mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-01 11:14:55 +00:00
3103 lines
118 KiB
EmacsLisp
3103 lines
118 KiB
EmacsLisp
;;; subr.el --- basic lisp subroutines for Emacs
|
||
|
||
;; Copyright (C) 1985, 1986, 1992, 1994, 1995, 1999, 2000, 2001, 2002, 2003,
|
||
;; 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
;; Maintainer: FSF
|
||
;; Keywords: internal
|
||
|
||
;; This file is part of GNU Emacs.
|
||
|
||
;; GNU Emacs is free software; you can redistribute it and/or modify
|
||
;; it under the terms of the GNU General Public License as published by
|
||
;; the Free Software Foundation; either version 2, or (at your option)
|
||
;; any later version.
|
||
|
||
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
;; GNU General Public License for more details.
|
||
|
||
;; You should have received a copy of the GNU General Public License
|
||
;; along with GNU Emacs; see the file COPYING. If not, write to the
|
||
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
;; Boston, MA 02110-1301, USA.
|
||
|
||
;;; Commentary:
|
||
|
||
;;; Code:
|
||
(defvar custom-declare-variable-list nil
|
||
"Record `defcustom' calls made before `custom.el' is loaded to handle them.
|
||
Each element of this list holds the arguments to one call to `defcustom'.")
|
||
|
||
;; Use this, rather than defcustom, in subr.el and other files loaded
|
||
;; before custom.el.
|
||
(defun custom-declare-variable-early (&rest arguments)
|
||
(setq custom-declare-variable-list
|
||
(cons arguments custom-declare-variable-list)))
|
||
|
||
|
||
;;;; Basic Lisp macros.
|
||
|
||
(defalias 'not 'null)
|
||
|
||
(defmacro noreturn (form)
|
||
"Evaluates FORM, with the expectation that the evaluation will signal an error
|
||
instead of returning to its caller. If FORM does return, an error is
|
||
signaled."
|
||
`(prog1 ,form
|
||
(error "Form marked with `noreturn' did return")))
|
||
|
||
(defmacro 1value (form)
|
||
"Evaluates FORM, with the expectation that the same value will be returned
|
||
from all evaluations of FORM. This is the global do-nothing
|
||
version of `1value'. There is also `testcover-1value' that
|
||
complains if FORM ever does return differing values."
|
||
form)
|
||
|
||
(defmacro lambda (&rest cdr)
|
||
"Return a lambda expression.
|
||
A call of the form (lambda ARGS DOCSTRING INTERACTIVE BODY) is
|
||
self-quoting; the result of evaluating the lambda expression is the
|
||
expression itself. The lambda expression may then be treated as a
|
||
function, i.e., stored as the function value of a symbol, passed to
|
||
`funcall' or `mapcar', etc.
|
||
|
||
ARGS should take the same form as an argument list for a `defun'.
|
||
DOCSTRING is an optional documentation string.
|
||
If present, it should describe how to call the function.
|
||
But documentation strings are usually not useful in nameless functions.
|
||
INTERACTIVE should be a call to the function `interactive', which see.
|
||
It may also be omitted.
|
||
BODY should be a list of Lisp expressions.
|
||
|
||
\(fn ARGS [DOCSTRING] [INTERACTIVE] BODY)"
|
||
;; Note that this definition should not use backquotes; subr.el should not
|
||
;; depend on backquote.el.
|
||
(list 'function (cons 'lambda cdr)))
|
||
|
||
(defmacro push (newelt listname)
|
||
"Add NEWELT to the list stored in the symbol LISTNAME.
|
||
This is equivalent to (setq LISTNAME (cons NEWELT LISTNAME)).
|
||
LISTNAME must be a symbol."
|
||
(declare (debug (form sexp)))
|
||
(list 'setq listname
|
||
(list 'cons newelt listname)))
|
||
|
||
(defmacro pop (listname)
|
||
"Return the first element of LISTNAME's value, and remove it from the list.
|
||
LISTNAME must be a symbol whose value is a list.
|
||
If the value is nil, `pop' returns nil but does not actually
|
||
change the list."
|
||
(declare (debug (sexp)))
|
||
(list 'car
|
||
(list 'prog1 listname
|
||
(list 'setq listname (list 'cdr listname)))))
|
||
|
||
(defmacro when (cond &rest body)
|
||
"If COND yields non-nil, do BODY, else return nil."
|
||
(declare (indent 1) (debug t))
|
||
(list 'if cond (cons 'progn body)))
|
||
|
||
(defmacro unless (cond &rest body)
|
||
"If COND yields nil, do BODY, else return nil."
|
||
(declare (indent 1) (debug t))
|
||
(cons 'if (cons cond (cons nil body))))
|
||
|
||
(defmacro dolist (spec &rest body)
|
||
"Loop over a list.
|
||
Evaluate BODY with VAR bound to each car from LIST, in turn.
|
||
Then evaluate RESULT to get return value, default nil.
|
||
|
||
\(fn (VAR LIST [RESULT]) BODY...)"
|
||
(declare (indent 1) (debug ((symbolp form &optional form) body)))
|
||
(let ((temp (make-symbol "--dolist-temp--")))
|
||
`(let ((,temp ,(nth 1 spec))
|
||
,(car spec))
|
||
(while ,temp
|
||
(setq ,(car spec) (car ,temp))
|
||
(setq ,temp (cdr ,temp))
|
||
,@body)
|
||
,@(if (cdr (cdr spec))
|
||
`((setq ,(car spec) nil) ,@(cdr (cdr spec)))))))
|
||
|
||
(defmacro dotimes (spec &rest body)
|
||
"Loop a certain number of times.
|
||
Evaluate BODY with VAR bound to successive integers running from 0,
|
||
inclusive, to COUNT, exclusive. Then evaluate RESULT to get
|
||
the return value (nil if RESULT is omitted).
|
||
|
||
\(fn (VAR COUNT [RESULT]) BODY...)"
|
||
(declare (indent 1) (debug dolist))
|
||
(let ((temp (make-symbol "--dotimes-temp--"))
|
||
(start 0)
|
||
(end (nth 1 spec)))
|
||
`(let ((,temp ,end)
|
||
(,(car spec) ,start))
|
||
(while (< ,(car spec) ,temp)
|
||
,@body
|
||
(setq ,(car spec) (1+ ,(car spec))))
|
||
,@(cdr (cdr spec)))))
|
||
|
||
(defmacro declare (&rest specs)
|
||
"Do not evaluate any arguments and return nil.
|
||
Treated as a declaration when used at the right place in a
|
||
`defmacro' form. \(See Info anchor `(elisp)Definition of declare'.)"
|
||
nil)
|
||
|
||
;;;; Basic Lisp functions.
|
||
|
||
(defun ignore (&rest ignore)
|
||
"Do nothing and return nil.
|
||
This function accepts any number of arguments, but ignores them."
|
||
(interactive)
|
||
nil)
|
||
|
||
(defun error (&rest args)
|
||
"Signal an error, making error message by passing all args to `format'.
|
||
In Emacs, the convention is that error messages start with a capital
|
||
letter but *do not* end with a period. Please follow this convention
|
||
for the sake of consistency."
|
||
(while t
|
||
(signal 'error (list (apply 'format args)))))
|
||
|
||
;; We put this here instead of in frame.el so that it's defined even on
|
||
;; systems where frame.el isn't loaded.
|
||
(defun frame-configuration-p (object)
|
||
"Return non-nil if OBJECT seems to be a frame configuration.
|
||
Any list whose car is `frame-configuration' is assumed to be a frame
|
||
configuration."
|
||
(and (consp object)
|
||
(eq (car object) 'frame-configuration)))
|
||
|
||
(defun functionp (object)
|
||
"Non-nil if OBJECT is any kind of function or a special form.
|
||
Also non-nil if OBJECT is a symbol and its function definition is
|
||
\(recursively) a function or special form. This does not include
|
||
macros."
|
||
(or (and (symbolp object) (fboundp object)
|
||
(condition-case nil
|
||
(setq object (indirect-function object))
|
||
(error nil))
|
||
(eq (car-safe object) 'autoload)
|
||
(not (car-safe (cdr-safe (cdr-safe (cdr-safe (cdr-safe object)))))))
|
||
(subrp object) (byte-code-function-p object)
|
||
(eq (car-safe object) 'lambda)))
|
||
|
||
;;;; List functions.
|
||
|
||
(defsubst caar (x)
|
||
"Return the car of the car of X."
|
||
(car (car x)))
|
||
|
||
(defsubst cadr (x)
|
||
"Return the car of the cdr of X."
|
||
(car (cdr x)))
|
||
|
||
(defsubst cdar (x)
|
||
"Return the cdr of the car of X."
|
||
(cdr (car x)))
|
||
|
||
(defsubst cddr (x)
|
||
"Return the cdr of the cdr of X."
|
||
(cdr (cdr x)))
|
||
|
||
(defun last (list &optional n)
|
||
"Return the last link of LIST. Its car is the last element.
|
||
If LIST is nil, return nil.
|
||
If N is non-nil, return the Nth-to-last link of LIST.
|
||
If N is bigger than the length of LIST, return LIST."
|
||
(if n
|
||
(let ((m 0) (p list))
|
||
(while (consp p)
|
||
(setq m (1+ m) p (cdr p)))
|
||
(if (<= n 0) p
|
||
(if (< n m) (nthcdr (- m n) list) list)))
|
||
(while (consp (cdr list))
|
||
(setq list (cdr list)))
|
||
list))
|
||
|
||
(defun butlast (list &optional n)
|
||
"Return a copy of LIST with the last N elements removed."
|
||
(if (and n (<= n 0)) list
|
||
(nbutlast (copy-sequence list) n)))
|
||
|
||
(defun nbutlast (list &optional n)
|
||
"Modifies LIST to remove the last N elements."
|
||
(let ((m (length list)))
|
||
(or n (setq n 1))
|
||
(and (< n m)
|
||
(progn
|
||
(if (> n 0) (setcdr (nthcdr (- (1- m) n) list) nil))
|
||
list))))
|
||
|
||
(defun delete-dups (list)
|
||
"Destructively remove `equal' duplicates from LIST.
|
||
Store the result in LIST and return it. LIST must be a proper list.
|
||
Of several `equal' occurrences of an element in LIST, the first
|
||
one is kept."
|
||
(let ((tail list))
|
||
(while tail
|
||
(setcdr tail (delete (car tail) (cdr tail)))
|
||
(setq tail (cdr tail))))
|
||
list)
|
||
|
||
(defun number-sequence (from &optional to inc)
|
||
"Return a sequence of numbers from FROM to TO (both inclusive) as a list.
|
||
INC is the increment used between numbers in the sequence and defaults to 1.
|
||
So, the Nth element of the list is \(+ FROM \(* N INC)) where N counts from
|
||
zero. TO is only included if there is an N for which TO = FROM + N * INC.
|
||
If TO is nil or numerically equal to FROM, return \(FROM).
|
||
If INC is positive and TO is less than FROM, or INC is negative
|
||
and TO is larger than FROM, return nil.
|
||
If INC is zero and TO is neither nil nor numerically equal to
|
||
FROM, signal an error.
|
||
|
||
This function is primarily designed for integer arguments.
|
||
Nevertheless, FROM, TO and INC can be integer or float. However,
|
||
floating point arithmetic is inexact. For instance, depending on
|
||
the machine, it may quite well happen that
|
||
\(number-sequence 0.4 0.6 0.2) returns the one element list \(0.4),
|
||
whereas \(number-sequence 0.4 0.8 0.2) returns a list with three
|
||
elements. Thus, if some of the arguments are floats and one wants
|
||
to make sure that TO is included, one may have to explicitly write
|
||
TO as \(+ FROM \(* N INC)) or use a variable whose value was
|
||
computed with this exact expression. Alternatively, you can,
|
||
of course, also replace TO with a slightly larger value
|
||
\(or a slightly more negative value if INC is negative)."
|
||
(if (or (not to) (= from to))
|
||
(list from)
|
||
(or inc (setq inc 1))
|
||
(when (zerop inc) (error "The increment can not be zero"))
|
||
(let (seq (n 0) (next from))
|
||
(if (> inc 0)
|
||
(while (<= next to)
|
||
(setq seq (cons next seq)
|
||
n (1+ n)
|
||
next (+ from (* n inc))))
|
||
(while (>= next to)
|
||
(setq seq (cons next seq)
|
||
n (1+ n)
|
||
next (+ from (* n inc)))))
|
||
(nreverse seq))))
|
||
|
||
(defun copy-tree (tree &optional vecp)
|
||
"Make a copy of TREE.
|
||
If TREE is a cons cell, this recursively copies both its car and its cdr.
|
||
Contrast to `copy-sequence', which copies only along the cdrs. With second
|
||
argument VECP, this copies vectors as well as conses."
|
||
(if (consp tree)
|
||
(let (result)
|
||
(while (consp tree)
|
||
(let ((newcar (car tree)))
|
||
(if (or (consp (car tree)) (and vecp (vectorp (car tree))))
|
||
(setq newcar (copy-tree (car tree) vecp)))
|
||
(push newcar result))
|
||
(setq tree (cdr tree)))
|
||
(nconc (nreverse result) tree))
|
||
(if (and vecp (vectorp tree))
|
||
(let ((i (length (setq tree (copy-sequence tree)))))
|
||
(while (>= (setq i (1- i)) 0)
|
||
(aset tree i (copy-tree (aref tree i) vecp)))
|
||
tree)
|
||
tree)))
|
||
|
||
;;;; Various list-search functions.
|
||
|
||
(defun assoc-default (key alist &optional test default)
|
||
"Find object KEY in a pseudo-alist ALIST.
|
||
ALIST is a list of conses or objects. Each element (or the element's car,
|
||
if it is a cons) is compared with KEY by evaluating (TEST (car elt) KEY).
|
||
If that is non-nil, the element matches;
|
||
then `assoc-default' returns the element's cdr, if it is a cons,
|
||
or DEFAULT if the element is not a cons.
|
||
|
||
If no element matches, the value is nil.
|
||
If TEST is omitted or nil, `equal' is used."
|
||
(let (found (tail alist) value)
|
||
(while (and tail (not found))
|
||
(let ((elt (car tail)))
|
||
(when (funcall (or test 'equal) (if (consp elt) (car elt) elt) key)
|
||
(setq found t value (if (consp elt) (cdr elt) default))))
|
||
(setq tail (cdr tail)))
|
||
value))
|
||
|
||
(make-obsolete 'assoc-ignore-case 'assoc-string)
|
||
(defun assoc-ignore-case (key alist)
|
||
"Like `assoc', but ignores differences in case and text representation.
|
||
KEY must be a string. Upper-case and lower-case letters are treated as equal.
|
||
Unibyte strings are converted to multibyte for comparison."
|
||
(assoc-string key alist t))
|
||
|
||
(make-obsolete 'assoc-ignore-representation 'assoc-string)
|
||
(defun assoc-ignore-representation (key alist)
|
||
"Like `assoc', but ignores differences in text representation.
|
||
KEY must be a string.
|
||
Unibyte strings are converted to multibyte for comparison."
|
||
(assoc-string key alist nil))
|
||
|
||
(defun member-ignore-case (elt list)
|
||
"Like `member', but ignores differences in case and text representation.
|
||
ELT must be a string. Upper-case and lower-case letters are treated as equal.
|
||
Unibyte strings are converted to multibyte for comparison.
|
||
Non-strings in LIST are ignored."
|
||
(while (and list
|
||
(not (and (stringp (car list))
|
||
(eq t (compare-strings elt 0 nil (car list) 0 nil t)))))
|
||
(setq list (cdr list)))
|
||
list)
|
||
|
||
(defun assq-delete-all (key alist)
|
||
"Delete from ALIST all elements whose car is `eq' to KEY.
|
||
Return the modified alist.
|
||
Elements of ALIST that are not conses are ignored."
|
||
(while (and (consp (car alist))
|
||
(eq (car (car alist)) key))
|
||
(setq alist (cdr alist)))
|
||
(let ((tail alist) tail-cdr)
|
||
(while (setq tail-cdr (cdr tail))
|
||
(if (and (consp (car tail-cdr))
|
||
(eq (car (car tail-cdr)) key))
|
||
(setcdr tail (cdr tail-cdr))
|
||
(setq tail tail-cdr))))
|
||
alist)
|
||
|
||
(defun rassq-delete-all (value alist)
|
||
"Delete from ALIST all elements whose cdr is `eq' to VALUE.
|
||
Return the modified alist.
|
||
Elements of ALIST that are not conses are ignored."
|
||
(while (and (consp (car alist))
|
||
(eq (cdr (car alist)) value))
|
||
(setq alist (cdr alist)))
|
||
(let ((tail alist) tail-cdr)
|
||
(while (setq tail-cdr (cdr tail))
|
||
(if (and (consp (car tail-cdr))
|
||
(eq (cdr (car tail-cdr)) value))
|
||
(setcdr tail (cdr tail-cdr))
|
||
(setq tail tail-cdr))))
|
||
alist)
|
||
|
||
(defun remove (elt seq)
|
||
"Return a copy of SEQ with all occurrences of ELT removed.
|
||
SEQ must be a list, vector, or string. The comparison is done with `equal'."
|
||
(if (nlistp seq)
|
||
;; If SEQ isn't a list, there's no need to copy SEQ because
|
||
;; `delete' will return a new object.
|
||
(delete elt seq)
|
||
(delete elt (copy-sequence seq))))
|
||
|
||
(defun remq (elt list)
|
||
"Return LIST with all occurrences of ELT removed.
|
||
The comparison is done with `eq'. Contrary to `delq', this does not use
|
||
side-effects, and the argument LIST is not modified."
|
||
(if (memq elt list)
|
||
(delq elt (copy-sequence list))
|
||
list))
|
||
|
||
;;;; Keymap support.
|
||
|
||
(defmacro kbd (keys)
|
||
"Convert KEYS to the internal Emacs key representation.
|
||
KEYS should be a string constant in the format used for
|
||
saving keyboard macros (see `edmacro-mode')."
|
||
(read-kbd-macro keys))
|
||
|
||
(defun undefined ()
|
||
(interactive)
|
||
(ding))
|
||
|
||
;; Prevent the \{...} documentation construct
|
||
;; from mentioning keys that run this command.
|
||
(put 'undefined 'suppress-keymap t)
|
||
|
||
(defun suppress-keymap (map &optional nodigits)
|
||
"Make MAP override all normally self-inserting keys to be undefined.
|
||
Normally, as an exception, digits and minus-sign are set to make prefix args,
|
||
but optional second arg NODIGITS non-nil treats them like other chars."
|
||
(define-key map [remap self-insert-command] 'undefined)
|
||
(or nodigits
|
||
(let (loop)
|
||
(define-key map "-" 'negative-argument)
|
||
;; Make plain numbers do numeric args.
|
||
(setq loop ?0)
|
||
(while (<= loop ?9)
|
||
(define-key map (char-to-string loop) 'digit-argument)
|
||
(setq loop (1+ loop))))))
|
||
|
||
(defun define-key-after (keymap key definition &optional after)
|
||
"Add binding in KEYMAP for KEY => DEFINITION, right after AFTER's binding.
|
||
This is like `define-key' except that the binding for KEY is placed
|
||
just after the binding for the event AFTER, instead of at the beginning
|
||
of the map. Note that AFTER must be an event type (like KEY), NOT a command
|
||
\(like DEFINITION).
|
||
|
||
If AFTER is t or omitted, the new binding goes at the end of the keymap.
|
||
AFTER should be a single event type--a symbol or a character, not a sequence.
|
||
|
||
Bindings are always added before any inherited map.
|
||
|
||
The order of bindings in a keymap matters when it is used as a menu."
|
||
(unless after (setq after t))
|
||
(or (keymapp keymap)
|
||
(signal 'wrong-type-argument (list 'keymapp keymap)))
|
||
(setq key
|
||
(if (<= (length key) 1) (aref key 0)
|
||
(setq keymap (lookup-key keymap
|
||
(apply 'vector
|
||
(butlast (mapcar 'identity key)))))
|
||
(aref key (1- (length key)))))
|
||
(let ((tail keymap) done inserted)
|
||
(while (and (not done) tail)
|
||
;; Delete any earlier bindings for the same key.
|
||
(if (eq (car-safe (car (cdr tail))) key)
|
||
(setcdr tail (cdr (cdr tail))))
|
||
;; If we hit an included map, go down that one.
|
||
(if (keymapp (car tail)) (setq tail (car tail)))
|
||
;; When we reach AFTER's binding, insert the new binding after.
|
||
;; If we reach an inherited keymap, insert just before that.
|
||
;; If we reach the end of this keymap, insert at the end.
|
||
(if (or (and (eq (car-safe (car tail)) after)
|
||
(not (eq after t)))
|
||
(eq (car (cdr tail)) 'keymap)
|
||
(null (cdr tail)))
|
||
(progn
|
||
;; Stop the scan only if we find a parent keymap.
|
||
;; Keep going past the inserted element
|
||
;; so we can delete any duplications that come later.
|
||
(if (eq (car (cdr tail)) 'keymap)
|
||
(setq done t))
|
||
;; Don't insert more than once.
|
||
(or inserted
|
||
(setcdr tail (cons (cons key definition) (cdr tail))))
|
||
(setq inserted t)))
|
||
(setq tail (cdr tail)))))
|
||
|
||
(defun map-keymap-internal (function keymap &optional sort-first)
|
||
"Implement `map-keymap' with sorting.
|
||
Don't call this function; it is for internal use only."
|
||
(if sort-first
|
||
(let (list)
|
||
(map-keymap (lambda (a b) (push (cons a b) list))
|
||
keymap)
|
||
(setq list (sort list
|
||
(lambda (a b)
|
||
(setq a (car a) b (car b))
|
||
(if (integerp a)
|
||
(if (integerp b) (< a b)
|
||
t)
|
||
(if (integerp b) t
|
||
(string< a b))))))
|
||
(dolist (p list)
|
||
(funcall function (car p) (cdr p))))
|
||
(map-keymap function keymap)))
|
||
|
||
(put 'keyboard-translate-table 'char-table-extra-slots 0)
|
||
|
||
(defun keyboard-translate (from to)
|
||
"Translate character FROM to TO at a low level.
|
||
This function creates a `keyboard-translate-table' if necessary
|
||
and then modifies one entry in it."
|
||
(or (char-table-p keyboard-translate-table)
|
||
(setq keyboard-translate-table
|
||
(make-char-table 'keyboard-translate-table nil)))
|
||
(aset keyboard-translate-table from to))
|
||
|
||
;;;; Key binding commands.
|
||
|
||
(defun global-set-key (key command)
|
||
"Give KEY a global binding as COMMAND.
|
||
COMMAND is the command definition to use; usually it is
|
||
a symbol naming an interactively-callable function.
|
||
KEY is a key sequence; noninteractively, it is a string or vector
|
||
of characters or event types, and non-ASCII characters with codes
|
||
above 127 (such as ISO Latin-1) can be included if you use a vector.
|
||
|
||
Note that if KEY has a local binding in the current buffer,
|
||
that local binding will continue to shadow any global binding
|
||
that you make with this function."
|
||
(interactive "KSet key globally: \nCSet key %s to command: ")
|
||
(or (vectorp key) (stringp key)
|
||
(signal 'wrong-type-argument (list 'arrayp key)))
|
||
(define-key (current-global-map) key command))
|
||
|
||
(defun local-set-key (key command)
|
||
"Give KEY a local binding as COMMAND.
|
||
COMMAND is the command definition to use; usually it is
|
||
a symbol naming an interactively-callable function.
|
||
KEY is a key sequence; noninteractively, it is a string or vector
|
||
of characters or event types, and non-ASCII characters with codes
|
||
above 127 (such as ISO Latin-1) can be included if you use a vector.
|
||
|
||
The binding goes in the current buffer's local map,
|
||
which in most cases is shared with all other buffers in the same major mode."
|
||
(interactive "KSet key locally: \nCSet key %s locally to command: ")
|
||
(let ((map (current-local-map)))
|
||
(or map
|
||
(use-local-map (setq map (make-sparse-keymap))))
|
||
(or (vectorp key) (stringp key)
|
||
(signal 'wrong-type-argument (list 'arrayp key)))
|
||
(define-key map key command)))
|
||
|
||
(defun global-unset-key (key)
|
||
"Remove global binding of KEY.
|
||
KEY is a string or vector representing a sequence of keystrokes."
|
||
(interactive "kUnset key globally: ")
|
||
(global-set-key key nil))
|
||
|
||
(defun local-unset-key (key)
|
||
"Remove local binding of KEY.
|
||
KEY is a string or vector representing a sequence of keystrokes."
|
||
(interactive "kUnset key locally: ")
|
||
(if (current-local-map)
|
||
(local-set-key key nil))
|
||
nil)
|
||
|
||
;;;; substitute-key-definition and its subroutines.
|
||
|
||
(defvar key-substitution-in-progress nil
|
||
"Used internally by `substitute-key-definition'.")
|
||
|
||
(defun substitute-key-definition (olddef newdef keymap &optional oldmap prefix)
|
||
"Replace OLDDEF with NEWDEF for any keys in KEYMAP now defined as OLDDEF.
|
||
In other words, OLDDEF is replaced with NEWDEF where ever it appears.
|
||
Alternatively, if optional fourth argument OLDMAP is specified, we redefine
|
||
in KEYMAP as NEWDEF those keys which are defined as OLDDEF in OLDMAP.
|
||
|
||
For most uses, it is simpler and safer to use command remappping like this:
|
||
\(define-key KEYMAP [remap OLDDEF] NEWDEF)"
|
||
;; Don't document PREFIX in the doc string because we don't want to
|
||
;; advertise it. It's meant for recursive calls only. Here's its
|
||
;; meaning
|
||
|
||
;; If optional argument PREFIX is specified, it should be a key
|
||
;; prefix, a string. Redefined bindings will then be bound to the
|
||
;; original key, with PREFIX added at the front.
|
||
(or prefix (setq prefix ""))
|
||
(let* ((scan (or oldmap keymap))
|
||
(prefix1 (vconcat prefix [nil]))
|
||
(key-substitution-in-progress
|
||
(cons scan key-substitution-in-progress)))
|
||
;; Scan OLDMAP, finding each char or event-symbol that
|
||
;; has any definition, and act on it with hack-key.
|
||
(map-keymap
|
||
(lambda (char defn)
|
||
(aset prefix1 (length prefix) char)
|
||
(substitute-key-definition-key defn olddef newdef prefix1 keymap))
|
||
scan)))
|
||
|
||
(defun substitute-key-definition-key (defn olddef newdef prefix keymap)
|
||
(let (inner-def skipped menu-item)
|
||
;; Find the actual command name within the binding.
|
||
(if (eq (car-safe defn) 'menu-item)
|
||
(setq menu-item defn defn (nth 2 defn))
|
||
;; Skip past menu-prompt.
|
||
(while (stringp (car-safe defn))
|
||
(push (pop defn) skipped))
|
||
;; Skip past cached key-equivalence data for menu items.
|
||
(if (consp (car-safe defn))
|
||
(setq defn (cdr defn))))
|
||
(if (or (eq defn olddef)
|
||
;; Compare with equal if definition is a key sequence.
|
||
;; That is useful for operating on function-key-map.
|
||
(and (or (stringp defn) (vectorp defn))
|
||
(equal defn olddef)))
|
||
(define-key keymap prefix
|
||
(if menu-item
|
||
(let ((copy (copy-sequence menu-item)))
|
||
(setcar (nthcdr 2 copy) newdef)
|
||
copy)
|
||
(nconc (nreverse skipped) newdef)))
|
||
;; Look past a symbol that names a keymap.
|
||
(setq inner-def
|
||
(and defn
|
||
(condition-case nil (indirect-function defn) (error defn))))
|
||
;; For nested keymaps, we use `inner-def' rather than `defn' so as to
|
||
;; avoid autoloading a keymap. This is mostly done to preserve the
|
||
;; original non-autoloading behavior of pre-map-keymap times.
|
||
(if (and (keymapp inner-def)
|
||
;; Avoid recursively scanning
|
||
;; where KEYMAP does not have a submap.
|
||
(let ((elt (lookup-key keymap prefix)))
|
||
(or (null elt) (natnump elt) (keymapp elt)))
|
||
;; Avoid recursively rescanning keymap being scanned.
|
||
(not (memq inner-def key-substitution-in-progress)))
|
||
;; If this one isn't being scanned already, scan it now.
|
||
(substitute-key-definition olddef newdef keymap inner-def prefix)))))
|
||
|
||
|
||
;;;; The global keymap tree.
|
||
|
||
;;; global-map, esc-map, and ctl-x-map have their values set up in
|
||
;;; keymap.c; we just give them docstrings here.
|
||
|
||
(defvar global-map nil
|
||
"Default global keymap mapping Emacs keyboard input into commands.
|
||
The value is a keymap which is usually (but not necessarily) Emacs's
|
||
global map.")
|
||
|
||
(defvar esc-map nil
|
||
"Default keymap for ESC (meta) commands.
|
||
The normal global definition of the character ESC indirects to this keymap.")
|
||
|
||
(defvar ctl-x-map nil
|
||
"Default keymap for C-x commands.
|
||
The normal global definition of the character C-x indirects to this keymap.")
|
||
|
||
(defvar ctl-x-4-map (make-sparse-keymap)
|
||
"Keymap for subcommands of C-x 4.")
|
||
(defalias 'ctl-x-4-prefix ctl-x-4-map)
|
||
(define-key ctl-x-map "4" 'ctl-x-4-prefix)
|
||
|
||
(defvar ctl-x-5-map (make-sparse-keymap)
|
||
"Keymap for frame commands.")
|
||
(defalias 'ctl-x-5-prefix ctl-x-5-map)
|
||
(define-key ctl-x-map "5" 'ctl-x-5-prefix)
|
||
|
||
|
||
;;;; Event manipulation functions.
|
||
|
||
;; The call to `read' is to ensure that the value is computed at load time
|
||
;; and not compiled into the .elc file. The value is negative on most
|
||
;; machines, but not on all!
|
||
(defconst listify-key-sequence-1 (logior 128 (read "?\\M-\\^@")))
|
||
|
||
(defun listify-key-sequence (key)
|
||
"Convert a key sequence to a list of events."
|
||
(if (vectorp key)
|
||
(append key nil)
|
||
(mapcar (function (lambda (c)
|
||
(if (> c 127)
|
||
(logxor c listify-key-sequence-1)
|
||
c)))
|
||
key)))
|
||
|
||
(defsubst eventp (obj)
|
||
"True if the argument is an event object."
|
||
(or (and (integerp obj)
|
||
;; Filter out integers too large to be events.
|
||
;; M is the biggest modifier.
|
||
(zerop (logand obj (lognot (1- (lsh ?\M-\^@ 1)))))
|
||
(char-valid-p (event-basic-type obj)))
|
||
(and (symbolp obj)
|
||
(get obj 'event-symbol-elements))
|
||
(and (consp obj)
|
||
(symbolp (car obj))
|
||
(get (car obj) 'event-symbol-elements))))
|
||
|
||
(defun event-modifiers (event)
|
||
"Return a list of symbols representing the modifier keys in event EVENT.
|
||
The elements of the list may include `meta', `control',
|
||
`shift', `hyper', `super', `alt', `click', `double', `triple', `drag',
|
||
and `down'.
|
||
EVENT may be an event or an event type. If EVENT is a symbol
|
||
that has never been used in an event that has been read as input
|
||
in the current Emacs session, then this function can return nil,
|
||
even when EVENT actually has modifiers."
|
||
(let ((type event))
|
||
(if (listp type)
|
||
(setq type (car type)))
|
||
(if (symbolp type)
|
||
(cdr (get type 'event-symbol-elements))
|
||
(let ((list nil)
|
||
(char (logand type (lognot (logior ?\M-\^@ ?\C-\^@ ?\S-\^@
|
||
?\H-\^@ ?\s-\^@ ?\A-\^@)))))
|
||
(if (not (zerop (logand type ?\M-\^@)))
|
||
(push 'meta list))
|
||
(if (or (not (zerop (logand type ?\C-\^@)))
|
||
(< char 32))
|
||
(push 'control list))
|
||
(if (or (not (zerop (logand type ?\S-\^@)))
|
||
(/= char (downcase char)))
|
||
(push 'shift list))
|
||
(or (zerop (logand type ?\H-\^@))
|
||
(push 'hyper list))
|
||
(or (zerop (logand type ?\s-\^@))
|
||
(push 'super list))
|
||
(or (zerop (logand type ?\A-\^@))
|
||
(push 'alt list))
|
||
list))))
|
||
|
||
(defun event-basic-type (event)
|
||
"Return the basic type of the given event (all modifiers removed).
|
||
The value is a printing character (not upper case) or a symbol.
|
||
EVENT may be an event or an event type. If EVENT is a symbol
|
||
that has never been used in an event that has been read as input
|
||
in the current Emacs session, then this function may return nil."
|
||
(if (consp event)
|
||
(setq event (car event)))
|
||
(if (symbolp event)
|
||
(car (get event 'event-symbol-elements))
|
||
(let* ((base (logand event (1- ?\A-\^@)))
|
||
(uncontrolled (if (< base 32) (logior base 64) base)))
|
||
;; There are some numbers that are invalid characters and
|
||
;; cause `downcase' to get an error.
|
||
(condition-case ()
|
||
(downcase uncontrolled)
|
||
(error uncontrolled)))))
|
||
|
||
(defsubst mouse-movement-p (object)
|
||
"Return non-nil if OBJECT is a mouse movement event."
|
||
(eq (car-safe object) 'mouse-movement))
|
||
|
||
(defsubst event-start (event)
|
||
"Return the starting position of EVENT.
|
||
If EVENT is a mouse or key press or a mouse click, this returns the location
|
||
of the event.
|
||
If EVENT is a drag, this returns the drag's starting position.
|
||
The return value is of the form
|
||
(WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
|
||
IMAGE (DX . DY) (WIDTH . HEIGHT))
|
||
The `posn-' functions access elements of such lists."
|
||
(if (consp event) (nth 1 event)
|
||
(list (selected-window) (point) '(0 . 0) 0)))
|
||
|
||
(defsubst event-end (event)
|
||
"Return the ending location of EVENT.
|
||
EVENT should be a click, drag, or key press event.
|
||
If EVENT is a click event, this function is the same as `event-start'.
|
||
The return value is of the form
|
||
(WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW)
|
||
IMAGE (DX . DY) (WIDTH . HEIGHT))
|
||
The `posn-' functions access elements of such lists."
|
||
(if (consp event) (nth (if (consp (nth 2 event)) 2 1) event)
|
||
(list (selected-window) (point) '(0 . 0) 0)))
|
||
|
||
(defsubst event-click-count (event)
|
||
"Return the multi-click count of EVENT, a click or drag event.
|
||
The return value is a positive integer."
|
||
(if (and (consp event) (integerp (nth 2 event))) (nth 2 event) 1))
|
||
|
||
;;;; Extracting fields of the positions in an event.
|
||
|
||
(defsubst posn-window (position)
|
||
"Return the window in POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 0 position))
|
||
|
||
(defsubst posn-area (position)
|
||
"Return the window area recorded in POSITION, or nil for the text area.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(let ((area (if (consp (nth 1 position))
|
||
(car (nth 1 position))
|
||
(nth 1 position))))
|
||
(and (symbolp area) area)))
|
||
|
||
(defsubst posn-point (position)
|
||
"Return the buffer location in POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(or (nth 5 position)
|
||
(if (consp (nth 1 position))
|
||
(car (nth 1 position))
|
||
(nth 1 position))))
|
||
|
||
(defun posn-set-point (position)
|
||
"Move point to POSITION.
|
||
Select the corresponding window as well."
|
||
(if (not (windowp (posn-window position)))
|
||
(error "Position not in text area of window"))
|
||
(select-window (posn-window position))
|
||
(if (numberp (posn-point position))
|
||
(goto-char (posn-point position))))
|
||
|
||
(defsubst posn-x-y (position)
|
||
"Return the x and y coordinates in POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 2 position))
|
||
|
||
(defun posn-col-row (position)
|
||
"Return the nominal column and row in POSITION, measured in characters.
|
||
The column and row values are approximations calculated from the x
|
||
and y coordinates in POSITION and the frame's default character width
|
||
and height.
|
||
For a scroll-bar event, the result column is 0, and the row
|
||
corresponds to the vertical position of the click in the scroll bar.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(let* ((pair (posn-x-y position))
|
||
(window (posn-window position))
|
||
(area (posn-area position)))
|
||
(cond
|
||
((null window)
|
||
'(0 . 0))
|
||
((eq area 'vertical-scroll-bar)
|
||
(cons 0 (scroll-bar-scale pair (1- (window-height window)))))
|
||
((eq area 'horizontal-scroll-bar)
|
||
(cons (scroll-bar-scale pair (window-width window)) 0))
|
||
(t
|
||
(let* ((frame (if (framep window) window (window-frame window)))
|
||
(x (/ (car pair) (frame-char-width frame)))
|
||
(y (/ (cdr pair) (+ (frame-char-height frame)
|
||
(or (frame-parameter frame 'line-spacing)
|
||
default-line-spacing
|
||
0)))))
|
||
(cons x y))))))
|
||
|
||
(defun posn-actual-col-row (position)
|
||
"Return the actual column and row in POSITION, measured in characters.
|
||
These are the actual row number in the window and character number in that row.
|
||
Return nil if POSITION does not contain the actual position; in that case
|
||
`posn-col-row' can be used to get approximate values.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 6 position))
|
||
|
||
(defsubst posn-timestamp (position)
|
||
"Return the timestamp of POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 3 position))
|
||
|
||
(defsubst posn-string (position)
|
||
"Return the string object of POSITION, or nil if a buffer position.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 4 position))
|
||
|
||
(defsubst posn-image (position)
|
||
"Return the image object of POSITION, or nil if a not an image.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 7 position))
|
||
|
||
(defsubst posn-object (position)
|
||
"Return the object (image or string) of POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(or (posn-image position) (posn-string position)))
|
||
|
||
(defsubst posn-object-x-y (position)
|
||
"Return the x and y coordinates relative to the object of POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 8 position))
|
||
|
||
(defsubst posn-object-width-height (position)
|
||
"Return the pixel width and height of the object of POSITION.
|
||
POSITION should be a list of the form returned by the `event-start'
|
||
and `event-end' functions."
|
||
(nth 9 position))
|
||
|
||
|
||
;;;; Obsolescent names for functions.
|
||
|
||
(define-obsolete-function-alias 'window-dot 'window-point "22.1")
|
||
(define-obsolete-function-alias 'set-window-dot 'set-window-point "22.1")
|
||
(define-obsolete-function-alias 'read-input 'read-string "22.1")
|
||
(define-obsolete-function-alias 'show-buffer 'set-window-buffer "22.1")
|
||
(define-obsolete-function-alias 'eval-current-buffer 'eval-buffer "22.1")
|
||
(define-obsolete-function-alias 'string-to-int 'string-to-number "22.1")
|
||
|
||
(make-obsolete 'char-bytes "now always returns 1." "20.4")
|
||
|
||
(defun insert-string (&rest args)
|
||
"Mocklisp-compatibility insert function.
|
||
Like the function `insert' except that any argument that is a number
|
||
is converted into a string by expressing it in decimal."
|
||
(dolist (el args)
|
||
(insert (if (integerp el) (number-to-string el) el))))
|
||
(make-obsolete 'insert-string 'insert "22.1")
|
||
|
||
(defun makehash (&optional test) (make-hash-table :test (or test 'eql)))
|
||
(make-obsolete 'makehash 'make-hash-table "22.1")
|
||
|
||
;; Some programs still use this as a function.
|
||
(defun baud-rate ()
|
||
"Return the value of the `baud-rate' variable."
|
||
baud-rate)
|
||
(make-obsolete 'baud-rate "use the `baud-rate' variable instead." "before 19.15")
|
||
|
||
;; These are used by VM and some old programs
|
||
(defalias 'focus-frame 'ignore "")
|
||
(make-obsolete 'focus-frame "it does nothing." "22.1")
|
||
(defalias 'unfocus-frame 'ignore "")
|
||
(make-obsolete 'unfocus-frame "it does nothing." "22.1")
|
||
|
||
|
||
;;;; Obsolescence declarations for variables, and aliases.
|
||
|
||
(make-obsolete-variable 'directory-sep-char "do not use it." "21.1")
|
||
(make-obsolete-variable 'mode-line-inverse-video "use the appropriate faces instead." "21.1")
|
||
(make-obsolete-variable 'unread-command-char
|
||
"use `unread-command-events' instead. That variable is a list of events to reread, so it now uses nil to mean `no event', instead of -1."
|
||
"before 19.15")
|
||
|
||
;; Lisp manual only updated in 22.1.
|
||
(define-obsolete-variable-alias 'executing-macro 'executing-kbd-macro
|
||
"before 19.34")
|
||
|
||
(defvaralias 'x-lost-selection-hooks 'x-lost-selection-functions)
|
||
(make-obsolete-variable 'x-lost-selection-hooks 'x-lost-selection-functions "22.1")
|
||
(defvaralias 'x-sent-selection-hooks 'x-sent-selection-functions)
|
||
(make-obsolete-variable 'x-sent-selection-hooks 'x-sent-selection-functions "22.1")
|
||
|
||
(defvaralias 'messages-buffer-max-lines 'message-log-max)
|
||
|
||
;;;; Alternate names for functions - these are not being phased out.
|
||
|
||
(defalias 'send-string 'process-send-string)
|
||
(defalias 'send-region 'process-send-region)
|
||
(defalias 'string= 'string-equal)
|
||
(defalias 'string< 'string-lessp)
|
||
(defalias 'move-marker 'set-marker)
|
||
(defalias 'rplaca 'setcar)
|
||
(defalias 'rplacd 'setcdr)
|
||
(defalias 'beep 'ding) ;preserve lingual purity
|
||
(defalias 'indent-to-column 'indent-to)
|
||
(defalias 'backward-delete-char 'delete-backward-char)
|
||
(defalias 'search-forward-regexp (symbol-function 're-search-forward))
|
||
(defalias 'search-backward-regexp (symbol-function 're-search-backward))
|
||
(defalias 'int-to-string 'number-to-string)
|
||
(defalias 'store-match-data 'set-match-data)
|
||
(defalias 'make-variable-frame-localizable 'make-variable-frame-local)
|
||
;; These are the XEmacs names:
|
||
(defalias 'point-at-eol 'line-end-position)
|
||
(defalias 'point-at-bol 'line-beginning-position)
|
||
|
||
(defalias 'user-original-login-name 'user-login-name)
|
||
|
||
|
||
;;;; Hook manipulation functions.
|
||
|
||
(defun make-local-hook (hook)
|
||
"Make the hook HOOK local to the current buffer.
|
||
The return value is HOOK.
|
||
|
||
You never need to call this function now that `add-hook' does it for you
|
||
if its LOCAL argument is non-nil.
|
||
|
||
When a hook is local, its local and global values
|
||
work in concert: running the hook actually runs all the hook
|
||
functions listed in *either* the local value *or* the global value
|
||
of the hook variable.
|
||
|
||
This function works by making t a member of the buffer-local value,
|
||
which acts as a flag to run the hook functions in the default value as
|
||
well. This works for all normal hooks, but does not work for most
|
||
non-normal hooks yet. We will be changing the callers of non-normal
|
||
hooks so that they can handle localness; this has to be done one by
|
||
one.
|
||
|
||
This function does nothing if HOOK is already local in the current
|
||
buffer.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local."
|
||
(if (local-variable-p hook)
|
||
nil
|
||
(or (boundp hook) (set hook nil))
|
||
(make-local-variable hook)
|
||
(set hook (list t)))
|
||
hook)
|
||
(make-obsolete 'make-local-hook "not necessary any more." "21.1")
|
||
|
||
(defun add-hook (hook function &optional append local)
|
||
"Add to the value of HOOK the function FUNCTION.
|
||
FUNCTION is not added if already present.
|
||
FUNCTION is added (if necessary) at the beginning of the hook list
|
||
unless the optional argument APPEND is non-nil, in which case
|
||
FUNCTION is added at the end.
|
||
|
||
The optional fourth argument, LOCAL, if non-nil, says to modify
|
||
the hook's buffer-local value rather than its default value.
|
||
This makes the hook buffer-local if needed, and it makes t a member
|
||
of the buffer-local value. That acts as a flag to run the hook
|
||
functions in the default value as well as in the local value.
|
||
|
||
HOOK should be a symbol, and FUNCTION may be any valid function. If
|
||
HOOK is void, it is first set to nil. If HOOK's value is a single
|
||
function, it is changed to a list of functions."
|
||
(or (boundp hook) (set hook nil))
|
||
(or (default-boundp hook) (set-default hook nil))
|
||
(if local (unless (local-variable-if-set-p hook)
|
||
(set (make-local-variable hook) (list t)))
|
||
;; Detect the case where make-local-variable was used on a hook
|
||
;; and do what we used to do.
|
||
(unless (and (consp (symbol-value hook)) (memq t (symbol-value hook)))
|
||
(setq local t)))
|
||
(let ((hook-value (if local (symbol-value hook) (default-value hook))))
|
||
;; If the hook value is a single function, turn it into a list.
|
||
(when (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
|
||
(setq hook-value (list hook-value)))
|
||
;; Do the actual addition if necessary
|
||
(unless (member function hook-value)
|
||
(setq hook-value
|
||
(if append
|
||
(append hook-value (list function))
|
||
(cons function hook-value))))
|
||
;; Set the actual variable
|
||
(if local (set hook hook-value) (set-default hook hook-value))))
|
||
|
||
(defun remove-hook (hook function &optional local)
|
||
"Remove from the value of HOOK the function FUNCTION.
|
||
HOOK should be a symbol, and FUNCTION may be any valid function. If
|
||
FUNCTION isn't the value of HOOK, or, if FUNCTION doesn't appear in the
|
||
list of hooks to run in HOOK, then nothing is done. See `add-hook'.
|
||
|
||
The optional third argument, LOCAL, if non-nil, says to modify
|
||
the hook's buffer-local value rather than its default value."
|
||
(or (boundp hook) (set hook nil))
|
||
(or (default-boundp hook) (set-default hook nil))
|
||
;; Do nothing if LOCAL is t but this hook has no local binding.
|
||
(unless (and local (not (local-variable-p hook)))
|
||
;; Detect the case where make-local-variable was used on a hook
|
||
;; and do what we used to do.
|
||
(when (and (local-variable-p hook)
|
||
(not (and (consp (symbol-value hook))
|
||
(memq t (symbol-value hook)))))
|
||
(setq local t))
|
||
(let ((hook-value (if local (symbol-value hook) (default-value hook))))
|
||
;; Remove the function, for both the list and the non-list cases.
|
||
(if (or (not (listp hook-value)) (eq (car hook-value) 'lambda))
|
||
(if (equal hook-value function) (setq hook-value nil))
|
||
(setq hook-value (delete function (copy-sequence hook-value))))
|
||
;; If the function is on the global hook, we need to shadow it locally
|
||
;;(when (and local (member function (default-value hook))
|
||
;; (not (member (cons 'not function) hook-value)))
|
||
;; (push (cons 'not function) hook-value))
|
||
;; Set the actual variable
|
||
(if (not local)
|
||
(set-default hook hook-value)
|
||
(if (equal hook-value '(t))
|
||
(kill-local-variable hook)
|
||
(set hook hook-value))))))
|
||
|
||
(defun add-to-list (list-var element &optional append)
|
||
"Add ELEMENT to the value of LIST-VAR if it isn't there yet.
|
||
The test for presence of ELEMENT is done with `equal'.
|
||
If ELEMENT is added, it is added at the beginning of the list,
|
||
unless the optional argument APPEND is non-nil, in which case
|
||
ELEMENT is added at the end.
|
||
|
||
The return value is the new value of LIST-VAR.
|
||
|
||
If you want to use `add-to-list' on a variable that is not defined
|
||
until a certain package is loaded, you should put the call to `add-to-list'
|
||
into a hook function that will be run only after loading the package.
|
||
`eval-after-load' provides one way to do this. In some cases
|
||
other hooks, such as major mode hooks, can do the job."
|
||
(if (member element (symbol-value list-var))
|
||
(symbol-value list-var)
|
||
(set list-var
|
||
(if append
|
||
(append (symbol-value list-var) (list element))
|
||
(cons element (symbol-value list-var))))))
|
||
|
||
|
||
(defun add-to-ordered-list (list-var element &optional order)
|
||
"Add ELEMENT to the value of LIST-VAR if it isn't there yet.
|
||
The test for presence of ELEMENT is done with `eq'.
|
||
|
||
The resulting list is reordered so that the elements are in the
|
||
order given by each element's numeric list order. Elements
|
||
without a numeric list order are placed at the end of the list.
|
||
|
||
If the third optional argument ORDER is a number (integer or
|
||
float), set the element's list order to the given value. If
|
||
ORDER is nil or omitted, do not change the numeric order of
|
||
ELEMENT. If ORDER has any other value, remove the numeric order
|
||
of ELEMENT if it has one.
|
||
|
||
The list order for each element is stored in LIST-VAR's
|
||
`list-order' property.
|
||
|
||
The return value is the new value of LIST-VAR."
|
||
(let ((ordering (get list-var 'list-order)))
|
||
(unless ordering
|
||
(put list-var 'list-order
|
||
(setq ordering (make-hash-table :weakness 'key :test 'eq))))
|
||
(when order
|
||
(puthash element (and (numberp order) order) ordering))
|
||
(unless (memq element (symbol-value list-var))
|
||
(set list-var (cons element (symbol-value list-var))))
|
||
(set list-var (sort (symbol-value list-var)
|
||
(lambda (a b)
|
||
(let ((oa (gethash a ordering))
|
||
(ob (gethash b ordering)))
|
||
(if (and oa ob)
|
||
(< oa ob)
|
||
oa)))))))
|
||
|
||
;;;; Mode hooks.
|
||
|
||
(defvar delay-mode-hooks nil
|
||
"If non-nil, `run-mode-hooks' should delay running the hooks.")
|
||
(defvar delayed-mode-hooks nil
|
||
"List of delayed mode hooks waiting to be run.")
|
||
(make-variable-buffer-local 'delayed-mode-hooks)
|
||
(put 'delay-mode-hooks 'permanent-local t)
|
||
|
||
(defvar after-change-major-mode-hook nil
|
||
"Normal hook run at the very end of major mode functions.")
|
||
|
||
(defun run-mode-hooks (&rest hooks)
|
||
"Run mode hooks `delayed-mode-hooks' and HOOKS, or delay HOOKS.
|
||
Execution is delayed if `delay-mode-hooks' is non-nil.
|
||
If `delay-mode-hooks' is nil, run `after-change-major-mode-hook'
|
||
after running the mode hooks.
|
||
Major mode functions should use this."
|
||
(if delay-mode-hooks
|
||
;; Delaying case.
|
||
(dolist (hook hooks)
|
||
(push hook delayed-mode-hooks))
|
||
;; Normal case, just run the hook as before plus any delayed hooks.
|
||
(setq hooks (nconc (nreverse delayed-mode-hooks) hooks))
|
||
(setq delayed-mode-hooks nil)
|
||
(apply 'run-hooks hooks)
|
||
(run-hooks 'after-change-major-mode-hook)))
|
||
|
||
(defmacro delay-mode-hooks (&rest body)
|
||
"Execute BODY, but delay any `run-mode-hooks'.
|
||
These hooks will be executed by the first following call to
|
||
`run-mode-hooks' that occurs outside any `delayed-mode-hooks' form.
|
||
Only affects hooks run in the current buffer."
|
||
(declare (debug t) (indent 0))
|
||
`(progn
|
||
(make-local-variable 'delay-mode-hooks)
|
||
(let ((delay-mode-hooks t))
|
||
,@body)))
|
||
|
||
;; PUBLIC: find if the current mode derives from another.
|
||
|
||
(defun derived-mode-p (&rest modes)
|
||
"Non-nil if the current major mode is derived from one of MODES.
|
||
Uses the `derived-mode-parent' property of the symbol to trace backwards."
|
||
(let ((parent major-mode))
|
||
(while (and (not (memq parent modes))
|
||
(setq parent (get parent 'derived-mode-parent))))
|
||
parent))
|
||
|
||
;;;; Minor modes.
|
||
|
||
;; If a minor mode is not defined with define-minor-mode,
|
||
;; add it here explicitly.
|
||
;; isearch-mode is deliberately excluded, since you should
|
||
;; not call it yourself.
|
||
(defvar minor-mode-list '(auto-save-mode auto-fill-mode abbrev-mode
|
||
overwrite-mode view-mode
|
||
hs-minor-mode)
|
||
"List of all minor mode functions.")
|
||
|
||
(defun add-minor-mode (toggle name &optional keymap after toggle-fun)
|
||
"Register a new minor mode.
|
||
|
||
This is an XEmacs-compatibility function. Use `define-minor-mode' instead.
|
||
|
||
TOGGLE is a symbol which is the name of a buffer-local variable that
|
||
is toggled on or off to say whether the minor mode is active or not.
|
||
|
||
NAME specifies what will appear in the mode line when the minor mode
|
||
is active. NAME should be either a string starting with a space, or a
|
||
symbol whose value is such a string.
|
||
|
||
Optional KEYMAP is the keymap for the minor mode that will be added
|
||
to `minor-mode-map-alist'.
|
||
|
||
Optional AFTER specifies that TOGGLE should be added after AFTER
|
||
in `minor-mode-alist'.
|
||
|
||
Optional TOGGLE-FUN is an interactive function to toggle the mode.
|
||
It defaults to (and should by convention be) TOGGLE.
|
||
|
||
If TOGGLE has a non-nil `:included' property, an entry for the mode is
|
||
included in the mode-line minor mode menu.
|
||
If TOGGLE has a `:menu-tag', that is used for the menu item's label."
|
||
(unless (memq toggle minor-mode-list)
|
||
(push toggle minor-mode-list))
|
||
|
||
(unless toggle-fun (setq toggle-fun toggle))
|
||
(unless (eq toggle-fun toggle)
|
||
(put toggle :minor-mode-function toggle-fun))
|
||
;; Add the name to the minor-mode-alist.
|
||
(when name
|
||
(let ((existing (assq toggle minor-mode-alist)))
|
||
(if existing
|
||
(setcdr existing (list name))
|
||
(let ((tail minor-mode-alist) found)
|
||
(while (and tail (not found))
|
||
(if (eq after (caar tail))
|
||
(setq found tail)
|
||
(setq tail (cdr tail))))
|
||
(if found
|
||
(let ((rest (cdr found)))
|
||
(setcdr found nil)
|
||
(nconc found (list (list toggle name)) rest))
|
||
(setq minor-mode-alist (cons (list toggle name)
|
||
minor-mode-alist)))))))
|
||
;; Add the toggle to the minor-modes menu if requested.
|
||
(when (get toggle :included)
|
||
(define-key mode-line-mode-menu
|
||
(vector toggle)
|
||
(list 'menu-item
|
||
(concat
|
||
(or (get toggle :menu-tag)
|
||
(if (stringp name) name (symbol-name toggle)))
|
||
(let ((mode-name (if (symbolp name) (symbol-value name))))
|
||
(if (and (stringp mode-name) (string-match "[^ ]+" mode-name))
|
||
(concat " (" (match-string 0 mode-name) ")"))))
|
||
toggle-fun
|
||
:button (cons :toggle toggle))))
|
||
|
||
;; Add the map to the minor-mode-map-alist.
|
||
(when keymap
|
||
(let ((existing (assq toggle minor-mode-map-alist)))
|
||
(if existing
|
||
(setcdr existing keymap)
|
||
(let ((tail minor-mode-map-alist) found)
|
||
(while (and tail (not found))
|
||
(if (eq after (caar tail))
|
||
(setq found tail)
|
||
(setq tail (cdr tail))))
|
||
(if found
|
||
(let ((rest (cdr found)))
|
||
(setcdr found nil)
|
||
(nconc found (list (cons toggle keymap)) rest))
|
||
(setq minor-mode-map-alist (cons (cons toggle keymap)
|
||
minor-mode-map-alist))))))))
|
||
|
||
;;; Load history
|
||
|
||
;;; (defvar symbol-file-load-history-loaded nil
|
||
;;; "Non-nil means we have loaded the file `fns-VERSION.el' in `exec-directory'.
|
||
;;; That file records the part of `load-history' for preloaded files,
|
||
;;; which is cleared out before dumping to make Emacs smaller.")
|
||
|
||
;;; (defun load-symbol-file-load-history ()
|
||
;;; "Load the file `fns-VERSION.el' in `exec-directory' if not already done.
|
||
;;; That file records the part of `load-history' for preloaded files,
|
||
;;; which is cleared out before dumping to make Emacs smaller."
|
||
;;; (unless symbol-file-load-history-loaded
|
||
;;; (load (expand-file-name
|
||
;;; ;; fns-XX.YY.ZZ.el does not work on DOS filesystem.
|
||
;;; (if (eq system-type 'ms-dos)
|
||
;;; "fns.el"
|
||
;;; (format "fns-%s.el" emacs-version))
|
||
;;; exec-directory)
|
||
;;; ;; The file name fns-%s.el already has a .el extension.
|
||
;;; nil nil t)
|
||
;;; (setq symbol-file-load-history-loaded t)))
|
||
|
||
(defun symbol-file (symbol &optional type)
|
||
"Return the input source in which SYMBOL was defined.
|
||
The value is an absolute file name.
|
||
It can also be nil, if the definition is not associated with any file.
|
||
|
||
If TYPE is nil, then any kind of definition is acceptable.
|
||
If TYPE is `defun' or `defvar', that specifies function
|
||
definition only or variable definition only.
|
||
`defface' specifies a face definition only."
|
||
(if (and (or (null type) (eq type 'defun))
|
||
(symbolp symbol) (fboundp symbol)
|
||
(eq 'autoload (car-safe (symbol-function symbol))))
|
||
(nth 1 (symbol-function symbol))
|
||
(let ((files load-history)
|
||
file)
|
||
(while files
|
||
(if (if type
|
||
(if (eq type 'defvar)
|
||
;; Variables are present just as their names.
|
||
(member symbol (cdr (car files)))
|
||
;; Other types are represented as (TYPE . NAME).
|
||
(member (cons type symbol) (cdr (car files))))
|
||
;; We accept all types, so look for variable def
|
||
;; and then for any other kind.
|
||
(or (member symbol (cdr (car files)))
|
||
(rassq symbol (cdr (car files)))))
|
||
(setq file (car (car files)) files nil))
|
||
(setq files (cdr files)))
|
||
file)))
|
||
|
||
;;;###autoload
|
||
(defun locate-library (library &optional nosuffix path interactive-call)
|
||
"Show the precise file name of Emacs library LIBRARY.
|
||
This command searches the directories in `load-path' like `\\[load-library]'
|
||
to find the file that `\\[load-library] RET LIBRARY RET' would load.
|
||
Optional second arg NOSUFFIX non-nil means don't add suffixes `load-suffixes'
|
||
to the specified name LIBRARY.
|
||
|
||
If the optional third arg PATH is specified, that list of directories
|
||
is used instead of `load-path'.
|
||
|
||
When called from a program, the file name is normaly returned as a
|
||
string. When run interactively, the argument INTERACTIVE-CALL is t,
|
||
and the file name is displayed in the echo area."
|
||
(interactive (list (completing-read "Locate library: "
|
||
'locate-file-completion
|
||
(cons load-path load-suffixes))
|
||
nil nil
|
||
t))
|
||
(let ((file (locate-file library
|
||
(or path load-path)
|
||
(append (unless nosuffix load-suffixes) '("")))))
|
||
(if interactive-call
|
||
(if file
|
||
(message "Library is file %s" (abbreviate-file-name file))
|
||
(message "No library %s in search path" library)))
|
||
file))
|
||
|
||
|
||
;;;; Specifying things to do later.
|
||
|
||
(defmacro eval-at-startup (&rest body)
|
||
"Make arrangements to evaluate BODY when Emacs starts up.
|
||
If this is run after Emacs startup, evaluate BODY immediately.
|
||
Always returns nil.
|
||
|
||
This works by adding a function to `before-init-hook'.
|
||
That function's doc string says which file created it."
|
||
`(progn
|
||
(if command-line-processed
|
||
(progn . ,body)
|
||
(add-hook 'before-init-hook
|
||
'(lambda () ,(concat "From " (or load-file-name "no file"))
|
||
. ,body)
|
||
t))
|
||
nil))
|
||
|
||
(defun eval-after-load (file form)
|
||
"Arrange that, if FILE is ever loaded, FORM will be run at that time.
|
||
This makes or adds to an entry on `after-load-alist'.
|
||
If FILE is already loaded, evaluate FORM right now.
|
||
It does nothing if FORM is already on the list for FILE.
|
||
FILE must match exactly. Normally FILE is the name of a library,
|
||
with no directory or extension specified, since that is how `load'
|
||
is normally called.
|
||
FILE can also be a feature (i.e. a symbol), in which case FORM is
|
||
evaluated whenever that feature is `provide'd."
|
||
(let ((elt (assoc file after-load-alist)))
|
||
;; Make sure there is an element for FILE.
|
||
(unless elt (setq elt (list file)) (push elt after-load-alist))
|
||
;; Add FORM to the element if it isn't there.
|
||
(unless (member form (cdr elt))
|
||
(nconc elt (list form))
|
||
;; If the file has been loaded already, run FORM right away.
|
||
(if (if (symbolp file)
|
||
(featurep file)
|
||
;; Make sure `load-history' contains the files dumped with
|
||
;; Emacs for the case that FILE is one of them.
|
||
;; (load-symbol-file-load-history)
|
||
(when (locate-library file)
|
||
(assoc (locate-library file) load-history)))
|
||
(eval form))))
|
||
form)
|
||
|
||
(defun eval-next-after-load (file)
|
||
"Read the following input sexp, and run it whenever FILE is loaded.
|
||
This makes or adds to an entry on `after-load-alist'.
|
||
FILE should be the name of a library, with no directory name."
|
||
(eval-after-load file (read)))
|
||
|
||
;;;; Process stuff.
|
||
|
||
;; open-network-stream is a wrapper around make-network-process.
|
||
|
||
(when (featurep 'make-network-process)
|
||
(defun open-network-stream (name buffer host service)
|
||
"Open a TCP connection for a service to a host.
|
||
Returns a subprocess-object to represent the connection.
|
||
Input and output work as for subprocesses; `delete-process' closes it.
|
||
|
||
Args are NAME BUFFER HOST SERVICE.
|
||
NAME is name for process. It is modified if necessary to make it unique.
|
||
BUFFER is the buffer (or buffer name) to associate with the process.
|
||
Process output goes at end of that buffer, unless you specify
|
||
an output stream or filter function to handle the output.
|
||
BUFFER may be also nil, meaning that this process is not associated
|
||
with any buffer.
|
||
HOST is name of the host to connect to, or its IP address.
|
||
SERVICE is name of the service desired, or an integer specifying
|
||
a port number to connect to."
|
||
(make-network-process :name name :buffer buffer
|
||
:host host :service service)))
|
||
|
||
;; compatibility
|
||
|
||
(make-obsolete 'process-kill-without-query
|
||
"use `process-query-on-exit-flag' or `set-process-query-on-exit-flag'."
|
||
"22.1")
|
||
(defun process-kill-without-query (process &optional flag)
|
||
"Say no query needed if PROCESS is running when Emacs is exited.
|
||
Optional second argument if non-nil says to require a query.
|
||
Value is t if a query was formerly required."
|
||
(let ((old (process-query-on-exit-flag process)))
|
||
(set-process-query-on-exit-flag process nil)
|
||
old))
|
||
|
||
;; process plist management
|
||
|
||
(defun process-get (process propname)
|
||
"Return the value of PROCESS' PROPNAME property.
|
||
This is the last value stored with `(process-put PROCESS PROPNAME VALUE)'."
|
||
(plist-get (process-plist process) propname))
|
||
|
||
(defun process-put (process propname value)
|
||
"Change PROCESS' PROPNAME property to VALUE.
|
||
It can be retrieved with `(process-get PROCESS PROPNAME)'."
|
||
(set-process-plist process
|
||
(plist-put (process-plist process) propname value)))
|
||
|
||
|
||
;;;; Input and display facilities.
|
||
|
||
(defvar read-quoted-char-radix 8
|
||
"*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
|
||
Legitimate radix values are 8, 10 and 16.")
|
||
|
||
(custom-declare-variable-early
|
||
'read-quoted-char-radix 8
|
||
"*Radix for \\[quoted-insert] and other uses of `read-quoted-char'.
|
||
Legitimate radix values are 8, 10 and 16."
|
||
:type '(choice (const 8) (const 10) (const 16))
|
||
:group 'editing-basics)
|
||
|
||
(defun read-quoted-char (&optional prompt)
|
||
"Like `read-char', but do not allow quitting.
|
||
Also, if the first character read is an octal digit,
|
||
we read any number of octal digits and return the
|
||
specified character code. Any nondigit terminates the sequence.
|
||
If the terminator is RET, it is discarded;
|
||
any other terminator is used itself as input.
|
||
|
||
The optional argument PROMPT specifies a string to use to prompt the user.
|
||
The variable `read-quoted-char-radix' controls which radix to use
|
||
for numeric input."
|
||
(let ((message-log-max nil) done (first t) (code 0) char translated)
|
||
(while (not done)
|
||
(let ((inhibit-quit first)
|
||
;; Don't let C-h get the help message--only help function keys.
|
||
(help-char nil)
|
||
(help-form
|
||
"Type the special character you want to use,
|
||
or the octal character code.
|
||
RET terminates the character code and is discarded;
|
||
any other non-digit terminates the character code and is then used as input."))
|
||
(setq char (read-event (and prompt (format "%s-" prompt)) t))
|
||
(if inhibit-quit (setq quit-flag nil)))
|
||
;; Translate TAB key into control-I ASCII character, and so on.
|
||
;; Note: `read-char' does it using the `ascii-character' property.
|
||
;; We could try and use read-key-sequence instead, but then C-q ESC
|
||
;; or C-q C-x might not return immediately since ESC or C-x might be
|
||
;; bound to some prefix in function-key-map or key-translation-map.
|
||
(setq translated char)
|
||
(let ((translation (lookup-key function-key-map (vector char))))
|
||
(if (arrayp translation)
|
||
(setq translated (aref translation 0))))
|
||
(cond ((null translated))
|
||
((not (integerp translated))
|
||
(setq unread-command-events (list char)
|
||
done t))
|
||
((/= (logand translated ?\M-\^@) 0)
|
||
;; Turn a meta-character into a character with the 0200 bit set.
|
||
(setq code (logior (logand translated (lognot ?\M-\^@)) 128)
|
||
done t))
|
||
((and (<= ?0 translated) (< translated (+ ?0 (min 10 read-quoted-char-radix))))
|
||
(setq code (+ (* code read-quoted-char-radix) (- translated ?0)))
|
||
(and prompt (setq prompt (message "%s %c" prompt translated))))
|
||
((and (<= ?a (downcase translated))
|
||
(< (downcase translated) (+ ?a -10 (min 36 read-quoted-char-radix))))
|
||
(setq code (+ (* code read-quoted-char-radix)
|
||
(+ 10 (- (downcase translated) ?a))))
|
||
(and prompt (setq prompt (message "%s %c" prompt translated))))
|
||
((and (not first) (eq translated ?\C-m))
|
||
(setq done t))
|
||
((not first)
|
||
(setq unread-command-events (list char)
|
||
done t))
|
||
(t (setq code translated
|
||
done t)))
|
||
(setq first nil))
|
||
code))
|
||
|
||
(defun read-passwd (prompt &optional confirm default)
|
||
"Read a password, prompting with PROMPT, and return it.
|
||
If optional CONFIRM is non-nil, read the password twice to make sure.
|
||
Optional DEFAULT is a default password to use instead of empty input.
|
||
|
||
This function echoes `.' for each character that the user types.
|
||
The user ends with RET, LFD, or ESC. DEL or C-h rubs out. C-u kills line.
|
||
C-g quits; if `inhibit-quit' was non-nil around this function,
|
||
then it returns nil if the user types C-g.
|
||
|
||
Once the caller uses the password, it can erase the password
|
||
by doing (clear-string STRING)."
|
||
(with-local-quit
|
||
(if confirm
|
||
(let (success)
|
||
(while (not success)
|
||
(let ((first (read-passwd prompt nil default))
|
||
(second (read-passwd "Confirm password: " nil default)))
|
||
(if (equal first second)
|
||
(progn
|
||
(and (arrayp second) (clear-string second))
|
||
(setq success first))
|
||
(and (arrayp first) (clear-string first))
|
||
(and (arrayp second) (clear-string second))
|
||
(message "Password not repeated accurately; please start over")
|
||
(sit-for 1))))
|
||
success)
|
||
(let ((pass nil)
|
||
(c 0)
|
||
(echo-keystrokes 0)
|
||
(cursor-in-echo-area t))
|
||
(add-text-properties 0 (length prompt)
|
||
minibuffer-prompt-properties prompt)
|
||
(while (progn (message "%s%s"
|
||
prompt
|
||
(make-string (length pass) ?.))
|
||
(setq c (read-char-exclusive nil t))
|
||
(and (/= c ?\r) (/= c ?\n) (/= c ?\e)))
|
||
(clear-this-command-keys)
|
||
(if (= c ?\C-u)
|
||
(progn
|
||
(and (arrayp pass) (clear-string pass))
|
||
(setq pass ""))
|
||
(if (and (/= c ?\b) (/= c ?\177))
|
||
(let* ((new-char (char-to-string c))
|
||
(new-pass (concat pass new-char)))
|
||
(and (arrayp pass) (clear-string pass))
|
||
(clear-string new-char)
|
||
(setq c ?\0)
|
||
(setq pass new-pass))
|
||
(if (> (length pass) 0)
|
||
(let ((new-pass (substring pass 0 -1)))
|
||
(and (arrayp pass) (clear-string pass))
|
||
(setq pass new-pass))))))
|
||
(message nil)
|
||
(or pass default "")))))
|
||
|
||
;; This should be used by `call-interactively' for `n' specs.
|
||
(defun read-number (prompt &optional default)
|
||
(let ((n nil))
|
||
(when default
|
||
(setq prompt
|
||
(if (string-match "\\(\\):[ \t]*\\'" prompt)
|
||
(replace-match (format " (default %s)" default) t t prompt 1)
|
||
(replace-regexp-in-string "[ \t]*\\'"
|
||
(format " (default %s) " default)
|
||
prompt t t))))
|
||
(while
|
||
(progn
|
||
(let ((str (read-from-minibuffer prompt nil nil nil nil
|
||
(and default
|
||
(number-to-string default)))))
|
||
(setq n (cond
|
||
((zerop (length str)) default)
|
||
((stringp str) (read str)))))
|
||
(unless (numberp n)
|
||
(message "Please enter a number.")
|
||
(sit-for 1)
|
||
t)))
|
||
n))
|
||
|
||
;;; Atomic change groups.
|
||
|
||
(defmacro atomic-change-group (&rest body)
|
||
"Perform BODY as an atomic change group.
|
||
This means that if BODY exits abnormally,
|
||
all of its changes to the current buffer are undone.
|
||
This works regardless of whether undo is enabled in the buffer.
|
||
|
||
This mechanism is transparent to ordinary use of undo;
|
||
if undo is enabled in the buffer and BODY succeeds, the
|
||
user can undo the change normally."
|
||
(declare (indent 0) (debug t))
|
||
(let ((handle (make-symbol "--change-group-handle--"))
|
||
(success (make-symbol "--change-group-success--")))
|
||
`(let ((,handle (prepare-change-group))
|
||
(,success nil))
|
||
(unwind-protect
|
||
(progn
|
||
;; This is inside the unwind-protect because
|
||
;; it enables undo if that was disabled; we need
|
||
;; to make sure that it gets disabled again.
|
||
(activate-change-group ,handle)
|
||
,@body
|
||
(setq ,success t))
|
||
;; Either of these functions will disable undo
|
||
;; if it was disabled before.
|
||
(if ,success
|
||
(accept-change-group ,handle)
|
||
(cancel-change-group ,handle))))))
|
||
|
||
(defun prepare-change-group (&optional buffer)
|
||
"Return a handle for the current buffer's state, for a change group.
|
||
If you specify BUFFER, make a handle for BUFFER's state instead.
|
||
|
||
Pass the handle to `activate-change-group' afterward to initiate
|
||
the actual changes of the change group.
|
||
|
||
To finish the change group, call either `accept-change-group' or
|
||
`cancel-change-group' passing the same handle as argument. Call
|
||
`accept-change-group' to accept the changes in the group as final;
|
||
call `cancel-change-group' to undo them all. You should use
|
||
`unwind-protect' to make sure the group is always finished. The call
|
||
to `activate-change-group' should be inside the `unwind-protect'.
|
||
Once you finish the group, don't use the handle again--don't try to
|
||
finish the same group twice. For a simple example of correct use, see
|
||
the source code of `atomic-change-group'.
|
||
|
||
The handle records only the specified buffer. To make a multibuffer
|
||
change group, call this function once for each buffer you want to
|
||
cover, then use `nconc' to combine the returned values, like this:
|
||
|
||
(nconc (prepare-change-group buffer-1)
|
||
(prepare-change-group buffer-2))
|
||
|
||
You can then activate that multibuffer change group with a single
|
||
call to `activate-change-group' and finish it with a single call
|
||
to `accept-change-group' or `cancel-change-group'."
|
||
|
||
(if buffer
|
||
(list (cons buffer (with-current-buffer buffer buffer-undo-list)))
|
||
(list (cons (current-buffer) buffer-undo-list))))
|
||
|
||
(defun activate-change-group (handle)
|
||
"Activate a change group made with `prepare-change-group' (which see)."
|
||
(dolist (elt handle)
|
||
(with-current-buffer (car elt)
|
||
(if (eq buffer-undo-list t)
|
||
(setq buffer-undo-list nil)))))
|
||
|
||
(defun accept-change-group (handle)
|
||
"Finish a change group made with `prepare-change-group' (which see).
|
||
This finishes the change group by accepting its changes as final."
|
||
(dolist (elt handle)
|
||
(with-current-buffer (car elt)
|
||
(if (eq elt t)
|
||
(setq buffer-undo-list t)))))
|
||
|
||
(defun cancel-change-group (handle)
|
||
"Finish a change group made with `prepare-change-group' (which see).
|
||
This finishes the change group by reverting all of its changes."
|
||
(dolist (elt handle)
|
||
(with-current-buffer (car elt)
|
||
(setq elt (cdr elt))
|
||
(let ((old-car
|
||
(if (consp elt) (car elt)))
|
||
(old-cdr
|
||
(if (consp elt) (cdr elt))))
|
||
;; Temporarily truncate the undo log at ELT.
|
||
(when (consp elt)
|
||
(setcar elt nil) (setcdr elt nil))
|
||
(unless (eq last-command 'undo) (undo-start))
|
||
;; Make sure there's no confusion.
|
||
(when (and (consp elt) (not (eq elt (last pending-undo-list))))
|
||
(error "Undoing to some unrelated state"))
|
||
;; Undo it all.
|
||
(while pending-undo-list (undo-more 1))
|
||
;; Reset the modified cons cell ELT to its original content.
|
||
(when (consp elt)
|
||
(setcar elt old-car)
|
||
(setcdr elt old-cdr))
|
||
;; Revert the undo info to what it was when we grabbed the state.
|
||
(setq buffer-undo-list elt)))))
|
||
|
||
;;;; Display-related functions.
|
||
|
||
;; For compatibility.
|
||
(defalias 'redraw-modeline 'force-mode-line-update)
|
||
|
||
(defun force-mode-line-update (&optional all)
|
||
"Force redisplay of the current buffer's mode line and header line.
|
||
With optional non-nil ALL, force redisplay of all mode lines and
|
||
header lines. This function also forces recomputation of the
|
||
menu bar menus and the frame title."
|
||
(if all (save-excursion (set-buffer (other-buffer))))
|
||
(set-buffer-modified-p (buffer-modified-p)))
|
||
|
||
(defun momentary-string-display (string pos &optional exit-char message)
|
||
"Momentarily display STRING in the buffer at POS.
|
||
Display remains until next event is input.
|
||
Optional third arg EXIT-CHAR can be a character, event or event
|
||
description list. EXIT-CHAR defaults to SPC. If the input is
|
||
EXIT-CHAR it is swallowed; otherwise it is then available as
|
||
input (as a command if nothing else).
|
||
Display MESSAGE (optional fourth arg) in the echo area.
|
||
If MESSAGE is nil, instructions to type EXIT-CHAR are displayed there."
|
||
(or exit-char (setq exit-char ?\ ))
|
||
(let ((inhibit-read-only t)
|
||
;; Don't modify the undo list at all.
|
||
(buffer-undo-list t)
|
||
(modified (buffer-modified-p))
|
||
(name buffer-file-name)
|
||
insert-end)
|
||
(unwind-protect
|
||
(progn
|
||
(save-excursion
|
||
(goto-char pos)
|
||
;; defeat file locking... don't try this at home, kids!
|
||
(setq buffer-file-name nil)
|
||
(insert-before-markers string)
|
||
(setq insert-end (point))
|
||
;; If the message end is off screen, recenter now.
|
||
(if (< (window-end nil t) insert-end)
|
||
(recenter (/ (window-height) 2)))
|
||
;; If that pushed message start off the screen,
|
||
;; scroll to start it at the top of the screen.
|
||
(move-to-window-line 0)
|
||
(if (> (point) pos)
|
||
(progn
|
||
(goto-char pos)
|
||
(recenter 0))))
|
||
(message (or message "Type %s to continue editing.")
|
||
(single-key-description exit-char))
|
||
(let (char)
|
||
(if (integerp exit-char)
|
||
(condition-case nil
|
||
(progn
|
||
(setq char (read-char))
|
||
(or (eq char exit-char)
|
||
(setq unread-command-events (list char))))
|
||
(error
|
||
;; `exit-char' is a character, hence it differs
|
||
;; from char, which is an event.
|
||
(setq unread-command-events (list char))))
|
||
;; `exit-char' can be an event, or an event description
|
||
;; list.
|
||
(setq char (read-event))
|
||
(or (eq char exit-char)
|
||
(eq char (event-convert-list exit-char))
|
||
(setq unread-command-events (list char))))))
|
||
(if insert-end
|
||
(save-excursion
|
||
(delete-region pos insert-end)))
|
||
(setq buffer-file-name name)
|
||
(set-buffer-modified-p modified))))
|
||
|
||
|
||
;;;; Overlay operations
|
||
|
||
(defun copy-overlay (o)
|
||
"Return a copy of overlay O."
|
||
(let ((o1 (make-overlay (overlay-start o) (overlay-end o)
|
||
;; FIXME: there's no easy way to find the
|
||
;; insertion-type of the two markers.
|
||
(overlay-buffer o)))
|
||
(props (overlay-properties o)))
|
||
(while props
|
||
(overlay-put o1 (pop props) (pop props)))
|
||
o1))
|
||
|
||
(defun remove-overlays (&optional beg end name val)
|
||
"Clear BEG and END of overlays whose property NAME has value VAL.
|
||
Overlays might be moved and/or split.
|
||
BEG and END default respectively to the beginning and end of buffer."
|
||
(unless beg (setq beg (point-min)))
|
||
(unless end (setq end (point-max)))
|
||
(if (< end beg)
|
||
(setq beg (prog1 end (setq end beg))))
|
||
(save-excursion
|
||
(dolist (o (overlays-in beg end))
|
||
(when (eq (overlay-get o name) val)
|
||
;; Either push this overlay outside beg...end
|
||
;; or split it to exclude beg...end
|
||
;; or delete it entirely (if it is contained in beg...end).
|
||
(if (< (overlay-start o) beg)
|
||
(if (> (overlay-end o) end)
|
||
(progn
|
||
(move-overlay (copy-overlay o)
|
||
(overlay-start o) beg)
|
||
(move-overlay o end (overlay-end o)))
|
||
(move-overlay o (overlay-start o) beg))
|
||
(if (> (overlay-end o) end)
|
||
(move-overlay o end (overlay-end o))
|
||
(delete-overlay o)))))))
|
||
|
||
;;;; Miscellanea.
|
||
|
||
(defvar suspend-hook nil
|
||
"Normal hook run by `suspend-emacs', before suspending.")
|
||
|
||
(defvar suspend-resume-hook nil
|
||
"Normal hook run by `suspend-emacs', after Emacs is continued.")
|
||
|
||
(defvar temp-buffer-show-hook nil
|
||
"Normal hook run by `with-output-to-temp-buffer' after displaying the buffer.
|
||
When the hook runs, the temporary buffer is current, and the window it
|
||
was displayed in is selected. This hook is normally set up with a
|
||
function to make the buffer read only, and find function names and
|
||
variable names in it, provided the major mode is still Help mode.")
|
||
|
||
(defvar temp-buffer-setup-hook nil
|
||
"Normal hook run by `with-output-to-temp-buffer' at the start.
|
||
When the hook runs, the temporary buffer is current.
|
||
This hook is normally set up with a function to put the buffer in Help
|
||
mode.")
|
||
|
||
;; Avoid compiler warnings about this variable,
|
||
;; which has a special meaning on certain system types.
|
||
(defvar buffer-file-type nil
|
||
"Non-nil if the visited file is a binary file.
|
||
This variable is meaningful on MS-DOG and Windows NT.
|
||
On those systems, it is automatically local in every buffer.
|
||
On other systems, this variable is normally always nil.")
|
||
|
||
;;;; Misc. useful functions.
|
||
|
||
(defun find-tag-default ()
|
||
"Determine default tag to search for, based on text at point.
|
||
If there is no plausible default, return nil."
|
||
(save-excursion
|
||
(while (looking-at "\\sw\\|\\s_")
|
||
(forward-char 1))
|
||
(if (or (re-search-backward "\\sw\\|\\s_"
|
||
(save-excursion (beginning-of-line) (point))
|
||
t)
|
||
(re-search-forward "\\(\\sw\\|\\s_\\)+"
|
||
(save-excursion (end-of-line) (point))
|
||
t))
|
||
(progn
|
||
(goto-char (match-end 0))
|
||
(condition-case nil
|
||
(buffer-substring-no-properties
|
||
(point)
|
||
(progn (forward-sexp -1)
|
||
(while (looking-at "\\s'")
|
||
(forward-char 1))
|
||
(point)))
|
||
(error nil)))
|
||
nil)))
|
||
|
||
(defun play-sound (sound)
|
||
"SOUND is a list of the form `(sound KEYWORD VALUE...)'.
|
||
The following keywords are recognized:
|
||
|
||
:file FILE - read sound data from FILE. If FILE isn't an
|
||
absolute file name, it is searched in `data-directory'.
|
||
|
||
:data DATA - read sound data from string DATA.
|
||
|
||
Exactly one of :file or :data must be present.
|
||
|
||
:volume VOL - set volume to VOL. VOL must an integer in the
|
||
range 0..100 or a float in the range 0..1.0. If not specified,
|
||
don't change the volume setting of the sound device.
|
||
|
||
:device DEVICE - play sound on DEVICE. If not specified,
|
||
a system-dependent default device name is used."
|
||
(if (fboundp 'play-sound-internal)
|
||
(play-sound-internal sound)
|
||
(error "This Emacs binary lacks sound support")))
|
||
|
||
(defun shell-quote-argument (argument)
|
||
"Quote an argument for passing as argument to an inferior shell."
|
||
(if (eq system-type 'ms-dos)
|
||
;; Quote using double quotes, but escape any existing quotes in
|
||
;; the argument with backslashes.
|
||
(let ((result "")
|
||
(start 0)
|
||
end)
|
||
(if (or (null (string-match "[^\"]" argument))
|
||
(< (match-end 0) (length argument)))
|
||
(while (string-match "[\"]" argument start)
|
||
(setq end (match-beginning 0)
|
||
result (concat result (substring argument start end)
|
||
"\\" (substring argument end (1+ end)))
|
||
start (1+ end))))
|
||
(concat "\"" result (substring argument start) "\""))
|
||
(if (eq system-type 'windows-nt)
|
||
(concat "\"" argument "\"")
|
||
(if (equal argument "")
|
||
"''"
|
||
;; Quote everything except POSIX filename characters.
|
||
;; This should be safe enough even for really weird shells.
|
||
(let ((result "") (start 0) end)
|
||
(while (string-match "[^-0-9a-zA-Z_./]" argument start)
|
||
(setq end (match-beginning 0)
|
||
result (concat result (substring argument start end)
|
||
"\\" (substring argument end (1+ end)))
|
||
start (1+ end)))
|
||
(concat result (substring argument start)))))))
|
||
|
||
;;;; Support for yanking and text properties.
|
||
|
||
(defvar yank-excluded-properties)
|
||
|
||
(defun remove-yank-excluded-properties (start end)
|
||
"Remove `yank-excluded-properties' between START and END positions.
|
||
Replaces `category' properties with their defined properties."
|
||
(let ((inhibit-read-only t))
|
||
;; Replace any `category' property with the properties it stands for.
|
||
(unless (memq yank-excluded-properties '(t nil))
|
||
(save-excursion
|
||
(goto-char start)
|
||
(while (< (point) end)
|
||
(let ((cat (get-text-property (point) 'category))
|
||
run-end)
|
||
(setq run-end
|
||
(next-single-property-change (point) 'category nil end))
|
||
(when cat
|
||
(let (run-end2 original)
|
||
(remove-list-of-text-properties (point) run-end '(category))
|
||
(while (< (point) run-end)
|
||
(setq run-end2 (next-property-change (point) nil run-end))
|
||
(setq original (text-properties-at (point)))
|
||
(set-text-properties (point) run-end2 (symbol-plist cat))
|
||
(add-text-properties (point) run-end2 original)
|
||
(goto-char run-end2))))
|
||
(goto-char run-end)))))
|
||
(if (eq yank-excluded-properties t)
|
||
(set-text-properties start end nil)
|
||
(remove-list-of-text-properties start end yank-excluded-properties))))
|
||
|
||
(defvar yank-undo-function)
|
||
|
||
(defun insert-for-yank (string)
|
||
"Calls `insert-for-yank-1' repetitively for each `yank-handler' segment.
|
||
|
||
See `insert-for-yank-1' for more details."
|
||
(let (to)
|
||
(while (setq to (next-single-property-change 0 'yank-handler string))
|
||
(insert-for-yank-1 (substring string 0 to))
|
||
(setq string (substring string to))))
|
||
(insert-for-yank-1 string))
|
||
|
||
(defun insert-for-yank-1 (string)
|
||
"Insert STRING at point, stripping some text properties.
|
||
|
||
Strip text properties from the inserted text according to
|
||
`yank-excluded-properties'. Otherwise just like (insert STRING).
|
||
|
||
If STRING has a non-nil `yank-handler' property on the first character,
|
||
the normal insert behavior is modified in various ways. The value of
|
||
the yank-handler property must be a list with one to four elements
|
||
with the following format: (FUNCTION PARAM NOEXCLUDE UNDO).
|
||
When FUNCTION is present and non-nil, it is called instead of `insert'
|
||
to insert the string. FUNCTION takes one argument--the object to insert.
|
||
If PARAM is present and non-nil, it replaces STRING as the object
|
||
passed to FUNCTION (or `insert'); for example, if FUNCTION is
|
||
`yank-rectangle', PARAM may be a list of strings to insert as a
|
||
rectangle.
|
||
If NOEXCLUDE is present and non-nil, the normal removal of the
|
||
yank-excluded-properties is not performed; instead FUNCTION is
|
||
responsible for removing those properties. This may be necessary
|
||
if FUNCTION adjusts point before or after inserting the object.
|
||
If UNDO is present and non-nil, it is a function that will be called
|
||
by `yank-pop' to undo the insertion of the current object. It is
|
||
called with two arguments, the start and end of the current region.
|
||
FUNCTION may set `yank-undo-function' to override the UNDO value."
|
||
(let* ((handler (and (stringp string)
|
||
(get-text-property 0 'yank-handler string)))
|
||
(param (or (nth 1 handler) string))
|
||
(opoint (point)))
|
||
(setq yank-undo-function t)
|
||
(if (nth 0 handler) ;; FUNCTION
|
||
(funcall (car handler) param)
|
||
(insert param))
|
||
(unless (nth 2 handler) ;; NOEXCLUDE
|
||
(remove-yank-excluded-properties opoint (point)))
|
||
(if (eq yank-undo-function t) ;; not set by FUNCTION
|
||
(setq yank-undo-function (nth 3 handler))) ;; UNDO
|
||
(if (nth 4 handler) ;; COMMAND
|
||
(setq this-command (nth 4 handler)))))
|
||
|
||
(defun insert-buffer-substring-no-properties (buffer &optional start end)
|
||
"Insert before point a substring of BUFFER, without text properties.
|
||
BUFFER may be a buffer or a buffer name.
|
||
Arguments START and END are character positions specifying the substring.
|
||
They default to the values of (point-min) and (point-max) in BUFFER."
|
||
(let ((opoint (point)))
|
||
(insert-buffer-substring buffer start end)
|
||
(let ((inhibit-read-only t))
|
||
(set-text-properties opoint (point) nil))))
|
||
|
||
(defun insert-buffer-substring-as-yank (buffer &optional start end)
|
||
"Insert before point a part of BUFFER, stripping some text properties.
|
||
BUFFER may be a buffer or a buffer name.
|
||
Arguments START and END are character positions specifying the substring.
|
||
They default to the values of (point-min) and (point-max) in BUFFER.
|
||
Strip text properties from the inserted text according to
|
||
`yank-excluded-properties'."
|
||
;; Since the buffer text should not normally have yank-handler properties,
|
||
;; there is no need to handle them here.
|
||
(let ((opoint (point)))
|
||
(insert-buffer-substring buffer start end)
|
||
(remove-yank-excluded-properties opoint (point))))
|
||
|
||
|
||
;;;; Synchronous shell commands.
|
||
|
||
(defun start-process-shell-command (name buffer &rest args)
|
||
"Start a program in a subprocess. Return the process object for it.
|
||
NAME is name for process. It is modified if necessary to make it unique.
|
||
BUFFER is the buffer (or buffer name) to associate with the process.
|
||
Process output goes at end of that buffer, unless you specify
|
||
an output stream or filter function to handle the output.
|
||
BUFFER may be also nil, meaning that this process is not associated
|
||
with any buffer
|
||
COMMAND is the name of a shell command.
|
||
Remaining arguments are the arguments for the command.
|
||
Wildcards and redirection are handled as usual in the shell.
|
||
|
||
\(fn NAME BUFFER COMMAND &rest COMMAND-ARGS)"
|
||
(cond
|
||
((eq system-type 'vax-vms)
|
||
(apply 'start-process name buffer args))
|
||
;; We used to use `exec' to replace the shell with the command,
|
||
;; but that failed to handle (...) and semicolon, etc.
|
||
(t
|
||
(start-process name buffer shell-file-name shell-command-switch
|
||
(mapconcat 'identity args " ")))))
|
||
|
||
(defun call-process-shell-command (command &optional infile buffer display
|
||
&rest args)
|
||
"Execute the shell command COMMAND synchronously in separate process.
|
||
The remaining arguments are optional.
|
||
The program's input comes from file INFILE (nil means `/dev/null').
|
||
Insert output in BUFFER before point; t means current buffer;
|
||
nil for BUFFER means discard it; 0 means discard and don't wait.
|
||
BUFFER can also have the form (REAL-BUFFER STDERR-FILE); in that case,
|
||
REAL-BUFFER says what to do with standard output, as above,
|
||
while STDERR-FILE says what to do with standard error in the child.
|
||
STDERR-FILE may be nil (discard standard error output),
|
||
t (mix it with ordinary output), or a file name string.
|
||
|
||
Fourth arg DISPLAY non-nil means redisplay buffer as output is inserted.
|
||
Remaining arguments are strings passed as additional arguments for COMMAND.
|
||
Wildcards and redirection are handled as usual in the shell.
|
||
|
||
If BUFFER is 0, `call-process-shell-command' returns immediately with value nil.
|
||
Otherwise it waits for COMMAND to terminate and returns a numeric exit
|
||
status or a signal description string.
|
||
If you quit, the process is killed with SIGINT, or SIGKILL if you quit again."
|
||
(cond
|
||
((eq system-type 'vax-vms)
|
||
(apply 'call-process command infile buffer display args))
|
||
;; We used to use `exec' to replace the shell with the command,
|
||
;; but that failed to handle (...) and semicolon, etc.
|
||
(t
|
||
(call-process shell-file-name
|
||
infile buffer display
|
||
shell-command-switch
|
||
(mapconcat 'identity (cons command args) " ")))))
|
||
|
||
;;;; Lisp macros to do various things temporarily.
|
||
|
||
(defmacro with-current-buffer (buffer &rest body)
|
||
"Execute the forms in BODY with BUFFER as the current buffer.
|
||
The value returned is the value of the last form in BODY.
|
||
See also `with-temp-buffer'."
|
||
(declare (indent 1) (debug t))
|
||
`(save-current-buffer
|
||
(set-buffer ,buffer)
|
||
,@body))
|
||
|
||
(defmacro with-selected-window (window &rest body)
|
||
"Execute the forms in BODY with WINDOW as the selected window.
|
||
The value returned is the value of the last form in BODY.
|
||
|
||
This macro saves and restores the current buffer, since otherwise
|
||
its normal operation could potentially make a different
|
||
buffer current. It does not alter the buffer list ordering.
|
||
|
||
This macro saves and restores the selected window, as well as
|
||
the selected window in each frame. If the previously selected
|
||
window of some frame is no longer live at the end of BODY, that
|
||
frame's selected window is left alone. If the selected window is
|
||
no longer live, then whatever window is selected at the end of
|
||
BODY remains selected.
|
||
See also `with-temp-buffer'."
|
||
(declare (indent 1) (debug t))
|
||
;; Most of this code is a copy of save-selected-window.
|
||
`(let ((save-selected-window-window (selected-window))
|
||
;; It is necessary to save all of these, because calling
|
||
;; select-window changes frame-selected-window for whatever
|
||
;; frame that window is in.
|
||
(save-selected-window-alist
|
||
(mapcar (lambda (frame) (list frame (frame-selected-window frame)))
|
||
(frame-list))))
|
||
(save-current-buffer
|
||
(unwind-protect
|
||
(progn (select-window ,window 'norecord)
|
||
,@body)
|
||
(dolist (elt save-selected-window-alist)
|
||
(and (frame-live-p (car elt))
|
||
(window-live-p (cadr elt))
|
||
(set-frame-selected-window (car elt) (cadr elt))))
|
||
(if (window-live-p save-selected-window-window)
|
||
(select-window save-selected-window-window 'norecord))))))
|
||
|
||
(defmacro with-temp-file (file &rest body)
|
||
"Create a new buffer, evaluate BODY there, and write the buffer to FILE.
|
||
The value returned is the value of the last form in BODY.
|
||
See also `with-temp-buffer'."
|
||
(declare (debug t))
|
||
(let ((temp-file (make-symbol "temp-file"))
|
||
(temp-buffer (make-symbol "temp-buffer")))
|
||
`(let ((,temp-file ,file)
|
||
(,temp-buffer
|
||
(get-buffer-create (generate-new-buffer-name " *temp file*"))))
|
||
(unwind-protect
|
||
(prog1
|
||
(with-current-buffer ,temp-buffer
|
||
,@body)
|
||
(with-current-buffer ,temp-buffer
|
||
(widen)
|
||
(write-region (point-min) (point-max) ,temp-file nil 0)))
|
||
(and (buffer-name ,temp-buffer)
|
||
(kill-buffer ,temp-buffer))))))
|
||
|
||
(defmacro with-temp-message (message &rest body)
|
||
"Display MESSAGE temporarily if non-nil while BODY is evaluated.
|
||
The original message is restored to the echo area after BODY has finished.
|
||
The value returned is the value of the last form in BODY.
|
||
MESSAGE is written to the message log buffer if `message-log-max' is non-nil.
|
||
If MESSAGE is nil, the echo area and message log buffer are unchanged.
|
||
Use a MESSAGE of \"\" to temporarily clear the echo area."
|
||
(declare (debug t))
|
||
(let ((current-message (make-symbol "current-message"))
|
||
(temp-message (make-symbol "with-temp-message")))
|
||
`(let ((,temp-message ,message)
|
||
(,current-message))
|
||
(unwind-protect
|
||
(progn
|
||
(when ,temp-message
|
||
(setq ,current-message (current-message))
|
||
(message "%s" ,temp-message))
|
||
,@body)
|
||
(and ,temp-message
|
||
(if ,current-message
|
||
(message "%s" ,current-message)
|
||
(message nil)))))))
|
||
|
||
(defmacro with-temp-buffer (&rest body)
|
||
"Create a temporary buffer, and evaluate BODY there like `progn'.
|
||
See also `with-temp-file' and `with-output-to-string'."
|
||
(declare (indent 0) (debug t))
|
||
(let ((temp-buffer (make-symbol "temp-buffer")))
|
||
`(let ((,temp-buffer (generate-new-buffer " *temp*")))
|
||
(unwind-protect
|
||
(with-current-buffer ,temp-buffer
|
||
,@body)
|
||
(and (buffer-name ,temp-buffer)
|
||
(kill-buffer ,temp-buffer))))))
|
||
|
||
(defmacro with-output-to-string (&rest body)
|
||
"Execute BODY, return the text it sent to `standard-output', as a string."
|
||
(declare (indent 0) (debug t))
|
||
`(let ((standard-output
|
||
(get-buffer-create (generate-new-buffer-name " *string-output*"))))
|
||
(let ((standard-output standard-output))
|
||
,@body)
|
||
(with-current-buffer standard-output
|
||
(prog1
|
||
(buffer-string)
|
||
(kill-buffer nil)))))
|
||
|
||
(defmacro with-local-quit (&rest body)
|
||
"Execute BODY, allowing quits to terminate BODY but not escape further.
|
||
When a quit terminates BODY, `with-local-quit' returns nil but
|
||
requests another quit. That quit will be processed, the next time quitting
|
||
is allowed once again."
|
||
(declare (debug t) (indent 0))
|
||
`(condition-case nil
|
||
(let ((inhibit-quit nil))
|
||
,@body)
|
||
(quit (setq quit-flag t) nil)))
|
||
|
||
(defmacro while-no-input (&rest body)
|
||
"Execute BODY only as long as there's no pending input.
|
||
If input arrives, that ends the execution of BODY,
|
||
and `while-no-input' returns t. Quitting makes it return nil.
|
||
If BODY finishes, `while-no-input' returns whatever value BODY produced."
|
||
(declare (debug t) (indent 0))
|
||
(let ((catch-sym (make-symbol "input")))
|
||
`(with-local-quit
|
||
(catch ',catch-sym
|
||
(let ((throw-on-input ',catch-sym))
|
||
(or (not (sit-for 0 0 t))
|
||
,@body))))))
|
||
|
||
(defmacro combine-after-change-calls (&rest body)
|
||
"Execute BODY, but don't call the after-change functions till the end.
|
||
If BODY makes changes in the buffer, they are recorded
|
||
and the functions on `after-change-functions' are called several times
|
||
when BODY is finished.
|
||
The return value is the value of the last form in BODY.
|
||
|
||
If `before-change-functions' is non-nil, then calls to the after-change
|
||
functions can't be deferred, so in that case this macro has no effect.
|
||
|
||
Do not alter `after-change-functions' or `before-change-functions'
|
||
in BODY."
|
||
(declare (indent 0) (debug t))
|
||
`(unwind-protect
|
||
(let ((combine-after-change-calls t))
|
||
. ,body)
|
||
(combine-after-change-execute)))
|
||
|
||
;;;; Constructing completion tables.
|
||
|
||
(defmacro dynamic-completion-table (fun)
|
||
"Use function FUN as a dynamic completion table.
|
||
FUN is called with one argument, the string for which completion is required,
|
||
and it should return an alist containing all the intended possible
|
||
completions. This alist may be a full list of possible completions so that FUN
|
||
can ignore the value of its argument. If completion is performed in the
|
||
minibuffer, FUN will be called in the buffer from which the minibuffer was
|
||
entered.
|
||
|
||
The result of the `dynamic-completion-table' form is a function
|
||
that can be used as the ALIST argument to `try-completion' and
|
||
`all-completion'. See Info node `(elisp)Programmed Completion'."
|
||
(declare (debug (lambda-expr)))
|
||
(let ((win (make-symbol "window"))
|
||
(string (make-symbol "string"))
|
||
(predicate (make-symbol "predicate"))
|
||
(mode (make-symbol "mode")))
|
||
`(lambda (,string ,predicate ,mode)
|
||
(with-current-buffer (let ((,win (minibuffer-selected-window)))
|
||
(if (window-live-p ,win) (window-buffer ,win)
|
||
(current-buffer)))
|
||
(cond
|
||
((eq ,mode t) (all-completions ,string (,fun ,string) ,predicate))
|
||
((not ,mode) (try-completion ,string (,fun ,string) ,predicate))
|
||
(t (test-completion ,string (,fun ,string) ,predicate)))))))
|
||
|
||
(defmacro lazy-completion-table (var fun &rest args)
|
||
"Initialize variable VAR as a lazy completion table.
|
||
If the completion table VAR is used for the first time (e.g., by passing VAR
|
||
as an argument to `try-completion'), the function FUN is called with arguments
|
||
ARGS. FUN must return the completion table that will be stored in VAR.
|
||
If completion is requested in the minibuffer, FUN will be called in the buffer
|
||
from which the minibuffer was entered. The return value of
|
||
`lazy-completion-table' must be used to initialize the value of VAR."
|
||
(declare (debug (symbol lambda-expr def-body)))
|
||
(let ((str (make-symbol "string")))
|
||
`(dynamic-completion-table
|
||
(lambda (,str)
|
||
(unless (listp ,var)
|
||
(setq ,var (,fun ,@args)))
|
||
,var))))
|
||
|
||
(defmacro complete-in-turn (a b)
|
||
"Create a completion table that first tries completion in A and then in B.
|
||
A and B should not be costly (or side-effecting) expressions."
|
||
(declare (debug (def-form def-form)))
|
||
`(lambda (string predicate mode)
|
||
(cond
|
||
((eq mode t)
|
||
(or (all-completions string ,a predicate)
|
||
(all-completions string ,b predicate)))
|
||
((eq mode nil)
|
||
(or (try-completion string ,a predicate)
|
||
(try-completion string ,b predicate)))
|
||
(t
|
||
(or (test-completion string ,a predicate)
|
||
(test-completion string ,b predicate))))))
|
||
|
||
;;; Matching and match data.
|
||
|
||
(defvar save-match-data-internal)
|
||
|
||
;; We use save-match-data-internal as the local variable because
|
||
;; that works ok in practice (people should not use that variable elsewhere).
|
||
;; We used to use an uninterned symbol; the compiler handles that properly
|
||
;; now, but it generates slower code.
|
||
(defmacro save-match-data (&rest body)
|
||
"Execute the BODY forms, restoring the global value of the match data.
|
||
The value returned is the value of the last form in BODY."
|
||
;; It is better not to use backquote here,
|
||
;; because that makes a bootstrapping problem
|
||
;; if you need to recompile all the Lisp files using interpreted code.
|
||
(declare (indent 0) (debug t))
|
||
(list 'let
|
||
'((save-match-data-internal (match-data)))
|
||
(list 'unwind-protect
|
||
(cons 'progn body)
|
||
;; It is safe to free (evaporate) markers immediately here,
|
||
;; as Lisp programs should not copy from save-match-data-internal.
|
||
'(set-match-data save-match-data-internal 'evaporate))))
|
||
|
||
(defun match-string (num &optional string)
|
||
"Return string of text matched by last search.
|
||
NUM specifies which parenthesized expression in the last regexp.
|
||
Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
|
||
Zero means the entire text matched by the whole regexp or whole string.
|
||
STRING should be given if the last search was by `string-match' on STRING."
|
||
(if (match-beginning num)
|
||
(if string
|
||
(substring string (match-beginning num) (match-end num))
|
||
(buffer-substring (match-beginning num) (match-end num)))))
|
||
|
||
(defun match-string-no-properties (num &optional string)
|
||
"Return string of text matched by last search, without text properties.
|
||
NUM specifies which parenthesized expression in the last regexp.
|
||
Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
|
||
Zero means the entire text matched by the whole regexp or whole string.
|
||
STRING should be given if the last search was by `string-match' on STRING."
|
||
(if (match-beginning num)
|
||
(if string
|
||
(substring-no-properties string (match-beginning num)
|
||
(match-end num))
|
||
(buffer-substring-no-properties (match-beginning num)
|
||
(match-end num)))))
|
||
|
||
(defun looking-back (regexp &optional limit greedy)
|
||
"Return non-nil if text before point matches regular expression REGEXP.
|
||
Like `looking-at' except matches before point, and is slower.
|
||
LIMIT if non-nil speeds up the search by specifying how far back the
|
||
match can start.
|
||
|
||
If GREEDY is non-nil, extend the match backwards as far as possible,
|
||
stopping when a single additional previous character cannot be part
|
||
of a match for REGEXP."
|
||
(let ((start (point))
|
||
(pos
|
||
(save-excursion
|
||
(and (re-search-backward (concat "\\(?:" regexp "\\)\\=") limit t)
|
||
(point)))))
|
||
(if (and greedy pos)
|
||
(save-restriction
|
||
(narrow-to-region (point-min) start)
|
||
(while (and (> pos (point-min))
|
||
(save-excursion
|
||
(goto-char pos)
|
||
(backward-char 1)
|
||
(looking-at (concat "\\(?:" regexp "\\)\\'"))))
|
||
(setq pos (1- pos)))
|
||
(save-excursion
|
||
(goto-char pos)
|
||
(looking-at (concat "\\(?:" regexp "\\)\\'")))))
|
||
(not (null pos))))
|
||
|
||
(defun subregexp-context-p (regexp pos &optional start)
|
||
"Return non-nil if POS is in a normal subregexp context in REGEXP.
|
||
A subregexp context is one where a sub-regexp can appear.
|
||
A non-subregexp context is for example within brackets, or within a
|
||
repetition bounds operator `\\=\\{...\\}', or right after a `\\'.
|
||
If START is non-nil, it should be a position in REGEXP, smaller
|
||
than POS, and known to be in a subregexp context."
|
||
;; Here's one possible implementation, with the great benefit that it
|
||
;; reuses the regexp-matcher's own parser, so it understands all the
|
||
;; details of the syntax. A disadvantage is that it needs to match the
|
||
;; error string.
|
||
(condition-case err
|
||
(progn
|
||
(string-match (substring regexp (or start 0) pos) "")
|
||
t)
|
||
(invalid-regexp
|
||
(not (member (cadr err) '("Unmatched [ or [^"
|
||
"Unmatched \\{"
|
||
"Trailing backslash")))))
|
||
;; An alternative implementation:
|
||
;; (defconst re-context-re
|
||
;; (let* ((harmless-ch "[^\\[]")
|
||
;; (harmless-esc "\\\\[^{]")
|
||
;; (class-harmless-ch "[^][]")
|
||
;; (class-lb-harmless "[^]:]")
|
||
;; (class-lb-colon-maybe-charclass ":\\([a-z]+:]\\)?")
|
||
;; (class-lb (concat "\\[\\(" class-lb-harmless
|
||
;; "\\|" class-lb-colon-maybe-charclass "\\)"))
|
||
;; (class
|
||
;; (concat "\\[^?]?"
|
||
;; "\\(" class-harmless-ch
|
||
;; "\\|" class-lb "\\)*"
|
||
;; "\\[?]")) ; special handling for bare [ at end of re
|
||
;; (braces "\\\\{[0-9,]+\\\\}"))
|
||
;; (concat "\\`\\(" harmless-ch "\\|" harmless-esc
|
||
;; "\\|" class "\\|" braces "\\)*\\'"))
|
||
;; "Matches any prefix that corresponds to a normal subregexp context.")
|
||
;; (string-match re-context-re (substring regexp (or start 0) pos))
|
||
)
|
||
|
||
;;;; split-string
|
||
|
||
(defconst split-string-default-separators "[ \f\t\n\r\v]+"
|
||
"The default value of separators for `split-string'.
|
||
|
||
A regexp matching strings of whitespace. May be locale-dependent
|
||
\(as yet unimplemented). Should not match non-breaking spaces.
|
||
|
||
Warning: binding this to a different value and using it as default is
|
||
likely to have undesired semantics.")
|
||
|
||
;; The specification says that if both SEPARATORS and OMIT-NULLS are
|
||
;; defaulted, OMIT-NULLS should be treated as t. Simplifying the logical
|
||
;; expression leads to the equivalent implementation that if SEPARATORS
|
||
;; is defaulted, OMIT-NULLS is treated as t.
|
||
(defun split-string (string &optional separators omit-nulls)
|
||
"Split STRING into substrings bounded by matches for SEPARATORS.
|
||
|
||
The beginning and end of STRING, and each match for SEPARATORS, are
|
||
splitting points. The substrings matching SEPARATORS are removed, and
|
||
the substrings between the splitting points are collected as a list,
|
||
which is returned.
|
||
|
||
If SEPARATORS is non-nil, it should be a regular expression matching text
|
||
which separates, but is not part of, the substrings. If nil it defaults to
|
||
`split-string-default-separators', normally \"[ \\f\\t\\n\\r\\v]+\", and
|
||
OMIT-NULLS is forced to t.
|
||
|
||
If OMIT-NULLS is t, zero-length substrings are omitted from the list \(so
|
||
that for the default value of SEPARATORS leading and trailing whitespace
|
||
are effectively trimmed). If nil, all zero-length substrings are retained,
|
||
which correctly parses CSV format, for example.
|
||
|
||
Note that the effect of `(split-string STRING)' is the same as
|
||
`(split-string STRING split-string-default-separators t)'). In the rare
|
||
case that you wish to retain zero-length substrings when splitting on
|
||
whitespace, use `(split-string STRING split-string-default-separators)'.
|
||
|
||
Modifies the match data; use `save-match-data' if necessary."
|
||
(let ((keep-nulls (not (if separators omit-nulls t)))
|
||
(rexp (or separators split-string-default-separators))
|
||
(start 0)
|
||
notfirst
|
||
(list nil))
|
||
(while (and (string-match rexp string
|
||
(if (and notfirst
|
||
(= start (match-beginning 0))
|
||
(< start (length string)))
|
||
(1+ start) start))
|
||
(< start (length string)))
|
||
(setq notfirst t)
|
||
(if (or keep-nulls (< start (match-beginning 0)))
|
||
(setq list
|
||
(cons (substring string start (match-beginning 0))
|
||
list)))
|
||
(setq start (match-end 0)))
|
||
(if (or keep-nulls (< start (length string)))
|
||
(setq list
|
||
(cons (substring string start)
|
||
list)))
|
||
(nreverse list)))
|
||
|
||
;;;; Replacement in strings.
|
||
|
||
(defun subst-char-in-string (fromchar tochar string &optional inplace)
|
||
"Replace FROMCHAR with TOCHAR in STRING each time it occurs.
|
||
Unless optional argument INPLACE is non-nil, return a new string."
|
||
(let ((i (length string))
|
||
(newstr (if inplace string (copy-sequence string))))
|
||
(while (> i 0)
|
||
(setq i (1- i))
|
||
(if (eq (aref newstr i) fromchar)
|
||
(aset newstr i tochar)))
|
||
newstr))
|
||
|
||
(defun replace-regexp-in-string (regexp rep string &optional
|
||
fixedcase literal subexp start)
|
||
"Replace all matches for REGEXP with REP in STRING.
|
||
|
||
Return a new string containing the replacements.
|
||
|
||
Optional arguments FIXEDCASE, LITERAL and SUBEXP are like the
|
||
arguments with the same names of function `replace-match'. If START
|
||
is non-nil, start replacements at that index in STRING.
|
||
|
||
REP is either a string used as the NEWTEXT arg of `replace-match' or a
|
||
function. If it is a function, it is called with the actual text of each
|
||
match, and its value is used as the replacement text. When REP is called,
|
||
the match-data are the result of matching REGEXP against a substring
|
||
of STRING.
|
||
|
||
To replace only the first match (if any), make REGEXP match up to \\'
|
||
and replace a sub-expression, e.g.
|
||
(replace-regexp-in-string \"\\\\(foo\\\\).*\\\\'\" \"bar\" \" foo foo\" nil nil 1)
|
||
=> \" bar foo\"
|
||
"
|
||
|
||
;; To avoid excessive consing from multiple matches in long strings,
|
||
;; don't just call `replace-match' continually. Walk down the
|
||
;; string looking for matches of REGEXP and building up a (reversed)
|
||
;; list MATCHES. This comprises segments of STRING which weren't
|
||
;; matched interspersed with replacements for segments that were.
|
||
;; [For a `large' number of replacements it's more efficient to
|
||
;; operate in a temporary buffer; we can't tell from the function's
|
||
;; args whether to choose the buffer-based implementation, though it
|
||
;; might be reasonable to do so for long enough STRING.]
|
||
(let ((l (length string))
|
||
(start (or start 0))
|
||
matches str mb me)
|
||
(save-match-data
|
||
(while (and (< start l) (string-match regexp string start))
|
||
(setq mb (match-beginning 0)
|
||
me (match-end 0))
|
||
;; If we matched the empty string, make sure we advance by one char
|
||
(when (= me mb) (setq me (min l (1+ mb))))
|
||
;; Generate a replacement for the matched substring.
|
||
;; Operate only on the substring to minimize string consing.
|
||
;; Set up match data for the substring for replacement;
|
||
;; presumably this is likely to be faster than munging the
|
||
;; match data directly in Lisp.
|
||
(string-match regexp (setq str (substring string mb me)))
|
||
(setq matches
|
||
(cons (replace-match (if (stringp rep)
|
||
rep
|
||
(funcall rep (match-string 0 str)))
|
||
fixedcase literal str subexp)
|
||
(cons (substring string start mb) ; unmatched prefix
|
||
matches)))
|
||
(setq start me))
|
||
;; Reconstruct a string from the pieces.
|
||
(setq matches (cons (substring string start l) matches)) ; leftover
|
||
(apply #'concat (nreverse matches)))))
|
||
|
||
;;;; invisibility specs
|
||
|
||
(defun add-to-invisibility-spec (element)
|
||
"Add ELEMENT to `buffer-invisibility-spec'.
|
||
See documentation for `buffer-invisibility-spec' for the kind of elements
|
||
that can be added."
|
||
(if (eq buffer-invisibility-spec t)
|
||
(setq buffer-invisibility-spec (list t)))
|
||
(setq buffer-invisibility-spec
|
||
(cons element buffer-invisibility-spec)))
|
||
|
||
(defun remove-from-invisibility-spec (element)
|
||
"Remove ELEMENT from `buffer-invisibility-spec'."
|
||
(if (consp buffer-invisibility-spec)
|
||
(setq buffer-invisibility-spec (delete element buffer-invisibility-spec))))
|
||
|
||
;;;; Syntax tables.
|
||
|
||
(defmacro with-syntax-table (table &rest body)
|
||
"Evaluate BODY with syntax table of current buffer set to TABLE.
|
||
The syntax table of the current buffer is saved, BODY is evaluated, and the
|
||
saved table is restored, even in case of an abnormal exit.
|
||
Value is what BODY returns."
|
||
(declare (debug t))
|
||
(let ((old-table (make-symbol "table"))
|
||
(old-buffer (make-symbol "buffer")))
|
||
`(let ((,old-table (syntax-table))
|
||
(,old-buffer (current-buffer)))
|
||
(unwind-protect
|
||
(progn
|
||
(set-syntax-table ,table)
|
||
,@body)
|
||
(save-current-buffer
|
||
(set-buffer ,old-buffer)
|
||
(set-syntax-table ,old-table))))))
|
||
|
||
(defun make-syntax-table (&optional oldtable)
|
||
"Return a new syntax table.
|
||
Create a syntax table which inherits from OLDTABLE (if non-nil) or
|
||
from `standard-syntax-table' otherwise."
|
||
(let ((table (make-char-table 'syntax-table nil)))
|
||
(set-char-table-parent table (or oldtable (standard-syntax-table)))
|
||
table))
|
||
|
||
(defun syntax-after (pos)
|
||
"Return the raw syntax of the char after POS.
|
||
If POS is outside the buffer's accessible portion, return nil."
|
||
(unless (or (< pos (point-min)) (>= pos (point-max)))
|
||
(let ((st (if parse-sexp-lookup-properties
|
||
(get-char-property pos 'syntax-table))))
|
||
(if (consp st) st
|
||
(aref (or st (syntax-table)) (char-after pos))))))
|
||
|
||
(defun syntax-class (syntax)
|
||
"Return the syntax class part of the syntax descriptor SYNTAX.
|
||
If SYNTAX is nil, return nil."
|
||
(and syntax (logand (car syntax) 65535)))
|
||
|
||
;;;; Text clones
|
||
|
||
(defun text-clone-maintain (ol1 after beg end &optional len)
|
||
"Propagate the changes made under the overlay OL1 to the other clones.
|
||
This is used on the `modification-hooks' property of text clones."
|
||
(when (and after (not undo-in-progress) (overlay-start ol1))
|
||
(let ((margin (if (overlay-get ol1 'text-clone-spreadp) 1 0)))
|
||
(setq beg (max beg (+ (overlay-start ol1) margin)))
|
||
(setq end (min end (- (overlay-end ol1) margin)))
|
||
(when (<= beg end)
|
||
(save-excursion
|
||
(when (overlay-get ol1 'text-clone-syntax)
|
||
;; Check content of the clone's text.
|
||
(let ((cbeg (+ (overlay-start ol1) margin))
|
||
(cend (- (overlay-end ol1) margin)))
|
||
(goto-char cbeg)
|
||
(save-match-data
|
||
(if (not (re-search-forward
|
||
(overlay-get ol1 'text-clone-syntax) cend t))
|
||
;; Mark the overlay for deletion.
|
||
(overlay-put ol1 'text-clones nil)
|
||
(when (< (match-end 0) cend)
|
||
;; Shrink the clone at its end.
|
||
(setq end (min end (match-end 0)))
|
||
(move-overlay ol1 (overlay-start ol1)
|
||
(+ (match-end 0) margin)))
|
||
(when (> (match-beginning 0) cbeg)
|
||
;; Shrink the clone at its beginning.
|
||
(setq beg (max (match-beginning 0) beg))
|
||
(move-overlay ol1 (- (match-beginning 0) margin)
|
||
(overlay-end ol1)))))))
|
||
;; Now go ahead and update the clones.
|
||
(let ((head (- beg (overlay-start ol1)))
|
||
(tail (- (overlay-end ol1) end))
|
||
(str (buffer-substring beg end))
|
||
(nothing-left t)
|
||
(inhibit-modification-hooks t))
|
||
(dolist (ol2 (overlay-get ol1 'text-clones))
|
||
(let ((oe (overlay-end ol2)))
|
||
(unless (or (eq ol1 ol2) (null oe))
|
||
(setq nothing-left nil)
|
||
(let ((mod-beg (+ (overlay-start ol2) head)))
|
||
;;(overlay-put ol2 'modification-hooks nil)
|
||
(goto-char (- (overlay-end ol2) tail))
|
||
(unless (> mod-beg (point))
|
||
(save-excursion (insert str))
|
||
(delete-region mod-beg (point)))
|
||
;;(overlay-put ol2 'modification-hooks '(text-clone-maintain))
|
||
))))
|
||
(if nothing-left (delete-overlay ol1))))))))
|
||
|
||
(defun text-clone-create (start end &optional spreadp syntax)
|
||
"Create a text clone of START...END at point.
|
||
Text clones are chunks of text that are automatically kept identical:
|
||
changes done to one of the clones will be immediately propagated to the other.
|
||
|
||
The buffer's content at point is assumed to be already identical to
|
||
the one between START and END.
|
||
If SYNTAX is provided it's a regexp that describes the possible text of
|
||
the clones; the clone will be shrunk or killed if necessary to ensure that
|
||
its text matches the regexp.
|
||
If SPREADP is non-nil it indicates that text inserted before/after the
|
||
clone should be incorporated in the clone."
|
||
;; To deal with SPREADP we can either use an overlay with `nil t' along
|
||
;; with insert-(behind|in-front-of)-hooks or use a slightly larger overlay
|
||
;; (with a one-char margin at each end) with `t nil'.
|
||
;; We opted for a larger overlay because it behaves better in the case
|
||
;; where the clone is reduced to the empty string (we want the overlay to
|
||
;; stay when the clone's content is the empty string and we want to use
|
||
;; `evaporate' to make sure those overlays get deleted when needed).
|
||
;;
|
||
(let* ((pt-end (+ (point) (- end start)))
|
||
(start-margin (if (or (not spreadp) (bobp) (<= start (point-min)))
|
||
0 1))
|
||
(end-margin (if (or (not spreadp)
|
||
(>= pt-end (point-max))
|
||
(>= start (point-max)))
|
||
0 1))
|
||
(ol1 (make-overlay (- start start-margin) (+ end end-margin) nil t))
|
||
(ol2 (make-overlay (- (point) start-margin) (+ pt-end end-margin) nil t))
|
||
(dups (list ol1 ol2)))
|
||
(overlay-put ol1 'modification-hooks '(text-clone-maintain))
|
||
(when spreadp (overlay-put ol1 'text-clone-spreadp t))
|
||
(when syntax (overlay-put ol1 'text-clone-syntax syntax))
|
||
;;(overlay-put ol1 'face 'underline)
|
||
(overlay-put ol1 'evaporate t)
|
||
(overlay-put ol1 'text-clones dups)
|
||
;;
|
||
(overlay-put ol2 'modification-hooks '(text-clone-maintain))
|
||
(when spreadp (overlay-put ol2 'text-clone-spreadp t))
|
||
(when syntax (overlay-put ol2 'text-clone-syntax syntax))
|
||
;;(overlay-put ol2 'face 'underline)
|
||
(overlay-put ol2 'evaporate t)
|
||
(overlay-put ol2 'text-clones dups)))
|
||
|
||
;;;; Mail user agents.
|
||
|
||
;; Here we include just enough for other packages to be able
|
||
;; to define them.
|
||
|
||
(defun define-mail-user-agent (symbol composefunc sendfunc
|
||
&optional abortfunc hookvar)
|
||
"Define a symbol to identify a mail-sending package for `mail-user-agent'.
|
||
|
||
SYMBOL can be any Lisp symbol. Its function definition and/or
|
||
value as a variable do not matter for this usage; we use only certain
|
||
properties on its property list, to encode the rest of the arguments.
|
||
|
||
COMPOSEFUNC is program callable function that composes an outgoing
|
||
mail message buffer. This function should set up the basics of the
|
||
buffer without requiring user interaction. It should populate the
|
||
standard mail headers, leaving the `to:' and `subject:' headers blank
|
||
by default.
|
||
|
||
COMPOSEFUNC should accept several optional arguments--the same
|
||
arguments that `compose-mail' takes. See that function's documentation.
|
||
|
||
SENDFUNC is the command a user would run to send the message.
|
||
|
||
Optional ABORTFUNC is the command a user would run to abort the
|
||
message. For mail packages that don't have a separate abort function,
|
||
this can be `kill-buffer' (the equivalent of omitting this argument).
|
||
|
||
Optional HOOKVAR is a hook variable that gets run before the message
|
||
is actually sent. Callers that use the `mail-user-agent' may
|
||
install a hook function temporarily on this hook variable.
|
||
If HOOKVAR is nil, `mail-send-hook' is used.
|
||
|
||
The properties used on SYMBOL are `composefunc', `sendfunc',
|
||
`abortfunc', and `hookvar'."
|
||
(put symbol 'composefunc composefunc)
|
||
(put symbol 'sendfunc sendfunc)
|
||
(put symbol 'abortfunc (or abortfunc 'kill-buffer))
|
||
(put symbol 'hookvar (or hookvar 'mail-send-hook)))
|
||
|
||
;;;; Progress reporters.
|
||
|
||
;; Progress reporter has the following structure:
|
||
;;
|
||
;; (NEXT-UPDATE-VALUE . [NEXT-UPDATE-TIME
|
||
;; MIN-VALUE
|
||
;; MAX-VALUE
|
||
;; MESSAGE
|
||
;; MIN-CHANGE
|
||
;; MIN-TIME])
|
||
;;
|
||
;; This weirdeness is for optimization reasons: we want
|
||
;; `progress-reporter-update' to be as fast as possible, so
|
||
;; `(car reporter)' is better than `(aref reporter 0)'.
|
||
;;
|
||
;; NEXT-UPDATE-TIME is a float. While `float-time' loses a couple
|
||
;; digits of precision, it doesn't really matter here. On the other
|
||
;; hand, it greatly simplifies the code.
|
||
|
||
(defsubst progress-reporter-update (reporter value)
|
||
"Report progress of an operation in the echo area.
|
||
However, if the change since last echo area update is too small
|
||
or not enough time has passed, then do nothing (see
|
||
`make-progress-reporter' for details).
|
||
|
||
First parameter, REPORTER, should be the result of a call to
|
||
`make-progress-reporter'. Second, VALUE, determines the actual
|
||
progress of operation; it must be between MIN-VALUE and MAX-VALUE
|
||
as passed to `make-progress-reporter'.
|
||
|
||
This function is very inexpensive, you may not bother how often
|
||
you call it."
|
||
(when (>= value (car reporter))
|
||
(progress-reporter-do-update reporter value)))
|
||
|
||
(defun make-progress-reporter (message min-value max-value
|
||
&optional current-value
|
||
min-change min-time)
|
||
"Return progress reporter object to be used with `progress-reporter-update'.
|
||
|
||
MESSAGE is shown in the echo area. When at least 1% of operation
|
||
is complete, the exact percentage will be appended to the
|
||
MESSAGE. When you call `progress-reporter-done', word \"done\"
|
||
is printed after the MESSAGE. You can change MESSAGE of an
|
||
existing progress reporter with `progress-reporter-force-update'.
|
||
|
||
MIN-VALUE and MAX-VALUE designate starting (0% complete) and
|
||
final (100% complete) states of operation. The latter should be
|
||
larger; if this is not the case, then simply negate all values.
|
||
Optional CURRENT-VALUE specifies the progress by the moment you
|
||
call this function. You should omit it or set it to nil in most
|
||
cases since it defaults to MIN-VALUE.
|
||
|
||
Optional MIN-CHANGE determines the minimal change in percents to
|
||
report (default is 1%.) Optional MIN-TIME specifies the minimal
|
||
time before echo area updates (default is 0.2 seconds.) If
|
||
`float-time' function is not present, then time is not tracked
|
||
at all. If OS is not capable of measuring fractions of seconds,
|
||
then this parameter is effectively rounded up."
|
||
|
||
(unless min-time
|
||
(setq min-time 0.2))
|
||
(let ((reporter
|
||
(cons min-value ;; Force a call to `message' now
|
||
(vector (if (and (fboundp 'float-time)
|
||
(>= min-time 0.02))
|
||
(float-time) nil)
|
||
min-value
|
||
max-value
|
||
message
|
||
(if min-change (max (min min-change 50) 1) 1)
|
||
min-time))))
|
||
(progress-reporter-update reporter (or current-value min-value))
|
||
reporter))
|
||
|
||
(defun progress-reporter-force-update (reporter value &optional new-message)
|
||
"Report progress of an operation in the echo area unconditionally.
|
||
|
||
First two parameters are the same as for
|
||
`progress-reporter-update'. Optional NEW-MESSAGE allows you to
|
||
change the displayed message."
|
||
(let ((parameters (cdr reporter)))
|
||
(when new-message
|
||
(aset parameters 3 new-message))
|
||
(when (aref parameters 0)
|
||
(aset parameters 0 (float-time)))
|
||
(progress-reporter-do-update reporter value)))
|
||
|
||
(defun progress-reporter-do-update (reporter value)
|
||
(let* ((parameters (cdr reporter))
|
||
(min-value (aref parameters 1))
|
||
(max-value (aref parameters 2))
|
||
(one-percent (/ (- max-value min-value) 100.0))
|
||
(percentage (if (= max-value min-value)
|
||
0
|
||
(truncate (/ (- value min-value) one-percent))))
|
||
(update-time (aref parameters 0))
|
||
(current-time (float-time))
|
||
(enough-time-passed
|
||
;; See if enough time has passed since the last update.
|
||
(or (not update-time)
|
||
(when (>= current-time update-time)
|
||
;; Calculate time for the next update
|
||
(aset parameters 0 (+ update-time (aref parameters 5)))))))
|
||
;;
|
||
;; Calculate NEXT-UPDATE-VALUE. If we are not going to print
|
||
;; message this time because not enough time has passed, then use
|
||
;; 1 instead of MIN-CHANGE. This makes delays between echo area
|
||
;; updates closer to MIN-TIME.
|
||
(setcar reporter
|
||
(min (+ min-value (* (+ percentage
|
||
(if enough-time-passed
|
||
(aref parameters 4) ;; MIN-CHANGE
|
||
1))
|
||
one-percent))
|
||
max-value))
|
||
(when (integerp value)
|
||
(setcar reporter (ceiling (car reporter))))
|
||
;;
|
||
;; Only print message if enough time has passed
|
||
(when enough-time-passed
|
||
(if (> percentage 0)
|
||
(message "%s%d%%" (aref parameters 3) percentage)
|
||
(message "%s" (aref parameters 3))))))
|
||
|
||
(defun progress-reporter-done (reporter)
|
||
"Print reporter's message followed by word \"done\" in echo area."
|
||
(message "%sdone" (aref (cdr reporter) 3)))
|
||
|
||
(defmacro dotimes-with-progress-reporter (spec message &rest body)
|
||
"Loop a certain number of times and report progress in the echo area.
|
||
Evaluate BODY with VAR bound to successive integers running from
|
||
0, inclusive, to COUNT, exclusive. Then evaluate RESULT to get
|
||
the return value (nil if RESULT is omitted).
|
||
|
||
At each iteration MESSAGE followed by progress percentage is
|
||
printed in the echo area. After the loop is finished, MESSAGE
|
||
followed by word \"done\" is printed. This macro is a
|
||
convenience wrapper around `make-progress-reporter' and friends.
|
||
|
||
\(fn (VAR COUNT [RESULT]) MESSAGE BODY...)"
|
||
(declare (indent 2) (debug ((symbolp form &optional form) form body)))
|
||
(let ((temp (make-symbol "--dotimes-temp--"))
|
||
(temp2 (make-symbol "--dotimes-temp2--"))
|
||
(start 0)
|
||
(end (nth 1 spec)))
|
||
`(let ((,temp ,end)
|
||
(,(car spec) ,start)
|
||
(,temp2 (make-progress-reporter ,message ,start ,end)))
|
||
(while (< ,(car spec) ,temp)
|
||
,@body
|
||
(progress-reporter-update ,temp2
|
||
(setq ,(car spec) (1+ ,(car spec)))))
|
||
(progress-reporter-done ,temp2)
|
||
nil ,@(cdr (cdr spec)))))
|
||
|
||
|
||
;;;; Comparing version strings.
|
||
|
||
(defvar version-separator "."
|
||
"*Specify the string used to separate the version elements.
|
||
|
||
Usually the separator is \".\", but it can be any other string.")
|
||
|
||
|
||
(defvar version-regexp-alist
|
||
'(("^[-_+]?a\\(lpha\\)?$" . -3)
|
||
("^[-_+]$" . -3) ; treat "1.2.3-20050920" and "1.2-3" as alpha releases
|
||
("^[-_+]cvs$" . -3) ; treat "1.2.3-CVS" as alpha release
|
||
("^[-_+]?b\\(eta\\)?$" . -2)
|
||
("^[-_+]?\\(pre\\|rc\\)$" . -1))
|
||
"*Specify association between non-numeric version part and a priority.
|
||
|
||
This association is used to handle version string like \"1.0pre2\",
|
||
\"0.9alpha1\", etc. It's used by `version-to-list' (which see) to convert the
|
||
non-numeric part to an integer. For example:
|
||
|
||
String Version Integer List Version
|
||
\"1.0pre2\" (1 0 -1 2)
|
||
\"1.0PRE2\" (1 0 -1 2)
|
||
\"22.8beta3\" (22 8 -2 3)
|
||
\"22.8Beta3\" (22 8 -2 3)
|
||
\"0.9alpha1\" (0 9 -3 1)
|
||
\"0.9AlphA1\" (0 9 -3 1)
|
||
\"0.9alpha\" (0 9 -3)
|
||
|
||
Each element has the following form:
|
||
|
||
(REGEXP . PRIORITY)
|
||
|
||
Where:
|
||
|
||
REGEXP regexp used to match non-numeric part of a version string.
|
||
It should begin with a `^' anchor and end with a `$' to
|
||
prevent false hits. Letter-case is ignored while matching
|
||
REGEXP.
|
||
|
||
PRIORITY negative integer which indicate the non-numeric priority.")
|
||
|
||
|
||
(defun version-to-list (ver)
|
||
"Convert version string VER into an integer list.
|
||
|
||
The version syntax is given by the following EBNF:
|
||
|
||
VERSION ::= NUMBER ( SEPARATOR NUMBER )*.
|
||
|
||
NUMBER ::= (0|1|2|3|4|5|6|7|8|9)+.
|
||
|
||
SEPARATOR ::= `version-separator' (which see)
|
||
| `version-regexp-alist' (which see).
|
||
|
||
The NUMBER part is optional if SEPARATOR is a match for an element
|
||
in `version-regexp-alist'.
|
||
|
||
As an example of valid version syntax:
|
||
|
||
1.0pre2 1.0.7.5 22.8beta3 0.9alpha1 6.9.30Beta
|
||
|
||
As an example of invalid version syntax:
|
||
|
||
1.0prepre2 1.0..7.5 22.8X3 alpha3.2 .5
|
||
|
||
As an example of version convertion:
|
||
|
||
String Version Integer List Version
|
||
\"1.0.7.5\" (1 0 7 5)
|
||
\"1.0pre2\" (1 0 -1 2)
|
||
\"1.0PRE2\" (1 0 -1 2)
|
||
\"22.8beta3\" (22 8 -2 3)
|
||
\"22.8Beta3\" (22 8 -2 3)
|
||
\"0.9alpha1\" (0 9 -3 1)
|
||
\"0.9AlphA1\" (0 9 -3 1)
|
||
\"0.9alpha\" (0 9 -3)
|
||
|
||
See documentation for `version-separator' and `version-regexp-alist'."
|
||
(or (and (stringp ver) (not (string= ver "")))
|
||
(error "Invalid version string: '%s'" ver))
|
||
(save-match-data
|
||
(let ((i 0)
|
||
(case-fold-search t) ; ignore case in matching
|
||
lst s al)
|
||
(while (and (setq s (string-match "[0-9]+" ver i))
|
||
(= s i))
|
||
;; handle numeric part
|
||
(setq lst (cons (string-to-number (substring ver i (match-end 0)))
|
||
lst)
|
||
i (match-end 0))
|
||
;; handle non-numeric part
|
||
(when (and (setq s (string-match "[^0-9]+" ver i))
|
||
(= s i))
|
||
(setq s (substring ver i (match-end 0))
|
||
i (match-end 0))
|
||
;; handle alpha, beta, pre, etc. separator
|
||
(unless (string= s version-separator)
|
||
(setq al version-regexp-alist)
|
||
(while (and al (not (string-match (caar al) s)))
|
||
(setq al (cdr al)))
|
||
(or al (error "Invalid version syntax: '%s'" ver))
|
||
(setq lst (cons (cdar al) lst)))))
|
||
(if (null lst)
|
||
(error "Invalid version syntax: '%s'" ver)
|
||
(nreverse lst)))))
|
||
|
||
|
||
(defun version-list-< (l1 l2)
|
||
"Return t if integer list L1 is lesser than L2.
|
||
|
||
Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
|
||
etc. That is, the trailing zeroes are irrelevant. Also, integer
|
||
list (1) is greater than (1 -1) which is greater than (1 -2)
|
||
which is greater than (1 -3)."
|
||
(while (and l1 l2 (= (car l1) (car l2)))
|
||
(setq l1 (cdr l1)
|
||
l2 (cdr l2)))
|
||
(cond
|
||
;; l1 not null and l2 not null
|
||
((and l1 l2) (< (car l1) (car l2)))
|
||
;; l1 null and l2 null ==> l1 length = l2 length
|
||
((and (null l1) (null l2)) nil)
|
||
;; l1 not null and l2 null ==> l1 length > l2 length
|
||
(l1 (< (version-list-not-zero l1) 0))
|
||
;; l1 null and l2 not null ==> l2 length > l1 length
|
||
(t (< 0 (version-list-not-zero l2)))))
|
||
|
||
|
||
(defun version-list-= (l1 l2)
|
||
"Return t if integer list L1 is equal to L2.
|
||
|
||
Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
|
||
etc. That is, the trailing zeroes are irrelevant. Also, integer
|
||
list (1) is greater than (1 -1) which is greater than (1 -2)
|
||
which is greater than (1 -3)."
|
||
(while (and l1 l2 (= (car l1) (car l2)))
|
||
(setq l1 (cdr l1)
|
||
l2 (cdr l2)))
|
||
(cond
|
||
;; l1 not null and l2 not null
|
||
((and l1 l2) nil)
|
||
;; l1 null and l2 null ==> l1 length = l2 length
|
||
((and (null l1) (null l2)))
|
||
;; l1 not null and l2 null ==> l1 length > l2 length
|
||
(l1 (zerop (version-list-not-zero l1)))
|
||
;; l1 null and l2 not null ==> l2 length > l1 length
|
||
(t (zerop (version-list-not-zero l2)))))
|
||
|
||
|
||
(defun version-list-<= (l1 l2)
|
||
"Return t if integer list L1 is lesser than or equal to L2.
|
||
|
||
Note that integer list (1) is equal to (1 0), (1 0 0), (1 0 0 0),
|
||
etc. That is, the trailing zeroes are irrelevant. Also, integer
|
||
list (1) is greater than (1 -1) which is greater than (1 -2)
|
||
which is greater than (1 -3)."
|
||
(while (and l1 l2 (= (car l1) (car l2)))
|
||
(setq l1 (cdr l1)
|
||
l2 (cdr l2)))
|
||
(cond
|
||
;; l1 not null and l2 not null
|
||
((and l1 l2) (< (car l1) (car l2)))
|
||
;; l1 null and l2 null ==> l1 length = l2 length
|
||
((and (null l1) (null l2)))
|
||
;; l1 not null and l2 null ==> l1 length > l2 length
|
||
(l1 (<= (version-list-not-zero l1) 0))
|
||
;; l1 null and l2 not null ==> l2 length > l1 length
|
||
(t (<= 0 (version-list-not-zero l2)))))
|
||
|
||
(defun version-list-not-zero (lst)
|
||
"Return the first non-zero element of integer list LST.
|
||
|
||
If all LST elements are zeroes or LST is nil, return zero."
|
||
(while (and lst (zerop (car lst)))
|
||
(setq lst (cdr lst)))
|
||
(if lst
|
||
(car lst)
|
||
;; there is no element different of zero
|
||
0))
|
||
|
||
|
||
(defun version< (v1 v2)
|
||
"Return t if version V1 is lesser than V2.
|
||
|
||
Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
|
||
etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
|
||
is greater than \"1pre\" which is greater than \"1beta\" which is greater than
|
||
\"1alpha\"."
|
||
(version-list-< (version-to-list v1) (version-to-list v2)))
|
||
|
||
|
||
(defun version<= (v1 v2)
|
||
"Return t if version V1 is lesser than or equal to V2.
|
||
|
||
Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
|
||
etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
|
||
is greater than \"1pre\" which is greater than \"1beta\" which is greater than
|
||
\"1alpha\"."
|
||
(version-list-<= (version-to-list v1) (version-to-list v2)))
|
||
|
||
(defun version= (v1 v2)
|
||
"Return t if version V1 is equal to V2.
|
||
|
||
Note that version string \"1\" is equal to \"1.0\", \"1.0.0\", \"1.0.0.0\",
|
||
etc. That is, the trailing \".0\"s are irrelevant. Also, version string \"1\"
|
||
is greater than \"1pre\" which is greater than \"1beta\" which is greater than
|
||
\"1alpha\"."
|
||
(version-list-= (version-to-list v1) (version-to-list v2)))
|
||
|
||
|
||
|
||
;; arch-tag: f7e0e6e5-70aa-4897-ae72-7a3511ec40bc
|
||
;;; subr.el ends here
|