1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-15 09:47:20 +00:00
emacs/man/files.texi
Romain Francoise be245005ca * files.texi (Version Systems): Capitalize GNU.
* viper.texi (Viper Specials): Likewise.
2005-10-18 08:01:51 +00:00

3439 lines
150 KiB
Plaintext

@c This is part of the Emacs manual.
@c Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997, 1999, 2000,
@c 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
@c See file emacs.texi for copying conditions.
@node Files, Buffers, Keyboard Macros, Top
@chapter File Handling
@cindex files
The operating system stores data permanently in named @dfn{files}, so
most of the text you edit with Emacs comes from a file and is ultimately
stored in a file.
To edit a file, you must tell Emacs to read the file and prepare a
buffer containing a copy of the file's text. This is called
@dfn{visiting} the file. Editing commands apply directly to text in the
buffer; that is, to the copy inside Emacs. Your changes appear in the
file itself only when you @dfn{save} the buffer back into the file.
In addition to visiting and saving files, Emacs can delete, copy,
rename, and append to files, keep multiple versions of them, and operate
on file directories.
@menu
* File Names:: How to type and edit file-name arguments.
* Visiting:: Visiting a file prepares Emacs to edit the file.
* Saving:: Saving makes your changes permanent.
* Reverting:: Reverting cancels all the changes not saved.
* Auto Save:: Auto Save periodically protects against loss of data.
* File Aliases:: Handling multiple names for one file.
* Version Control:: Version control systems (RCS, CVS and SCCS).
* Directories:: Creating, deleting, and listing file directories.
* Comparing Files:: Finding where two files differ.
* Misc File Ops:: Other things you can do on files.
* Compressed Files:: Accessing compressed files.
* File Archives:: Operating on tar, zip, jar etc. archive files.
* Remote Files:: Accessing files on other sites.
* Quoted File Names:: Quoting special characters in file names.
* File Name Cache:: Completion against a list of files you often use.
* File Conveniences:: Convenience Features for Finding Files.
* Filesets:: Handling sets of files.
@end menu
@node File Names
@section File Names
@cindex file names
Most Emacs commands that operate on a file require you to specify the
file name. (Saving and reverting are exceptions; the buffer knows which
file name to use for them.) You enter the file name using the
minibuffer (@pxref{Minibuffer}). @dfn{Completion} is available
(@pxref{Completion}) to make it easier to specify long file names. When
completing file names, Emacs ignores those whose file-name extensions
appear in the variable @code{completion-ignored-extensions}; see
@ref{Completion Options}.
For most operations, there is a @dfn{default file name} which is used
if you type just @key{RET} to enter an empty argument. Normally the
default file name is the name of the file visited in the current buffer;
this makes it easy to operate on that file with any of the Emacs file
commands.
@vindex default-directory
Each buffer has a default directory which is normally the same as the
directory of the file visited in that buffer. When you enter a file
name without a directory, the default directory is used. If you specify
a directory in a relative fashion, with a name that does not start with
a slash, it is interpreted with respect to the default directory. The
default directory is kept in the variable @code{default-directory},
which has a separate value in every buffer.
For example, if the default file name is @file{/u/rms/gnu/gnu.tasks} then
the default directory is @file{/u/rms/gnu/}. If you type just @samp{foo},
which does not specify a directory, it is short for @file{/u/rms/gnu/foo}.
@samp{../.login} would stand for @file{/u/rms/.login}. @samp{new/foo}
would stand for the file name @file{/u/rms/gnu/new/foo}.
@findex cd
@findex pwd
The command @kbd{M-x pwd} displays the current buffer's default
directory, and the command @kbd{M-x cd} sets it (to a value read using
the minibuffer). A buffer's default directory changes only when the
@code{cd} command is used. A file-visiting buffer's default directory
is initialized to the directory of the file that is visited in that buffer. If
you create a buffer with @kbd{C-x b}, its default directory is copied
from that of the buffer that was current at the time.
@vindex insert-default-directory
The default directory actually appears in the minibuffer when the
minibuffer becomes active to read a file name. This serves two
purposes: it @emph{shows} you what the default is, so that you can type
a relative file name and know with certainty what it will mean, and it
allows you to @emph{edit} the default to specify a different directory.
This insertion of the default directory is inhibited if the variable
@code{insert-default-directory} is set to @code{nil}.
Note that it is legitimate to type an absolute file name after you
enter the minibuffer, ignoring the presence of the default directory
name as part of the text. The final minibuffer contents may look
invalid, but that is not so. For example, if the minibuffer starts out
with @samp{/usr/tmp/} and you add @samp{/x1/rms/foo}, you get
@samp{/usr/tmp//x1/rms/foo}; but Emacs ignores everything through the
first slash in the double slash; the result is @samp{/x1/rms/foo}.
@xref{Minibuffer File}.
@cindex environment variables in file names
@cindex expansion of environment variables
@cindex @code{$} in file names
@anchor{File Names with $}@samp{$} in a file name is used to
substitute an environment variable. The environment variable name
consists of all the alphanumeric characters after the @samp{$};
alternatively, it can be enclosed in braces after the @samp{$}. For
example, if you have used the shell command @command{export
FOO=rms/hacks} to set up an environment variable named @env{FOO}, then
you can use @file{/u/$FOO/test.c} or @file{/u/$@{FOO@}/test.c} as an
abbreviation for @file{/u/rms/hacks/test.c}. If the environment
variable is not defined, no substitution occurs: @file{/u/$notdefined}
stands for itself (assuming the environment variable @env{notdefined}
is not defined).
Note that shell commands to set environment variables affect Emacs
only when done before Emacs is started.
@cindex home directory shorthand
You can use @file{~/} in a file name to mean your home directory,
or @file{~@var{user-id}/} to mean the home directory of a user whose
login name is @code{user-id}. (On DOS and Windows systems, where a user
doesn't have a home directory, Emacs substitutes @file{~/} with the
value of the environment variable @code{HOME}; see @ref{General
Variables}.)
To access a file with @samp{$} in its name, if the @samp{$} causes
expansion, type @samp{$$}. This pair is converted to a single
@samp{$} at the same time as variable substitution is performed for a
single @samp{$}. Alternatively, quote the whole file name with
@samp{/:} (@pxref{Quoted File Names}). File names which begin with a
literal @samp{~} should also be quoted with @samp{/:}.
@findex substitute-in-file-name
The Lisp function that performs the substitution is called
@code{substitute-in-file-name}. The substitution is performed only on
file names read as such using the minibuffer.
You can include non-@acronym{ASCII} characters in file names if you set the
variable @code{file-name-coding-system} to a non-@code{nil} value.
@xref{Specify Coding}.
@node Visiting
@section Visiting Files
@cindex visiting files
@table @kbd
@item C-x C-f
Visit a file (@code{find-file}).
@item C-x C-r
Visit a file for viewing, without allowing changes to it
(@code{find-file-read-only}).
@item C-x C-v
Visit a different file instead of the one visited last
(@code{find-alternate-file}).
@item C-x 4 f
Visit a file, in another window (@code{find-file-other-window}). Don't
alter what is displayed in the selected window.
@item C-x 5 f
Visit a file, in a new frame (@code{find-file-other-frame}). Don't
alter what is displayed in the selected frame.
@item M-x find-file-literally
Visit a file with no conversion of the contents.
@end table
@cindex files, visiting and saving
@cindex saving files
@dfn{Visiting} a file means copying its contents into an Emacs
buffer so you can edit them. Emacs makes a new buffer for each file
that you visit. We often say that this buffer ``is visiting'' that
file, or that the buffer's ``visited file'' is that file. Emacs
constructs the buffer name from the file name by throwing away the
directory, keeping just the name proper. For example, a file named
@file{/usr/rms/emacs.tex} would get a buffer named @samp{emacs.tex}.
If there is already a buffer with that name, Emacs constructs a unique
name---the normal method is to append @samp{<2>}, @samp{<3>}, and so
on, but you can select other methods (@pxref{Uniquify}).
Each window's mode line shows the name of the buffer that is being displayed
in that window, so you can always tell what buffer you are editing.
The changes you make with editing commands are made in the Emacs
buffer. They do not take effect in the file that you visited, or any
place permanent, until you @dfn{save} the buffer. Saving the buffer
means that Emacs writes the current contents of the buffer into its
visited file. @xref{Saving}.
@cindex modified (buffer)
If a buffer contains changes that have not been saved, we say the
buffer is @dfn{modified}. This is important because it implies that
some changes will be lost if the buffer is not saved. The mode line
displays two stars near the left margin to indicate that the buffer is
modified.
@kindex C-x C-f
@findex find-file
To visit a file, use the command @kbd{C-x C-f} (@code{find-file}). Follow
the command with the name of the file you wish to visit, terminated by a
@key{RET}.
The file name is read using the minibuffer (@pxref{Minibuffer}), with
defaulting and completion in the standard manner (@pxref{File Names}).
While in the minibuffer, you can abort @kbd{C-x C-f} by typing
@kbd{C-g}. File-name completion ignores certain filenames; for more
about this, see @ref{Completion Options}.
Your confirmation that @kbd{C-x C-f} has completed successfully is the
appearance of new text on the screen and a new buffer name in the mode
line. If the specified file does not exist and could not be created, or
cannot be read, then you get an error, with an error message displayed
in the echo area.
If you visit a file that is already in Emacs, @kbd{C-x C-f} does not make
another copy. It selects the existing buffer containing that file.
However, before doing so, it checks that the file itself has not changed
since you visited or saved it last. If the file has changed, a warning
message is shown. @xref{Interlocking,,Simultaneous Editing}.
@vindex large-file-warning-threshold
@cindex maximum buffer size exceeded, error message
If you try to visit a file larger than
@code{large-file-warning-threshold} (the default is 10000000, which is
about 10 megabytes), Emacs will ask you for confirmation first. You
can answer @kbd{y} to proceed with visiting the file. Note, however,
that Emacs cannot visit files that are larger than the maximum Emacs
buffer size, which is around 256 megabytes on 32-bit machines
(@pxref{Buffers}). If you try, Emacs will display an error message
saying that the maximum buffer size has been exceeded.
@cindex file selection dialog
On graphical terminals, there are two additional methods for
visiting files. Firstly, when Emacs is built with a suitable GUI
toolkit, commands invoked with the mouse (by clicking on the menu bar
or tool bar) use the toolkit's standard File Selection dialog instead
of prompting for the file name in the minibuffer. On Unix and
GNU/Linux platforms, Emacs does that when built with GTK, LessTif, and
Motif toolkits; on MS-Windows, the GUI version does that by default.
For information on how to customize this, see @ref{Dialog Boxes}.
Secondly, Emacs supports the ``drag and drop'' protocol on the X
window system. Dropping a file into an ordinary Emacs window visits
the file using that window. However, dropping a file into a window
displaying a Dired buffer moves or copies the file into the displayed
directory. For details, see @ref{Drag and Drop}, @ref{Misc Dired
Features}.
@cindex creating files
What if you want to create a new file? Just visit it. Emacs displays
@samp{(New file)} in the echo area, but in other respects behaves as if
you had visited an existing empty file. If you make any changes and
save them, the file is created.
Emacs recognizes from the contents of a file which convention it uses
to separate lines---newline (used on GNU/Linux and on Unix),
carriage-return linefeed (used on Microsoft systems), or just
carriage-return (used on the Macintosh)---and automatically converts the
contents to the normal Emacs convention, which is that the newline
character separates lines. This is a part of the general feature of
coding system conversion (@pxref{Coding Systems}), and makes it possible
to edit files imported from different operating systems with
equal convenience. If you change the text and save the file, Emacs
performs the inverse conversion, changing newlines back into
carriage-return linefeed or just carriage-return if appropriate.
@vindex find-file-run-dired
If the file you specify is actually a directory, @kbd{C-x C-f} invokes
Dired, the Emacs directory browser, so that you can ``edit'' the contents
of the directory (@pxref{Dired}). Dired is a convenient way to view, delete,
or operate on the files in the directory. However, if the variable
@code{find-file-run-dired} is @code{nil}, then it is an error to try
to visit a directory.
Files which are actually collections of other files, or @dfn{file
archives}, are visited in special modes which invoke a Dired-like
environment to allow operations on archive members. @xref{File
Archives}, for more about these features.
@cindex wildcard characters in file names
@vindex find-file-wildcards
If the file name you specify contains shell-style wildcard characters,
Emacs visits all the files that match it. Wildcards include @samp{?},
@samp{*}, and @samp{[@dots{}]} sequences. @xref{Quoted File Names}, for
information on how to visit a file whose name actually contains wildcard
characters. You can disable the wildcard feature by customizing
@code{find-file-wildcards}.
If you visit a file that the operating system won't let you modify,
or that is marked read-only, Emacs makes the buffer read-only too, so
that you won't go ahead and make changes that you'll have trouble
saving afterward. You can make the buffer writable with @kbd{C-x C-q}
(@code{toggle-read-only}). @xref{Misc Buffer}.
@kindex C-x C-r
@findex find-file-read-only
If you want to visit a file as read-only in order to protect
yourself from entering changes accidentally, visit it with the command
@kbd{C-x C-r} (@code{find-file-read-only}) instead of @kbd{C-x C-f}.
@kindex C-x C-v
@findex find-alternate-file
If you visit a nonexistent file unintentionally (because you typed the
wrong file name), use the @kbd{C-x C-v} command
(@code{find-alternate-file}) to visit the file you really wanted.
@kbd{C-x C-v} is similar to @kbd{C-x C-f}, but it kills the current
buffer (after first offering to save it if it is modified). When
@kbd{C-x C-v} reads the file name to visit, it inserts the entire
default file name in the buffer, with point just after the directory
part; this is convenient if you made a slight error in typing the name.
If you find a file which exists but cannot be read, @kbd{C-x C-f}
signals an error.
@kindex C-x 4 f
@findex find-file-other-window
@kbd{C-x 4 f} (@code{find-file-other-window}) is like @kbd{C-x C-f}
except that the buffer containing the specified file is selected in another
window. The window that was selected before @kbd{C-x 4 f} continues to
show the same buffer it was already showing. If this command is used when
only one window is being displayed, that window is split in two, with one
window showing the same buffer as before, and the other one showing the
newly requested file. @xref{Windows}.
@kindex C-x 5 f
@findex find-file-other-frame
@kbd{C-x 5 f} (@code{find-file-other-frame}) is similar, but opens a
new frame, or makes visible any existing frame showing the file you
seek. This feature is available only when you are using a window
system. @xref{Frames}.
@findex find-file-literally
If you wish to edit a file as a sequence of @acronym{ASCII} characters with no special
encoding or conversion, use the @kbd{M-x find-file-literally} command.
It visits a file, like @kbd{C-x C-f}, but does not do format conversion
(@pxref{Formatted Text}), character code conversion (@pxref{Coding
Systems}), or automatic uncompression (@pxref{Compressed Files}), and
does not add a final newline because of @code{require-final-newline}.
If you already have visited the same file in the usual (non-literal)
manner, this command asks you whether to visit it literally instead.
@vindex find-file-hook
@vindex find-file-not-found-functions
Two special hook variables allow extensions to modify the operation of
visiting files. Visiting a file that does not exist runs the functions
in the list @code{find-file-not-found-functions}; this variable holds a list
of functions, and the functions are called one by one (with no
arguments) until one of them returns non-@code{nil}. This is not a
normal hook, and the name ends in @samp{-functions} rather than @samp{-hook}
to indicate that fact.
Successful visiting of any file, whether existing or not, calls the
functions in the list @code{find-file-hook}, with no arguments.
This variable is a normal hook. In the case of a nonexistent file, the
@code{find-file-not-found-functions} are run first. @xref{Hooks}.
There are several ways to specify automatically the major mode for
editing the file (@pxref{Choosing Modes}), and to specify local
variables defined for that file (@pxref{File Variables}).
@node Saving
@section Saving Files
@dfn{Saving} a buffer in Emacs means writing its contents back into the file
that was visited in the buffer.
@menu
* Save Commands:: Commands for saving files.
* Backup:: How Emacs saves the old version of your file.
* Customize Save:: Customizing the saving of files.
* Interlocking:: How Emacs protects against simultaneous editing
of one file by two users.
* Shadowing: File Shadowing. Copying files to "shadows" automatically.
* Time Stamps:: Emacs can update time stamps on saved files.
@end menu
@node Save Commands
@subsection Commands for Saving Files
These are the commands that relate to saving and writing files.
@table @kbd
@item C-x C-s
Save the current buffer in its visited file on disk (@code{save-buffer}).
@item C-x s
Save any or all buffers in their visited files (@code{save-some-buffers}).
@item M-~
Forget that the current buffer has been changed (@code{not-modified}).
With prefix argument (@kbd{C-u}), mark the current buffer as changed.
@item C-x C-w
Save the current buffer as a specified file name (@code{write-file}).
@item M-x set-visited-file-name
Change the file name under which the current buffer will be saved.
@end table
@kindex C-x C-s
@findex save-buffer
When you wish to save the file and make your changes permanent, type
@kbd{C-x C-s} (@code{save-buffer}). After saving is finished, @kbd{C-x C-s}
displays a message like this:
@example
Wrote /u/rms/gnu/gnu.tasks
@end example
@noindent
If the selected buffer is not modified (no changes have been made in it
since the buffer was created or last saved), saving is not really done,
because it would have no effect. Instead, @kbd{C-x C-s} displays a message
like this in the echo area:
@example
(No changes need to be saved)
@end example
@kindex C-x s
@findex save-some-buffers
The command @kbd{C-x s} (@code{save-some-buffers}) offers to save any
or all modified buffers. It asks you what to do with each buffer. The
possible responses are analogous to those of @code{query-replace}:
@table @kbd
@item y
Save this buffer and ask about the rest of the buffers.
@item n
Don't save this buffer, but ask about the rest of the buffers.
@item !
Save this buffer and all the rest with no more questions.
@c following generates acceptable underfull hbox
@item @key{RET}
Terminate @code{save-some-buffers} without any more saving.
@item .
Save this buffer, then exit @code{save-some-buffers} without even asking
about other buffers.
@item C-r
View the buffer that you are currently being asked about. When you exit
View mode, you get back to @code{save-some-buffers}, which asks the
question again.
@item d
Diff the buffer against its corresponding file, so you can see
what changes you would be saving.
@item C-h
Display a help message about these options.
@end table
@kbd{C-x C-c}, the key sequence to exit Emacs, invokes
@code{save-some-buffers} and therefore asks the same questions.
@kindex M-~
@findex not-modified
If you have changed a buffer but you do not want to save the changes,
you should take some action to prevent it. Otherwise, each time you use
@kbd{C-x s} or @kbd{C-x C-c}, you are liable to save this buffer by
mistake. One thing you can do is type @kbd{M-~} (@code{not-modified}),
which clears out the indication that the buffer is modified. If you do
this, none of the save commands will believe that the buffer needs to be
saved. (@samp{~} is often used as a mathematical symbol for `not'; thus
@kbd{M-~} is `not', metafied.) You could also use
@code{set-visited-file-name} (see below) to mark the buffer as visiting
a different file name, one which is not in use for anything important.
Alternatively, you can cancel all the changes made since the file was
visited or saved, by reading the text from the file again. This is
called @dfn{reverting}. @xref{Reverting}. You could also undo all the
changes by repeating the undo command @kbd{C-x u} until you have undone
all the changes; but reverting is easier.
@findex set-visited-file-name
@kbd{M-x set-visited-file-name} alters the name of the file that the
current buffer is visiting. It reads the new file name using the
minibuffer. Then it marks the buffer as visiting that file name, and
changes the buffer name correspondingly. @code{set-visited-file-name}
does not save the buffer in the newly visited file; it just alters the
records inside Emacs in case you do save later. It also marks the
buffer as ``modified'' so that @kbd{C-x C-s} in that buffer
@emph{will} save.
@kindex C-x C-w
@findex write-file
If you wish to mark the buffer as visiting a different file and save it
right away, use @kbd{C-x C-w} (@code{write-file}). It is
equivalent to @code{set-visited-file-name} followed by @kbd{C-x C-s}
(except that @kbd{C-x C-w} asks for confirmation if the file exists).
@kbd{C-x C-s} used on a buffer that is not visiting a file has the
same effect as @kbd{C-x C-w}; that is, it reads a file name, marks the
buffer as visiting that file, and saves it there. The default file name in
a buffer that is not visiting a file is made by combining the buffer name
with the buffer's default directory (@pxref{File Names}).
If the new file name implies a major mode, then @kbd{C-x C-w} switches
to that major mode, in most cases. The command
@code{set-visited-file-name} also does this. @xref{Choosing Modes}.
If Emacs is about to save a file and sees that the date of the latest
version on disk does not match what Emacs last read or wrote, Emacs
notifies you of this fact, because it probably indicates a problem caused
by simultaneous editing and requires your immediate attention.
@xref{Interlocking,, Simultaneous Editing}.
@node Backup
@subsection Backup Files
@cindex backup file
@vindex make-backup-files
@vindex vc-make-backup-files
On most operating systems, rewriting a file automatically destroys all
record of what the file used to contain. Thus, saving a file from Emacs
throws away the old contents of the file---or it would, except that
Emacs carefully copies the old contents to another file, called the
@dfn{backup} file, before actually saving.
For most files, the variable @code{make-backup-files} determines
whether to make backup files. On most operating systems, its default
value is @code{t}, so that Emacs does write backup files.
For files managed by a version control system (@pxref{Version
Control}), the variable @code{vc-make-backup-files} determines whether
to make backup files. By default it is @code{nil}, since backup files
are redundant when you store all the previous versions in a version
control system. @xref{General VC Options}.
@vindex backup-enable-predicate
@vindex temporary-file-directory
@vindex small-temporary-file-directory
The default value of the @code{backup-enable-predicate} variable
prevents backup files being written for files in the directories used
for temporary files, specified by @code{temporary-file-directory} or
@code{small-temporary-file-directory}.
At your option, Emacs can keep either a single backup file or a series of
numbered backup files for each file that you edit.
Emacs makes a backup for a file only the first time the file is saved
from one buffer. No matter how many times you save a file, its backup file
continues to contain the contents from before the file was visited.
Normally this means that the backup file contains the contents from before
the current editing session; however, if you kill the buffer and then visit
the file again, a new backup file will be made by the next save.
You can also explicitly request making another backup file from a
buffer even though it has already been saved at least once. If you save
the buffer with @kbd{C-u C-x C-s}, the version thus saved will be made
into a backup file if you save the buffer again. @kbd{C-u C-u C-x C-s}
saves the buffer, but first makes the previous file contents into a new
backup file. @kbd{C-u C-u C-u C-x C-s} does both things: it makes a
backup from the previous contents, and arranges to make another from the
newly saved contents if you save again.
@menu
* Names: Backup Names. How backup files are named;
choosing single or numbered backup files.
* Deletion: Backup Deletion. Emacs deletes excess numbered backups.
* Copying: Backup Copying. Backups can be made by copying or renaming.
@end menu
@node Backup Names
@subsubsection Single or Numbered Backups
If you choose to have a single backup file (this is the default),
the backup file's name is normally constructed by appending @samp{~} to the
file name being edited; thus, the backup file for @file{eval.c} would
be @file{eval.c~}.
@vindex make-backup-file-name-function
@vindex backup-directory-alist
You can change this behavior by defining the variable
@code{make-backup-file-name-function} to a suitable function.
Alternatively you can customize the variable
@code{backup-directory-alist} to specify that files matching certain
patterns should be backed up in specific directories.
A typical use is to add an element @code{("." . @var{dir})} to make
all backups in the directory with absolute name @var{dir}; Emacs
modifies the backup file names to avoid clashes between files with the
same names originating in different directories. Alternatively,
adding, say, @code{("." . ".~")} would make backups in the invisible
subdirectory @file{.~} of the original file's directory. Emacs
creates the directory, if necessary, to make the backup.
If access control stops Emacs from writing backup files under the usual
names, it writes the backup file as @file{%backup%~} in your home
directory. Only one such file can exist, so only the most recently
made such backup is available.
If you choose to have a series of numbered backup files, backup file
names contain @samp{.~}, the number, and another @samp{~} after the
original file name. Thus, the backup files of @file{eval.c} would be
called @file{eval.c.~1~}, @file{eval.c.~2~}, and so on, all the way
through names like @file{eval.c.~259~} and beyond. The variable
@code{backup-directory-alist} applies to numbered backups just as
usual.
@vindex version-control
The choice of single backup or numbered backups is controlled by the
variable @code{version-control}. Its possible values are
@table @code
@item t
Make numbered backups.
@item nil
Make numbered backups for files that have numbered backups already.
Otherwise, make single backups.
@item never
Never make numbered backups; always make single backups.
@end table
@noindent
You can set @code{version-control} locally in an individual buffer to
control the making of backups for that buffer's file. For example,
Rmail mode locally sets @code{version-control} to @code{never} to make sure
that there is only one backup for an Rmail file. @xref{Locals}.
@cindex @env{VERSION_CONTROL} environment variable
If you set the environment variable @env{VERSION_CONTROL}, to tell
various GNU utilities what to do with backup files, Emacs also obeys the
environment variable by setting the Lisp variable @code{version-control}
accordingly at startup. If the environment variable's value is @samp{t}
or @samp{numbered}, then @code{version-control} becomes @code{t}; if the
value is @samp{nil} or @samp{existing}, then @code{version-control}
becomes @code{nil}; if it is @samp{never} or @samp{simple}, then
@code{version-control} becomes @code{never}.
@node Backup Deletion
@subsubsection Automatic Deletion of Backups
To prevent excessive consumption of disk space, Emacs can delete numbered
backup versions automatically. Generally Emacs keeps the first few backups
and the latest few backups, deleting any in between. This happens every
time a new backup is made.
@vindex kept-old-versions
@vindex kept-new-versions
The two variables @code{kept-old-versions} and
@code{kept-new-versions} control this deletion. Their values are,
respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a
new backup is made. The backups in the middle (excluding those oldest
and newest) are the excess middle versions---those backups are
deleted. These variables' values are used when it is time to delete
excess versions, just after a new backup version is made; the newly
made backup is included in the count in @code{kept-new-versions}. By
default, both variables are 2.
@vindex delete-old-versions
If @code{delete-old-versions} is @code{t}, Emacs deletes the excess
backup files silently. If it is @code{nil}, the default, Emacs asks
you whether it should delete the excess backup versions. If it has
any other value, then Emacs never automatically deletes backups.
Dired's @kbd{.} (Period) command can also be used to delete old versions.
@xref{Dired Deletion}.
@node Backup Copying
@subsubsection Copying vs.@: Renaming
Backup files can be made by copying the old file or by renaming it.
This makes a difference when the old file has multiple names (hard
links). If the old file is renamed into the backup file, then the
alternate names become names for the backup file. If the old file is
copied instead, then the alternate names remain names for the file
that you are editing, and the contents accessed by those names will be
the new contents.
The method of making a backup file may also affect the file's owner
and group. If copying is used, these do not change. If renaming is used,
you become the file's owner, and the file's group becomes the default
(different operating systems have different defaults for the group).
Having the owner change is usually a good idea, because then the owner
always shows who last edited the file. Also, the owners of the backups
show who produced those versions. Occasionally there is a file whose
owner should not change; it is a good idea for such files to contain
local variable lists to set @code{backup-by-copying-when-mismatch}
locally (@pxref{File Variables}).
@vindex backup-by-copying
@vindex backup-by-copying-when-linked
@vindex backup-by-copying-when-mismatch
@vindex backup-by-copying-when-privileged-mismatch
@cindex file ownership, and backup
@cindex backup, and user-id
The choice of renaming or copying is controlled by four variables.
Renaming is the default choice. If the variable
@code{backup-by-copying} is non-@code{nil}, copying is used. Otherwise,
if the variable @code{backup-by-copying-when-linked} is non-@code{nil},
then copying is used for files that have multiple names, but renaming
may still be used when the file being edited has only one name. If the
variable @code{backup-by-copying-when-mismatch} is non-@code{nil}, then
copying is used if renaming would cause the file's owner or group to
change. @code{backup-by-copying-when-mismatch} is @code{t} by default
if you start Emacs as the superuser. The fourth variable,
@code{backup-by-copying-when-privileged-mismatch}, gives the highest
numeric user-id for which @code{backup-by-copying-when-mismatch} will be
forced on. This is useful when low-numbered user-ids are assigned to
special system users, such as @code{root}, @code{bin}, @code{daemon},
etc., which must maintain ownership of files.
When a file is managed with a version control system (@pxref{Version
Control}), Emacs does not normally make backups in the usual way for
that file. But check-in and check-out are similar in some ways to
making backups. One unfortunate similarity is that these operations
typically break hard links, disconnecting the file name you visited from
any alternate names for the same file. This has nothing to do with
Emacs---the version control system does it.
@node Customize Save
@subsection Customizing Saving of Files
@vindex require-final-newline
If the value of the variable @code{require-final-newline} is
@code{t}, saving or writing a file silently puts a newline at the end
if there isn't already one there. If the value is @code{visit}, Emacs
adds a newline at the end of any file that doesn't have one, just
after it visits the file. (This marks the buffer as modified, and you
can undo it.) If the value is @code{visit-save}, that means to add
newlines both on visiting and on saving. If the value is @code{nil},
Emacs leaves the end of the file unchanged; if it's neither @code{nil}
nor @code{t}, Emacs asks you whether to add a newline. The default is
@code{nil}.
@vindex mode-require-final-newline
Many major modes are designed for specific kinds of files that are
always supposed to end in newlines. These major modes set the
variable @code{require-final-newline} according to
@code{mode-require-final-newline}. By setting the latter variable,
you can control how these modes handle final newlines.
@vindex write-region-inhibit-fsync
When Emacs saves a file, it invokes the @code{fsync} system call to
force the data immediately out to disk. This is important for safety
if the system crashes or in case of power outage. However, it can be
disruptive on laptops using power saving, because it requires the disk
to spin up each time you save a file. Setting
@code{write-region-inhibit-fsync} to a non-@code{nil} value disables
this synchronization. Be careful---this means increased risk of data
loss.
@node Interlocking
@subsection Protection against Simultaneous Editing
@cindex file dates
@cindex simultaneous editing
Simultaneous editing occurs when two users visit the same file, both
make changes, and then both save them. If nobody were informed that
this was happening, whichever user saved first would later find that his
changes were lost.
On some systems, Emacs notices immediately when the second user starts
to change the file, and issues an immediate warning. On all systems,
Emacs checks when you save the file, and warns if you are about to
overwrite another user's changes. You can prevent loss of the other
user's work by taking the proper corrective action instead of saving the
file.
@findex ask-user-about-lock
@cindex locking files
When you make the first modification in an Emacs buffer that is
visiting a file, Emacs records that the file is @dfn{locked} by you.
(It does this by creating a symbolic link in the same directory with a
different name.) Emacs removes the lock when you save the changes. The
idea is that the file is locked whenever an Emacs buffer visiting it has
unsaved changes.
@cindex collision
If you begin to modify the buffer while the visited file is locked by
someone else, this constitutes a @dfn{collision}. When Emacs detects a
collision, it asks you what to do, by calling the Lisp function
@code{ask-user-about-lock}. You can redefine this function for the sake
of customization. The standard definition of this function asks you a
question and accepts three possible answers:
@table @kbd
@item s
Steal the lock. Whoever was already changing the file loses the lock,
and you gain the lock.
@item p
Proceed. Go ahead and edit the file despite its being locked by someone else.
@item q
Quit. This causes an error (@code{file-locked}), and the buffer
contents remain unchanged---the modification you were trying to make
does not actually take place.
@end table
Note that locking works on the basis of a file name; if a file has
multiple names, Emacs does not realize that the two names are the same file
and cannot prevent two users from editing it simultaneously under different
names. However, basing locking on names means that Emacs can interlock the
editing of new files that will not really exist until they are saved.
Some systems are not configured to allow Emacs to make locks, and
there are cases where lock files cannot be written. In these cases,
Emacs cannot detect trouble in advance, but it still can detect the
collision when you try to save a file and overwrite someone else's
changes.
If Emacs or the operating system crashes, this may leave behind lock
files which are stale, so you may occasionally get warnings about
spurious collisions. When you determine that the collision is spurious,
just use @kbd{p} to tell Emacs to go ahead anyway.
Every time Emacs saves a buffer, it first checks the last-modification
date of the existing file on disk to verify that it has not changed since the
file was last visited or saved. If the date does not match, it implies
that changes were made in the file in some other way, and these changes are
about to be lost if Emacs actually does save. To prevent this, Emacs
displays a warning message and asks for confirmation before saving.
Occasionally you will know why the file was changed and know that it does
not matter; then you can answer @kbd{yes} and proceed. Otherwise, you should
cancel the save with @kbd{C-g} and investigate the situation.
The first thing you should do when notified that simultaneous editing
has already taken place is to list the directory with @kbd{C-u C-x C-d}
(@pxref{Directories}). This shows the file's current author. You
should attempt to contact him to warn him not to continue editing.
Often the next step is to save the contents of your Emacs buffer under a
different name, and use @code{diff} to compare the two files.@refill
@node File Shadowing
@subsection Shadowing Files
@cindex shadow files
@cindex file shadows
@table @kbd
@item M-x shadow-initialize
Set up file shadowing.
@item M-x shadow-define-literal-group
Declare a single file to be shared between sites.
@item M-x shadow-define-regexp-group
Make all files that match each of a group of files be shared between hosts.
@item M-x shadow-define-cluster @key{RET} @var{name} @key{RET}
Define a shadow file cluster @var{name}.
@item M-x shadow-copy-files
Copy all pending shadow files.
@item M-x shadow-cancel
Cancel the instruction to shadow some files.
@end table
You can arrange to keep identical @dfn{shadow} copies of certain files
in more than one place---possibly on different machines. To do this,
first you must set up a @dfn{shadow file group}, which is a set of
identically-named files shared between a list of sites. The file
group is permanent and applies to further Emacs sessions as well as
the current one. Once the group is set up, every time you exit Emacs,
it will copy the file you edited to the other files in its group. You
can also do the copying without exiting Emacs, by typing @kbd{M-x
shadow-copy-files}.
To set up a shadow file group, use @kbd{M-x
shadow-define-literal-group} or @kbd{M-x shadow-define-regexp-group}.
See their documentation strings for further information.
Before copying a file to its shadows, Emacs asks for confirmation.
You can answer ``no'' to bypass copying of this file, this time. If
you want to cancel the shadowing permanently for a certain file, use
@kbd{M-x shadow-cancel} to eliminate or change the shadow file group.
A @dfn{shadow cluster} is a group of hosts that share directories, so
that copying to or from one of them is sufficient to update the file
on all of them. Each shadow cluster has a name, and specifies the
network address of a primary host (the one we copy files to), and a
regular expression that matches the host names of all the other hosts
in the cluster. You can define a shadow cluster with @kbd{M-x
shadow-define-cluster}.
@node Time Stamps
@subsection Updating Time Stamps Automatically
@findex time-stamp
@cindex time stamps
@cindex modification dates
@cindex locale, date format
You can arrange to put a time stamp in a file, so that it will be updated
automatically each time you edit and save the file. The time stamp
has to be in the first eight lines of the file, and you should
insert it like this:
@example
Time-stamp: <>
@end example
@noindent
or like this:
@example
Time-stamp: " "
@end example
Then add the hook function @code{time-stamp} to the hook
@code{before-save-hook}; that hook function will automatically update
the time stamp, inserting the current date and time when you save the
file. You can also use the command @kbd{M-x time-stamp} to update the
time stamp manually. For other customizations, see the Custom group
@code{time-stamp}. Note that non-numeric fields in the time stamp are
formatted according to your locale setting (@pxref{Environment}).
@node Reverting
@section Reverting a Buffer
@findex revert-buffer
@cindex drastic changes
@cindex reread a file
If you have made extensive changes to a file and then change your mind
about them, you can get rid of them by reading in the previous version
of the file. To do this, use @kbd{M-x revert-buffer}, which operates on
the current buffer. Since reverting a buffer unintentionally could lose
a lot of work, you must confirm this command with @kbd{yes}.
@code{revert-buffer} tries to position point in such a way that, if
the file was edited only slightly, you will be at approximately the
same piece of text after reverting as before. However, if you have made
drastic changes, point may wind up in a totally different piece of text.
Reverting marks the buffer as ``not modified'' until another change is
made.
Some kinds of buffers whose contents reflect data bases other than files,
such as Dired buffers, can also be reverted. For them, reverting means
recalculating their contents from the appropriate data base. Buffers
created explicitly with @kbd{C-x b} cannot be reverted; @code{revert-buffer}
reports an error when asked to do so.
@vindex revert-without-query
When you edit a file that changes automatically and frequently---for
example, a log of output from a process that continues to run---it may be
useful for Emacs to revert the file without querying you, whenever you
visit the file again with @kbd{C-x C-f}.
To request this behavior, set the variable @code{revert-without-query}
to a list of regular expressions. When a file name matches one of these
regular expressions, @code{find-file} and @code{revert-buffer} will
revert it automatically if it has changed---provided the buffer itself
is not modified. (If you have edited the text, it would be wrong to
discard your changes.)
@cindex Global Auto-Revert mode
@cindex mode, Global Auto-Revert
@cindex Auto-Revert mode
@cindex mode, Auto-Revert
@findex global-auto-revert-mode
@findex auto-revert-mode
@findex auto-revert-tail-mode
You may find it useful to have Emacs revert files automatically when
they change. Three minor modes are available to do this.
@kbd{M-x global-auto-revert-mode} runs Global Auto-Revert mode,
which periodically checks all file buffers and reverts when the
corresponding file has changed. @kbd{M-x auto-revert-mode} runs a
local version, Auto-Revert mode, which applies only to the buffer in
which it was activated. Auto-Revert mode can be used to ``tail'' a
file, such as a system log, so that changes made to that file by other
programs are continuously displayed. To do this, just move the point
to the end of the buffer, and it will stay there as the file contents
change. However, if you are sure that the file will only change by
growing at the end, you can tail the file more efficiently using
Auto-Revert Tail mode, @kbd{M-x auto-revert-tail-mode}.
@vindex auto-revert-interval
The variable @code{auto-revert-interval} controls how often to check
for a changed file. Since checking a remote file is too slow, these
modes do not check or revert remote files.
@xref{VC Mode Line}, for Auto Revert peculiarities in buffers that
visit files under version control.
@node Auto Save
@section Auto-Saving: Protection Against Disasters
@cindex Auto Save mode
@cindex mode, Auto Save
@cindex crashes
Emacs saves all the visited files from time to time (based on counting
your keystrokes) without being asked. This is called @dfn{auto-saving}.
It prevents you from losing more than a limited amount of work if the
system crashes.
When Emacs determines that it is time for auto-saving, each buffer is
considered, and is auto-saved if auto-saving is turned on for it and it
has been changed since the last time it was auto-saved. The message
@samp{Auto-saving...} is displayed in the echo area during auto-saving,
if any files are actually auto-saved. Errors occurring during
auto-saving are caught so that they do not interfere with the execution
of commands you have been typing.
@menu
* Files: Auto Save Files. The file where auto-saved changes are
actually made until you save the file.
* Control: Auto Save Control. Controlling when and how often to auto-save.
* Recover:: Recovering text from auto-save files.
@end menu
@node Auto Save Files
@subsection Auto-Save Files
Auto-saving does not normally save in the files that you visited, because
it can be very undesirable to save a program that is in an inconsistent
state when you have made half of a planned change. Instead, auto-saving
is done in a different file called the @dfn{auto-save file}, and the
visited file is changed only when you request saving explicitly (such as
with @kbd{C-x C-s}).
Normally, the auto-save file name is made by appending @samp{#} to the
front and rear of the visited file name. Thus, a buffer visiting file
@file{foo.c} is auto-saved in a file @file{#foo.c#}. Most buffers that
are not visiting files are auto-saved only if you request it explicitly;
when they are auto-saved, the auto-save file name is made by appending
@samp{#} to the front and rear of buffer name, then
adding digits and letters at the end for uniqueness. For
example, the @samp{*mail*} buffer in which you compose messages to be
sent might be auto-saved in a file named @file{#*mail*#704juu}. Auto-save file
names are made this way unless you reprogram parts of Emacs to do
something different (the functions @code{make-auto-save-file-name} and
@code{auto-save-file-name-p}). The file name to be used for auto-saving
in a buffer is calculated when auto-saving is turned on in that buffer.
@cindex auto-save for remote files
@vindex auto-save-file-name-transforms
The variable @code{auto-save-file-name-transforms} allows a degree
of control over the auto-save file name. It lets you specify a series
of regular expressions and replacements to transform the auto save
file name. The default value puts the auto-save files for remote
files (@pxref{Remote Files}) into the temporary file directory on the
local machine.
When you delete a substantial part of the text in a large buffer, auto
save turns off temporarily in that buffer. This is because if you
deleted the text unintentionally, you might find the auto-save file more
useful if it contains the deleted text. To reenable auto-saving after
this happens, save the buffer with @kbd{C-x C-s}, or use @kbd{C-u 1 M-x
auto-save-mode}.
@vindex auto-save-visited-file-name
If you want auto-saving to be done in the visited file rather than
in a separate auto-save file, set the variable
@code{auto-save-visited-file-name} to a non-@code{nil} value. In this
mode, there is no real difference between auto-saving and explicit
saving.
@vindex delete-auto-save-files
A buffer's auto-save file is deleted when you save the buffer in its
visited file. To inhibit this, set the variable @code{delete-auto-save-files}
to @code{nil}. Changing the visited file name with @kbd{C-x C-w} or
@code{set-visited-file-name} renames any auto-save file to go with
the new visited name.
@node Auto Save Control
@subsection Controlling Auto-Saving
@vindex auto-save-default
@findex auto-save-mode
Each time you visit a file, auto-saving is turned on for that file's
buffer if the variable @code{auto-save-default} is non-@code{nil} (but not
in batch mode; @pxref{Entering Emacs}). The default for this variable is
@code{t}, so auto-saving is the usual practice for file-visiting buffers.
Auto-saving can be turned on or off for any existing buffer with the
command @kbd{M-x auto-save-mode}. Like other minor mode commands, @kbd{M-x
auto-save-mode} turns auto-saving on with a positive argument, off with a
zero or negative argument; with no argument, it toggles.
@vindex auto-save-interval
Emacs does auto-saving periodically based on counting how many characters
you have typed since the last time auto-saving was done. The variable
@code{auto-save-interval} specifies how many characters there are between
auto-saves. By default, it is 300. Emacs doesn't accept values that are
too small: if you customize @code{auto-save-interval} to a value less
than 20, Emacs will behave as if the value is 20.
@vindex auto-save-timeout
Auto-saving also takes place when you stop typing for a while. The
variable @code{auto-save-timeout} says how many seconds Emacs should
wait before it does an auto save (and perhaps also a garbage
collection). (The actual time period is longer if the current buffer is
long; this is a heuristic which aims to keep out of your way when you
are editing long buffers, in which auto-save takes an appreciable amount
of time.) Auto-saving during idle periods accomplishes two things:
first, it makes sure all your work is saved if you go away from the
terminal for a while; second, it may avoid some auto-saving while you
are actually typing.
Emacs also does auto-saving whenever it gets a fatal error. This
includes killing the Emacs job with a shell command such as @samp{kill
%emacs}, or disconnecting a phone line or network connection.
@findex do-auto-save
You can request an auto-save explicitly with the command @kbd{M-x
do-auto-save}.
@node Recover
@subsection Recovering Data from Auto-Saves
@findex recover-file
You can use the contents of an auto-save file to recover from a loss
of data with the command @kbd{M-x recover-file @key{RET} @var{file}
@key{RET}}. This visits @var{file} and then (after your confirmation)
restores the contents from its auto-save file @file{#@var{file}#}.
You can then save with @kbd{C-x C-s} to put the recovered text into
@var{file} itself. For example, to recover file @file{foo.c} from its
auto-save file @file{#foo.c#}, do:@refill
@example
M-x recover-file @key{RET} foo.c @key{RET}
yes @key{RET}
C-x C-s
@end example
Before asking for confirmation, @kbd{M-x recover-file} displays a
directory listing describing the specified file and the auto-save file,
so you can compare their sizes and dates. If the auto-save file
is older, @kbd{M-x recover-file} does not offer to read it.
@findex recover-session
If Emacs or the computer crashes, you can recover all the files you
were editing from their auto save files with the command @kbd{M-x
recover-session}. This first shows you a list of recorded interrupted
sessions. Move point to the one you choose, and type @kbd{C-c C-c}.
Then @code{recover-session} asks about each of the files that were
being edited during that session, asking whether to recover that file.
If you answer @kbd{y}, it calls @code{recover-file}, which works in its
normal fashion. It shows the dates of the original file and its
auto-save file, and asks once again whether to recover that file.
When @code{recover-session} is done, the files you've chosen to
recover are present in Emacs buffers. You should then save them. Only
this---saving them---updates the files themselves.
@vindex auto-save-list-file-prefix
Emacs records interrupted sessions for later recovery in files named
@file{~/.emacs.d/auto-save-list/.saves-@var{pid}-@var{hostname}}. All
of this name except @file{@var{pid}-@var{hostname}} comes from the
value of @code{auto-save-list-file-prefix}. You can record sessions
in a different place by customizing that variable. If you set
@code{auto-save-list-file-prefix} to @code{nil} in your @file{.emacs}
file, sessions are not recorded for recovery.
@node File Aliases
@section File Name Aliases
@cindex symbolic links (visiting)
@cindex hard links (visiting)
Symbolic links and hard links both make it possible for several file
names to refer to the same file. Hard links are alternate names that
refer directly to the file; all the names are equally valid, and no one
of them is preferred. By contrast, a symbolic link is a kind of defined
alias: when @file{foo} is a symbolic link to @file{bar}, you can use
either name to refer to the file, but @file{bar} is the real name, while
@file{foo} is just an alias. More complex cases occur when symbolic
links point to directories.
If you visit two names for the same file, normally Emacs makes
two different buffers, but it warns you about the situation.
@vindex find-file-existing-other-name
@vindex find-file-suppress-same-file-warnings
Normally, if you visit a file which Emacs is already visiting under
a different name, Emacs displays a message in the echo area and uses
the existing buffer visiting that file. This can happen on systems
that support symbolic links, or if you use a long file name on a
system that truncates long file names. You can suppress the message by
setting the variable @code{find-file-suppress-same-file-warnings} to a
non-@code{nil} value. You can disable this feature entirely by setting
the variable @code{find-file-existing-other-name} to @code{nil}: then
if you visit the same file under two different names, you get a separate
buffer for each file name.
@vindex find-file-visit-truename
@cindex truenames of files
@cindex file truenames
If the variable @code{find-file-visit-truename} is non-@code{nil},
then the file name recorded for a buffer is the file's @dfn{truename}
(made by replacing all symbolic links with their target names), rather
than the name you specify. Setting @code{find-file-visit-truename} also
implies the effect of @code{find-file-existing-other-name}.
@node Version Control
@section Version Control
@cindex version control
@dfn{Version control systems} are packages that can record multiple
versions of a source file, usually storing the unchanged parts of the
file just once. Version control systems also record history information
such as the creation time of each version, who created it, and a
description of what was changed in that version.
The Emacs version control interface is called VC. Its commands work
with different version control systems---currently, it supports CVS,
GNU Arch, RCS, Meta-CVS, Subversion, and SCCS. Of these, the GNU
project distributes CVS, GNU Arch, and RCS; we recommend that you use
either CVS or GNU Arch for your projects, and RCS for individual
files. We also have free software to replace SCCS, known as CSSC; if
you are using SCCS and don't want to make the incompatible change to
RCS or CVS, you can switch to CSSC.
VC is enabled by default in Emacs. To disable it, set the
customizable variable @code{vc-handled-backends} to @code{nil}
(@pxref{Customizing VC}).
@menu
* Introduction to VC:: How version control works in general.
* VC Mode Line:: How the mode line shows version control status.
* Basic VC Editing:: How to edit a file under version control.
* Old Versions:: Examining and comparing old versions.
* Secondary VC Commands:: The commands used a little less frequently.
* Branches:: Multiple lines of development.
* Remote Repositories:: Efficient access to remote CVS servers.
* Snapshots:: Sets of file versions treated as a unit.
* Miscellaneous VC:: Various other commands and features of VC.
* Customizing VC:: Variables that change VC's behavior.
@end menu
@node Introduction to VC
@subsection Introduction to Version Control
VC allows you to use a version control system from within Emacs,
integrating the version control operations smoothly with editing. VC
provides a uniform interface to version control, so that regardless of
which version control system is in use, you can use it the same way.
This section provides a general overview of version control, and
describes the version control systems that VC supports. You can skip
this section if you are already familiar with the version control system
you want to use.
@menu
* Version Systems:: Supported version control back-end systems.
* VC Concepts:: Words and concepts related to version control.
* Types of Log File:: The per-file VC log in contrast to the ChangeLog.
@end menu
@node Version Systems
@subsubsection Supported Version Control Systems
@cindex back end (version control)
VC currently works with six different version control systems or
``back ends'': CVS, GNU Arch, RCS, Meta-CVS, Subversion, and SCCS.
@cindex CVS
CVS is a free version control system that is used for the majority
of free software projects today. It allows concurrent multi-user
development either locally or over the network. Some of its
shortcomings, corrected by newer systems such as GNU Arch, are that it
lacks atomic commits or support for renaming files. VC supports all
basic editing operations under CVS, but for some less common tasks you
still need to call CVS from the command line. Note also that before
using CVS you must set up a repository, which is a subject too complex
to treat here.
@cindex GNU Arch
@cindex Arch
GNU Arch is a new version control system that is designed for
distributed work. It differs in many ways from old well-known
systems, such as CVS and RCS. It supports different transports for
interoperating between users, offline operations, and it has good
branching and merging features. It also supports atomic commits, and
history of file renaming and moving. VC does not support all
operations provided by GNU Arch, so you must sometimes invoke it from
the command line, or use a specialized module.
@cindex RCS
RCS is the free version control system around which VC was initially
built. The VC commands are therefore conceptually closest to RCS.
Almost everything you can do with RCS can be done through VC. You
cannot use RCS over the network though, and it only works at the level
of individual files, rather than projects. You should use it if you
want a simple, yet reliable tool for handling individual files.
@cindex SVN
@cindex Subversion
Subversion is a free version control system designed to be similar
to CVS but without CVS's problems. Subversion supports atomic commits,
and versions directories, symbolic links, meta-data, renames, copies,
and deletes. It can be used via http or via its own protocol.
@cindex MCVS
@cindex Meta-CVS
Meta-CVS is another attempt to solve problems arising in CVS. It
supports directory structure versioning, improved branching and
merging, and use of symbolic links and meta-data in repositories.
@cindex SCCS
SCCS is a proprietary but widely used version control system. In
terms of capabilities, it is the weakest of the six that VC supports.
VC compensates for certain features missing in SCCS (snapshots, for
example) by implementing them itself, but some other VC features, such
as multiple branches, are not available with SCCS. You should use
SCCS only if for some reason you cannot use RCS, or one of the
higher-level systems such as CVS or GNU Arch.
In the following, we discuss mainly RCS, SCCS and CVS. Nearly
everything said about CVS applies to GNU Arch, Subversion and Meta-CVS
as well.
@node VC Concepts
@subsubsection Concepts of Version Control
@cindex master file
@cindex registered file
When a file is under version control, we also say that it is
@dfn{registered} in the version control system. Each registered file
has a corresponding @dfn{master file} which represents the file's
present state plus its change history---enough to reconstruct the
current version or any earlier version. Usually the master file also
records a @dfn{log entry} for each version, describing in words what was
changed in that version.
@cindex work file
@cindex checking out files
The file that is maintained under version control is sometimes called
the @dfn{work file} corresponding to its master file. You edit the work
file and make changes in it, as you would with an ordinary file. (With
SCCS and RCS, you must @dfn{lock} the file before you start to edit it.)
After you are done with a set of changes, you @dfn{check the file in},
which records the changes in the master file, along with a log entry for
them.
With CVS, there are usually multiple work files corresponding to a
single master file---often each user has his own copy. It is also
possible to use RCS in this way, but this is not the usual way to use
RCS.
@cindex locking and version control
A version control system typically has some mechanism to coordinate
between users who want to change the same file. One method is
@dfn{locking} (analogous to the locking that Emacs uses to detect
simultaneous editing of a file, but distinct from it). The other method
is to merge your changes with other people's changes when you check them
in.
With version control locking, work files are normally read-only so
that you cannot change them. You ask the version control system to make
a work file writable for you by locking it; only one user can do
this at any given time. When you check in your changes, that unlocks
the file, making the work file read-only again. This allows other users
to lock the file to make further changes. SCCS always uses locking, and
RCS normally does.
The other alternative for RCS is to let each user modify the work file
at any time. In this mode, locking is not required, but it is
permitted; check-in is still the way to record a new version.
CVS normally allows each user to modify his own copy of the work file
at any time, but requires merging with changes from other users at
check-in time. However, CVS can also be set up to require locking.
(@pxref{CVS Options}).
@node Types of Log File
@subsubsection Types of Log File
@cindex types of log file
@cindex log File, types of
@cindex version control log
Projects that use a revision control system can have @emph{two}
types of log for changes. One is the per-file log maintained by the
revision control system: each time you check in a change, you must
fill out a @dfn{log entry} for the change (@pxref{Log Buffer}). This
kind of log is called the @dfn{version control log}, also the
@dfn{revision control log}, @dfn{RCS log}, or @dfn{CVS log}.
The other kind of log is the file @file{ChangeLog} (@pxref{Change
Log}). It provides a chronological record of all changes to a large
portion of a program---typically one directory and its subdirectories.
A small program would use one @file{ChangeLog} file; a large program
may well merit a @file{ChangeLog} file in each major directory.
@xref{Change Log}.
A project maintained with version control can use just the per-file
log, or it can use both kinds of logs. It can handle some files one
way and some files the other way. Each project has its policy, which
you should follow.
When the policy is to use both, you typically want to write an entry
for each change just once, then put it into both logs. You can write
the entry in @file{ChangeLog}, then copy it to the log buffer when you
check in the change. Or you can write the entry in the log buffer
while checking in the change, and later use the @kbd{C-x v a} command
to copy it to @file{ChangeLog} (@pxref{Change Logs and VC}).
@node VC Mode Line
@subsection Version Control and the Mode Line
When you visit a file that is under version control, Emacs indicates
this on the mode line. For example, @samp{RCS-1.3} says that RCS is
used for that file, and the current version is 1.3.
The character between the back-end name and the version number
indicates the version control status of the file. @samp{-} means that
the work file is not locked (if locking is in use), or not modified (if
locking is not in use). @samp{:} indicates that the file is locked, or
that it is modified. If the file is locked by some other user (for
instance, @samp{jim}), that is displayed as @samp{RCS:jim:1.3}.
@vindex auto-revert-check-vc-info
When Auto Revert mode (@pxref{Reverting}) reverts a buffer that is
under version control, it updates the version control information in
the mode line. However, Auto Revert mode may not properly update this
information if the version control status changes without changes to
the work file, from outside the current Emacs session. If you set
@code{auto-revert-check-vc-info} to @code{t}, Auto Revert mode updates
the version control status information every
@code{auto-revert-interval} seconds, even if the work file itself is
unchanged. The resulting CPU usage depends on the version control
system, but is usually not excessive.
@node Basic VC Editing
@subsection Basic Editing under Version Control
The principal VC command is an all-purpose command that performs
either locking or check-in, depending on the situation.
@table @kbd
@itemx C-x v v
Perform the next logical version control operation on this file.
@end table
@findex vc-next-action
@kindex C-x v v
The precise action of this command depends on the state of the file,
and whether the version control system uses locking or not. SCCS and
RCS normally use locking; CVS normally does not use locking.
@findex vc-toggle-read-only
@kindex C-x C-q @r{(Version Control)}
As a special convenience that is particularly useful for files with
locking, you can let Emacs check a file in or out whenever you change
its read-only flag. This means, for example, that you cannot
accidentally edit a file without properly checking it out first. To
achieve this, bind the key @kbd{C-x C-q} to @kbd{vc-toggle-read-only}
in your @file{~/.emacs} file. (@xref{Init Rebinding}.)
@menu
* VC with Locking:: RCS in its default mode, SCCS, and optionally CVS.
* Without Locking:: Without locking: default mode for CVS.
* Advanced C-x v v:: Advanced features available with a prefix argument.
* Log Buffer:: Features available in log entry buffers.
@end menu
@node VC with Locking
@subsubsection Basic Version Control with Locking
If locking is used for the file (as with SCCS, and RCS in its default
mode), @kbd{C-x v v} can either lock a file or check it in:
@itemize @bullet
@item
If the file is not locked, @kbd{C-x v v} locks it, and
makes it writable so that you can change it.
@item
If the file is locked by you, and contains changes, @kbd{C-x v v} checks
in the changes. In order to do this, it first reads the log entry
for the new version. @xref{Log Buffer}.
@item
If the file is locked by you, but you have not changed it since you
locked it, @kbd{C-x v v} releases the lock and makes the file read-only
again.
@item
If the file is locked by some other user, @kbd{C-x v v} asks you whether
you want to ``steal the lock'' from that user. If you say yes, the file
becomes locked by you, but a message is sent to the person who had
formerly locked the file, to inform him of what has happened.
@end itemize
These rules also apply when you use CVS in locking mode, except
that there is no such thing as stealing a lock.
@node Without Locking
@subsubsection Basic Version Control without Locking
When there is no locking---the default for CVS---work files are always
writable; you do not need to do anything before you begin to edit a
file. The status indicator on the mode line is @samp{-} if the file is
unmodified; it flips to @samp{:} as soon as you save any changes in the
work file.
Here is what @kbd{C-x v v} does when using CVS:
@itemize @bullet
@item
If some other user has checked in changes into the master file, Emacs
asks you whether you want to merge those changes into your own work
file. You must do this before you can check in your own changes. (To
pick up any recent changes from the master file @emph{without} trying
to commit your own changes, type @kbd{C-x v m @key{RET}}.)
@xref{Merging}.
@item
If there are no new changes in the master file, but you have made
modifications in your work file, @kbd{C-x v v} checks in your changes.
In order to do this, it first reads the log entry for the new version.
@xref{Log Buffer}.
@item
If the file is not modified, the @kbd{C-x v v} does nothing.
@end itemize
These rules also apply when you use RCS in the mode that does not
require locking, except that automatic merging of changes from the
master file is not implemented. Unfortunately, this means that nothing
informs you if another user has checked in changes in the same file
since you began editing it, and when this happens, his changes will be
effectively removed when you check in your version (though they will
remain in the master file, so they will not be entirely lost). You must
therefore verify that the current version is unchanged, before you
check in your changes. We hope to eliminate this risk and provide
automatic merging with RCS in a future Emacs version.
In addition, locking is possible with RCS even in this mode, although
it is not required; @kbd{C-x v v} with an unmodified file locks the
file, just as it does with RCS in its normal (locking) mode.
@node Advanced C-x v v
@subsubsection Advanced Control in @kbd{C-x v v}
@cindex version number to check in/out
When you give a prefix argument to @code{vc-next-action} (@kbd{C-u
C-x v v}), it still performs the next logical version control
operation, but accepts additional arguments to specify precisely how
to do the operation.
@itemize @bullet
@item
If the file is modified (or locked), you can specify the version
number to use for the new version that you check in. This is one way
to create a new branch (@pxref{Branches}).
@item
If the file is not modified (and unlocked), you can specify the
version to select; this lets you start working from an older version,
or on another branch. If you do not enter any version, that takes you
to the highest version on the current branch; therefore @kbd{C-u C-x
v v @key{RET}} is a convenient way to get the latest version of a file from
the repository.
@item
@cindex specific version control system
Instead of the version number, you can also specify the name of a
version control system. This is useful when one file is being managed
with two version control systems at the same time (@pxref{Local
Version Control}).
@end itemize
@node Log Buffer
@subsubsection Features of the Log Entry Buffer
When you check in changes, @kbd{C-x v v} first reads a log entry. It
pops up a buffer called @samp{*VC-Log*} for you to enter the log entry.
Sometimes the @samp{*VC-Log*} buffer contains default text when you enter it,
typically the last log message entered. If it does, mark and point
are set around the entire contents of the buffer so that it is easy to
kill the contents of the buffer with @kbd{C-w}.
@findex log-edit-insert-changelog
If you work by writing entries in the @file{ChangeLog}
(@pxref{Change Log}) and then commit the change under revision
control, you can generate the Log Edit text from the ChangeLog using
@kbd{C-c C-a} (@kbd{log-edit-insert-changelog}). This looks for
entries for the file(s) concerned in the top entry in the ChangeLog
and uses those paragraphs as the log text. This text is only inserted
if the top entry was made under your user name on the current date.
@xref{Change Logs and VC}, for the opposite way of
working---generating ChangeLog entries from the revision control log.
In the @samp{*VC-Log*} buffer, @kbd{C-c C-f} (@kbd{M-x log-edit-show-files})
shows the list of files to be committed in case you need to check
that. (This can be a list of more than one file if you use VC Dired
mode or PCL-CVS. @xref{VC Dired Mode}, and @ref{Top, , About PCL-CVS,
pcl-cvs, PCL-CVS --- The Emacs Front-End to CVS}.)
When you have finished editing the log message, type @kbd{C-c C-c} to
exit the buffer and commit the change.
To abort check-in, just @strong{don't} type @kbd{C-c C-c} in that
buffer. You can switch buffers and do other editing. As long as you
don't try to check in another file, the entry you were editing remains
in the @samp{*VC-Log*} buffer, and you can go back to that buffer at any
time to complete the check-in.
If you change several source files for the same reason, it is often
convenient to specify the same log entry for many of the files. To do
this, use the history of previous log entries. The commands @kbd{M-n},
@kbd{M-p}, @kbd{M-s} and @kbd{M-r} for doing this work just like the
minibuffer history commands (except that these versions are used outside
the minibuffer).
@vindex vc-log-mode-hook
Each time you check in a file, the log entry buffer is put into VC Log
mode, which involves running two hooks: @code{text-mode-hook} and
@code{vc-log-mode-hook}. @xref{Hooks}.
@node Old Versions
@subsection Examining And Comparing Old Versions
One of the convenient features of version control is the ability
to examine any version of a file, or compare two versions.
@table @kbd
@item C-x v ~ @var{version} @key{RET}
Examine version @var{version} of the visited file, in a buffer of its
own.
@item C-x v =
Compare the current buffer contents with the latest checked-in version
of the file.
@item C-u C-x v = @var{file} @key{RET} @var{oldvers} @key{RET} @var{newvers} @key{RET}
Compare the specified two versions of @var{file}.
@item C-x v g
Display the file with per-line version information and using colors.
@end table
@findex vc-version-other-window
@kindex C-x v ~
To examine an old version in its entirety, visit the file and then type
@kbd{C-x v ~ @var{version} @key{RET}} (@code{vc-version-other-window}).
This puts the text of version @var{version} in a file named
@file{@var{filename}.~@var{version}~}, and visits it in its own buffer
in a separate window. (In RCS, you can also select an old version
and create a branch from it. @xref{Branches}.)
@findex vc-diff
@kindex C-x v =
It is usually more convenient to compare two versions of the file,
with the command @kbd{C-x v =} (@code{vc-diff}). Plain @kbd{C-x v =}
compares the current buffer contents (saving them in the file if
necessary) with the last checked-in version of the file. @kbd{C-u C-x
v =}, with a numeric argument, reads a file name and two version
numbers, then compares those versions of the specified file. Both
forms display the output in a special buffer in another window.
You can specify a checked-in version by its number; an empty input
specifies the current contents of the work file (which may be different
from all the checked-in versions). You can also specify a snapshot name
(@pxref{Snapshots}) instead of one or both version numbers.
If you supply a directory name instead of the name of a registered
file, this command compares the two specified versions of all registered
files in that directory and its subdirectories.
@vindex vc-diff-switches
@vindex vc-rcs-diff-switches
@kbd{C-x v =} works by running a variant of the @code{diff} utility
designed to work with the version control system in use. When you
invoke @code{diff} this way, in addition to the options specified by
@code{diff-switches} (@pxref{Comparing Files}), it receives those
specified by @code{vc-diff-switches}, plus those specified for the
specific back end by @code{vc-@var{backend}-diff-switches}. For
instance, when the version control back end is RCS, @code{diff} uses
the options in @code{vc-rcs-diff-switches}. The
@samp{vc@dots{}diff-switches} variables are @code{nil} by default.
Unlike the @kbd{M-x diff} command, @kbd{C-x v =} does not try to
locate the changes in the old and new versions. This is because
normally one or both versions do not exist as files when you compare
them; they exist only in the records of the master file.
@xref{Comparing Files}, for more information about @kbd{M-x diff}.
@findex vc-annotate
@kindex C-x v g
For some backends, you can display the file @dfn{annotated} with
per-line version information and using colors to enhance the visual
appearance, with the command @kbd{M-x vc-annotate}.
It creates a new buffer
to display file's text, colored to show how old each part is. Text
colored red is new, blue means old, and intermediate colors indicate
intermediate ages. By default, the time scale is 360 days, so that
everything more than one year old is shown in blue.
When you give a prefix argument to this command, it uses the
minibuffer to read two arguments: which version number to display and
annotate (instead of the current file contents), and a stretch factor
for the time scale. A stretch factor of 0.1 means that the color
range from red to blue spans the past 36 days instead of 360 days. A
stretch factor greater than 1 means the color range spans more than a
year.
From the annotate buffer, you can use the following keys to browse the
annotations of past revisions, view diffs, or view log entries:
@itemize @bullet
@item
Pressing @kbd{P} annotates the previous revision. It also takes a
numeric prefix argument, so for example @kbd{C-u 10 P} would take you
back 10 revisions.
@item
Pressing @kbd{N} annotates the next revision. It also takes a numeric
prefix argument, so for example @kbd{C-u 10 N} would take you forward
10 revisions.
@item
Pressing @kbd{J} annotates the revision at line (as denoted by the
version number on the same line).
@item
Pressing @kbd{A} annotates the revision previous to line (as denoted
by the version number on the same line). This is useful to see the
state the file was in before the change on the current line was made.
@item
Pressing @kbd{D} shows the diff of the revision at line with its
previous revision. This is useful to see what actually changed when
the revision denoted on the current line was committed.
@item
Pressing @kbd{L} shows the log of the revision at line. This is
useful to see the author's description of the changes that occurred
when the revision denoted on the current line was committed.
@item
Pressing @kbd{W} annotates the workfile (most up to date) version. If
you used @kbd{P} and @kbd{N} to browse to other revisions, use this
key to return to the latest version.
@end itemize
@node Secondary VC Commands
@subsection The Secondary Commands of VC
This section explains the secondary commands of VC; those that you might
use once a day.
@menu
* Registering:: Putting a file under version control.
* VC Status:: Viewing the VC status of files.
* VC Undo:: Canceling changes before or after check-in.
* VC Dired Mode:: Listing files managed by version control.
* VC Dired Commands:: Commands to use in a VC Dired buffer.
@end menu
@node Registering
@subsubsection Registering a File for Version Control
@kindex C-x v i
@findex vc-register
You can put any file under version control by simply visiting it, and
then typing @w{@kbd{C-x v i}} (@code{vc-register}).
@table @kbd
@item C-x v i
Register the visited file for version control.
@end table
To register the file, Emacs must choose which version control system
to use for it. If the file's directory already contains files
registered in a version control system, Emacs uses that system. If
there is more than one system in use for a directory, Emacs uses the one
that appears first in @code{vc-handled-backends} (@pxref{Customizing VC}).
On the other hand, if there are no files already registered,
Emacs uses the first system from @code{vc-handled-backends} that could
register the file (for example, you cannot register a file under CVS if
its directory is not already part of a CVS tree); with the default
value of @code{vc-handled-backends}, this means that Emacs uses RCS in
this situation.
If locking is in use, @kbd{C-x v i} leaves the file unlocked and
read-only. Type @kbd{C-x v v} if you wish to start editing it. After
registering a file with CVS, you must subsequently commit the initial
version by typing @kbd{C-x v v}.
@vindex vc-default-init-version
@cindex initial version number to register
The initial version number for a newly registered file is 1.1, by
default. You can specify a different default by setting the variable
@code{vc-default-init-version}, or you can give @kbd{C-x v i} a numeric
argument; then it reads the initial version number for this particular
file using the minibuffer.
@vindex vc-initial-comment
If @code{vc-initial-comment} is non-@code{nil}, @kbd{C-x v i} reads an
initial comment to describe the purpose of this source file. Reading
the initial comment works like reading a log entry (@pxref{Log Buffer}).
@node VC Status
@subsubsection VC Status Commands
@table @kbd
@item C-x v l
Display version control state and change history.
@end table
@kindex C-x v l
@findex vc-print-log
To view the detailed version control status and history of a file,
type @kbd{C-x v l} (@code{vc-print-log}). It displays the history of
changes to the current file, including the text of the log entries. The
output appears in a separate window.
@node VC Undo
@subsubsection Undoing Version Control Actions
@table @kbd
@item C-x v u
Revert the buffer and the file to the last checked-in version.
@item C-x v c
Remove the last-entered change from the master for the visited file.
This undoes your last check-in.
@end table
@kindex C-x v u
@findex vc-revert-buffer
If you want to discard your current set of changes and revert to the
last version checked in, use @kbd{C-x v u} (@code{vc-revert-buffer}).
This leaves the file unlocked; if locking is in use, you must first lock
the file again before you change it again. @kbd{C-x v u} requires
confirmation, unless it sees that you haven't made any changes since the
last checked-in version.
@kbd{C-x v u} is also the command to unlock a file if you lock it and
then decide not to change it.
@kindex C-x v c
@findex vc-cancel-version
To cancel a change that you already checked in, use @kbd{C-x v c}
(@code{vc-cancel-version}). This command discards all record of the
most recent checked-in version. @kbd{C-x v c} also offers to revert
your work file and buffer to the previous version (the one that precedes
the version that is deleted).
If you answer @kbd{no}, VC keeps your changes in the buffer, and locks
the file. The no-revert option is useful when you have checked in a
change and then discover a trivial error in it; you can cancel the
erroneous check-in, fix the error, and check the file in again.
When @kbd{C-x v c} does not revert the buffer, it unexpands all
version control headers in the buffer instead (@pxref{Version Headers}).
This is because the buffer no longer corresponds to any existing
version. If you check it in again, the check-in process will expand the
headers properly for the new version number.
However, it is impossible to unexpand the RCS @samp{@w{$}Log$} header
automatically. If you use that header feature, you have to unexpand it
by hand---by deleting the entry for the version that you just canceled.
Be careful when invoking @kbd{C-x v c}, as it is easy to lose a lot of
work with it. To help you be careful, this command always requires
confirmation with @kbd{yes}. Note also that this command is disabled
under CVS, because canceling versions is very dangerous and discouraged
with CVS.
@node VC Dired Mode
@subsubsection Dired under VC
@cindex PCL-CVS
@pindex cvs
@cindex CVS Dired Mode
The VC Dired Mode described here works with all the version control
systems that VC supports. Another more powerful facility, designed
specifically for CVS, is called PCL-CVS. @xref{Top, , About PCL-CVS,
pcl-cvs, PCL-CVS --- The Emacs Front-End to CVS}.
@kindex C-x v d
@findex vc-directory
When you are working on a large program, it is often useful to find
out which files have changed within an entire directory tree, or to view
the status of all files under version control at once, and to perform
version control operations on collections of files. You can use the
command @kbd{C-x v d} (@code{vc-directory}) to make a directory listing
that includes only files relevant for version control.
@vindex vc-dired-terse-display
@kbd{C-x v d} creates a buffer which uses VC Dired Mode. This looks
much like an ordinary Dired buffer (@pxref{Dired}); however, normally it
shows only the noteworthy files (those locked or not up-to-date). This
is called @dfn{terse display}. If you set the variable
@code{vc-dired-terse-display} to @code{nil}, then VC Dired shows all
relevant files---those managed under version control, plus all
subdirectories (@dfn{full display}). The command @kbd{v t} in a VC
Dired buffer toggles between terse display and full display (@pxref{VC
Dired Commands}).
@vindex vc-dired-recurse
By default, VC Dired produces a recursive listing of noteworthy or
relevant files at or below the given directory. You can change this by
setting the variable @code{vc-dired-recurse} to @code{nil}; then VC
Dired shows only the files in the given directory.
The line for an individual file shows the version control state in the
place of the hard link count, owner, group, and size of the file. If
the file is unmodified, in sync with the master file, the version
control state shown is blank. Otherwise it consists of text in
parentheses. Under RCS and SCCS, the name of the user locking the file
is shown; under CVS, an abbreviated version of the @samp{cvs status}
output is used. Here is an example using RCS:
@smallexample
@group
/home/jim/project:
-rw-r--r-- (jim) Apr 2 23:39 file1
-r--r--r-- Apr 5 20:21 file2
@end group
@end smallexample
@noindent
The files @samp{file1} and @samp{file2} are under version control,
@samp{file1} is locked by user jim, and @samp{file2} is unlocked.
Here is an example using CVS:
@smallexample
@group
/home/joe/develop:
-rw-r--r-- (modified) Aug 2 1997 file1.c
-rw-r--r-- Apr 4 20:09 file2.c
-rw-r--r-- (merge) Sep 13 1996 file3.c
@end group
@end smallexample
Here @samp{file1.c} is modified with respect to the repository, and
@samp{file2.c} is not. @samp{file3.c} is modified, but other changes
have also been checked in to the repository---you need to merge them
with the work file before you can check it in.
@vindex vc-directory-exclusion-list
When VC Dired displays subdirectories (in the ``full'' display mode),
it omits some that should never contain any files under version control.
By default, this includes Version Control subdirectories such as
@samp{RCS} and @samp{CVS}; you can customize this by setting the
variable @code{vc-directory-exclusion-list}.
You can fine-tune VC Dired's format by typing @kbd{C-u C-x v d}---as in
ordinary Dired, that allows you to specify additional switches for the
@samp{ls} command.
@node VC Dired Commands
@subsubsection VC Dired Commands
All the usual Dired commands work normally in VC Dired mode, except
for @kbd{v}, which is redefined as the version control prefix. You can
invoke VC commands such as @code{vc-diff} and @code{vc-print-log} by
typing @kbd{v =}, or @kbd{v l}, and so on. Most of these commands apply
to the file name on the current line.
The command @kbd{v v} (@code{vc-next-action}) operates on all the
marked files, so that you can lock or check in several files at once.
If it operates on more than one file, it handles each file according to
its current state; thus, it might lock one file, but check in another
file. This could be confusing; it is up to you to avoid confusing
behavior by marking a set of files that are in a similar state. If no
files are marked, @kbd{v v} operates on the file in the current line.
If any files call for check-in, @kbd{v v} reads a single log entry,
then uses it for all the files being checked in. This is convenient for
registering or checking in several files at once, as part of the same
change.
@findex vc-dired-toggle-terse-mode
@findex vc-dired-mark-locked
You can toggle between terse display (only locked files, or files not
up-to-date) and full display at any time by typing @kbd{v t}
(@code{vc-dired-toggle-terse-mode}). There is also a special command
@kbd{* l} (@code{vc-dired-mark-locked}), which marks all files currently
locked (or, with CVS, all files not up-to-date). Thus, typing @kbd{* l
t k} is another way to delete from the buffer all files except those
currently locked.
@node Branches
@subsection Multiple Branches of a File
@cindex branch (version control)
@cindex trunk (version control)
One use of version control is to maintain multiple ``current''
versions of a file. For example, you might have different versions of a
program in which you are gradually adding various unfinished new
features. Each such independent line of development is called a
@dfn{branch}. VC allows you to create branches, switch between
different branches, and merge changes from one branch to another.
Please note, however, that branches are not supported for SCCS.
A file's main line of development is usually called the @dfn{trunk}.
The versions on the trunk are normally numbered 1.1, 1.2, 1.3, etc. At
any such version, you can start an independent branch. A branch
starting at version 1.2 would have version number 1.2.1.1, and consecutive
versions on this branch would have numbers 1.2.1.2, 1.2.1.3, 1.2.1.4,
and so on. If there is a second branch also starting at version 1.2, it
would consist of versions 1.2.2.1, 1.2.2.2, 1.2.2.3, etc.
@cindex head version
If you omit the final component of a version number, that is called a
@dfn{branch number}. It refers to the highest existing version on that
branch---the @dfn{head version} of that branch. The branches in the
example above have branch numbers 1.2.1 and 1.2.2.
@menu
* Switching Branches:: How to get to another existing branch.
* Creating Branches:: How to start a new branch.
* Merging:: Transferring changes between branches.
* Multi-User Branching:: Multiple users working at multiple branches
in parallel.
@end menu
@node Switching Branches
@subsubsection Switching between Branches
To switch between branches, type @kbd{C-u C-x v v} and specify the
version number you want to select. This version is then visited
@emph{unlocked} (write-protected), so you can examine it before locking
it. Switching branches in this way is allowed only when the file is not
locked.
You can omit the minor version number, thus giving only the branch
number; this takes you to the head version on the chosen branch. If you
only type @key{RET}, Emacs goes to the highest version on the trunk.
After you have switched to any branch (including the main branch), you
stay on it for subsequent VC commands, until you explicitly select some
other branch.
@node Creating Branches
@subsubsection Creating New Branches
To create a new branch from a head version (one that is the latest in
the branch that contains it), first select that version if necessary,
lock it with @kbd{C-x v v}, and make whatever changes you want. Then,
when you check in the changes, use @kbd{C-u C-x v v}. This lets you
specify the version number for the new version. You should specify a
suitable branch number for a branch starting at the current version.
For example, if the current version is 2.5, the branch number should be
2.5.1, 2.5.2, and so on, depending on the number of existing branches at
that point.
To create a new branch at an older version (one that is no longer the
head of a branch), first select that version (@pxref{Switching
Branches}), then lock it with @kbd{C-x v v}. You'll be asked to
confirm, when you lock the old version, that you really mean to create a
new branch---if you say no, you'll be offered a chance to lock the
latest version instead.
Then make your changes and type @kbd{C-x v v} again to check in a new
version. This automatically creates a new branch starting from the
selected version. You need not specially request a new branch, because
that's the only way to add a new version at a point that is not the head
of a branch.
After the branch is created, you ``stay'' on it. That means that
subsequent check-ins create new versions on that branch. To leave the
branch, you must explicitly select a different version with @kbd{C-u C-x
v v}. To transfer changes from one branch to another, use the merge
command, described in the next section.
@node Merging
@subsubsection Merging Branches
@cindex merging changes
When you have finished the changes on a certain branch, you will
often want to incorporate them into the file's main line of development
(the trunk). This is not a trivial operation, because development might
also have proceeded on the trunk, so that you must @dfn{merge} the
changes into a file that has already been changed otherwise. VC allows
you to do this (and other things) with the @code{vc-merge} command.
@table @kbd
@item C-x v m (vc-merge)
Merge changes into the work file.
@end table
@kindex C-x v m
@findex vc-merge
@kbd{C-x v m} (@code{vc-merge}) takes a set of changes and merges it
into the current version of the work file. It firsts asks you in the
minibuffer where the changes should come from. If you just type
@key{RET}, Emacs merges any changes that were made on the same branch
since you checked the file out (we call this @dfn{merging the news}).
This is the common way to pick up recent changes from the repository,
regardless of whether you have already changed the file yourself.
You can also enter a branch number or a pair of version numbers in
the minibuffer. Then @kbd{C-x v m} finds the changes from that
branch, or the differences between the two versions you specified, and
merges them into the current version of the current file.
As an example, suppose that you have finished a certain feature on
branch 1.3.1. In the meantime, development on the trunk has proceeded
to version 1.5. To merge the changes from the branch to the trunk,
first go to the head version of the trunk, by typing @kbd{C-u C-x v v
@key{RET}}. Version 1.5 is now current. If locking is used for the file,
type @kbd{C-x v v} to lock version 1.5 so that you can change it. Next,
type @kbd{C-x v m 1.3.1 @key{RET}}. This takes the entire set of changes on
branch 1.3.1 (relative to version 1.3, where the branch started, up to
the last version on the branch) and merges it into the current version
of the work file. You can now check in the changed file, thus creating
version 1.6 containing the changes from the branch.
It is possible to do further editing after merging the branch, before
the next check-in. But it is usually wiser to check in the merged
version, then lock it and make the further changes. This will keep
a better record of the history of changes.
@cindex conflicts
@cindex resolving conflicts
When you merge changes into a file that has itself been modified, the
changes might overlap. We call this situation a @dfn{conflict}, and
reconciling the conflicting changes is called @dfn{resolving a
conflict}.
Whenever conflicts occur during merging, VC detects them, tells you
about them in the echo area, and asks whether you want help in merging.
If you say yes, it starts an Ediff session (@pxref{Top,
Ediff, Ediff, ediff, The Ediff Manual}).
If you say no, the conflicting changes are both inserted into the
file, surrounded by @dfn{conflict markers}. The example below shows how
a conflict region looks; the file is called @samp{name} and the current
master file version with user B's changes in it is 1.11.
@c @w here is so CVS won't think this is a conflict.
@smallexample
@group
@w{<}<<<<<< name
@var{User A's version}
=======
@var{User B's version}
@w{>}>>>>>> 1.11
@end group
@end smallexample
@cindex vc-resolve-conflicts
Then you can resolve the conflicts by editing the file manually. Or
you can type @code{M-x vc-resolve-conflicts} after visiting the file.
This starts an Ediff session, as described above. Don't forget to
check in the merged version afterwards.
@node Multi-User Branching
@subsubsection Multi-User Branching
It is often useful for multiple developers to work simultaneously on
different branches of a file. CVS allows this by default; for RCS, it
is possible if you create multiple source directories. Each source
directory should have a link named @file{RCS} which points to a common
directory of RCS master files. Then each source directory can have its
own choice of selected versions, but all share the same common RCS
records.
This technique works reliably and automatically, provided that the
source files contain RCS version headers (@pxref{Version Headers}). The
headers enable Emacs to be sure, at all times, which version number is
present in the work file.
If the files do not have version headers, you must instead tell Emacs
explicitly in each session which branch you are working on. To do this,
first find the file, then type @kbd{C-u C-x v v} and specify the correct
branch number. This ensures that Emacs knows which branch it is using
during this particular editing session.
@node Remote Repositories
@subsection Remote Repositories
@cindex remote repositories (CVS)
A common way of using CVS is to set up a central CVS repository on
some Internet host, then have each developer check out a personal
working copy of the files on his local machine. Committing changes to
the repository, and picking up changes from other users into one's own
working area, then works by direct interactions with the CVS server.
One difficulty is that access to the CVS server is often slow, and
that developers might need to work off-line as well. VC is designed
to reduce the amount of network interaction necessary.
@menu
* Version Backups:: Keeping local copies of repository versions.
* Local Version Control:: Using another version system for local editing.
@end menu
@node Version Backups
@subsubsection Version Backups
@cindex version backups
@cindex automatic version backups
When VC sees that the CVS repository for a file is on a remote
machine, it automatically makes local backups of unmodified versions
of the file---@dfn{automatic version backups}. This means that you
can compare the file to the repository version (@kbd{C-x v =}), or
revert to that version (@kbd{C-x v u}), without any network
interactions.
The local copy of the unmodified file is called a @dfn{version
backup} to indicate that it corresponds exactly to a version that is
stored in the repository. Note that version backups are not the same
as ordinary Emacs backup files (@pxref{Backup}). But they follow a
similar naming convention.
For a file that comes from a remote CVS repository, VC makes a
version backup whenever you save the first changes to the file, and
removes it after you have committed your modified version to the
repository. You can disable the making of automatic version backups by
setting @code{vc-cvs-stay-local} to @code{nil} (@pxref{CVS Options}).
@cindex manual version backups
The name of the automatic version backup for version @var{version}
of file @var{file} is @code{@var{file}.~@var{version}.~}. This is
almost the same as the name used by @kbd{C-x v ~} (@pxref{Old
Versions}), the only difference being the additional dot (@samp{.})
after the version number. This similarity is intentional, because
both kinds of files store the same kind of information. The file made
by @kbd{C-x v ~} acts as a @dfn{manual version backup}.
All the VC commands that operate on old versions of a file can use
both kinds of version backups. For instance, @kbd{C-x v ~} uses
either an automatic or a manual version backup, if possible, to get
the contents of the version you request. Likewise, @kbd{C-x v =} and
@kbd{C-x v u} use either an automatic or a manual version backup, if
one of them exists, to get the contents of a version to compare or
revert to. If you changed a file outside of Emacs, so that no
automatic version backup was created for the previous text, you can
create a manual backup of that version using @kbd{C-x v ~}, and thus
obtain the benefit of the local copy for Emacs commands.
The only difference in Emacs's handling of manual and automatic
version backups, once they exist, is that Emacs deletes automatic
version backups when you commit to the repository. By contrast,
manual version backups remain until you delete them.
@node Local Version Control
@subsubsection Local Version Control
@cindex local version control
@cindex local back end (version control)
When you make many changes to a file that comes from a remote
repository, it can be convenient to have version control on your local
machine as well. You can then record intermediate versions, revert to
a previous state, etc., before you actually commit your changes to the
remote server.
VC lets you do this by putting a file under a second, local version
control system, so that the file is effectively registered in two
systems at the same time. For the description here, we will assume
that the remote system is CVS, and you use RCS locally, although the
mechanism works with any combination of version control systems
(@dfn{back ends}).
To make it work with other back ends, you must make sure that the
``more local'' back end comes before the ``more remote'' back end in
the setting of @code{vc-handled-backends} (@pxref{Customizing VC}). By
default, this variable is set up so that you can use remote CVS and
local RCS as described here.
To start using local RCS for a file that comes from a remote CVS
server, you must @emph{register the file in RCS}, by typing @kbd{C-u
C-x v v rcs @key{RET}}. (In other words, use @code{vc-next-action} with a
prefix argument, and specify RCS as the back end.)
You can do this at any time; it does not matter whether you have
already modified the file with respect to the version in the CVS
repository. If possible, VC tries to make the RCS master start with
the unmodified repository version, then checks in any local changes
as a new version. This works if you have not made any changes yet, or
if the unmodified repository version exists locally as a version
backup (@pxref{Version Backups}). If the unmodified version is not
available locally, the RCS master starts with the modified version;
the only drawback to this is that you cannot compare your changes
locally to what is stored in the repository.
The version number of the RCS master is derived from the current CVS
version, starting a branch from it. For example, if the current CVS
version is 1.23, the local RCS branch will be 1.23.1. Version 1.23 in
the RCS master will be identical to version 1.23 under CVS; your first
changes are checked in as 1.23.1.1. (If the unmodified file is not
available locally, VC will check in the modified file twice, both as
1.23 and 1.23.1.1, to make the revision numbers consistent.)
If you do not use locking under CVS (the default), locking is also
disabled for RCS, so that editing under RCS works exactly as under
CVS.
When you are done with local editing, you can commit the final version
back to the CVS repository by typing @kbd{C-u C-x v v cvs @key{RET}}.
This initializes the log entry buffer (@pxref{Log Buffer}) to contain
all the log entries you have recorded in the RCS master; you can edit
them as you wish, and then commit in CVS by typing @kbd{C-c C-c}. If
the commit is successful, VC removes the RCS master, so that the file
is once again registered under CVS only. (The RCS master is not
actually deleted, just renamed by appending @samp{~} to the name, so
that you can refer to it later if you wish.)
While using local RCS, you can pick up recent changes from the CVS
repository into your local file, or commit some of your changes back
to CVS, without terminating local RCS version control. To do this,
switch to the CVS back end temporarily, with the @kbd{C-x v b} command:
@table @kbd
@item C-x v b
Switch to another back end that the current file is registered
under (@code{vc-switch-backend}).
@item C-u C-x v b @var{backend} @key{RET}
Switch to @var{backend} for the current file.
@end table
@kindex C-x v b
@findex vc-switch-backend
@kbd{C-x v b} does not change the buffer contents, or any files; it
only changes VC's perspective on how to handle the file. Any
subsequent VC commands for that file will operate on the back end that
is currently selected.
If the current file is registered in more than one back end, typing
@kbd{C-x v b} ``cycles'' through all of these back ends. With a
prefix argument, it asks for the back end to use in the minibuffer.
Thus, if you are using local RCS, and you want to pick up some recent
changes in the file from remote CVS, first visit the file, then type
@kbd{C-x v b} to switch to CVS, and finally use @kbd{C-x v m
@key{RET}} to merge the news (@pxref{Merging}). You can then switch
back to RCS by typing @kbd{C-x v b} again, and continue to edit
locally.
But if you do this, the revision numbers in the RCS master no longer
correspond to those of CVS. Technically, this is not a problem, but
it can become difficult to keep track of what is in the CVS repository
and what is not. So we suggest that you return from time to time to
CVS-only operation, by committing your local changes back to the
repository using @kbd{C-u C-x v v cvs @key{RET}}.
@node Snapshots
@subsection Snapshots
@cindex snapshots and version control
A @dfn{snapshot} is a named set of file versions (one for each
registered file) that you can treat as a unit. One important kind of
snapshot is a @dfn{release}, a (theoretically) stable version of the
system that is ready for distribution to users.
@menu
* Making Snapshots:: The snapshot facilities.
* Snapshot Caveats:: Things to be careful of when using snapshots.
@end menu
@node Making Snapshots
@subsubsection Making and Using Snapshots
There are two basic commands for snapshots; one makes a
snapshot with a given name, the other retrieves a named snapshot.
@table @code
@kindex C-x v s
@findex vc-create-snapshot
@item C-x v s @var{name} @key{RET}
Define the last saved versions of every registered file in or under the
current directory as a snapshot named @var{name}
(@code{vc-create-snapshot}).
@kindex C-x v r
@findex vc-retrieve-snapshot
@item C-x v r @var{name} @key{RET}
For all registered files at or below the current directory level, select
whatever versions correspond to the snapshot @var{name}
(@code{vc-retrieve-snapshot}).
This command reports an error if any files are locked at or below the
current directory, without changing anything; this is to avoid
overwriting work in progress.
@end table
A snapshot uses a very small amount of resources---just enough to record
the list of file names and which version belongs to the snapshot. Thus,
you need not hesitate to create snapshots whenever they are useful.
You can give a snapshot name as an argument to @kbd{C-x v =} or
@kbd{C-x v ~} (@pxref{Old Versions}). Thus, you can use it to compare a
snapshot against the current files, or two snapshots against each other,
or a snapshot against a named version.
@node Snapshot Caveats
@subsubsection Snapshot Caveats
@cindex named configurations (RCS)
VC's snapshot facilities are modeled on RCS's named-configuration
support. They use RCS's native facilities for this, so under VC
snapshots made using RCS are visible even when you bypass VC.
@c worded verbosely to avoid overfull hbox.
For SCCS, VC implements snapshots itself. The files it uses contain
name/file/version-number triples. These snapshots are visible only
through VC.
A snapshot is a set of checked-in versions. So make sure that all the
files are checked in and not locked when you make a snapshot.
File renaming and deletion can create some difficulties with snapshots.
This is not a VC-specific problem, but a general design issue in version
control systems that no one has solved very well yet.
If you rename a registered file, you need to rename its master along
with it (the command @code{vc-rename-file} does this automatically). If
you are using SCCS, you must also update the records of the snapshot, to
mention the file by its new name (@code{vc-rename-file} does this,
too). An old snapshot that refers to a master file that no longer
exists under the recorded name is invalid; VC can no longer retrieve
it. It would be beyond the scope of this manual to explain enough about
RCS and SCCS to explain how to update the snapshots by hand.
Using @code{vc-rename-file} makes the snapshot remain valid for
retrieval, but it does not solve all problems. For example, some of the
files in your program probably refer to others by name. At the very
least, the makefile probably mentions the file that you renamed. If you
retrieve an old snapshot, the renamed file is retrieved under its new
name, which is not the name that the makefile expects. So the program
won't really work as retrieved.
@node Miscellaneous VC
@subsection Miscellaneous Commands and Features of VC
This section explains the less-frequently-used features of VC.
@menu
* Change Logs and VC:: Generating a change log file from log entries.
* Renaming and VC:: A command to rename both the source and master
file correctly.
* Version Headers:: Inserting version control headers into working files.
@end menu
@node Change Logs and VC
@subsubsection Change Logs and VC
If you use RCS or CVS for a program and also maintain a change log
file for it (@pxref{Change Log}), you can generate change log entries
automatically from the version control log entries:
@table @kbd
@item C-x v a
@kindex C-x v a
@findex vc-update-change-log
Visit the current directory's change log file and, for registered files
in that directory, create new entries for versions checked in since the
most recent entry in the change log file.
(@code{vc-update-change-log}).
This command works with RCS or CVS only, not with SCCS.
@item C-u C-x v a
As above, but only find entries for the current buffer's file.
@item M-1 C-x v a
As above, but find entries for all the currently visited files that are
maintained with version control. This works only with RCS, and it puts
all entries in the log for the default directory, which may not be
appropriate.
@end table
For example, suppose the first line of @file{ChangeLog} is dated
1999-04-10, and that the only check-in since then was by Nathaniel
Bowditch to @file{rcs2log} on 1999-05-22 with log text @samp{Ignore log
messages that start with `#'.}. Then @kbd{C-x v a} visits
@file{ChangeLog} and inserts text like this:
@iftex
@medbreak
@end iftex
@smallexample
@group
1999-05-22 Nathaniel Bowditch <nat@@apn.org>
* rcs2log: Ignore log messages that start with `#'.
@end group
@end smallexample
@iftex
@medbreak
@end iftex
@noindent
You can then edit the new change log entry further as you wish.
Some of the new change log entries may duplicate what's already in
ChangeLog. You will have to remove these duplicates by hand.
Normally, the log entry for file @file{foo} is displayed as @samp{*
foo: @var{text of log entry}}. The @samp{:} after @file{foo} is omitted
if the text of the log entry starts with @w{@samp{(@var{functionname}):
}}. For example, if the log entry for @file{vc.el} is
@samp{(vc-do-command): Check call-process status.}, then the text in
@file{ChangeLog} looks like this:
@iftex
@medbreak
@end iftex
@smallexample
@group
1999-05-06 Nathaniel Bowditch <nat@@apn.org>
* vc.el (vc-do-command): Check call-process status.
@end group
@end smallexample
@iftex
@medbreak
@end iftex
When @kbd{C-x v a} adds several change log entries at once, it groups
related log entries together if they all are checked in by the same
author at nearly the same time. If the log entries for several such
files all have the same text, it coalesces them into a single entry.
For example, suppose the most recent check-ins have the following log
entries:
@flushleft
@bullet{} For @file{vc.texinfo}: @samp{Fix expansion typos.}
@bullet{} For @file{vc.el}: @samp{Don't call expand-file-name.}
@bullet{} For @file{vc-hooks.el}: @samp{Don't call expand-file-name.}
@end flushleft
@noindent
They appear like this in @file{ChangeLog}:
@iftex
@medbreak
@end iftex
@smallexample
@group
1999-04-01 Nathaniel Bowditch <nat@@apn.org>
* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don't call expand-file-name.
@end group
@end smallexample
@iftex
@medbreak
@end iftex
Normally, @kbd{C-x v a} separates log entries by a blank line, but you
can mark several related log entries to be clumped together (without an
intervening blank line) by starting the text of each related log entry
with a label of the form @w{@samp{@{@var{clumpname}@} }}. The label
itself is not copied to @file{ChangeLog}. For example, suppose the log
entries are:
@flushleft
@bullet{} For @file{vc.texinfo}: @samp{@{expand@} Fix expansion typos.}
@bullet{} For @file{vc.el}: @samp{@{expand@} Don't call expand-file-name.}
@bullet{} For @file{vc-hooks.el}: @samp{@{expand@} Don't call expand-file-name.}
@end flushleft
@noindent
Then the text in @file{ChangeLog} looks like this:
@iftex
@medbreak
@end iftex
@smallexample
@group
1999-04-01 Nathaniel Bowditch <nat@@apn.org>
* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don't call expand-file-name.
@end group
@end smallexample
@iftex
@medbreak
@end iftex
A log entry whose text begins with @samp{#} is not copied to
@file{ChangeLog}. For example, if you merely fix some misspellings in
comments, you can log the change with an entry beginning with @samp{#}
to avoid putting such trivia into @file{ChangeLog}.
@node Renaming and VC
@subsubsection Renaming VC Work Files and Master Files
@findex vc-rename-file
When you rename a registered file, you must also rename its master
file correspondingly to get proper results. Use @code{vc-rename-file}
to rename the source file as you specify, and rename its master file
accordingly. It also updates any snapshots (@pxref{Snapshots}) that
mention the file, so that they use the new name; despite this, the
snapshot thus modified may not completely work (@pxref{Snapshot
Caveats}).
You cannot use @code{vc-rename-file} on a file that is locked by
someone else.
@node Version Headers
@subsubsection Inserting Version Control Headers
Sometimes it is convenient to put version identification strings
directly into working files. Certain special strings called
@dfn{version headers} are replaced in each successive version by the
number of that version.
If you are using RCS, and version headers are present in your working
files, Emacs can use them to determine the current version and the
locking state of the files. This is more reliable than referring to the
master files, which is done when there are no version headers. Note
that in a multi-branch environment, version headers are necessary to
make VC behave correctly (@pxref{Multi-User Branching}).
Searching for version headers is controlled by the variable
@code{vc-consult-headers}. If it is non-@code{nil} (the default),
Emacs searches for headers to determine the version number you are
editing. Setting it to @code{nil} disables this feature.
@kindex C-x v h
@findex vc-insert-headers
You can use the @kbd{C-x v h} command (@code{vc-insert-headers}) to
insert a suitable header string.
@table @kbd
@item C-x v h
Insert headers in a file for use with your version-control system.
@end table
@vindex vc-@var{backend}-header
The default header string is @samp{@w{$}Id$} for RCS and
@samp{@w{%}W%} for SCCS. You can specify other headers to insert by
setting the variables @code{vc-@var{backend}-header} where
@var{backend} is @code{rcs} or @code{sccs}.
Instead of a single string, you can specify a list of strings; then
each string in the list is inserted as a separate header on a line of
its own.
It is often necessary to use ``superfluous'' backslashes when
writing the strings that you put in this variable. For instance, you
might write @code{"$Id\$"} rather than @code{"$Id@w{$}"}. The extra
backslash prevents the string constant from being interpreted as a
header, if the Emacs Lisp file containing it is maintained with
version control.
@vindex vc-comment-alist
Each header is inserted surrounded by tabs, inside comment delimiters,
on a new line at point. Normally the ordinary comment
start and comment end strings of the current mode are used, but for
certain modes, there are special comment delimiters for this purpose;
the variable @code{vc-comment-alist} specifies them. Each element of
this list has the form @code{(@var{mode} @var{starter} @var{ender})}.
@vindex vc-static-header-alist
The variable @code{vc-static-header-alist} specifies further strings
to add based on the name of the buffer. Its value should be a list of
elements of the form @code{(@var{regexp} . @var{format})}. Whenever
@var{regexp} matches the buffer name, @var{format} is inserted as part
of the header. A header line is inserted for each element that matches
the buffer name, and for each string specified by
@code{vc-@var{backend}-header}. The header line is made by processing the
string from @code{vc-@var{backend}-header} with the format taken from the
element. The default value for @code{vc-static-header-alist} is as follows:
@example
@group
(("\\.c$" .
"\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\
#endif /* lint */\n"))
@end group
@end example
@noindent
It specifies insertion of text of this form:
@example
@group
#ifndef lint
static char vcid[] = "@var{string}";
#endif /* lint */
@end group
@end example
@noindent
Note that the text above starts with a blank line.
If you use more than one version header in a file, put them close
together in the file. The mechanism in @code{revert-buffer} that
preserves markers may not handle markers positioned between two version
headers.
@node Customizing VC
@subsection Customizing VC
@vindex vc-handled-backends
The variable @code{vc-handled-backends} determines which version
control systems VC should handle. The default value is @code{(RCS CVS
SVN SCCS Arch MCVS)}, so it contains all six version systems that are
currently supported. If you want VC to ignore one or more of these
systems, exclude its name from the list. To disable VC entirely, set
this variable to @code{nil}.
The order of systems in the list is significant: when you visit a file
registered in more than one system (@pxref{Local Version Control}),
VC uses the system that comes first in @code{vc-handled-backends} by
default. The order is also significant when you register a file for
the first time, @pxref{Registering} for details.
@menu
* General VC Options:: Options that apply to multiple back ends.
* RCS and SCCS:: Options for RCS and SCCS.
* CVS Options:: Options for CVS.
@end menu
@node General VC Options
@subsubsection General Options
@vindex vc-make-backup-files
Emacs normally does not save backup files for source files that are
maintained with version control. If you want to make backup files even
for files that use version control, set the variable
@code{vc-make-backup-files} to a non-@code{nil} value.
@vindex vc-keep-workfiles
Normally the work file exists all the time, whether it is locked or
not. If you set @code{vc-keep-workfiles} to @code{nil}, then checking
in a new version with @kbd{C-x v v} deletes the work file; but any
attempt to visit the file with Emacs creates it again. (With CVS, work
files are always kept.)
@vindex vc-follow-symlinks
Editing a version-controlled file through a symbolic link can be
dangerous. It bypasses the version control system---you can edit the
file without locking it, and fail to check your changes in. Also,
your changes might overwrite those of another user. To protect against
this, VC checks each symbolic link that you visit, to see if it points
to a file under version control.
The variable @code{vc-follow-symlinks} controls what to do when a
symbolic link points to a version-controlled file. If it is @code{nil},
VC only displays a warning message. If it is @code{t}, VC automatically
follows the link, and visits the real file instead, telling you about
this in the echo area. If the value is @code{ask} (the default), VC
asks you each time whether to follow the link.
@vindex vc-suppress-confirm
If @code{vc-suppress-confirm} is non-@code{nil}, then @kbd{C-x v v}
and @kbd{C-x v i} can save the current buffer without asking, and
@kbd{C-x v u} also operates without asking for confirmation. (This
variable does not affect @kbd{C-x v c}; that operation is so drastic
that it should always ask for confirmation.)
@vindex vc-command-messages
VC mode does much of its work by running the shell commands for RCS,
CVS and SCCS. If @code{vc-command-messages} is non-@code{nil}, VC
displays messages to indicate which shell commands it runs, and
additional messages when the commands finish.
@vindex vc-path
You can specify additional directories to search for version control
programs by setting the variable @code{vc-path}. These directories
are searched before the usual search path. It is rarely necessary to
set this variable, because VC normally finds the proper files
automatically.
@node RCS and SCCS
@subsubsection Options for RCS and SCCS
@cindex non-strict locking (RCS)
@cindex locking, non-strict (RCS)
By default, RCS uses locking to coordinate the activities of several
users, but there is a mode called @dfn{non-strict locking} in which
you can check-in changes without locking the file first. Use
@samp{rcs -U} to switch to non-strict locking for a particular file,
see the @code{rcs} manual page for details.
When deducing the version control state of an RCS file, VC first
looks for an RCS version header string in the file (@pxref{Version
Headers}). If there is no header string, VC normally looks at the
file permissions of the work file; this is fast. But there might be
situations when the file permissions cannot be trusted. In this case
the master file has to be consulted, which is rather expensive. Also
the master file can only tell you @emph{if} there's any lock on the
file, but not whether your work file really contains that locked
version.
@vindex vc-consult-headers
You can tell VC not to use version headers to determine the file
status by setting @code{vc-consult-headers} to @code{nil}. VC then
always uses the file permissions (if it is supposed to trust them), or
else checks the master file.
@vindex vc-mistrust-permissions
You can specify the criterion for whether to trust the file
permissions by setting the variable @code{vc-mistrust-permissions}.
Its value can be @code{t} (always mistrust the file permissions and
check the master file), @code{nil} (always trust the file
permissions), or a function of one argument which makes the decision.
The argument is the directory name of the @file{RCS} subdirectory. A
non-@code{nil} value from the function says to mistrust the file
permissions. If you find that the file permissions of work files are
changed erroneously, set @code{vc-mistrust-permissions} to @code{t}.
Then VC always checks the master file to determine the file's status.
VC determines the version control state of files under SCCS much as
with RCS. It does not consider SCCS version headers, though. Thus,
the variable @code{vc-mistrust-permissions} affects SCCS use, but
@code{vc-consult-headers} does not.
@node CVS Options
@subsubsection Options specific for CVS
@cindex locking (CVS)
By default, CVS does not use locking to coordinate the activities of
several users; anyone can change a work file at any time. However,
there are ways to restrict this, resulting in behavior that resembles
locking.
@cindex CVSREAD environment variable (CVS)
For one thing, you can set the @env{CVSREAD} environment variable
(the value you use makes no difference). If this variable is defined,
CVS makes your work files read-only by default. In Emacs, you must
type @kbd{C-x v v} to make the file writable, so that editing works
in fact similar as if locking was used. Note however, that no actual
locking is performed, so several users can make their files writable
at the same time. When setting @env{CVSREAD} for the first time, make
sure to check out all your modules anew, so that the file protections
are set correctly.
@cindex cvs watch feature
@cindex watching files (CVS)
Another way to achieve something similar to locking is to use the
@dfn{watch} feature of CVS. If a file is being watched, CVS makes it
read-only by default, and you must also use @kbd{C-x v v} in Emacs to
make it writable. VC calls @code{cvs edit} to make the file writable,
and CVS takes care to notify other developers of the fact that you
intend to change the file. See the CVS documentation for details on
using the watch feature.
@vindex vc-cvs-stay-local
@cindex remote repositories (CVS)
When a file's repository is on a remote machine, VC tries to keep
network interactions to a minimum. This is controlled by the variable
@code{vc-cvs-stay-local}. If it is @code{t} (the default), then VC uses
only the entry in the local CVS subdirectory to determine the file's
state (and possibly information returned by previous CVS commands). One
consequence of this is that when you have modified a file, and somebody
else has already checked in other changes to the file, you are not
notified of it until you actually try to commit. (But you can try to
pick up any recent changes from the repository first, using @kbd{C-x v m
@key{RET}}, @pxref{Merging}).
@vindex vc-cvs-global-switches
The variable @code{vc-cvs-global-switches}, if non-@code{nil},
should be a string specifying switches to pass to CVS for all CVS
operations.
When @code{vc-cvs-stay-local} is @code{t}, VC also makes local
version backups, so that simple diff and revert operations are
completely local (@pxref{Version Backups}).
On the other hand, if you set @code{vc-cvs-stay-local} to @code{nil},
then VC queries the remote repository @emph{before} it decides what to
do in @code{vc-next-action} (@kbd{C-x v v}), just as it does for local
repositories. It also does not make any version backups.
You can also set @code{vc-cvs-stay-local} to a regular expression
that is matched against the repository host name; VC then stays local
only for repositories from hosts that match the pattern.
@node Directories
@section File Directories
@cindex file directory
@cindex directory listing
The file system groups files into @dfn{directories}. A @dfn{directory
listing} is a list of all the files in a directory. Emacs provides
commands to create and delete directories, and to make directory
listings in brief format (file names only) and verbose format (sizes,
dates, and authors included). There is also a directory browser called
Dired; see @ref{Dired}.
@table @kbd
@item C-x C-d @var{dir-or-pattern} @key{RET}
Display a brief directory listing (@code{list-directory}).
@item C-u C-x C-d @var{dir-or-pattern} @key{RET}
Display a verbose directory listing.
@item M-x make-directory @key{RET} @var{dirname} @key{RET}
Create a new directory named @var{dirname}.
@item M-x delete-directory @key{RET} @var{dirname} @key{RET}
Delete the directory named @var{dirname}. It must be empty,
or you get an error.
@end table
@findex list-directory
@kindex C-x C-d
The command to display a directory listing is @kbd{C-x C-d}
(@code{list-directory}). It reads using the minibuffer a file name
which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,
@example
C-x C-d /u2/emacs/etc @key{RET}
@end example
@noindent
lists all the files in directory @file{/u2/emacs/etc}. Here is an
example of specifying a file name pattern:
@example
C-x C-d /u2/emacs/src/*.c @key{RET}
@end example
Normally, @kbd{C-x C-d} displays a brief directory listing containing
just file names. A numeric argument (regardless of value) tells it to
make a verbose listing including sizes, dates, and owners (like
@samp{ls -l}).
@vindex list-directory-brief-switches
@vindex list-directory-verbose-switches
The text of a directory listing is mostly obtained by running
@code{ls} in an inferior process. Two Emacs variables control the
switches passed to @code{ls}: @code{list-directory-brief-switches} is
a string giving the switches to use in brief listings (@code{"-CF"} by
default), and @code{list-directory-verbose-switches} is a string
giving the switches to use in a verbose listing (@code{"-l"} by
default).
@vindex directory-free-space-program
@vindex directory-free-space-args
Emacs adds information about the amount of free space on the disk
that contains the directory. To do this, it runs the program
specified by @code{directory-free-space-program} with arguments
@code{directory-free-space-args}.
@node Comparing Files
@section Comparing Files
@cindex comparing files
@findex diff
@vindex diff-switches
The command @kbd{M-x diff} compares two files, displaying the
differences in an Emacs buffer named @samp{*diff*}. It works by
running the @code{diff} program, using options taken from the variable
@code{diff-switches}. The value of @code{diff-switches} should be a
string; the default is @code{"-c"} to specify a context diff.
@findex diff-goto-source
After running @kbd{M-x diff}, you can use @kbd{C-x `} to visit
successive changed locations in the two source files, as in
Compilation mode (@pxref{Compilation Mode}.) In the @samp{*diff*} buffer,
you can move to a particular hunk of changes and type @kbd{C-c C-c}
(@code{diff-goto-source}) to visit the corresponding source location.
@findex diff-backup
The command @kbd{M-x diff-backup} compares a specified file with its most
recent backup. If you specify the name of a backup file,
@code{diff-backup} compares it with the source file that it is a backup
of.
@findex compare-windows
The command @kbd{M-x compare-windows} compares the text in the
current window with that in the next window. (For more information
about windows in Emacs, @ref{Windows}.) Comparison starts at point in
each window, after pushing each initial point value on the mark ring
in its respective buffer. Then it moves point forward in each window,
one character at a time, until it reaches characters that don't match.
Then the command exits.
If point in the two windows is followed by non-matching text when
the command starts, it tries heuristically to advance up to matching
text in the two windows, and then exits. So if you use @kbd{M-x
compare-windows} repeatedly, each time it either skips one matching
range or finds the start of another.
@vindex compare-ignore-case
@vindex compare-ignore-whitespace
With a numeric argument, @code{compare-windows} ignores changes in
whitespace. If the variable @code{compare-ignore-case} is
non-@code{nil}, the comparison ignores differences in case as well.
If the variable @code{compare-ignore-whitespace} is non-@code{nil},
@code{compare-windows} normally ignores changes in whitespace, and a
prefix argument turns that off.
@findex diff-mode
@cindex diffs
@cindex patches
@cindex Diff mode
Differences between versions of files are often distributed as
@dfn{patches}, which are the output from @command{diff} or a version
control system that uses @command{diff}. @kbd{M-x diff-mode} turns on
Diff mode, a major mode for viewing and editing patches, either as
``unified diffs'' or ``context diffs.''
@cindex Smerge mode
@findex smerge-mode
@cindex failed merges
@cindex merges, failed
@cindex comparing 3 files (@code{diff3})
You can use @kbd{M-x smerge-mode} to turn on Smerge mode, a minor
mode for editing output from the @command{diff3} program. This is
typically the result of a failed merge from a version control system
``update'' outside VC, due to conflicting changes to a file. Smerge
mode provides commands to resolve conflicts by selecting specific
changes.
See also @ref{Emerge}, and @ref{Top,,, ediff, The Ediff Manual}, for
convenient facilities for merging two similar files.
@node Misc File Ops
@section Miscellaneous File Operations
Emacs has commands for performing many other operations on files.
All operate on one file; they do not accept wildcard file names.
@findex view-file
@cindex viewing
@cindex View mode
@cindex mode, View
@kbd{M-x view-file} allows you to scan or read a file by sequential
screenfuls. It reads a file name argument using the minibuffer. After
reading the file into an Emacs buffer, @code{view-file} displays the
beginning. You can then type @key{SPC} to scroll forward one windowful,
or @key{DEL} to scroll backward. Various other commands are provided
for moving around in the file, but none for changing it; type @kbd{?}
while viewing for a list of them. They are mostly the same as normal
Emacs cursor motion commands. To exit from viewing, type @kbd{q}.
The commands for viewing are defined by a special minor mode called View
mode.
A related command, @kbd{M-x view-buffer}, views a buffer already present
in Emacs. @xref{Misc Buffer}.
@kindex C-x i
@findex insert-file
@kbd{M-x insert-file} (also @kbd{C-x i}) inserts a copy of the
contents of the specified file into the current buffer at point,
leaving point unchanged before the contents and the mark after them.
@findex write-region
@kbd{M-x write-region} is the inverse of @kbd{M-x insert-file}; it
copies the contents of the region into the specified file. @kbd{M-x
append-to-file} adds the text of the region to the end of the
specified file. @xref{Accumulating Text}. The variable
@code{write-region-inhibit-fsync} applies to these commands, as well
as saving files; see @ref{Customize Save}.
@findex delete-file
@cindex deletion (of files)
@kbd{M-x delete-file} deletes the specified file, like the @code{rm}
command in the shell. If you are deleting many files in one directory, it
may be more convenient to use Dired (@pxref{Dired}).
@findex rename-file
@kbd{M-x rename-file} reads two file names @var{old} and @var{new} using
the minibuffer, then renames file @var{old} as @var{new}. If the file name
@var{new} already exists, you must confirm with @kbd{yes} or renaming is not
done; this is because renaming causes the old meaning of the name @var{new}
to be lost. If @var{old} and @var{new} are on different file systems, the
file @var{old} is copied and deleted.
If the argument @var{new} is just a directory name, the real new
name is in that directory, with the same non-directory component as
@var{old}. For example, @kbd{M-x rename-file RET ~/foo RET /tmp RET}
renames @file{~/foo} to @file{/tmp/foo}. The same rule applies to all
the remaining commands in this section. All of them ask for
confirmation when the new file name already exists, too.
@findex add-name-to-file
@cindex hard links (creation)
The similar command @kbd{M-x add-name-to-file} is used to add an
additional name to an existing file without removing its old name.
The new name is created as a ``hard link'' to the existing file.
The new name must belong on the same file system that the file is on.
On MS-Windows, this command works only if the file resides in an NTFS
file system. On MS-DOS, it works by copying the file.
@findex copy-file
@cindex copying files
@kbd{M-x copy-file} reads the file @var{old} and writes a new file
named @var{new} with the same contents.
@findex make-symbolic-link
@cindex symbolic links (creation)
@kbd{M-x make-symbolic-link} reads two file names @var{target} and
@var{linkname}, then creates a symbolic link named @var{linkname},
which points at @var{target}. The effect is that future attempts to
open file @var{linkname} will refer to whatever file is named
@var{target} at the time the opening is done, or will get an error if
the name @var{target} is nonexistent at that time. This command does
not expand the argument @var{target}, so that it allows you to specify
a relative name as the target of the link.
Not all systems support symbolic links; on systems that don't
support them, this command is not defined.
@node Compressed Files
@section Accessing Compressed Files
@cindex compression
@cindex uncompression
@cindex Auto Compression mode
@cindex mode, Auto Compression
@pindex gzip
Emacs automatically uncompresses compressed files when you visit
them, and automatically recompress them if you alter them and save
them. Emacs recognizes compressed files by their file names. File
names ending in @samp{.gz} indicate a file compressed with
@code{gzip}. Other endings indicate other compression programs.
Automatic uncompression and compression apply to all the operations in
which Emacs uses the contents of a file. This includes visiting it,
saving it, inserting its contents into a buffer, loading it, and byte
compiling it.
@findex auto-compression-mode
@vindex auto-compression-mode
To disable this feature, type the command @kbd{M-x
auto-compression-mode}. You can disenable it permanently by
customizing the variable @code{auto-compression-mode}.
@node File Archives
@section File Archives
@cindex mode, tar
@cindex Tar mode
@cindex file archives
A file whose name ends in @samp{.tar} is normally an @dfn{archive}
made by the @code{tar} program. Emacs views these files in a special
mode called Tar mode which provides a Dired-like list of the contents
(@pxref{Dired}). You can move around through the list just as you
would in Dired, and visit the subfiles contained in the archive.
However, not all Dired commands are available in Tar mode.
If you enable Auto Compression mode (@pxref{Compressed Files}), then
Tar mode is used also for compressed archives---files with extensions
@samp{.tgz}, @code{.tar.Z} and @code{.tar.gz}.
The keys @kbd{e}, @kbd{f} and @key{RET} all extract a component file
into its own buffer. You can edit it there and when you save the buffer
the edited version will replace the version in the Tar buffer. @kbd{v}
extracts a file into a buffer in View mode. @kbd{o} extracts the file
and displays it in another window, so you could edit the file and
operate on the archive simultaneously. @kbd{d} marks a file for
deletion when you later use @kbd{x}, and @kbd{u} unmarks a file, as in
Dired. @kbd{C} copies a file from the archive to disk and @kbd{R}
renames a file. @kbd{g} reverts the buffer from the archive on disk.
The keys @kbd{M}, @kbd{G}, and @kbd{O} change the file's permission
bits, group, and owner, respectively.
If your display supports colors and the mouse, moving the mouse
pointer across a file name highlights that file name, indicating that
you can click on it. Clicking @kbd{Mouse-2} on the highlighted file
name extracts the file into a buffer and displays that buffer.
Saving the Tar buffer writes a new version of the archive to disk with
the changes you made to the components.
You don't need the @code{tar} program to use Tar mode---Emacs reads
the archives directly. However, accessing compressed archives
requires the appropriate uncompression program.
@cindex Archive mode
@cindex mode, archive
@cindex @code{arc}
@cindex @code{jar}
@cindex @code{zip}
@cindex @code{lzh}
@cindex @code{zoo}
@pindex arc
@pindex jar
@pindex zip
@pindex lzh
@pindex zoo
@cindex Java class archives
@cindex unzip archives
A separate but similar Archive mode is used for archives produced by
the programs @code{arc}, @code{jar}, @code{lzh}, @code{zip}, and
@code{zoo}, which have extensions corresponding to the program names.
The key bindings of Archive mode are similar to those in Tar mode,
with the addition of the @kbd{m} key which marks a file for subsequent
operations, and @kbd{M-@key{DEL}} which unmarks all the marked files.
Also, the @kbd{a} key toggles the display of detailed file
information, for those archive types where it won't fit in a single
line. Operations such as renaming a subfile, or changing its mode or
owner, are supported only for some of the archive formats.
Unlike Tar mode, Archive mode runs the archiving program to unpack
and repack archives. Details of the program names and their options
can be set in the @samp{Archive} Customize group. However, you don't
need these programs to look at the archive table of contents, only to
extract or manipulate the subfiles in the archive.
@node Remote Files
@section Remote Files
@cindex Tramp
@cindex FTP
@cindex remote file access
You can refer to files on other machines using a special file name
syntax:
@example
@group
/@var{host}:@var{filename}
/@var{user}@@@var{host}:@var{filename}
/@var{user}@@@var{host}#@var{port}:@var{filename}
/@var{method}:@var{user}@@@var{host}:@var{filename}
/@var{method}:@var{user}@@@var{host}#@var{port}:@var{filename}
@end group
@end example
@noindent
To carry out this request, Emacs uses either the FTP program or a
remote-login program such as @command{ssh}, @command{rlogin}, or
@command{telnet}. You can always specify in the file name which
method to use---for example,
@file{/ftp:@var{user}@@@var{host}:@var{filename}} uses FTP, whereas
@file{/ssh:@var{user}@@@var{host}:@var{filename}} uses @command{ssh}.
When you don't specify a method in the file name, Emacs chooses
the method as follows:
@enumerate
@item
If the host name starts with @samp{ftp.} (with dot), then Emacs uses
FTP.
@item
If the user name is @samp{ftp} or @samp{anonymous}, then Emacs uses
FTP.
@item
Otherwise, Emacs uses @command{ssh}.
@end enumerate
@noindent
Remote file access through FTP is handled by the Ange-FTP package, which
is documented in the following. Remote file access through the other
methods is handled by the Tramp package, which has its own manual.
@xref{Top, The Tramp Manual,, tramp, The Tramp Manual}.
When the Ange-FTP package is used, Emacs logs in through FTP using your
user name or the name @var{user}. It may ask you for a password from
time to time; this is used for logging in on @var{host}. The form using
@var{port} allows you to access servers running on a non-default TCP
port.
@cindex backups for remote files
@vindex ange-ftp-make-backup-files
If you want to disable backups for remote files, set the variable
@code{ange-ftp-make-backup-files} to @code{nil}.
By default, the auto-save files (@pxref{Auto Save Files}) for remote
files are made in the temporary file directory on the local machine.
This is achieved using the variable @code{auto-save-file-name-transforms}.
@cindex ange-ftp
@vindex ange-ftp-default-user
@cindex user name for remote file access
Normally, if you do not specify a user name in a remote file name,
that means to use your own user name. But if you set the variable
@code{ange-ftp-default-user} to a string, that string is used instead.
(The Emacs package that implements FTP file access is called
@code{ange-ftp}.)
@cindex anonymous FTP
@vindex ange-ftp-generate-anonymous-password
To visit files accessible by anonymous FTP, you use special user
names @samp{anonymous} or @samp{ftp}. Passwords for these user names
are handled specially. The variable
@code{ange-ftp-generate-anonymous-password} controls what happens: if
the value of this variable is a string, then that string is used as
the password; if non-@code{nil} (the default), then the value of
@code{user-mail-address} is used; if @code{nil}, the user is prompted
for a password as normal.
@cindex firewall, and accessing remote files
@cindex gateway, and remote file access with @code{ange-ftp}
@vindex ange-ftp-smart-gateway
@vindex ange-ftp-gateway-host
Sometimes you may be unable to access files on a remote machine
because a @dfn{firewall} in between blocks the connection for security
reasons. If you can log in on a @dfn{gateway} machine from which the
target files @emph{are} accessible, and whose FTP server supports
gatewaying features, you can still use remote file names; all you have
to do is specify the name of the gateway machine by setting the
variable @code{ange-ftp-gateway-host}, and set
@code{ange-ftp-smart-gateway} to @code{t}. Otherwise you may be able
to make remote file names work, but the procedure is complex. You can
read the instructions by typing @kbd{M-x finder-commentary @key{RET}
ange-ftp @key{RET}}.
@vindex file-name-handler-alist
@cindex disabling remote files
You can entirely turn off the FTP file name feature by removing the
entries @code{ange-ftp-completion-hook-function} and
@code{ange-ftp-hook-function} from the variable
@code{file-name-handler-alist}. You can turn off the feature in
individual cases by quoting the file name with @samp{/:} (@pxref{Quoted
File Names}).
@node Quoted File Names
@section Quoted File Names
@cindex quoting file names
@cindex file names, quote special characters
You can @dfn{quote} an absolute file name to prevent special
characters and syntax in it from having their special effects.
The way to do this is to add @samp{/:} at the beginning.
For example, you can quote a local file name which appears remote, to
prevent it from being treated as a remote file name. Thus, if you have
a directory named @file{/foo:} and a file named @file{bar} in it, you
can refer to that file in Emacs as @samp{/:/foo:/bar}.
@samp{/:} can also prevent @samp{~} from being treated as a special
character for a user's home directory. For example, @file{/:/tmp/~hack}
refers to a file whose name is @file{~hack} in directory @file{/tmp}.
Quoting with @samp{/:} is also a way to enter in the minibuffer a
file name that contains @samp{$}. In order for this to work, the
@samp{/:} must be at the beginning of the minibuffer contents. (You
can also double each @samp{$}; see @ref{File Names with $}.)
You can also quote wildcard characters with @samp{/:}, for visiting.
For example, @file{/:/tmp/foo*bar} visits the file
@file{/tmp/foo*bar}.
Another method of getting the same result is to enter
@file{/tmp/foo[*]bar}, which is a wildcard specification that matches
only @file{/tmp/foo*bar}. However, in many cases there is no need to
quote the wildcard characters because even unquoted they give the
right result. For example, if the only file name in @file{/tmp} that
starts with @samp{foo} and ends with @samp{bar} is @file{foo*bar},
then specifying @file{/tmp/foo*bar} will visit only
@file{/tmp/foo*bar}.
@node File Name Cache
@section File Name Cache
@cindex file name caching
@cindex cache of file names
@pindex find
@kindex C-@key{TAB}
@findex file-cache-minibuffer-complete
You can use the @dfn{file name cache} to make it easy to locate a
file by name, without having to remember exactly where it is located.
When typing a file name in the minibuffer, @kbd{C-@key{tab}}
(@code{file-cache-minibuffer-complete}) completes it using the file
name cache. If you repeat @kbd{C-@key{tab}}, that cycles through the
possible completions of what you had originally typed. Note that the
@kbd{C-@key{tab}} character cannot be typed on most text-only
terminals.
The file name cache does not fill up automatically. Instead, you
load file names into the cache using these commands:
@findex file-cache-add-directory
@table @kbd
@item M-x file-cache-add-directory @key{RET} @var{directory} @key{RET}
Add each file name in @var{directory} to the file name cache.
@item M-x file-cache-add-directory-using-find @key{RET} @var{directory} @key{RET}
Add each file name in @var{directory} and all of its nested
subdirectories to the file name cache.
@item M-x file-cache-add-directory-using-locate @key{RET} @var{directory} @key{RET}
Add each file name in @var{directory} and all of its nested
subdirectories to the file name cache, using @command{locate} to find
them all.
@item M-x file-cache-add-directory-list @key{RET} @var{variable} @key{RET}
Add each file name in each directory listed in @var{variable}
to the file name cache. @var{variable} should be a Lisp variable
such as @code{load-path} or @code{exec-path}, whose value is a list
of directory names.
@item M-x file-cache-clear-cache @key{RET}
Clear the cache; that is, remove all file names from it.
@end table
@node File Conveniences
@section Convenience Features for Finding Files
In this section, we introduce some convenient facilities for finding
recently-opened files, reading file names from a buffer, and viewing
image files.
@findex recentf-mode
@vindex recentf-mode
@findex recentf-save-list
@findex recentf-edit-list
If you enable Recentf mode, with @kbd{M-x recentf-mode}, the
@samp{File} menu includes a submenu containing a list of recently
opened files. @kbd{M-x recentf-save-list} saves the current
@code{recent-file-list} to a file, and @kbd{M-x recentf-edit-list}
edits it.
The @kbd{M-x ffap} command generalizes @code{find-file} with more
powerful heuristic defaults (@pxref{FFAP}), often based on the text at
point. Partial Completion mode offers other features extending
@code{find-file}, which can be used with @code{ffap}.
@xref{Completion Options}.
@findex image-mode
@findex image-toggle-display
@cindex images, viewing
Visiting image files automatically selects Image mode. This major
mode allows you to toggle between displaying the file as an image in
the Emacs buffer, and displaying its underlying text representation,
using the command @kbd{C-c C-c} (@code{image-toggle-display}). This
works only when Emacs can display the specific image type.
@findex thumbs-mode
@findex mode, thumbs
Thumbs mode is a major mode for viewing directories containing many
image files. To use it, type @kbd{M-x thumbs} and specify the
directory to view. The images in that directory will be displayed in
a @samp{Thumbs} buffer as @dfn{thumbnails}; type @kbd{RET} on a
thumbnail to view the full-size image. Thumbs mode requires the
@file{convert} program, which is part of the ImageMagick software
package.
@node Filesets
@section Filesets
@cindex filesets
@findex filesets-init
If you regularly edit a certain group of files, you can define them
as a @dfn{fileset}. This lets you perform certain operations, such as
visiting, @code{query-replace}, and shell commands on all the files
at once. To make use of filesets, you must first add the expression
@code{(filesets-init)} to your @file{.emacs} file (@pxref{Init File}).
This adds a @samp{Filesets} menu to the menu bar.
@findex filesets-add-buffer
@findex filesets-remove-buffer
The simplest way to define filesets is by adding files to them one
at a time. To add a file to fileset @var{name}, visit the file and
type @kbd{M-x filesets-add-buffer @kbd{RET} @var{name} @kbd{RET}}. If
there is no fileset @var{name}, this creates a new one, which
initially creates only the current file. The command @kbd{M-x
filesets-remove-buffer} removes the current file from a fileset.
You can also edit the list of filesets directly, with @kbd{M-x
filesets-edit} (or by choosing @samp{Edit Filesets} from the
@samp{Filesets} menu). The editing is performed in a Customize buffer
(@pxref{Easy Customization}). Filesets need not be a simple list of
files---you can also define filesets using regular expression matching
file names. Some examples of these more complicated filesets are
shown in the Customize buffer. Remember to select @samp{Save for
future sessions} if you want to use the same filesets in future Emacs
sessions.
You can use the command @kbd{M-x filesets-open} to visit all the
files in a fileset, and @kbd{M-x filesets-close} to close them. Use
@kbd{M-x filesets-run-cmd} to run a shell command on all the files in
a fileset. These commands are also available from the @samp{Filesets}
menu, where each existing fileset is represented by a submenu.
@ignore
arch-tag: 768d32cb-e15a-4cc1-b7bf-62c00ee12250
@end ignore