mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-13 09:32:47 +00:00
907 lines
25 KiB
EmacsLisp
907 lines
25 KiB
EmacsLisp
;;; latin-ltx.el --- Quail package for TeX-style input -*-coding: iso-2022-7bit-*-
|
||
|
||
;; Copyright (C) 2001 Electrotechnical Laboratory, JAPAN.
|
||
;; Licensed to the Free Software Foundation.
|
||
;; Copyright (C) 2001 Free Software Foundation, Inc.
|
||
|
||
;; Keywords: multilingual, input, Greek, i18n
|
||
|
||
;; This file is part of GNU Emacs.
|
||
|
||
;; GNU Emacs is free software; you can redistribute it and/or modify
|
||
;; it under the terms of the GNU General Public License as published by
|
||
;; the Free Software Foundation; either version 2, or (at your option)
|
||
;; any later version.
|
||
|
||
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
;; GNU General Public License for more details.
|
||
|
||
;; You should have received a copy of the GNU General Public License
|
||
;; along with GNU Emacs; see the file COPYING. If not, write to the
|
||
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
;; Boston, MA 02111-1307, USA.
|
||
|
||
;;; Commentary:
|
||
|
||
;;; Code:
|
||
|
||
(require 'quail)
|
||
(if (eq system-type 'ms-dos)
|
||
(IT-setup-unicode-display))
|
||
|
||
(quail-define-package
|
||
"TeX" "UTF-8" "\\" t
|
||
"LaTeX-like input method for many characters.
|
||
These characters are from the charsets used by the `utf-8' coding
|
||
system, including many technical ones. Examples:
|
||
\\'a -> ,Aa(B \\`{a} -> ,A`(B
|
||
\\pi -> $,1'@(B \\int -> $,1xK(B ^1 -> ,A9(B"
|
||
|
||
nil t t nil nil nil nil nil nil nil t)
|
||
|
||
(quail-define-rules
|
||
("!`" ?,A!(B)
|
||
("{\\pounds}" ?,A#(B) ("\\pounds" ?,A#(B)
|
||
("{\\S}" ?,A'(B) ("\\S" ?,A'(B)
|
||
("\\\"{}" ?,A((B)
|
||
("{\\copyright}" ?,A)(B) ("\\copyright" ?,A)(B)
|
||
("$^a$" ?,A*(B)
|
||
("\\={}" ?,A/(B)
|
||
("$\\pm$" ?,A1(B) ("\\pm" ?,A1(B)
|
||
("$^2$" ?,A2(B)
|
||
("$^3$" ?,A3(B)
|
||
("\\'{}" ?,A4(B)
|
||
("{\\P}" ?,A6(B) ("\\P" ?,A6(B)
|
||
;; Fixme: Yudit has the equivalent of ("\\cdot" ?$,1z%(B), for U+22C5, DOT
|
||
;; OPERATOR, whereas ,A7(B is MIDDLE DOT. JadeTeX translates both to
|
||
;; \cdot.
|
||
("$\\cdot$" ?,A7(B) ("\\cdot" ?,A7(B)
|
||
("\\c{}" ?,A8(B)
|
||
("$^1$" ?,A9(B)
|
||
("$^o$" ?,A:(B)
|
||
("?`" ?,A?(B)
|
||
|
||
("\\`{A}" ?,A@(B) ("\\`A" ?,A@(B)
|
||
("\\'{A}" ?,AA(B) ("\\'A" ?,AA(B)
|
||
("\\^{A}" ?,AB(B) ("\\^A" ?,AB(B)
|
||
("\\~{A}" ?,AC(B) ("\\~A" ?,AC(B)
|
||
("\\\"{A}" ?,AD(B) ("\\\"A" ?,AD(B)
|
||
("\\\k{A}" ?,B!(B)
|
||
("{\\AA}" ?,AE(B) ("\\AA" ?,AE(B)
|
||
("{\\AE}" ?,AF(B) ("\\AE" ?,AF(B)
|
||
("\\c{C}" ?,AG(B) ("\\cC" ?,AG(B)
|
||
("\\`{E}" ?,AH(B) ("\\`E" ?,AH(B)
|
||
("\\'{E}" ?,AI(B) ("\\'E" ?,AI(B)
|
||
("\\^{E}" ?,AJ(B) ("\\^E" ?,AJ(B)
|
||
("\\\"{E}" ?,AK(B) ("\\\"E" ?,AK(B)
|
||
("\\\k{E}" ?,BJ(B)
|
||
("\\`{I}" ?,AL(B) ("\\`I" ?,AL(B)
|
||
("\\'{I}" ?,AM(B) ("\\'I" ?,AM(B)
|
||
("\\^{I}" ?,AN(B) ("\\^I" ?,AN(B)
|
||
("\\\"{I}" ?,AO(B) ("\\\"I" ?,AO(B)
|
||
("\\\k{I}" ?,DG(B)
|
||
|
||
("\\~{N}" ?,AQ(B) ("\\~N" ?,AQ(B)
|
||
("\\`{O}" ?,AR(B) ("\\`O" ?,AR(B)
|
||
("\\'{O}" ?,AS(B) ("\\'O" ?,AS(B)
|
||
("\\^{O}" ?,AT(B) ("\\^O" ?,AT(B)
|
||
("\\~{O}" ?,AU(B) ("\\~O" ?,AU(B)
|
||
("\\\"{O}" ?,AV(B) ("\\\"O" ?,AV(B)
|
||
("\\\k{O}" ?$,1"J(B)
|
||
("$\\times$" ?,AW(B) ("\\times" ?,AW(B)
|
||
("{\\O}" ?,AX(B) ("\\O" ?,AX(B)
|
||
("\\`{U}" ?,AY(B) ("\\`U" ?,AY(B)
|
||
("\\'{U}" ?,AZ(B) ("\\'U" ?,AZ(B)
|
||
("\\^{U}" ?,A[(B) ("\\^U" ?,A[(B)
|
||
("\\\"{U}" ?,A\(B) ("\\\"U" ?,A\(B)
|
||
("\\\k{U}" ?,DY(B)
|
||
("\\'{Y}" ?,A](B) ("\\'Y" ?,A](B)
|
||
("{\\ss}" ?,A_(B) ("\\ss" ?,A_(B)
|
||
|
||
("\\`{a}" ?,A`(B) ("\\`a" ?,A`(B)
|
||
("\\'{a}" ?,Aa(B) ("\\'a" ?,Aa(B)
|
||
("\\^{a}" ?,Ab(B) ("\\^a" ?,Ab(B)
|
||
("\\~{a}" ?,Ac(B) ("\\~a" ?,Ac(B)
|
||
("\\\"{a}" ?,Ad(B) ("\\\"a" ?,Ad(B)
|
||
("\\\k{a}" ?,B1(B)
|
||
("{\\aa}" ?,Ae(B) ("\\aa" ?,Ae(B)
|
||
("{\\ae}" ?,Af(B) ("\\ae" ?,Af(B)
|
||
("\\c{c}" ?,Ag(B) ("\\cc" ?,Ag(B)
|
||
("\\`{e}" ?,Ah(B) ("\\`e" ?,Ah(B)
|
||
("\\'{e}" ?,Ai(B) ("\\'e" ?,Ai(B)
|
||
("\\^{e}" ?,Aj(B) ("\\^e" ?,Aj(B)
|
||
("\\\"{e}" ?,Ak(B) ("\\\"e" ?,Ak(B)
|
||
("\\\k{e}" ?,Bj(B)
|
||
("\\`{\\i}" ?,Al(B) ("\\`i" ?,Al(B)
|
||
("\\'{\\i}" ?,Am(B) ("\\'i" ?,Am(B)
|
||
("\\^{\\i}" ?,An(B) ("\\^i" ?,An(B)
|
||
("\\\"{\\i}" ?,Ao(B) ("\\\"i" ?,Ao(B)
|
||
("\\\k{i}" ?,Dg(B)
|
||
|
||
("\\~{n}" ?,Aq(B) ("\\~n" ?,Aq(B)
|
||
("\\`{o}" ?,Ar(B) ("\\`o" ?,Ar(B)
|
||
("\\'{o}" ?,As(B) ("\\'o" ?,As(B)
|
||
("\\^{o}" ?,At(B) ("\\^o" ?,At(B)
|
||
("\\~{o}" ?,Au(B) ("\\~o" ?,Au(B)
|
||
("\\\"{o}" ?,Av(B) ("\\\"o" ?,Av(B)
|
||
("\\\k{o}" ?$,1"K(B)
|
||
("$\\div$" ?,Aw(B) ("\\div" ?,Aw(B)
|
||
("{\\o}" ?,Ax(B) ("\\o" ?,Ax(B)
|
||
("\\`{u}" ?,Ay(B) ("\\`u" ?,Ay(B)
|
||
("\\'{u}" ?,Az(B) ("\\'u" ?,Az(B)
|
||
("\\^{u}" ?,A{(B) ("\\^u" ?,A{(B)
|
||
("\\\"{u}" ?,A|(B) ("\\\"u" ?,A|(B)
|
||
("\\\k{u}" ?,Dy(B)
|
||
("\\'{y}" ?,A}(B) ("\\'y" ?,A}(B)
|
||
("\\\"{y}" ?,A(B) ("\\\"y" ?,A(B)
|
||
|
||
("\\={A}" ?$,1 (B) ("\\=A" ?$,1 (B)
|
||
("\\={a}" ?$,1 !(B) ("\\=a" ?$,1 !(B)
|
||
("\\u{A}" ?$,1 "(B) ("\\uA" ?$,1 "(B)
|
||
("\\u{a}" ?$,1 #(B) ("\\ua" ?$,1 #(B)
|
||
("\\'{C}" ?$,1 &(B) ("\\'C" ?$,1 &(B)
|
||
("\\'{c}" ?$,1 '(B) ("\\'c" ?$,1 '(B)
|
||
("\\^{C}" ?$,1 ((B) ("\\^C" ?$,1 ((B)
|
||
("\\^{c}" ?$,1 )(B) ("\\^c" ?$,1 )(B)
|
||
("\\.{C}" ?$,1 *(B) ("\\.C" ?$,1 *(B)
|
||
("\\.{c}" ?$,1 +(B) ("\\.c" ?$,1 +(B)
|
||
("\\v{C}" ?$,1 ,(B) ("\\vC" ?$,1 ,(B)
|
||
("\\v{c}" ?$,1 -(B) ("\\vc" ?$,1 -(B)
|
||
("\\v{D}" ?$,1 .(B) ("\\vD" ?$,1 .(B)
|
||
("\\v{d}" ?$,1 /(B) ("\\vd" ?$,1 /(B)
|
||
|
||
("\\={E}" ?$,1 2(B) ("\\=E" ?$,1 2(B)
|
||
("\\={e}" ?$,1 3(B) ("\\=e" ?$,1 3(B)
|
||
("\\u{E}" ?$,1 4(B) ("\\uE" ?$,1 4(B)
|
||
("\\u{e}" ?$,1 5(B) ("\\ue" ?$,1 5(B)
|
||
("\\.{E}" ?$,1 6(B) ("\\.E" ?$,1 6(B)
|
||
("\\e{e}" ?$,1 7(B) ("\\ee" ?$,1 7(B)
|
||
("\\v{E}" ?$,1 :(B) ("\\vE" ?$,1 :(B)
|
||
("\\v{e}" ?$,1 ;(B) ("\\ve" ?$,1 ;(B)
|
||
("\\^{G}" ?$,1 <(B) ("\\^G" ?$,1 <(B)
|
||
("\\^{g}" ?$,1 =(B) ("\\^g" ?$,1 =(B)
|
||
("\\u{G}" ?$,1 >(B) ("\\uG" ?$,1 >(B)
|
||
("\\u{g}" ?$,1 ?(B) ("\\ug" ?$,1 ?(B)
|
||
|
||
("\\.{G}" ?$,1 @(B) ("\\.G" ?$,1 @(B)
|
||
("\\.{g}" ?$,1 A(B) ("\\.g" ?$,1 A(B)
|
||
("\\c{G}" ?$,1 B(B) ("\\cG" ?$,1 B(B)
|
||
("\\c{g}" ?$,1 C(B) ("\\cg" ?$,1 C(B)
|
||
("\\^{H}" ?$,1 D(B) ("\\^H" ?$,1 D(B)
|
||
("\\^{h}" ?$,1 E(B) ("\\^h" ?$,1 E(B)
|
||
("\\~{I}" ?$,1 H(B) ("\\~I" ?$,1 H(B)
|
||
("\\~{\\i}" ?$,1 I(B) ("\\~i" ?$,1 I(B)
|
||
("\\={I}" ?$,1 J(B) ("\\=I" ?$,1 J(B)
|
||
("\\={\\i}" ?$,1 K(B) ("\\=i" ?$,1 K(B)
|
||
("\\u{I}" ?$,1 L(B) ("\\uI" ?$,1 L(B)
|
||
("\\u{\\i}" ?$,1 M(B) ("\\ui" ?$,1 M(B)
|
||
|
||
("\\.{I}" ?$,1 P(B) ("\\.I" ?$,1 P(B)
|
||
("{\\i}" ?$,1 Q(B) ("\\i" ?$,1 Q(B)
|
||
("\\^{J}" ?$,1 T(B) ("\\^J" ?$,1 T(B)
|
||
("\\^{\\j}" ?$,1 U(B) ("\\^j" ?$,1 U(B)
|
||
("\\c{K}" ?$,1 V(B) ("\\cK" ?$,1 V(B)
|
||
("\\c{k}" ?$,1 W(B) ("\\ck" ?$,1 W(B)
|
||
("\\'{L}" ?$,1 Y(B) ("\\'L" ?$,1 Y(B)
|
||
("\\'{l}" ?$,1 Z(B) ("\\'l" ?$,1 Z(B)
|
||
("\\c{L}" ?$,1 [(B) ("\\cL" ?$,1 [(B)
|
||
("\\c{l}" ?$,1 \(B) ("\\cl" ?$,1 \(B)
|
||
|
||
("{\\L}" ?$,1 a(B) ("\\L" ?$,1 a(B)
|
||
("{\\l}" ?$,1 b(B) ("\\l" ?$,1 b(B)
|
||
("\\'{N}" ?$,1 c(B) ("\\'N" ?$,1 c(B)
|
||
("\\'{n}" ?$,1 d(B) ("\\'n" ?$,1 d(B)
|
||
("\\c{N}" ?$,1 e(B) ("\\cN" ?$,1 e(B)
|
||
("\\c{n}" ?$,1 f(B) ("\\cn" ?$,1 f(B)
|
||
("\\v{N}" ?$,1 g(B) ("\\vN" ?$,1 g(B)
|
||
("\\v{n}" ?$,1 h(B) ("\\vn" ?$,1 h(B)
|
||
("\\={O}" ?$,1 l(B) ("\\=O" ?$,1 l(B)
|
||
("\\={o}" ?$,1 m(B) ("\\=o" ?$,1 m(B)
|
||
("\\u{O}" ?$,1 n(B) ("\\uO" ?$,1 n(B)
|
||
("\\u{o}" ?$,1 o(B) ("\\uo" ?$,1 o(B)
|
||
|
||
("\\H{O}" ?$,1 p(B) ("\\HO" ?$,1 p(B)
|
||
("\\U{o}" ?$,1 q(B) ("\\Uo" ?$,1 q(B)
|
||
("{\\OE}" ?$,1 r(B) ("\\OE" ?$,1 r(B)
|
||
("{\\oe}" ?$,1 s(B) ("\\oe" ?$,1 s(B)
|
||
("\\'{R}" ?$,1 t(B) ("\\'R" ?$,1 t(B)
|
||
("\\'{r}" ?$,1 u(B) ("\\'r" ?$,1 u(B)
|
||
("\\c{R}" ?$,1 v(B) ("\\cR" ?$,1 v(B)
|
||
("\\c{r}" ?$,1 w(B) ("\\cr" ?$,1 w(B)
|
||
("\\v{R}" ?$,1 x(B) ("\\vR" ?$,1 x(B)
|
||
("\\v{r}" ?$,1 y(B) ("\\vr" ?$,1 y(B)
|
||
("\\'{S}" ?$,1 z(B) ("\\'S" ?$,1 z(B)
|
||
("\\'{s}" ?$,1 {(B) ("\\'s" ?$,1 {(B)
|
||
("\\^{S}" ?$,1 |(B) ("\\^S" ?$,1 |(B)
|
||
("\\^{s}" ?$,1 }(B) ("\\^s" ?$,1 }(B)
|
||
("\\c{S}" ?$,1 ~(B) ("\\cS" ?$,1 ~(B)
|
||
("\\c{s}" ?$,1 (B) ("\\cs" ?$,1 (B)
|
||
|
||
("\\v{S}" ?$,1! (B) ("\\vS" ?$,1! (B)
|
||
("\\v{s}" ?$,1!!(B) ("\\vs" ?$,1!!(B)
|
||
("\\c{T}" ?$,1!"(B) ("\\cT" ?$,1!"(B)
|
||
("\\c{t}" ?$,1!#(B) ("\\ct" ?$,1!#(B)
|
||
("\\v{T}" ?$,1!$(B) ("\\vT" ?$,1!$(B)
|
||
("\\v{t}" ?$,1!%(B) ("\\vt" ?$,1!%(B)
|
||
("\\~{U}" ?$,1!((B) ("\\~U" ?$,1!((B)
|
||
("\\~{u}" ?$,1!)(B) ("\\~u" ?$,1!)(B)
|
||
("\\={U}" ?$,1!*(B) ("\\=U" ?$,1!*(B)
|
||
("\\={u}" ?$,1!+(B) ("\\=u" ?$,1!+(B)
|
||
("\\u{U}" ?$,1!,(B) ("\\uU" ?$,1!,(B)
|
||
("\\u{u}" ?$,1!-(B) ("\\uu" ?$,1!-(B)
|
||
|
||
("\\H{U}" ?$,1!0(B) ("\\HU" ?$,1!0(B)
|
||
("\\H{u}" ?$,1!1(B) ("\\Hu" ?$,1!1(B)
|
||
("\\^{W}" ?$,1!4(B) ("\\^W" ?$,1!4(B)
|
||
("\\^{w}" ?$,1!5(B) ("\\^w" ?$,1!5(B)
|
||
("\\^{Y}" ?$,1!6(B) ("\\^Y" ?$,1!6(B)
|
||
("\\^{y}" ?$,1!7(B) ("\\^y" ?$,1!7(B)
|
||
("\\\"{Y}" ?$,1!8(B) ("\\\"Y" ?$,1!8(B)
|
||
("\\'{Z}" ?$,1!9(B) ("\\'Z" ?$,1!9(B)
|
||
("\\'{z}" ?$,1!:(B) ("\\'z" ?$,1!:(B)
|
||
("\\.{Z}" ?$,1!;(B) ("\\.Z" ?$,1!;(B)
|
||
("\\.{z}" ?$,1!<(B) ("\\.z" ?$,1!<(B)
|
||
("\\v{Z}" ?$,1!=(B) ("\\vZ" ?$,1!=(B)
|
||
("\\v{z}" ?$,1!>(B) ("\\vz" ?$,1!>(B)
|
||
|
||
("\\v{A}" ?$,1"-(B) ("\\vA" ?$,1"-(B)
|
||
("\\v{a}" ?$,1".(B) ("\\va" ?$,1".(B)
|
||
("\\v{I}" ?$,1"/(B) ("\\vI" ?$,1"/(B)
|
||
("\\v{\\i}" ?$,1"0(B) ("\\vi" ?$,1"0(B)
|
||
("\\v{O}" ?$,1"1(B) ("\\vO" ?$,1"1(B)
|
||
("\\v{o}" ?$,1"2(B) ("\\vo" ?$,1"2(B)
|
||
("\\v{U}" ?$,1"3(B) ("\\vU" ?$,1"3(B)
|
||
("\\v{u}" ?$,1"4(B) ("\\vu" ?$,1"4(B)
|
||
|
||
("\\={\\AE}" ?$,1"B(B) ("\\=\\AE" ?$,1"B(B)
|
||
("\\={\\ae}" ?$,1"C(B) ("\\=\\ae" ?$,1"C(B)
|
||
("\\v{G}" ?$,1"F(B) ("\\vG" ?$,1"F(B)
|
||
("\\v{g}" ?$,1"G(B) ("\\vg" ?$,1"G(B)
|
||
("\\v{K}" ?$,1"H(B) ("\\vK" ?$,1"H(B)
|
||
("\\v{k}" ?k) ("\\vk" ?k)
|
||
|
||
("\\v{\\j}" ?$,1"P(B) ("\\vj" ?$,1"P(B)
|
||
("\\'{G}" ?$,1"T(B) ("\\'G" ?$,1"T(B)
|
||
("\\'{g}" ?$,1"U(B) ("\\'g" ?$,1"U(B)
|
||
("\\`{N}" ?$,1"X(B) ("\\`N" ?$,1"X(B)
|
||
("\\`{n}" ?$,1"Y(B) ("\\`n" ?$,1"Y(B)
|
||
("\\'{\\AE}" ?$,1"\(B) ("\\'\\AE" ?$,1"\(B)
|
||
("\\'{\\ae}" ?$,1"](B) ("\\'\\ae" ?$,1"](B)
|
||
("\\'{\\O}" ?$,1"^(B) ("\\'\\O" ?$,1"^(B)
|
||
("\\'{\\o}" ?$,1"_(B) ("\\'\\o" ?$,1"_(B)
|
||
|
||
("\\v{H}" ?$,1"~(B) ("\\vH" ?$,1"~(B)
|
||
("\\v{h}" ?$,1"(B) ("\\vh" ?$,1"(B)
|
||
("\\.{A}" ?$,1#&(B) ("\\.A" ?$,1#&(B)
|
||
("\\.{a}" ?$,1#'(B) ("\\.a" ?$,1#'(B)
|
||
("\\c{E}" ?$,1#((B) ("\\cE" ?$,1#((B)
|
||
("\\c{e}" ?$,1#)(B) ("\\ce" ?$,1#)(B)
|
||
("\\.{O}" ?$,1#.(B) ("\\.O" ?$,1#.(B)
|
||
("\\.{o}" ?$,1#/(B) ("\\.o" ?$,1#/(B)
|
||
("\\={Y}" ?$,1#2(B) ("\\=Y" ?$,1#2(B)
|
||
("\\={y}" ?$,1#3(B) ("\\=y" ?$,1#3(B)
|
||
|
||
("\\v{}" ?$,1$g(B)
|
||
("\\u{}" ?$,1$x(B)
|
||
("\\.{}" ?$,1$y(B)
|
||
("\\~{}" ?$,1$|(B)
|
||
("\\H{}" ?$,1$}(B)
|
||
|
||
("\\'" ?$,1%A(B)
|
||
("\\'K" ?$,1mp(B)
|
||
("\\'M" ?$,1m~(B)
|
||
("\\'P" ?$,1n4(B)
|
||
("\\'W" ?$,1nb(B)
|
||
("\\'k" ?$,1mq(B)
|
||
("\\'m" ?$,1m(B)
|
||
("\\'p" ?$,1n5(B)
|
||
("\\'w" ?$,1nc(B)
|
||
("\\," ?$,1rf(B)
|
||
("\\." ?$,1%G(B)
|
||
("\\.B" ?$,1mB(B)
|
||
("\\.D" ?$,1mJ(B)
|
||
("\\.F" ?$,1m^(B)
|
||
("\\.H" ?$,1mb(B)
|
||
("\\.M" ?$,1n (B)
|
||
("\\.N" ?$,1n$(B)
|
||
("\\.P" ?$,1n6(B)
|
||
("\\.R" ?$,1n8(B)
|
||
("\\.S" ?$,1n@(B)
|
||
("\\.T" ?$,1nJ(B)
|
||
("\\.W" ?$,1nf(B)
|
||
("\\.X" ?$,1nj(B)
|
||
("\\.Y" ?$,1nn(B)
|
||
("\\.b" ?$,1mC(B)
|
||
("\\.d" ?$,1mK(B)
|
||
("\\.e" ?$,1 7(B)
|
||
("\\.f" ?$,1m_(B)
|
||
("\\.h" ?$,1mc(B)
|
||
("\\.m" ?$,1n!(B)
|
||
("\\.n" ?$,1n%(B)
|
||
("\\.p" ?$,1n7(B)
|
||
("\\.r" ?$,1n9(B)
|
||
("\\.s" ?$,1nA(B)
|
||
("\\.t" ?$,1nK(B)
|
||
("\\.w" ?$,1ng(B)
|
||
("\\.x" ?$,1nk(B)
|
||
("\\.y" ?$,1no(B)
|
||
("\\/" ?$,1rl(B)
|
||
("\\:" ?$,1re(B)
|
||
("\\;" ?$,1rd(B)
|
||
("\\=" ?$,1%D(B)
|
||
("\\=G" ?$,1m`(B)
|
||
("\\=g" ?$,1ma(B)
|
||
|
||
("^(" ?$,1s}(B)
|
||
("^)" ?$,1s~(B)
|
||
("^+" ?$,1sz(B)
|
||
("^-" ?$,1s{(B)
|
||
("^0" ?$,1sp(B)
|
||
("^1" ?,A9(B)
|
||
("^2" ?,A2(B)
|
||
("^3" ?,A3(B)
|
||
("^4" ?$,1st(B)
|
||
("^5" ?$,1su(B)
|
||
("^6" ?$,1sv(B)
|
||
("^7" ?$,1sw(B)
|
||
("^8" ?$,1sx(B)
|
||
("^9" ?$,1sy(B)
|
||
("^=" ?$,1s|(B)
|
||
("^\\gamma" ?$,1% (B)
|
||
("^h" ?$,1$P(B)
|
||
("^j" ?$,1$R(B)
|
||
("^l" ?$,1%!(B)
|
||
("^n" ?$,1s(B)
|
||
("^o" ?,A:(B)
|
||
("^r" ?$,1$S(B)
|
||
("^s" ?$,1%"(B)
|
||
("^w" ?$,1$W(B)
|
||
("^x" ?$,1%#(B)
|
||
("^y" ?$,1$X(B)
|
||
("^{SM}" ?$,1u`(B)
|
||
("^{TEL}" ?$,1ua(B)
|
||
("^{TM}" ?$,1ub(B)
|
||
("_(" ?$,1t-(B)
|
||
("_)" ?$,1t.(B)
|
||
("_+" ?$,1t*(B)
|
||
("_-" ?$,1t+(B)
|
||
("_0" ?$,1t (B)
|
||
("_1" ?$,1t!(B)
|
||
("_2" ?$,1t"(B)
|
||
("_3" ?$,1t#(B)
|
||
("_4" ?$,1t$(B)
|
||
("_5" ?$,1t%(B)
|
||
("_6" ?$,1t&(B)
|
||
("_7" ?$,1t'(B)
|
||
("_8" ?$,1t((B)
|
||
("_9" ?$,1t)(B)
|
||
("_=" ?$,1t,(B)
|
||
|
||
("\\~" ?$,1%C(B)
|
||
("\\~E" ?$,1o<(B)
|
||
("\\~V" ?$,1n\(B)
|
||
("\\~Y" ?$,1ox(B)
|
||
("\\~e" ?$,1o=(B)
|
||
("\\~v" ?$,1n](B)
|
||
("\\~y" ?$,1oy(B)
|
||
|
||
("\\\"" ?$,1%H(B)
|
||
("\\\"H" ?$,1mf(B)
|
||
("\\\"W" ?$,1nd(B)
|
||
("\\\"X" ?$,1nl(B)
|
||
("\\\"h" ?$,1mg(B)
|
||
("\\\"t" ?$,1nw(B)
|
||
("\\\"w" ?$,1ne(B)
|
||
("\\\"x" ?$,1nm(B)
|
||
("\\^" ?$,1%B(B)
|
||
("\\^Z" ?$,1np(B)
|
||
("\\^z" ?$,1nq(B)
|
||
("\\`" ?$,1%@(B)
|
||
("\\`W" ?$,1n`(B)
|
||
("\\`Y" ?$,1or(B)
|
||
("\\`w" ?$,1na(B)
|
||
("\\`y" ?$,1os(B)
|
||
("\\b" ?$,1%q(B)
|
||
("\\c" ?$,1%g(B)
|
||
("\\c{D}" ?$,1mP(B)
|
||
("\\c{H}" ?$,1mh(B)
|
||
("\\c{d}" ?$,1mQ(B)
|
||
("\\c{h}" ?$,1mi(B)
|
||
("\\d" ?$,1%c(B)
|
||
("\\d{A}" ?$,1o (B)
|
||
("\\d{B}" ?$,1mD(B)
|
||
("\\d{D}" ?$,1mL(B)
|
||
("\\d{E}" ?$,1o8(B)
|
||
("\\d{H}" ?$,1md(B)
|
||
("\\d{I}" ?$,1oJ(B)
|
||
("\\d{K}" ?$,1mr(B)
|
||
("\\d{L}" ?$,1mv(B)
|
||
("\\d{M}" ?$,1n"(B)
|
||
("\\d{N}" ?$,1n&(B)
|
||
("\\d{O}" ?$,1oL(B)
|
||
("\\d{R}" ?$,1n:(B)
|
||
("\\d{S}" ?$,1nB(B)
|
||
("\\d{T}" ?$,1nL(B)
|
||
("\\d{U}" ?$,1od(B)
|
||
("\\d{V}" ?$,1n^(B)
|
||
("\\d{W}" ?$,1nh(B)
|
||
("\\d{Y}" ?$,1ot(B)
|
||
("\\d{Z}" ?$,1nr(B)
|
||
("\\d{a}" ?$,1o!(B)
|
||
("\\d{b}" ?$,1mE(B)
|
||
("\\d{d}" ?$,1mM(B)
|
||
("\\d{e}" ?$,1o9(B)
|
||
("\\d{h}" ?$,1me(B)
|
||
("\\d{i}" ?$,1oK(B)
|
||
("\\d{k}" ?$,1ms(B)
|
||
("\\d{l}" ?$,1mw(B)
|
||
("\\d{m}" ?$,1n#(B)
|
||
("\\d{n}" ?$,1n'(B)
|
||
("\\d{o}" ?$,1oM(B)
|
||
("\\d{r}" ?$,1n;(B)
|
||
("\\d{s}" ?$,1nC(B)
|
||
("\\d{t}" ?$,1nM(B)
|
||
("\\d{u}" ?$,1oe(B)
|
||
("\\d{v}" ?$,1n_(B)
|
||
("\\d{w}" ?$,1ni(B)
|
||
("\\d{y}" ?$,1ou(B)
|
||
("\\d{z}" ?$,1ns(B)
|
||
("\\rq" ?$,1ry(B)
|
||
("\\u" ?$,1%F(B)
|
||
("\\v" ?$,1%L(B)
|
||
("\\v{L}" ?$,1 ](B)
|
||
("\\v{i}" ?$,1"0(B)
|
||
("\\v{j}" ?$,1"P(B)
|
||
("\\v{l}" ?$,1 ^(B)
|
||
("\\yen" ?,A%(B)
|
||
|
||
("\\Box" ?$,2!a(B)
|
||
("\\Bumpeq" ?$,1xn(B)
|
||
("\\Cap" ?$,1z2(B)
|
||
("\\Cup" ?$,1z3(B)
|
||
("\\Delta" ?$,1&t(B)
|
||
("\\Diamond" ?$,2"'(B)
|
||
("\\Downarrow" ?$,1wS(B)
|
||
("\\Gamma" ?$,1&s(B)
|
||
("\\H" ?$,1%K(B)
|
||
("\\H{o}" ?$,1 q(B)
|
||
("\\Im" ?$,1uQ(B)
|
||
("\\Join" ?$,1z((B)
|
||
("\\Lambda" ?$,1&{(B)
|
||
("\\Leftarrow" ?$,1wP(B)
|
||
("\\Leftrightarrow" ?$,1wT(B)
|
||
("\\Ll" ?$,1z8(B)
|
||
("\\Lleftarrow" ?$,1wZ(B)
|
||
("\\Longleftarrow" ?$,1wP(B)
|
||
("\\Longleftrightarrow" ?$,1wT(B)
|
||
("\\Longrightarrow" ?$,1wR(B)
|
||
("\\Lsh" ?$,1w0(B)
|
||
("\\Omega" ?$,1')(B)
|
||
("\\Phi" ?$,1'&(B)
|
||
("\\Pi" ?$,1' (B)
|
||
("\\Psi" ?$,1'((B)
|
||
("\\Re" ?$,1u\(B)
|
||
("\\Rightarrow" ?$,1wR(B)
|
||
("\\Rrightarrow" ?$,1w[(B)
|
||
("\\Rsh" ?$,1w1(B)
|
||
("\\Sigma" ?$,1'#(B)
|
||
("\\Subset" ?$,1z0(B)
|
||
("\\Supset" ?$,1z1(B)
|
||
("\\Theta" ?$,1&x(B)
|
||
("\\Uparrow" ?$,1wQ(B)
|
||
("\\Updownarrow" ?$,1wU(B)
|
||
("\\Upsilon" ?$,1'%(B)
|
||
("\\Vdash" ?$,1yi(B)
|
||
("\\Vert" ?$,1rv(B)
|
||
("\\Vvdash" ?$,1yj(B)
|
||
("\\Xi" ?$,1&~(B)
|
||
("\\aleph" ?$,1uu(B)
|
||
("\\alpha" ?$,1'1(B)
|
||
("\\amalg" ?$,1x0(B)
|
||
("\\angle" ?$,1x@(B)
|
||
("\\approx" ?$,1xh(B)
|
||
("\\approxeq" ?$,1xj(B)
|
||
("\\ast" ?$,1x7(B)
|
||
("\\asymp" ?$,1xm(B)
|
||
("\\backcong" ?$,1xl(B)
|
||
("\\backepsilon" ?$,1x-(B)
|
||
("\\backprime" ?$,1s5(B)
|
||
("\\backsim" ?$,1x](B)
|
||
("\\backsimeq" ?$,1z-(B)
|
||
("\\backslash" ?\\)
|
||
("\\barwedge" ?$,1y|(B)
|
||
("\\because" ?$,1xU(B)
|
||
("\\beta" ?$,1'2(B)
|
||
("\\beth" ?$,1uv(B)
|
||
("\\between" ?$,1y,(B)
|
||
("\\bigcap" ?$,1z"(B)
|
||
("\\bigcirc" ?$,2"O(B)
|
||
("\\bigcup" ?$,1z#(B)
|
||
("\\bigstar" ?$,2"e(B)
|
||
("\\bigtriangledown" ?$,2!}(B)
|
||
("\\bigtriangleup" ?$,2!s(B)
|
||
("\\bigvee" ?$,1z!(B)
|
||
("\\bigwedge" ?$,1z (B)
|
||
("\\blacklozenge" ?$,2%f(B)
|
||
("\\blacksquare" ?$,2!j(B)
|
||
("\\blacktriangle" ?$,2!t(B)
|
||
("\\blacktriangledown" ?$,2!~(B)
|
||
("\\blacktriangleleft" ?$,2""(B)
|
||
("\\blacktriangleright" ?$,2!x(B)
|
||
("\\bot" ?$,1ye(B)
|
||
("\\bowtie" ?$,1z((B)
|
||
("\\boxminus" ?$,1y_(B)
|
||
("\\boxplus" ?$,1y^(B)
|
||
("\\boxtimes" ?$,1y`(B)
|
||
("\\bullet" ?$,1s"(B)
|
||
("\\bumpeq" ?$,1xo(B)
|
||
("\\cap" ?$,1xI(B)
|
||
("\\cdots" ?$,1zO(B)
|
||
("\\centerdot" ?,A7(B)
|
||
("\\checkmark" ?$,2%S(B)
|
||
("\\chi" ?$,1'G(B)
|
||
("\\circ" ?$,2"+(B)
|
||
("\\circeq" ?$,1xw(B)
|
||
("\\circlearrowleft" ?$,1w:(B)
|
||
("\\circlearrowright" ?$,1w;(B)
|
||
("\\circledR" ?,A.(B)
|
||
("\\circledS" ?$,1H(B)
|
||
("\\circledast" ?$,1y[(B)
|
||
("\\circledcirc" ?$,1yZ(B)
|
||
("\\circleddash" ?$,1y](B)
|
||
("\\clubsuit" ?$,2#c(B)
|
||
("\\colon" ?:)
|
||
("\\coloneq" ?$,1xt(B)
|
||
("\\complement" ?$,1x!(B)
|
||
("\\cong" ?$,1xe(B)
|
||
("\\coprod" ?$,1x0(B)
|
||
("\\cup" ?$,1xJ(B)
|
||
("\\curlyeqprec" ?$,1z>(B)
|
||
("\\curlyeqsucc" ?$,1z?(B)
|
||
("\\curlypreceq" ?$,1y<(B)
|
||
("\\curlyvee" ?$,1z.(B)
|
||
("\\curlywedge" ?$,1z/(B)
|
||
("\\curvearrowleft" ?$,1w6(B)
|
||
("\\curvearrowright" ?$,1w7(B)
|
||
|
||
("\\dag" ?$,1s (B)
|
||
("\\dagger" ?$,1s (B)
|
||
("\\daleth" ?$,1ux(B)
|
||
("\\dashv" ?$,1yc(B)
|
||
("\\ddag" ?$,1s!(B)
|
||
("\\ddagger" ?$,1s!(B)
|
||
("\\ddots" ?$,1zQ(B)
|
||
("\\delta" ?$,1'4(B)
|
||
("\\diamond" ?$,1z$(B)
|
||
("\\diamondsuit" ?$,2#b(B)
|
||
("\\digamma" ?$,1'\(B)
|
||
("\\divideontimes" ?$,1z'(B)
|
||
("\\doteq" ?$,1xp(B)
|
||
("\\doteqdot" ?$,1xq(B)
|
||
("\\dotplus" ?$,1x4(B)
|
||
("\\dotsquare" ?$,1ya(B)
|
||
("\\downarrow" ?$,1vs(B)
|
||
("\\downdownarrows" ?$,1wJ(B)
|
||
("\\downleftharpoon" ?$,1wC(B)
|
||
("\\downrightharpoon" ?$,1wB(B)
|
||
("\\ell" ?$,1uS(B)
|
||
("\\emptyset" ?$,1x%(B)
|
||
("\\epsilon" ?$,1'5(B)
|
||
("\\eqcirc" ?$,1xv(B)
|
||
("\\eqcolon" ?$,1xu(B)
|
||
("\\eqslantgtr" ?$,1z=(B)
|
||
("\\eqslantless" ?$,1z<(B)
|
||
("\\equiv" ?$,1y!(B)
|
||
("\\eta" ?$,1'7(B)
|
||
("\\euro" ?$,1tL(B)
|
||
("\\exists" ?$,1x#(B)
|
||
("\\fallingdotseq" ?$,1xr(B)
|
||
("\\flat" ?$,2#m(B)
|
||
("\\forall" ?$,1x (B)
|
||
("\\frac1" ?$,1v?(B)
|
||
("\\frac12" ?,A=(B)
|
||
("\\frac13" ?$,1v3(B)
|
||
("\\frac14" ?,A<(B)
|
||
("\\frac15" ?$,1v5(B)
|
||
("\\frac16" ?$,1v9(B)
|
||
("\\frac18" ?$,1v;(B)
|
||
("\\frac23" ?$,1v4(B)
|
||
("\\frac25" ?$,1v6(B)
|
||
("\\frac34" ?,A>(B)
|
||
("\\frac35" ?$,1v7(B)
|
||
("\\frac38" ?$,1v<(B)
|
||
("\\frac45" ?$,1v8(B)
|
||
("\\frac56" ?$,1v:(B)
|
||
("\\frac58" ?$,1v=(B)
|
||
("\\frac78" ?$,1v>(B)
|
||
("\\frown" ?$,1{"(B)
|
||
("\\gamma" ?$,1'3(B)
|
||
("\\ge" ?$,1y%(B)
|
||
("\\geq" ?$,1y%(B)
|
||
("\\geqq" ?$,1y'(B)
|
||
("\\geqslant" ?$,1y%(B)
|
||
("\\gets" ?$,1vp(B)
|
||
("\\gg" ?$,1y+(B)
|
||
("\\ggg" ?$,1z9(B)
|
||
("\\gimel" ?$,1uw(B)
|
||
("\\gnapprox" ?$,1zG(B)
|
||
("\\gneq" ?$,1y)(B)
|
||
("\\gneqq" ?$,1y)(B)
|
||
("\\gnsim" ?$,1zG(B)
|
||
("\\gtrapprox" ?$,1y3(B)
|
||
("\\gtrdot" ?$,1z7(B)
|
||
("\\gtreqless" ?$,1z;(B)
|
||
("\\gtreqqless" ?$,1z;(B)
|
||
("\\gtrless" ?$,1y7(B)
|
||
("\\gtrsim" ?$,1y3(B)
|
||
("\\gvertneqq" ?$,1y)(B)
|
||
("\\hbar" ?$,1uO(B)
|
||
("\\heartsuit" ?$,2#e(B)
|
||
("\\hookleftarrow" ?$,1w)(B)
|
||
("\\hookrightarrow" ?$,1w*(B)
|
||
("\\iff" ?$,1wT(B)
|
||
("\\imath" ?$,1 Q(B)
|
||
("\\in" ?$,1x((B)
|
||
("\\infty" ?$,1x>(B)
|
||
("\\int" ?$,1xK(B)
|
||
("\\intercal" ?$,1yz(B)
|
||
("\\iota" ?$,1'9(B)
|
||
("\\kappa" ?$,1':(B)
|
||
("\\lambda" ?$,1';(B)
|
||
("\\langle" ?$,1{)(B)
|
||
("\\lbrace" ?{)
|
||
("\\lbrack" ?[)
|
||
("\\lceil" ?$,1zh(B)
|
||
("\\ldots" ?$,1s&(B)
|
||
("\\le" ?$,1y$(B)
|
||
("\\leadsto" ?$,1v}(B)
|
||
("\\leftarrow" ?$,1vp(B)
|
||
("\\leftarrowtail" ?$,1w"(B)
|
||
("\\leftharpoondown" ?$,1w=(B)
|
||
("\\leftharpoonup" ?$,1w<(B)
|
||
("\\leftleftarrows" ?$,1wG(B)
|
||
("\\leftparengtr" ?$,1{)(B)
|
||
("\\leftrightarrow" ?$,1vt(B)
|
||
("\\leftrightarrows" ?$,1wF(B)
|
||
("\\leftrightharpoons" ?$,1wK(B)
|
||
("\\leftrightsquigarrow" ?$,1w-(B)
|
||
("\\leftthreetimes" ?$,1z+(B)
|
||
("\\leq" ?$,1y$(B)
|
||
("\\leqq" ?$,1y&(B)
|
||
("\\leqslant" ?$,1y$(B)
|
||
("\\lessapprox" ?$,1y2(B)
|
||
("\\lessdot" ?$,1z6(B)
|
||
("\\lesseqgtr" ?$,1z:(B)
|
||
("\\lesseqqgtr" ?$,1z:(B)
|
||
("\\lessgtr" ?$,1y6(B)
|
||
("\\lesssim" ?$,1y2(B)
|
||
("\\lfloor" ?$,1zj(B)
|
||
("\\lhd" ?$,2"!(B)
|
||
("\\ll" ?$,1y*(B)
|
||
("\\llcorner" ?$,1z~(B)
|
||
("\\lnapprox" ?$,1zF(B)
|
||
("\\lneq" ?$,1y((B)
|
||
("\\lneqq" ?$,1y((B)
|
||
("\\lnsim" ?$,1zF(B)
|
||
("\\longleftarrow" ?$,1vp(B)
|
||
("\\longleftrightarrow" ?$,1vt(B)
|
||
("\\longmapsto" ?$,1w&(B)
|
||
("\\longrightarrow" ?$,1vr(B)
|
||
("\\looparrowleft" ?$,1w+(B)
|
||
("\\looparrowright" ?$,1w,(B)
|
||
("\\lozenge" ?$,2%g(B)
|
||
("\\lq" ?$,1rx(B)
|
||
("\\lrcorner" ?$,1z(B)
|
||
("\\ltimes" ?$,1z)(B)
|
||
("\\lvertneqq" ?$,1y((B)
|
||
("\\maltese" ?$,2%`(B)
|
||
("\\mapsto" ?$,1w&(B)
|
||
("\\measuredangle" ?$,1xA(B)
|
||
("\\mho" ?$,1ug(B)
|
||
("\\mid" ?$,1xC(B)
|
||
("\\models" ?$,1yg(B)
|
||
("\\mp" ?$,1x3(B)
|
||
("\\multimap" ?$,1yx(B)
|
||
("\\nLeftarrow" ?$,1wM(B)
|
||
("\\nLeftrightarrow" ?$,1wN(B)
|
||
("\\nRightarrow" ?$,1wO(B)
|
||
("\\nVDash" ?$,1yo(B)
|
||
("\\nVdash" ?$,1yn(B)
|
||
("\\nabla" ?$,1x'(B)
|
||
("\\napprox" ?$,1xi(B)
|
||
("\\natural" ?$,2#n(B)
|
||
("\\ncong" ?$,1xg(B)
|
||
("\\ne" ?$,1y (B)
|
||
("\\nearrow" ?$,1vw(B)
|
||
("\\neg" ?,A,(B)
|
||
("\\neq" ?$,1y (B)
|
||
("\\nequiv" ?$,1y"(B)
|
||
("\\newline" ?$,1s((B)
|
||
("\\nexists" ?$,1x$(B)
|
||
("\\ngeq" ?$,1y1(B)
|
||
("\\ngeqq" ?$,1y1(B)
|
||
("\\ngeqslant" ?$,1y1(B)
|
||
("\\ngtr" ?$,1y/(B)
|
||
("\\ni" ?$,1x+(B)
|
||
("\\nleftarrow" ?$,1vz(B)
|
||
("\\nleftrightarrow" ?$,1w.(B)
|
||
("\\nleq" ?$,1y0(B)
|
||
("\\nleqq" ?$,1y0(B)
|
||
("\\nleqslant" ?$,1y0(B)
|
||
("\\nless" ?$,1y.(B)
|
||
("\\nmid" ?$,1xD(B)
|
||
("\\not" ?$,1%x(B)
|
||
("\\notin" ?$,1x)(B)
|
||
("\\nparallel" ?$,1xF(B)
|
||
("\\nprec" ?$,1y@(B)
|
||
("\\npreceq" ?$,1z@(B)
|
||
("\\nrightarrow" ?$,1v{(B)
|
||
("\\nshortmid" ?$,1xD(B)
|
||
("\\nshortparallel" ?$,1xF(B)
|
||
("\\nsim" ?$,1xa(B)
|
||
("\\nsimeq" ?$,1xd(B)
|
||
("\\nsubset" ?$,1yD(B)
|
||
("\\nsubseteq" ?$,1yH(B)
|
||
("\\nsubseteqq" ?$,1yH(B)
|
||
("\\nsucc" ?$,1yA(B)
|
||
("\\nsucceq" ?$,1zA(B)
|
||
("\\nsupset" ?$,1yE(B)
|
||
("\\nsupseteq" ?$,1yI(B)
|
||
("\\nsupseteqq" ?$,1yI(B)
|
||
("\\ntriangleleft" ?$,1zJ(B)
|
||
("\\ntrianglelefteq" ?$,1zL(B)
|
||
("\\ntriangleright" ?$,1zK(B)
|
||
("\\ntrianglerighteq" ?$,1zM(B)
|
||
("\\nu" ?$,1'=(B)
|
||
("\\nvDash" ?$,1ym(B)
|
||
("\\nvdash" ?$,1yl(B)
|
||
("\\nwarrow" ?$,1vv(B)
|
||
("\\odot" ?$,1yY(B)
|
||
("\\oint" ?$,1xN(B)
|
||
("\\omega" ?$,1'I(B)
|
||
("\\ominus" ?$,1yV(B)
|
||
("\\oplus" ?$,1yU(B)
|
||
("\\oslash" ?$,1yX(B)
|
||
("\\otimes" ?$,1yW(B)
|
||
("\\par" ?$,1s)(B)
|
||
("\\parallel" ?$,1xE(B)
|
||
("\\partial" ?$,1x"(B)
|
||
("\\perp" ?$,1ye(B)
|
||
("\\phi" ?$,1'F(B)
|
||
("\\pi" ?$,1'@(B)
|
||
("\\pitchfork" ?$,1z4(B)
|
||
("\\prec" ?$,1y:(B)
|
||
("\\precapprox" ?$,1y>(B)
|
||
("\\preceq" ?$,1y<(B)
|
||
("\\precnapprox" ?$,1zH(B)
|
||
("\\precnsim" ?$,1zH(B)
|
||
("\\precsim" ?$,1y>(B)
|
||
("\\prime" ?$,1s2(B)
|
||
("\\prod" ?$,1x/(B)
|
||
("\\propto" ?$,1x=(B)
|
||
("\\psi" ?$,1'H(B)
|
||
("\\quad" ?$,1ra(B)
|
||
("\\rangle" ?$,1{*(B)
|
||
("\\rbrace" ?})
|
||
("\\rbrack" ?])
|
||
("\\rceil" ?$,1zi(B)
|
||
("\\rfloor" ?$,1zk(B)
|
||
("\\rightarrow" ?$,1vr(B)
|
||
("\\rightarrowtail" ?$,1w#(B)
|
||
("\\rightharpoondown" ?$,1wA(B)
|
||
("\\rightharpoonup" ?$,1w@(B)
|
||
("\\rightleftarrows" ?$,1wD(B)
|
||
("\\rightleftharpoons" ?$,1wL(B)
|
||
("\\rightparengtr" ?$,1{*(B)
|
||
("\\rightrightarrows" ?$,1wI(B)
|
||
("\\rightthreetimes" ?$,1z,(B)
|
||
("\\risingdotseq" ?$,1xs(B)
|
||
("\\rtimes" ?$,1z*(B)
|
||
("\\sbs" ?$,3q((B)
|
||
("\\searrow" ?$,1vx(B)
|
||
("\\setminus" ?$,1x6(B)
|
||
("\\sharp" ?$,2#o(B)
|
||
("\\shortmid" ?$,1xC(B)
|
||
("\\shortparallel" ?$,1xE(B)
|
||
("\\sigma" ?$,1'C(B)
|
||
("\\sim" ?$,1x\(B)
|
||
("\\simeq" ?$,1xc(B)
|
||
("\\smallamalg" ?$,1x0(B)
|
||
("\\smallsetminus" ?$,1x6(B)
|
||
("\\smallsmile" ?$,1{#(B)
|
||
("\\smile" ?$,1{#(B)
|
||
("\\spadesuit" ?$,2#`(B)
|
||
("\\sphericalangle" ?$,1xB(B)
|
||
("\\sqcap" ?$,1yS(B)
|
||
("\\sqcup" ?$,1yT(B)
|
||
("\\sqsubset" ?$,1yO(B)
|
||
("\\sqsubseteq" ?$,1yQ(B)
|
||
("\\sqsupset" ?$,1yP(B)
|
||
("\\sqsupseteq" ?$,1yR(B)
|
||
("\\square" ?$,2!a(B)
|
||
("\\squigarrowright" ?$,1w](B)
|
||
("\\star" ?$,1z&(B)
|
||
("\\straightphi" ?$,1'F(B)
|
||
("\\subset" ?$,1yB(B)
|
||
("\\subseteq" ?$,1yF(B)
|
||
("\\subseteqq" ?$,1yF(B)
|
||
("\\subsetneq" ?$,1yJ(B)
|
||
("\\subsetneqq" ?$,1yJ(B)
|
||
("\\succ" ?$,1y;(B)
|
||
("\\succapprox" ?$,1y?(B)
|
||
("\\succcurlyeq" ?$,1y=(B)
|
||
("\\succeq" ?$,1y=(B)
|
||
("\\succnapprox" ?$,1zI(B)
|
||
("\\succnsim" ?$,1zI(B)
|
||
("\\succsim" ?$,1y?(B)
|
||
("\\sum" ?$,1x1(B)
|
||
("\\supset" ?$,1yC(B)
|
||
("\\supseteq" ?$,1yG(B)
|
||
("\\supseteqq" ?$,1yG(B)
|
||
("\\supsetneq" ?$,1yK(B)
|
||
("\\supsetneqq" ?$,1yK(B)
|
||
("\\surd" ?$,1x:(B)
|
||
("\\swarrow" ?$,1vy(B)
|
||
("\\tau" ?$,1'D(B)
|
||
("\\therefore" ?$,1xT(B)
|
||
("\\theta" ?$,1'8(B)
|
||
("\\thickapprox" ?$,1xh(B)
|
||
("\\thicksim" ?$,1x\(B)
|
||
("\\to" ?$,1vr(B)
|
||
("\\top" ?$,1yd(B)
|
||
("\\triangle" ?$,2!u(B)
|
||
("\\triangledown" ?$,2!(B)
|
||
("\\triangleleft" ?$,2"#(B)
|
||
("\\trianglelefteq" ?$,1yt(B)
|
||
("\\triangleq" ?$,1x|(B)
|
||
("\\triangleright" ?$,2!y(B)
|
||
("\\trianglerighteq" ?$,1yu(B)
|
||
("\\twoheadleftarrow" ?$,1v~(B)
|
||
("\\twoheadrightarrow" ?$,1w (B)
|
||
("\\ulcorner" ?$,1z|(B)
|
||
("\\uparrow" ?$,1vq(B)
|
||
("\\updownarrow" ?$,1vu(B)
|
||
("\\upleftharpoon" ?$,1w?(B)
|
||
("\\uplus" ?$,1yN(B)
|
||
("\\uprightharpoon" ?$,1w>(B)
|
||
("\\upsilon" ?$,1'E(B)
|
||
("\\upuparrows" ?$,1wH(B)
|
||
("\\urcorner" ?$,1z}(B)
|
||
("\\u{i}" ?$,1 M(B)
|
||
("\\vDash" ?$,1yh(B)
|
||
("\\varkappa" ?$,1'p(B)
|
||
("\\varphi" ?$,1'U(B)
|
||
("\\varpi" ?$,1'V(B)
|
||
("\\varprime" ?$,1s2(B)
|
||
("\\varpropto" ?$,1x=(B)
|
||
("\\varrho" ?$,1'q(B)
|
||
("\\varsigma" ?$,1'B(B)
|
||
("\\vartheta" ?$,1'Q(B)
|
||
("\\vartriangleleft" ?$,1yr(B)
|
||
("\\vartriangleright" ?$,1ys(B)
|
||
("\\vdash" ?$,1yb(B)
|
||
("\\vdots" ?$,1zN(B)
|
||
("\\vee" ?$,1xH(B)
|
||
("\\veebar" ?$,1y{(B)
|
||
("\\vert" ?|)
|
||
("\\wedge" ?$,1xG(B)
|
||
("\\wp" ?$,1uX(B)
|
||
("\\wr" ?$,1x`(B)
|
||
("\\xi" ?$,1'>(B)
|
||
("\\zeta" ?$,1'6(B)
|
||
|
||
("\\Bbb{N}" ?$,1uU(B) ; AMS commands for blackboard bold
|
||
("\\Bbb{P}" ?$,1uY(B) ; Also sometimes \mathbb.
|
||
("\\Bbb{R}" ?$,1u](B)
|
||
("\\Bbb{Z}" ?$,1ud(B)
|
||
("--" ?$,1rs(B)
|
||
("---" ?$,1rt(B)
|
||
("~" ?\xa0) ; nbsp
|
||
("\\mu" ?$,1'<(B)
|
||
("\\rho" ?$,1'A(B)
|
||
)
|
||
|
||
;;; latin-ltx.el ends here
|