Its value and function definition are void, and its property list is nil.")
(str)
Lisp_Object str;
{
register Lisp_Object val;
register struct Lisp_Symbol *p;
CHECK_STRING (str, 0);
if (symbol_free_list)
{
XSET (val, Lisp_Symbol, symbol_free_list);
symbol_free_list
= (struct Lisp_Symbol *) XFASTINT (symbol_free_list->value);
}
else
{
if (symbol_block_index == SYMBOL_BLOCK_SIZE)
{
struct symbol_block *new = (struct symbol_block *) xmalloc (sizeof (struct symbol_block));
VALIDATE_LISP_STORAGE (new, sizeof *new);
new->next = symbol_block;
symbol_block = new;
symbol_block_index = 0;
}
XSET (val, Lisp_Symbol, &symbol_block->symbols[symbol_block_index++]);
}
p = XSYMBOL (val);
p->name = XSTRING (str);
p->plist = Qnil;
p->value = Qunbound;
p->function = Qunbound;
p->next = 0;
consing_since_gc += sizeof (struct Lisp_Symbol);
return val;
}
/* Allocation of markers.
Works like allocation of conses. */
#define MARKER_BLOCK_SIZE \
((1020 - sizeof (struct marker_block *)) / sizeof (struct Lisp_Marker))
struct marker_block
{
struct marker_block *next;
struct Lisp_Marker markers[MARKER_BLOCK_SIZE];
};
struct marker_block *marker_block;
int marker_block_index;
struct Lisp_Marker *marker_free_list;
void
init_marker ()
{
marker_block = (struct marker_block *) malloc (sizeof (struct marker_block));
marker_block->next = 0;
bzero (marker_block->markers, sizeof marker_block->markers);
marker_block_index = 0;
marker_free_list = 0;
}
DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
"Return a newly allocated marker which does not point at any place.")
()
{
register Lisp_Object val;
register struct Lisp_Marker *p;
if (marker_free_list)
{
XSET (val, Lisp_Marker, marker_free_list);
marker_free_list
= (struct Lisp_Marker *) XFASTINT (marker_free_list->chain);
}
else
{
if (marker_block_index == MARKER_BLOCK_SIZE)
{
struct marker_block *new = (struct marker_block *) xmalloc (sizeof (struct marker_block));
VALIDATE_LISP_STORAGE (new, sizeof *new);
new->next = marker_block;
marker_block = new;
marker_block_index = 0;
}
XSET (val, Lisp_Marker, &marker_block->markers[marker_block_index++]);
}
p = XMARKER (val);
p->buffer = 0;
p->bufpos = 0;
p->chain = Qnil;
consing_since_gc += sizeof (struct Lisp_Marker);
return val;
}
/* Allocation of strings */
/* Strings reside inside of string_blocks. The entire data of the string,
both the size and the contents, live in part of the `chars' component of a string_block.
The `pos' component is the index within `chars' of the first free byte.
first_string_block points to the first string_block ever allocated.
Each block points to the next one with its `next' field.
The `prev' fields chain in reverse order.
The last one allocated is the one currently being filled.
current_string_block points to it.
The string_blocks that hold individual large strings
go in a separate chain, started by large_string_blocks. */
/* String blocks contain this many useful bytes.
8188 is power of 2, minus 4 for malloc overhead. */
#define STRING_BLOCK_SIZE (8188 - sizeof (struct string_block_head))
/* A string bigger than this gets its own specially-made string block
if it doesn't fit in the current one. */
#define STRING_BLOCK_OUTSIZE 1024
struct string_block_head
{
struct string_block *next, *prev;
int pos;
};
struct string_block
{
struct string_block *next, *prev;
int pos;
char chars[STRING_BLOCK_SIZE];
};
/* This points to the string block we are now allocating strings. */
struct string_block *current_string_block;
/* This points to the oldest string block, the one that starts the chain. */
struct string_block *first_string_block;
/* Last string block in chain of those made for individual large strings. */
struct string_block *large_string_blocks;
/* If SIZE is the length of a string, this returns how many bytes
the string occupies in a string_block (including padding). */
#define STRING_FULLSIZE(size) (((size) + sizeof (struct Lisp_String) + PAD) \
& ~(PAD - 1))
#define PAD (sizeof (int))
#if 0
#define STRING_FULLSIZE(SIZE) \
(((SIZE) + 2 * sizeof (int)) & ~(sizeof (int) - 1))
#endif
void
init_strings ()
{
current_string_block = (struct string_block *) malloc (sizeof (struct string_block));
first_string_block = current_string_block;
consing_since_gc += sizeof (struct string_block);
current_string_block->next = 0;
current_string_block->prev = 0;
current_string_block->pos = 0;
large_string_blocks = 0;
}
DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
"Return a newly created string of length LENGTH, with each element being INIT.\n\
Both LENGTH and INIT must be numbers.")
(length, init)
Lisp_Object length, init;
{
register Lisp_Object val;
register unsigned char *p, *end, c;
if (XTYPE (length) != Lisp_Int || XINT (length) < 0)
length = wrong_type_argument (Qnatnump, length);
CHECK_NUMBER (init, 1);
val = make_uninit_string (XINT (length));
c = XINT (init);
p = XSTRING (val)->data;
end = p + XSTRING (val)->size;
while (p != end)
*p++ = c;
*p = 0;
return val;
}
Lisp_Object
make_string (contents, length)
char *contents;
int length;
{
register Lisp_Object val;
val = make_uninit_string (length);
bcopy (contents, XSTRING (val)->data, length);
return val;
}
Lisp_Object
build_string (str)
char *str;
{
return make_string (str, strlen (str));
}
Lisp_Object
make_uninit_string (length)
int length;
{
register Lisp_Object val;
register int fullsize = STRING_FULLSIZE (length);
if (length < 0) abort ();
if (fullsize <= STRING_BLOCK_SIZE - current_string_block->pos)
/* This string can fit in the current string block */
{
XSET (val, Lisp_String,
(struct Lisp_String *) (current_string_block->chars + current_string_block->pos));
current_string_block->pos += fullsize;
}
else if (fullsize > STRING_BLOCK_OUTSIZE)
/* This string gets its own string block */
{
register struct string_block *new
= (struct string_block *) xmalloc (sizeof (struct string_block_head) + fullsize);
VALIDATE_LISP_STORAGE (new, 0);
consing_since_gc += sizeof (struct string_block_head) + fullsize;
new->pos = fullsize;
new->next = large_string_blocks;
large_string_blocks = new;
XSET (val, Lisp_String,
(struct Lisp_String *) ((struct string_block_head *)new + 1));
}
else
/* Make a new current string block and start it off with this string */
{
register struct string_block *new
= (struct string_block *) xmalloc (sizeof (struct string_block));
VALIDATE_LISP_STORAGE (new, sizeof *new);
consing_since_gc += sizeof (struct string_block);
current_string_block->next = new;
new->prev = current_string_block;
new->next = 0;
current_string_block = new;
new->pos = fullsize;
XSET (val, Lisp_String,
(struct Lisp_String *) current_string_block->chars);
}
XSTRING (val)->size = length;
XSTRING (val)->data[length] = 0;
INITIALIZE_INTERVAL (XSTRING (val), NULL_INTERVAL);
return val;
}
/* Return a newly created vector or string with specified arguments as
elements. If all the arguments are characters that can fit
in a string of events, make a string; otherwise, make a vector.
Any number of arguments, even zero arguments, are allowed. */
Lisp_Object
make_event_array (nargs, args)
register int nargs;
Lisp_Object *args;
{
int i;
for (i = 0; i < nargs; i++)
/* The things that fit in a string
are characters that are in 0...127,
after discarding the meta bit and all the bits above it. */
if (XTYPE (args[i]) != Lisp_Int
|| (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
return Fvector (nargs, args);
/* Since the loop exited, we know that all the things in it are
characters, so we can make a string. */
{
Lisp_Object result = Fmake_string (nargs, make_number (0));
for (i = 0; i < nargs; i++)
{
XSTRING (result)->data[i] = XINT (args[i]);
/* Move the meta bit to the right place for a string char. */
if (XINT (args[i]) & CHAR_META)
XSTRING (result)->data[i] |= 0x80;
}
return result;
}
}
/* Pure storage management. */
/* Must get an error if pure storage is full,
since if it cannot hold a large string
it may be able to hold conses that point to that string;
then the string is not protected from gc. */
Lisp_Object
make_pure_string (data, length)
char *data;
int length;
{
register Lisp_Object new;
register int size = sizeof (int) + INTERVAL_PTR_SIZE + length + 1;
if (pureptr + size > PURESIZE)
error ("Pure Lisp storage exhausted");
XSET (new, Lisp_String, PUREBEG + pureptr);
XSTRING (new)->size = length;
bcopy (data, XSTRING (new)->data, length);
XSTRING (new)->data[length] = 0;
/* We must give strings in pure storage some kind of interval. So we
give them a null one. */
#if defined (USE_TEXT_PROPERTIES)
XSTRING (new)->intervals = NULL_INTERVAL;
#endif
pureptr += (size + sizeof (int) - 1)
/ sizeof (int) * sizeof (int);
return new;
}
Lisp_Object
pure_cons (car, cdr)
Lisp_Object car, cdr;
{
register Lisp_Object new;
if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
error ("Pure Lisp storage exhausted");
XSET (new, Lisp_Cons, PUREBEG + pureptr);
pureptr += sizeof (struct Lisp_Cons);
XCONS (new)->car = Fpurecopy (car);
XCONS (new)->cdr = Fpurecopy (cdr);
return new;
}
#ifdef LISP_FLOAT_TYPE
Lisp_Object
make_pure_float (num)
double num;
{
register Lisp_Object new;
/* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
(double) boundary. Some architectures (like the sparc) require
this, and I suspect that floats are rare enough that it's no
tragedy for those that do. */
{
int alignment;
char *p = PUREBEG + pureptr;
#ifdef __GNUC__
#if __GNUC__ >= 2
alignment = __alignof (struct Lisp_Float);
#else
alignment = sizeof (struct Lisp_Float);
#endif
#else
alignment = sizeof (struct Lisp_Float);
#endif
p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
pureptr = p - PUREBEG;
}
if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
error ("Pure Lisp storage exhausted");
XSET (new, Lisp_Float, PUREBEG + pureptr);
pureptr += sizeof (struct Lisp_Float);
XFLOAT (new)->data = num;
XFLOAT (new)->type = 0; /* bug chasing -wsr */
return new;
}
#endif /* LISP_FLOAT_TYPE */
Lisp_Object
make_pure_vector (len)
int len;
{
register Lisp_Object new;
register int size = sizeof (struct Lisp_Vector) + (len - 1) * sizeof (Lisp_Object);
if (pureptr + size > PURESIZE)
error ("Pure Lisp storage exhausted");
XSET (new, Lisp_Vector, PUREBEG + pureptr);
pureptr += size;
XVECTOR (new)->size = len;
return new;
}
DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
"Make a copy of OBJECT in pure storage.\n\
Recursively copies contents of vectors and cons cells.\n\
Does not copy symbols.")
(obj)
register Lisp_Object obj;
{
register Lisp_Object new, tem;
register int i;
if (NILP (Vpurify_flag))
return obj;
if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
&& (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
return obj;
#ifdef SWITCH_ENUM_BUG
switch ((int) XTYPE (obj))
#else
switch (XTYPE (obj))
#endif
{
case Lisp_Marker:
error ("Attempt to copy a marker to pure storage");
case Lisp_Cons:
return pure_cons (XCONS (obj)->car, XCONS (obj)->cdr);
#ifdef LISP_FLOAT_TYPE
case Lisp_Float:
return make_pure_float (XFLOAT (obj)->data);
#endif /* LISP_FLOAT_TYPE */
case Lisp_String:
return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size);
case Lisp_Compiled:
case Lisp_Vector:
new = make_pure_vector (XVECTOR (obj)->size);
for (i = 0; i < XVECTOR (obj)->size; i++)
{
tem = XVECTOR (obj)->contents[i];
XVECTOR (new)->contents[i] = Fpurecopy (tem);
}
XSETTYPE (new, XTYPE (obj));
return new;
default:
return obj;
}
}
/* Recording what needs to be marked for gc. */
struct gcpro *gcprolist;
#define NSTATICS 512
Lisp_Object *staticvec[NSTATICS] = {0};
int staticidx = 0;
/* Put an entry in staticvec, pointing at the variable whose address is given */
void
staticpro (varaddress)
Lisp_Object *varaddress;
{
staticvec[staticidx++] = varaddress;
if (staticidx >= NSTATICS)
abort ();
}
struct catchtag
{
Lisp_Object tag;
Lisp_Object val;
struct catchtag *next;
/* jmp_buf jmp; /* We don't need this for GC purposes */
};
struct backtrace
{
struct backtrace *next;
Lisp_Object *function;
Lisp_Object *args; /* Points to vector of args. */
int nargs; /* length of vector */
/* if nargs is UNEVALLED, args points to slot holding list of unevalled args */
char evalargs;
};
/* Two flags that are set during GC in the `size' component
of a string or vector. On some machines, these flags
are defined by the m- file to be different bits. */
/* On vector, means it has been marked.
On string size field or a reference to a string,
means not the last reference in the chain. */
#ifndef ARRAY_MARK_FLAG
#define ARRAY_MARK_FLAG ((MARKBIT >> 1) & ~MARKBIT)
#endif /* no ARRAY_MARK_FLAG */
/* Any slot that is a Lisp_Object can point to a string
and thus can be put on a string's reference-chain
and thus may need to have its ARRAY_MARK_FLAG set.
This includes the slots whose markbits are used to mark
the containing objects. */
#if ARRAY_MARK_FLAG == MARKBIT
you lose
#endif
/* Garbage collection! */
int total_conses, total_markers, total_symbols, total_string_size, total_vector_size;
int total_free_conses, total_free_markers, total_free_symbols;
#ifdef LISP_FLOAT_TYPE
int total_free_floats, total_floats;
#endif /* LISP_FLOAT_TYPE */
DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
"Reclaim storage for Lisp objects no longer needed.\n\
Returns info on amount of space in use:\n\
((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
(USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
(USED-FLOATS . FREE-FLOATS))\n\
Garbage collection happens automatically if you cons more than\n\
`gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
()
{
register struct gcpro *tail;
register struct specbinding *bind;
struct catchtag *catch;
struct handler *handler;
register struct backtrace *backlist;
register Lisp_Object tem;
char *omessage = echo_area_glyphs;
char stack_top_variable;
register int i;
/* Save a copy of the contents of the stack, for debugging. */
#if MAX_SAVE_STACK > 0
if (NILP (Vpurify_flag))
{
i = &stack_top_variable - stack_bottom;
if (i < 0) i = -i;
if (i < MAX_SAVE_STACK)
{
if (stack_copy == 0)
stack_copy = (char *) xmalloc (stack_copy_size = i);
else if (stack_copy_size < i)
stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
if (stack_copy)
{
if ((int) (&stack_top_variable - stack_bottom) > 0)
bcopy (stack_bottom, stack_copy, i);
else
bcopy (&stack_top_variable, stack_copy, i);
}
}
}
#endif /* MAX_SAVE_STACK > 0 */
if (!noninteractive)
message1 ("Garbage collecting...");
/* Don't keep command history around forever */
tem = Fnthcdr (make_number (30), Vcommand_history);
if (CONSP (tem))
XCONS (tem)->cdr = Qnil;
/* Likewise for undo information. */
{
register struct buffer *nextb = all_buffers;
while (nextb)
{
/* If a buffer's undo list is Qt, that means that undo is
turned off in that buffer. Calling truncate_undo_list on
Qt tends to return NULL, which effectively turns undo back on.
So don't call truncate_undo_list if undo_list is Qt. */
if (! EQ (nextb->undo_list, Qt))
nextb->undo_list
= truncate_undo_list (nextb->undo_list, undo_limit,
undo_strong_limit);
nextb = nextb->next;
}
}
gc_in_progress = 1;
/* clear_marks (); */
/* In each "large string", set the MARKBIT of the size field.
That enables mark_object to recognize them. */
{
register struct string_block *b;
for (b = large_string_blocks; b; b = b->next)
((struct Lisp_String *)(&b->chars[0]))->size |= MARKBIT;
}
/* Mark all the special slots that serve as the roots of accessibility.
Usually the special slots to mark are contained in particular structures.
Then we know no slot is marked twice because the structures don't overlap.
In some cases, the structures point to the slots to be marked.
For these, we use MARKBIT to avoid double marking of the slot. */
for (i = 0; i < staticidx; i++)
mark_object (staticvec[i]);
for (tail = gcprolist; tail; tail = tail->next)
for (i = 0; i < tail->nvars; i++)
if (!XMARKBIT (tail->var[i]))
{
mark_object (&tail->var[i]);
XMARK (tail->var[i]);
}
for (bind = specpdl; bind != specpdl_ptr; bind++)
{
mark_object (&bind->symbol);
mark_object (&bind->old_value);
}
for (catch = catchlist; catch; catch = catch->next)
{
mark_object (&catch->tag);
mark_object (&catch->val);
}
for (handler = handlerlist; handler; handler = handler->next)
{
mark_object (&handler->handler);
mark_object (&handler->var);
}
for (backlist = backtrace_list; backlist; backlist = backlist->next)
{
if (!XMARKBIT (*backlist->function))
{
mark_object (backlist->function);
XMARK (*backlist->function);
}
if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
i = 0;
else
i = backlist->nargs - 1;
for (; i >= 0; i--)
if (!XMARKBIT (backlist->args[i]))
{
mark_object (&backlist->args[i]);
XMARK (backlist->args[i]);
}
}
gc_sweep ();
/* Clear the mark bits that we set in certain root slots. */
for (tail = gcprolist; tail; tail = tail->next)
for (i = 0; i < tail->nvars; i++)
XUNMARK (tail->var[i]);
for (backlist = backtrace_list; backlist; backlist = backlist->next)
{
XUNMARK (*backlist->function);
if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
i = 0;
else
i = backlist->nargs - 1;
for (; i >= 0; i--)
XUNMARK (backlist->args[i]);
}
XUNMARK (buffer_defaults.name);
XUNMARK (buffer_local_symbols.name);
/* clear_marks (); */
gc_in_progress = 0;
consing_since_gc = 0;
if (gc_cons_threshold < 10000)
gc_cons_threshold = 10000;
if (omessage || minibuf_level > 0)
message1 (omessage);
else if (!noninteractive)
message1 ("Garbage collecting...done");
return Fcons (Fcons (make_number (total_conses),
make_number (total_free_conses)),
Fcons (Fcons (make_number (total_symbols),
make_number (total_free_symbols)),
Fcons (Fcons (make_number (total_markers),
make_number (total_free_markers)),
Fcons (make_number (total_string_size),
Fcons (make_number (total_vector_size),
#ifdef LISP_FLOAT_TYPE
Fcons (Fcons (make_number (total_floats),
make_number (total_free_floats)),
Qnil)
#else /* not LISP_FLOAT_TYPE */
Qnil
#endif /* not LISP_FLOAT_TYPE */
)))));
}
#if 0
static void
clear_marks ()
{
/* Clear marks on all conses */
{
register struct cons_block *cblk;
register int lim = cons_block_index;
for (cblk = cons_block; cblk; cblk = cblk->next)
{
register int i;
for (i = 0; i < lim; i++)
XUNMARK (cblk->conses[i].car);
lim = CONS_BLOCK_SIZE;
}
}
/* Clear marks on all symbols */
{
register struct symbol_block *sblk;
register int lim = symbol_block_index;
for (sblk = symbol_block; sblk; sblk = sblk->next)
{
register int i;
for (i = 0; i < lim; i++)
{
XUNMARK (sblk->symbols[i].plist);
}
lim = SYMBOL_BLOCK_SIZE;
}
}
/* Clear marks on all markers */
{
register struct marker_block *sblk;
register int lim = marker_block_index;
for (sblk = marker_block; sblk; sblk = sblk->next)
{
register int i;
for (i = 0; i < lim; i++)
XUNMARK (sblk->markers[i].chain);
lim = MARKER_BLOCK_SIZE;
}
}
/* Clear mark bits on all buffers */
{
register struct buffer *nextb = all_buffers;
while (nextb)
{
XUNMARK (nextb->name);
nextb = nextb->next;
}
}
}
#endif
/* Mark reference to a Lisp_Object.
If the object referred to has not been seen yet, recursively mark
all the references contained in it.
If the object referenced is a short string, the referencing slot
is threaded into a chain of such slots, pointed to from
the `size' field of the string. The actual string size
lives in the last slot in the chain. We recognize the end
because it is < (unsigned) STRING_BLOCK_SIZE. */
#define LAST_MARKED_SIZE 500
Lisp_Object *last_marked[LAST_MARKED_SIZE];
int last_marked_index;
static void
mark_object (objptr)
Lisp_Object *objptr;
{
register Lisp_Object obj;
obj = *objptr;
XUNMARK (obj);
loop:
if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
&& (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
return;
last_marked[last_marked_index++] = objptr;
if (last_marked_index == LAST_MARKED_SIZE)
last_marked_index = 0;
#ifdef SWITCH_ENUM_BUG
switch ((int) XGCTYPE (obj))
#else
switch (XGCTYPE (obj))
#endif
{
case Lisp_String:
{
register struct Lisp_String *ptr = XSTRING (obj);
MARK_INTERVAL_TREE (ptr->intervals);
if (ptr->size & MARKBIT)
/* A large string. Just set ARRAY_MARK_FLAG. */
ptr->size |= ARRAY_MARK_FLAG;
else
{
/* A small string. Put this reference
into the chain of references to it.
The address OBJPTR is even, so if the address
includes MARKBIT, put it in the low bit
when we store OBJPTR into the size field. */
if (XMARKBIT (*objptr))
{
XFASTINT (*objptr) = ptr->size;
XMARK (*objptr);
}
else
XFASTINT (*objptr) = ptr->size;
if ((int)objptr & 1) abort ();
ptr->size = (int) objptr & ~MARKBIT;
if ((int) objptr & MARKBIT)
ptr->size ++;
}
}
break;
case Lisp_Vector:
case Lisp_Window:
case Lisp_Process:
case Lisp_Window_Configuration:
{
register struct Lisp_Vector *ptr = XVECTOR (obj);
register int size = ptr->size;
/* The reason we use ptr1 is to avoid an apparent hardware bug
that happens occasionally on the FSF's HP 300s.
The bug is that a2 gets clobbered by recursive calls to mark_object.
The clobberage seems to happen during function entry,
perhaps in the moveml instruction.
Yes, this is a crock, but we have to do it. */
struct Lisp_Vector *volatile ptr1 = ptr;
register int i;
if (size & ARRAY_MARK_FLAG) break; /* Already marked */
ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
for (i = 0; i < size; i++) /* and then mark its elements */
mark_object (&ptr1->contents[i]);
}
break;
case Lisp_Compiled:
/* We could treat this just like a vector, but it is better
to save the COMPILED_CONSTANTS element for last and avoid recursion
there. */
{
register struct Lisp_Vector *ptr = XVECTOR (obj);
register int size = ptr->size;
/* See comment above under Lisp_Vector. */
struct Lisp_Vector *volatile ptr1 = ptr;
register int i;
if (size & ARRAY_MARK_FLAG) break; /* Already marked */
ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
for (i = 0; i < size; i++) /* and then mark its elements */
{
if (i != COMPILED_CONSTANTS)
mark_object (&ptr1->contents[i]);
}
objptr = &ptr1->contents[COMPILED_CONSTANTS];
obj = *objptr;
goto loop;
}
#ifdef MULTI_FRAME
case Lisp_Frame:
{
/* See comment above under Lisp_Vector for why this is volatile. */
register struct frame *volatile ptr = XFRAME (obj);
register int size = ptr->size;
if (size & ARRAY_MARK_FLAG) break; /* Already marked */
ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
mark_object (&ptr->name);
mark_object (&ptr->focus_frame);
mark_object (&ptr->width);
mark_object (&ptr->height);
mark_object (&ptr->selected_window);
mark_object (&ptr->minibuffer_window);
mark_object (&ptr->param_alist);
mark_object (&ptr->scroll_bars);
mark_object (&ptr->condemned_scroll_bars);
mark_object (&ptr->menu_bar_items);
mark_object (&ptr->face_alist);
}
break;
#endif /* MULTI_FRAME */
case Lisp_Symbol:
{
/* See comment above under Lisp_Vector for why this is volatile. */
register struct Lisp_Symbol *volatile ptr = XSYMBOL (obj);
struct Lisp_Symbol *ptrx;
if (XMARKBIT (ptr->plist)) break;
XMARK (ptr->plist);
mark_object ((Lisp_Object *) &ptr->value);
mark_object (&ptr->function);
mark_object (&ptr->plist);
XSETTYPE (*(Lisp_Object *) &ptr->name, Lisp_String);
mark_object (&ptr->name);
ptr = ptr->next;
if (ptr)
{
ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
XSETSYMBOL (obj, ptrx);
goto loop;
}
}
break;
case Lisp_Marker:
XMARK (XMARKER (obj)->chain);
/* DO NOT mark thru the marker's chain.
The buffer's markers chain does not preserve markers from gc;
instead, markers are removed from the chain when freed by gc. */
break;
case Lisp_Cons:
case Lisp_Buffer_Local_Value:
case Lisp_Some_Buffer_Local_Value:
case Lisp_Overlay:
{
register struct Lisp_Cons *ptr = XCONS (obj);
if (XMARKBIT (ptr->car)) break;
XMARK (ptr->car);
/* If the cdr is nil, avoid recursion for the car. */
if (EQ (ptr->cdr, Qnil))
{
objptr = &ptr->car;
obj = ptr->car;
XUNMARK (obj);
goto loop;
}
mark_object (&ptr->car);
/* See comment above under Lisp_Vector for why not use ptr here. */
objptr = &XCONS (obj)->cdr;
obj = ptr->cdr;
goto loop;
}
#ifdef LISP_FLOAT_TYPE
case Lisp_Float:
XMARK (XFLOAT (obj)->type);
break;
#endif /* LISP_FLOAT_TYPE */
case Lisp_Buffer:
if (!XMARKBIT (XBUFFER (obj)->name))
mark_buffer (obj);
break;
case Lisp_Int:
case Lisp_Void:
case Lisp_Subr:
case Lisp_Intfwd:
case Lisp_Boolfwd:
case Lisp_Objfwd:
case Lisp_Buffer_Objfwd:
case Lisp_Internal_Stream:
/* Don't bother with Lisp_Buffer_Objfwd,
since all markable slots in current buffer marked anyway. */
/* Don't need to do Lisp_Objfwd, since the places they point
are protected with staticpro. */
break;
default:
abort ();
}
}
/* Mark the pointers in a buffer structure. */
static void
mark_buffer (buf)
Lisp_Object buf;
{
register struct buffer *buffer = XBUFFER (buf);
register Lisp_Object *ptr;
/* This is the buffer's markbit */
mark_object (&buffer->name);
XMARK (buffer->name);
MARK_INTERVAL_TREE (buffer->intervals);
#if 0
mark_object (buffer->syntax_table);
/* Mark the various string-pointers in the buffer object.
Since the strings may be relocated, we must mark them
in their actual slots. So gc_sweep must convert each slot
back to an ordinary C pointer. */
XSET (*(Lisp_Object *)&buffer->upcase_table,
Lisp_String, buffer->upcase_table);
mark_object ((Lisp_Object *)&buffer->upcase_table);
XSET (*(Lisp_Object *)&buffer->downcase_table,
Lisp_String, buffer->downcase_table);
mark_object ((Lisp_Object *)&buffer->downcase_table);
XSET (*(Lisp_Object *)&buffer->sort_table,
Lisp_String, buffer->sort_table);
mark_object ((Lisp_Object *)&buffer->sort_table);
XSET (*(Lisp_Object *)&buffer->folding_sort_table,
Lisp_String, buffer->folding_sort_table);
mark_object ((Lisp_Object *)&buffer->folding_sort_table);
#endif
for (ptr = &buffer->name + 1;
(char *)ptr < (char *)buffer + sizeof (struct buffer);
ptr++)
mark_object (ptr);
}
/* Sweep: find all structures not marked, and free them. */
static void
gc_sweep ()
{
total_string_size = 0;
compact_strings ();
/* Put all unmarked conses on free list */
{
register struct cons_block *cblk;
register int lim = cons_block_index;
register int num_free = 0, num_used = 0;
cons_free_list = 0;
for (cblk = cons_block; cblk; cblk = cblk->next)
{
register int i;
for (i = 0; i < lim; i++)
if (!XMARKBIT (cblk->conses[i].car))
{
XFASTINT (cblk->conses[i].car) = (int) cons_free_list;
num_free++;
cons_free_list = &cblk->conses[i];
}
else
{
num_used++;
XUNMARK (cblk->conses[i].car);
}
lim = CONS_BLOCK_SIZE;
}
total_conses = num_used;
total_free_conses = num_free;
}
#ifdef LISP_FLOAT_TYPE
/* Put all unmarked floats on free list */
{
register struct float_block *fblk;
register int lim = float_block_index;
register int num_free = 0, num_used = 0;
float_free_list = 0;
for (fblk = float_block; fblk; fblk = fblk->next)
{
register int i;
for (i = 0; i < lim; i++)
if (!XMARKBIT (fblk->floats[i].type))
{
XFASTINT (fblk->floats[i].type) = (int) float_free_list;
num_free++;
float_free_list = &fblk->floats[i];
}
else
{
num_used++;
XUNMARK (fblk->floats[i].type);
}
lim = FLOAT_BLOCK_SIZE;
}
total_floats = num_used;
total_free_floats = num_free;
}
#endif /* LISP_FLOAT_TYPE */
#ifdef USE_TEXT_PROPERTIES
/* Put all unmarked intervals on free list */
{
register struct interval_block *iblk;
register int lim = interval_block_index;
register int num_free = 0, num_used = 0;
interval_free_list = 0;
for (iblk = interval_block; iblk; iblk = iblk->next)
{
register int i;
for (i = 0; i < lim; i++)
{
if (! XMARKBIT (iblk->intervals[i].plist))
{
iblk->intervals[i].parent = interval_free_list;
interval_free_list = &iblk->intervals[i];
num_free++;
}
else
{
num_used++;
XUNMARK (iblk->intervals[i].plist);
}
}
lim = INTERVAL_BLOCK_SIZE;
}
total_intervals = num_used;
total_free_intervals = num_free;
}
#endif /* USE_TEXT_PROPERTIES */
/* Put all unmarked symbols on free list */
{
register struct symbol_block *sblk;
register int lim = symbol_block_index;
register int num_free = 0, num_used = 0;
symbol_free_list = 0;
for (sblk = symbol_block; sblk; sblk = sblk->next)
{
register int i;
for (i = 0; i < lim; i++)
if (!XMARKBIT (sblk->symbols[i].plist))
{
XFASTINT (sblk->symbols[i].value) = (int) symbol_free_list;
symbol_free_list = &sblk->symbols[i];
num_free++;
}
else
{
num_used++;
sblk->symbols[i].name
= XSTRING (*(Lisp_Object *) &sblk->symbols[i].name);
XUNMARK (sblk->symbols[i].plist);
}
lim = SYMBOL_BLOCK_SIZE;
}
total_symbols = num_used;
total_free_symbols = num_free;
}
#ifndef standalone
/* Put all unmarked markers on free list.
Dechain each one first from the buffer it points into. */
{
register struct marker_block *mblk;
struct Lisp_Marker *tem1;
register int lim = marker_block_index;
register int num_free = 0, num_used = 0;
marker_free_list = 0;
for (mblk = marker_block; mblk; mblk = mblk->next)
{
register int i;
for (i = 0; i < lim; i++)
if (!XMARKBIT (mblk->markers[i].chain))
{
Lisp_Object tem;
tem1 = &mblk->markers[i]; /* tem1 avoids Sun compiler bug */
XSET (tem, Lisp_Marker, tem1);
unchain_marker (tem);
XFASTINT (mblk->markers[i].chain) = (int) marker_free_list;
marker_free_list = &mblk->markers[i];
num_free++;
}
else
{
num_used++;
XUNMARK (mblk->markers[i].chain);
}
lim = MARKER_BLOCK_SIZE;
}
total_markers = num_used;
total_free_markers = num_free;
}
/* Free all unmarked buffers */
{
register struct buffer *buffer = all_buffers, *prev = 0, *next;
while (buffer)
if (!XMARKBIT (buffer->name))
{
if (prev)
prev->next = buffer->next;
else
all_buffers = buffer->next;
next = buffer->next;
xfree (buffer);
buffer = next;
}
else
{
XUNMARK (buffer->name);
UNMARK_BALANCE_INTERVALS (buffer->intervals);
#if 0
/* Each `struct Lisp_String *' was turned into a Lisp_Object
for purposes of marking and relocation.
Turn them back into C pointers now. */
buffer->upcase_table
= XSTRING (*(Lisp_Object *)&buffer->upcase_table);
buffer->downcase_table
= XSTRING (*(Lisp_Object *)&buffer->downcase_table);
buffer->sort_table
= XSTRING (*(Lisp_Object *)&buffer->sort_table);
buffer->folding_sort_table
= XSTRING (*(Lisp_Object *)&buffer->folding_sort_table);
#endif
prev = buffer, buffer = buffer->next;
}
}
#endif /* standalone */
/* Free all unmarked vectors */
{
register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
total_vector_size = 0;
while (vector)
if (!(vector->size & ARRAY_MARK_FLAG))
{
if (prev)
prev->next = vector->next;
else
all_vectors = vector->next;
next = vector->next;
xfree (vector);
vector = next;
}
else
{
vector->size &= ~ARRAY_MARK_FLAG;
total_vector_size += vector->size;
prev = vector, vector = vector->next;
}
}
/* Free all "large strings" not marked with ARRAY_MARK_FLAG. */
{
register struct string_block *sb = large_string_blocks, *prev = 0, *next;
struct Lisp_String *s;
while (sb)
{
s = (struct Lisp_String *) &sb->chars[0];
if (s->size & ARRAY_MARK_FLAG)
{
((struct Lisp_String *)(&sb->chars[0]))->size
&= ~ARRAY_MARK_FLAG & ~MARKBIT;
UNMARK_BALANCE_INTERVALS (s->intervals);
total_string_size += ((struct Lisp_String *)(&sb->chars[0]))->size;
prev = sb, sb = sb->next;
}
else
{
if (prev)
prev->next = sb->next;
else
large_string_blocks = sb->next;
next = sb->next;
xfree (sb);
sb = next;
}
}
}
}
/* Compactify strings, relocate references, and free empty string blocks. */
static void
compact_strings ()
{
/* String block of old strings we are scanning. */
register struct string_block *from_sb;
/* A preceding string block (or maybe the same one)
where we are copying the still-live strings to. */
register struct string_block *to_sb;
int pos;
int to_pos;
to_sb = first_string_block;
to_pos = 0;
/* Scan each existing string block sequentially, string by string. */
for (from_sb = first_string_block; from_sb; from_sb = from_sb->next)
{
pos = 0;
/* POS is the index of the next string in the block. */
while (pos < from_sb->pos)
{
register struct Lisp_String *nextstr
= (struct Lisp_String *) &from_sb->chars[pos];
register struct Lisp_String *newaddr;
register int size = nextstr->size;
/* NEXTSTR is the old address of the next string.
Just skip it if it isn't marked. */
if ((unsigned) size > STRING_BLOCK_SIZE)
{
/* It is marked, so its size field is really a chain of refs.
Find the end of the chain, where the actual size lives. */
while ((unsigned) size > STRING_BLOCK_SIZE)
{
if (size & 1) size ^= MARKBIT | 1;
size = *(int *)size & ~MARKBIT;
}
total_string_size += size;
/* If it won't fit in TO_SB, close it out,
and move to the next sb. Keep doing so until
TO_SB reaches a large enough, empty enough string block.
We know that TO_SB cannot advance past FROM_SB here
since FROM_SB is large enough to contain this string.
Any string blocks skipped here
will be patched out and freed later. */
while (to_pos + STRING_FULLSIZE (size)
> max (to_sb->pos, STRING_BLOCK_SIZE))
{
to_sb->pos = to_pos;
to_sb = to_sb->next;
to_pos = 0;
}
/* Compute new address of this string
and update TO_POS for the space being used. */
newaddr = (struct Lisp_String *) &to_sb->chars[to_pos];
to_pos += STRING_FULLSIZE (size);
/* Copy the string itself to the new place. */
if (nextstr != newaddr)
bcopy (nextstr, newaddr, size + 1 + sizeof (int)
+ INTERVAL_PTR_SIZE);
/* Go through NEXTSTR's chain of references
and make each slot in the chain point to
the new address of this string. */
size = newaddr->size;
while ((unsigned) size > STRING_BLOCK_SIZE)
{
register Lisp_Object *objptr;
if (size & 1) size ^= MARKBIT | 1;
objptr = (Lisp_Object *)size;
size = XFASTINT (*objptr) & ~MARKBIT;
if (XMARKBIT (*objptr))
{
XSET (*objptr, Lisp_String, newaddr);
XMARK (*objptr);
}
else
XSET (*objptr, Lisp_String, newaddr);
}
/* Store the actual size in the size field. */
newaddr->size = size;
#ifdef USE_TEXT_PROPERTIES
/* Now that the string has been relocated, rebalance its
interval tree, and update the tree's parent pointer. */
if (! NULL_INTERVAL_P (newaddr->intervals))
{
UNMARK_BALANCE_INTERVALS (newaddr->intervals);
XSET (* (Lisp_Object *) &newaddr->intervals->parent,
Lisp_String,
newaddr);
}
#endif /* USE_TEXT_PROPERTIES */
}
pos += STRING_FULLSIZE (size);
}
}
/* Close out the last string block still used and free any that follow. */
to_sb->pos = to_pos;
current_string_block = to_sb;
from_sb = to_sb->next;
to_sb->next = 0;
while (from_sb)
{
to_sb = from_sb->next;
xfree (from_sb);
from_sb = to_sb;
}
/* Free any empty string blocks further back in the chain.
This loop will never free first_string_block, but it is very
unlikely that that one will become empty, so why bother checking? */
from_sb = first_string_block;
while (to_sb = from_sb->next)
{
if (to_sb->pos == 0)
{
if (from_sb->next = to_sb->next)
from_sb->next->prev = from_sb;
xfree (to_sb);
}
else
from_sb = to_sb;
}
}
/* Debugging aids. */
DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, "",
"Return the address of the last byte Emacs has allocated, divided by 1024.\n\
This may be helpful in debugging Emacs's memory usage.\n\
We divide the value by 1024 to make sure it fits in a Lisp integer.")
()
{
Lisp_Object end;
XSET (end, Lisp_Int, (int) sbrk (0) / 1024);
return end;
}
/* Initialization */
init_alloc_once ()
{
/* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
pureptr = 0;
#ifdef HAVE_SHM
pure_size = PURESIZE;
#endif
all_vectors = 0;
ignore_warnings = 1;
init_strings ();
init_cons ();
init_symbol ();
init_marker ();
#ifdef LISP_FLOAT_TYPE
init_float ();
#endif /* LISP_FLOAT_TYPE */
INIT_INTERVALS;
ignore_warnings = 0;
gcprolist = 0;
staticidx = 0;
consing_since_gc = 0;
gc_cons_threshold = 100000;
#ifdef VIRT_ADDR_VARIES
malloc_sbrk_unused = 1<<22; /* A large number */
malloc_sbrk_used = 100000; /* as reasonable as any number */
#endif /* VIRT_ADDR_VARIES */
}
init_alloc ()
{
gcprolist = 0;
}
void
syms_of_alloc ()
{
DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
"*Number of bytes of consing between garbage collections.\n\
Garbage collection can happen automatically once this many bytes have been\n\
allocated since the last garbage collection. All data types count.\n\n\
Garbage collection happens automatically only when `eval' is called.\n\n\
By binding this temporarily to a large number, you can effectively\n\
prevent garbage collection during a part of the program.");
DEFVAR_INT ("pure-bytes-used", &pureptr,
"Number of bytes of sharable Lisp data allocated so far.");
#if 0
DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used,
"Number of bytes of unshared memory allocated in this session.");
DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused,
"Number of bytes of unshared memory remaining available in this session.");
#endif
DEFVAR_LISP ("purify-flag", &Vpurify_flag,
"Non-nil means loading Lisp code in order to dump an executable.\n\
This means that certain objects should be allocated in shared (pure) space.");
DEFVAR_INT ("undo-limit", &undo_limit,
"Keep no more undo information once it exceeds this size.\n\
This limit is applied when garbage collection happens.\n\
The size is counted as the number of bytes occupied,\n\
which includes both saved text and other data.");
undo_limit = 20000;
DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
"Don't keep more than this much size of undo information.\n\
A command which pushes past this size is itself forgotten.\n\
This limit is applied when garbage collection happens.\n\
The size is counted as the number of bytes occupied,\n\
which includes both saved text and other data.");
undo_strong_limit = 30000;
defsubr (&Scons);
defsubr (&Slist);
defsubr (&Svector);
defsubr (&Smake_byte_code);
defsubr (&Smake_list);
defsubr (&Smake_vector);
defsubr (&Smake_string);
defsubr (&Smake_symbol);
defsubr (&Smake_marker);
defsubr (&Spurecopy);
defsubr (&Sgarbage_collect);
defsubr (&Smemory_limit);
}