mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-02 11:21:42 +00:00
2000 lines
73 KiB
Plaintext
2000 lines
73 KiB
Plaintext
@c -*-texinfo-*-
|
|
@c This is part of the GNU Emacs Lisp Reference Manual.
|
|
@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2002, 2003,
|
|
@c 2004, 2005, 2006 Free Software Foundation, Inc.
|
|
@c See the file elisp.texi for copying conditions.
|
|
@setfilename ../info/os
|
|
@node System Interface, Antinews, Display, Top
|
|
@chapter Operating System Interface
|
|
|
|
This chapter is about starting and getting out of Emacs, access to
|
|
values in the operating system environment, and terminal input, output,
|
|
and flow control.
|
|
|
|
@xref{Building Emacs}, for related information. See also
|
|
@ref{Display}, for additional operating system status information
|
|
pertaining to the terminal and the screen.
|
|
|
|
@menu
|
|
* Starting Up:: Customizing Emacs startup processing.
|
|
* Getting Out:: How exiting works (permanent or temporary).
|
|
* System Environment:: Distinguish the name and kind of system.
|
|
* User Identification:: Finding the name and user id of the user.
|
|
* Time of Day:: Getting the current time.
|
|
* Time Conversion:: Converting a time from numeric form
|
|
to calendrical data, and vice versa).
|
|
* Time Parsing:: Converting a time from numeric form to text
|
|
and vice versa.
|
|
* Processor Run Time:: Getting the run time used by Emacs.
|
|
* Time Calculations:: Adding, subtracting, comparing times, etc.
|
|
* Timers:: Setting a timer to call a function at a certain time.
|
|
* Idle Timers:: Setting a timer to call a function when Emacs has
|
|
been idle for a certain length of time.
|
|
* Terminal Input:: Accessing and recording terminal input.
|
|
* Terminal Output:: Controlling and recording terminal output.
|
|
* Sound Output:: Playing sounds on the computer's speaker.
|
|
* X11 Keysyms:: Operating on key symbols for X Windows
|
|
* Batch Mode:: Running Emacs without terminal interaction.
|
|
* Session Management:: Saving and restoring state with X Session Management.
|
|
@end menu
|
|
|
|
@node Starting Up
|
|
@section Starting Up Emacs
|
|
|
|
This section describes what Emacs does when it is started, and how you
|
|
can customize these actions.
|
|
|
|
@menu
|
|
* Startup Summary:: Sequence of actions Emacs performs at startup.
|
|
* Init File:: Details on reading the init file (@file{.emacs}).
|
|
* Terminal-Specific:: How the terminal-specific Lisp file is read.
|
|
* Command-Line Arguments:: How command-line arguments are processed,
|
|
and how you can customize them.
|
|
@end menu
|
|
|
|
@node Startup Summary
|
|
@subsection Summary: Sequence of Actions at Startup
|
|
@cindex initialization
|
|
@cindex startup of Emacs
|
|
@cindex @file{startup.el}
|
|
|
|
The order of operations performed (in @file{startup.el}) by Emacs when
|
|
it is started up is as follows:
|
|
|
|
@enumerate
|
|
@item
|
|
It adds subdirectories to @code{load-path}, by running the file named
|
|
@file{subdirs.el} in each directory in the list. Normally this file
|
|
adds the directory's subdirectories to the list, and these will be
|
|
scanned in their turn. The files @file{subdirs.el} are normally
|
|
generated automatically by Emacs installation.
|
|
|
|
@item
|
|
It sets the language environment and the terminal coding system,
|
|
if requested by environment variables such as @code{LANG}.
|
|
|
|
@item
|
|
It loads the initialization library for the window system, if you are
|
|
using a window system. This library's name is
|
|
@file{term/@var{windowsystem}-win.el}.
|
|
|
|
@item
|
|
It processes the initial options. (Some of them are handled
|
|
even earlier than this.)
|
|
|
|
@item
|
|
It initializes the window frame and faces, if appropriate.
|
|
|
|
@item
|
|
It runs the normal hook @code{before-init-hook}.
|
|
|
|
@item
|
|
It loads the library @file{site-start} (if any), unless the option
|
|
@samp{-Q} (or @samp{--no-site-file}) was specified. The library's file
|
|
name is usually @file{site-start.el}.
|
|
@cindex @file{site-start.el}
|
|
|
|
@item
|
|
It loads your init file (usually @file{~/.emacs}), unless the option
|
|
@samp{-q} (or @samp{--no-init-file}), @samp{-Q}, or @samp{--batch} was
|
|
specified on the command line. The @samp{-u} option can specify
|
|
another user whose home directory should be used instead of @file{~}.
|
|
|
|
@item
|
|
It loads the library @file{default} (if any), unless
|
|
@code{inhibit-default-init} is non-@code{nil}. (This is not done in
|
|
@samp{-batch} mode, or if @samp{-Q} or @samp{-q} was specified on the
|
|
command line.) The library's file name is usually @file{default.el}.
|
|
@cindex @file{default.el}
|
|
|
|
@item
|
|
It runs the normal hook @code{after-init-hook}.
|
|
|
|
@item
|
|
It sets the major mode according to @code{initial-major-mode}, provided
|
|
the buffer @samp{*scratch*} is still current and still in Fundamental
|
|
mode.
|
|
|
|
@item
|
|
It loads the terminal-specific Lisp file, if any, except when in batch
|
|
mode or using a window system.
|
|
|
|
@item
|
|
It displays the initial echo area message, unless you have suppressed
|
|
that with @code{inhibit-startup-echo-area-message}.
|
|
|
|
@item
|
|
It processes the action arguments from the command line.
|
|
|
|
@item
|
|
It runs @code{emacs-startup-hook} and then @code{term-setup-hook}.
|
|
|
|
@item
|
|
It calls @code{frame-notice-user-settings}, which modifies the
|
|
parameters of the selected frame according to whatever the init files
|
|
specify.
|
|
|
|
@item
|
|
It runs @code{window-setup-hook}. @xref{Window Systems}.
|
|
|
|
@item
|
|
It displays copyleft, nonwarranty, and basic use information, provided
|
|
the value of @code{inhibit-startup-message} is @code{nil}, you didn't
|
|
specify @samp{--no-splash} or @samp{-Q}.
|
|
@end enumerate
|
|
|
|
@defopt inhibit-startup-message
|
|
This variable inhibits the initial startup messages (the nonwarranty,
|
|
etc.). If it is non-@code{nil}, then the messages are not printed.
|
|
|
|
This variable exists so you can set it in your personal init file, once
|
|
you are familiar with the contents of the startup message. Do not set
|
|
this variable in the init file of a new user, or in a way that affects
|
|
more than one user, because that would prevent new users from receiving
|
|
the information they are supposed to see.
|
|
@end defopt
|
|
|
|
@defopt inhibit-startup-echo-area-message
|
|
This variable controls the display of the startup echo area message.
|
|
You can suppress the startup echo area message by adding text with this
|
|
form to your init file:
|
|
|
|
@example
|
|
(setq inhibit-startup-echo-area-message
|
|
"@var{your-login-name}")
|
|
@end example
|
|
|
|
Emacs explicitly checks for an expression as shown above in your init
|
|
file; your login name must appear in the expression as a Lisp string
|
|
constant. Other methods of setting
|
|
@code{inhibit-startup-echo-area-message} to the same value do not
|
|
inhibit the startup message.
|
|
|
|
This way, you can easily inhibit the message for yourself if you wish,
|
|
but thoughtless copying of your init file will not inhibit the message
|
|
for someone else.
|
|
@end defopt
|
|
|
|
@node Init File
|
|
@subsection The Init File, @file{.emacs}
|
|
@cindex init file
|
|
@cindex @file{.emacs}
|
|
|
|
When you start Emacs, it normally attempts to load your @dfn{init
|
|
file}, a file in your home directory. Its normal name is
|
|
@file{.emacs}, but you can also call it @file{.emacs.el}.
|
|
Alternatively, you can use a file named @file{init.el} in a
|
|
subdirectory @file{.emacs.d}. Whichever place you use, you can also
|
|
compile the file (@pxref{Byte Compilation}); then the actual file
|
|
loaded will be @file{.emacs.elc} or @file{init.elc}.
|
|
|
|
The command-line switches @samp{-q}, @samp{-Q}, and @samp{-u}
|
|
control whether and where to find the init file; @samp{-q} (and the
|
|
stronger @samp{-Q}) says not to load an init file, while @samp{-u
|
|
@var{user}} says to load @var{user}'s init file instead of yours.
|
|
@xref{Entering Emacs,,, emacs, The GNU Emacs Manual}. If neither
|
|
option is specified, Emacs uses the @code{LOGNAME} environment
|
|
variable, or the @code{USER} (most systems) or @code{USERNAME} (MS
|
|
systems) variable, to find your home directory and thus your init
|
|
file; this way, even if you have su'd, Emacs still loads your own init
|
|
file. If those environment variables are absent, though, Emacs uses
|
|
your user-id to find your home directory.
|
|
|
|
@cindex default init file
|
|
A site may have a @dfn{default init file}, which is the library
|
|
named @file{default.el}. Emacs finds the @file{default.el} file
|
|
through the standard search path for libraries (@pxref{How Programs Do
|
|
Loading}). The Emacs distribution does not come with this file; sites
|
|
may provide one for local customizations. If the default init file
|
|
exists, it is loaded whenever you start Emacs, except in batch mode or
|
|
if @samp{-q} (or @samp{-Q}) is specified. But your own personal init
|
|
file, if any, is loaded first; if it sets @code{inhibit-default-init}
|
|
to a non-@code{nil} value, then Emacs does not subsequently load the
|
|
@file{default.el} file.
|
|
|
|
Another file for site-customization is @file{site-start.el}. Emacs
|
|
loads this @emph{before} the user's init file. You can inhibit the
|
|
loading of this file with the option @samp{--no-site-file}.
|
|
|
|
@defvar site-run-file
|
|
This variable specifies the site-customization file to load before the
|
|
user's init file. Its normal value is @code{"site-start"}. The only
|
|
way you can change it with real effect is to do so before dumping
|
|
Emacs.
|
|
@end defvar
|
|
|
|
@xref{Init Examples,, Init File Examples, emacs, The GNU Emacs Manual}, for
|
|
examples of how to make various commonly desired customizations in your
|
|
@file{.emacs} file.
|
|
|
|
@defopt inhibit-default-init
|
|
This variable prevents Emacs from loading the default initialization
|
|
library file for your session of Emacs. If its value is non-@code{nil},
|
|
then the default library is not loaded. The default value is
|
|
@code{nil}.
|
|
@end defopt
|
|
|
|
@defvar before-init-hook
|
|
This normal hook is run, once, just before loading all the init files
|
|
(the user's init file, @file{default.el}, and/or @file{site-start.el}).
|
|
(The only way to change it with real effect is before dumping Emacs.)
|
|
@end defvar
|
|
|
|
@defvar after-init-hook
|
|
This normal hook is run, once, just after loading all the init files
|
|
(the user's init file, @file{default.el}, and/or @file{site-start.el}),
|
|
before loading the terminal-specific library and processing the
|
|
command-line action arguments.
|
|
@end defvar
|
|
|
|
@defvar emacs-startup-hook
|
|
This normal hook is run, once, just after handling the command line
|
|
arguments, just before @code{term-setup-hook}.
|
|
@end defvar
|
|
|
|
@defvar user-init-file
|
|
This variable holds the absolute file name of the user's init file. If the
|
|
actual init file loaded is a compiled file, such as @file{.emacs.elc},
|
|
the value refers to the corresponding source file.
|
|
@end defvar
|
|
|
|
@node Terminal-Specific
|
|
@subsection Terminal-Specific Initialization
|
|
@cindex terminal-specific initialization
|
|
|
|
Each terminal type can have its own Lisp library that Emacs loads when
|
|
run on that type of terminal. The library's name is constructed by
|
|
concatenating the value of the variable @code{term-file-prefix} and the
|
|
terminal type (specified by the environment variable @code{TERM}).
|
|
Normally, @code{term-file-prefix} has the value
|
|
@code{"term/"}; changing this is not recommended. Emacs finds the file
|
|
in the normal manner, by searching the @code{load-path} directories, and
|
|
trying the @samp{.elc} and @samp{.el} suffixes.
|
|
|
|
@cindex Termcap
|
|
The usual function of a terminal-specific library is to enable
|
|
special keys to send sequences that Emacs can recognize. It may also
|
|
need to set or add to @code{function-key-map} if the Termcap or
|
|
Terminfo entry does not specify all the terminal's function keys.
|
|
@xref{Terminal Input}.
|
|
|
|
When the name of the terminal type contains a hyphen, and no library
|
|
is found whose name is identical to the terminal's name, Emacs strips
|
|
from the terminal's name the last hyphen and everything that follows
|
|
it, and tries again. This process is repeated until Emacs finds a
|
|
matching library or until there are no more hyphens in the name (the
|
|
latter means the terminal doesn't have any library specific to it).
|
|
Thus, for example, if there are no @samp{aaa-48} and @samp{aaa-30}
|
|
libraries, Emacs will try the same library @file{term/aaa.el} for
|
|
terminal types @samp{aaa-48} and @samp{aaa-30-rv}. If necessary, the
|
|
library can evaluate @code{(getenv "TERM")} to find the full name of
|
|
the terminal type.@refill
|
|
|
|
Your init file can prevent the loading of the
|
|
terminal-specific library by setting the variable
|
|
@code{term-file-prefix} to @code{nil}. This feature is useful when
|
|
experimenting with your own peculiar customizations.
|
|
|
|
You can also arrange to override some of the actions of the
|
|
terminal-specific library by setting the variable
|
|
@code{term-setup-hook}. This is a normal hook which Emacs runs using
|
|
@code{run-hooks} at the end of Emacs initialization, after loading both
|
|
your init file and any terminal-specific libraries. You can
|
|
use this variable to define initializations for terminals that do not
|
|
have their own libraries. @xref{Hooks}.
|
|
|
|
@defvar term-file-prefix
|
|
@cindex @code{TERM} environment variable
|
|
If the @code{term-file-prefix} variable is non-@code{nil}, Emacs loads
|
|
a terminal-specific initialization file as follows:
|
|
|
|
@example
|
|
(load (concat term-file-prefix (getenv "TERM")))
|
|
@end example
|
|
|
|
@noindent
|
|
You may set the @code{term-file-prefix} variable to @code{nil} in your
|
|
init file if you do not wish to load the
|
|
terminal-initialization file. To do this, put the following in
|
|
your init file: @code{(setq term-file-prefix nil)}.
|
|
|
|
On MS-DOS, if the environment variable @code{TERM} is not set, Emacs
|
|
uses @samp{internal} as the terminal type.
|
|
@end defvar
|
|
|
|
@defvar term-setup-hook
|
|
This variable is a normal hook that Emacs runs after loading your
|
|
init file, the default initialization file (if any) and the
|
|
terminal-specific Lisp file.
|
|
|
|
You can use @code{term-setup-hook} to override the definitions made by a
|
|
terminal-specific file.
|
|
@end defvar
|
|
|
|
See @code{window-setup-hook} in @ref{Window Systems}, for a related
|
|
feature.
|
|
|
|
@node Command-Line Arguments
|
|
@subsection Command-Line Arguments
|
|
@cindex command-line arguments
|
|
|
|
You can use command-line arguments to request various actions when you
|
|
start Emacs. Since you do not need to start Emacs more than once per
|
|
day, and will often leave your Emacs session running longer than that,
|
|
command-line arguments are hardly ever used. As a practical matter, it
|
|
is best to avoid making the habit of using them, since this habit would
|
|
encourage you to kill and restart Emacs unnecessarily often. These
|
|
options exist for two reasons: to be compatible with other editors (for
|
|
invocation by other programs) and to enable shell scripts to run
|
|
specific Lisp programs.
|
|
|
|
This section describes how Emacs processes command-line arguments,
|
|
and how you can customize them.
|
|
|
|
@ignore
|
|
(Note that some other editors require you to start afresh each time
|
|
you want to edit a file. With this kind of editor, you will probably
|
|
specify the file as a command-line argument. The recommended way to
|
|
use GNU Emacs is to start it only once, just after you log in, and do
|
|
all your editing in the same Emacs process. Each time you want to edit
|
|
a different file, you visit it with the existing Emacs, which eventually
|
|
comes to have many files in it ready for editing. Usually you do not
|
|
kill the Emacs until you are about to log out.)
|
|
@end ignore
|
|
|
|
@defun command-line
|
|
This function parses the command line that Emacs was called with,
|
|
processes it, loads the user's init file and displays the
|
|
startup messages.
|
|
@end defun
|
|
|
|
@defvar command-line-processed
|
|
The value of this variable is @code{t} once the command line has been
|
|
processed.
|
|
|
|
If you redump Emacs by calling @code{dump-emacs}, you may wish to set
|
|
this variable to @code{nil} first in order to cause the new dumped Emacs
|
|
to process its new command-line arguments.
|
|
@end defvar
|
|
|
|
@defvar command-switch-alist
|
|
@cindex switches on command line
|
|
@cindex options on command line
|
|
@cindex command-line options
|
|
The value of this variable is an alist of user-defined command-line
|
|
options and associated handler functions. This variable exists so you
|
|
can add elements to it.
|
|
|
|
A @dfn{command-line option} is an argument on the command line, which
|
|
has the form:
|
|
|
|
@example
|
|
-@var{option}
|
|
@end example
|
|
|
|
The elements of the @code{command-switch-alist} look like this:
|
|
|
|
@example
|
|
(@var{option} . @var{handler-function})
|
|
@end example
|
|
|
|
The @sc{car}, @var{option}, is a string, the name of a command-line
|
|
option (not including the initial hyphen). The @var{handler-function}
|
|
is called to handle @var{option}, and receives the option name as its
|
|
sole argument.
|
|
|
|
In some cases, the option is followed in the command line by an
|
|
argument. In these cases, the @var{handler-function} can find all the
|
|
remaining command-line arguments in the variable
|
|
@code{command-line-args-left}. (The entire list of command-line
|
|
arguments is in @code{command-line-args}.)
|
|
|
|
The command-line arguments are parsed by the @code{command-line-1}
|
|
function in the @file{startup.el} file. See also @ref{Emacs
|
|
Invocation, , Command Line Arguments for Emacs Invocation, emacs, The
|
|
GNU Emacs Manual}.
|
|
@end defvar
|
|
|
|
@defvar command-line-args
|
|
The value of this variable is the list of command-line arguments passed
|
|
to Emacs.
|
|
@end defvar
|
|
|
|
@defvar command-line-functions
|
|
This variable's value is a list of functions for handling an
|
|
unrecognized command-line argument. Each time the next argument to be
|
|
processed has no special meaning, the functions in this list are called,
|
|
in order of appearance, until one of them returns a non-@code{nil}
|
|
value.
|
|
|
|
These functions are called with no arguments. They can access the
|
|
command-line argument under consideration through the variable
|
|
@code{argi}, which is bound temporarily at this point. The remaining
|
|
arguments (not including the current one) are in the variable
|
|
@code{command-line-args-left}.
|
|
|
|
When a function recognizes and processes the argument in @code{argi}, it
|
|
should return a non-@code{nil} value to say it has dealt with that
|
|
argument. If it has also dealt with some of the following arguments, it
|
|
can indicate that by deleting them from @code{command-line-args-left}.
|
|
|
|
If all of these functions return @code{nil}, then the argument is used
|
|
as a file name to visit.
|
|
@end defvar
|
|
|
|
@node Getting Out
|
|
@section Getting Out of Emacs
|
|
@cindex exiting Emacs
|
|
|
|
There are two ways to get out of Emacs: you can kill the Emacs job,
|
|
which exits permanently, or you can suspend it, which permits you to
|
|
reenter the Emacs process later. As a practical matter, you seldom kill
|
|
Emacs---only when you are about to log out. Suspending is much more
|
|
common.
|
|
|
|
@menu
|
|
* Killing Emacs:: Exiting Emacs irreversibly.
|
|
* Suspending Emacs:: Exiting Emacs reversibly.
|
|
@end menu
|
|
|
|
@node Killing Emacs
|
|
@comment node-name, next, previous, up
|
|
@subsection Killing Emacs
|
|
@cindex killing Emacs
|
|
|
|
Killing Emacs means ending the execution of the Emacs process. The
|
|
parent process normally resumes control. The low-level primitive for
|
|
killing Emacs is @code{kill-emacs}.
|
|
|
|
@defun kill-emacs &optional exit-data
|
|
This function exits the Emacs process and kills it.
|
|
|
|
If @var{exit-data} is an integer, then it is used as the exit status
|
|
of the Emacs process. (This is useful primarily in batch operation; see
|
|
@ref{Batch Mode}.)
|
|
|
|
If @var{exit-data} is a string, its contents are stuffed into the
|
|
terminal input buffer so that the shell (or whatever program next reads
|
|
input) can read them.
|
|
@end defun
|
|
|
|
All the information in the Emacs process, aside from files that have
|
|
been saved, is lost when the Emacs process is killed. Because killing
|
|
Emacs inadvertently can lose a lot of work, Emacs queries for
|
|
confirmation before actually terminating if you have buffers that need
|
|
saving or subprocesses that are running. This is done in the function
|
|
@code{save-buffers-kill-emacs}, the higher level function from which
|
|
@code{kill-emacs} is usually called.
|
|
|
|
@defvar kill-emacs-query-functions
|
|
After asking the standard questions, @code{save-buffers-kill-emacs}
|
|
calls the functions in the list @code{kill-emacs-query-functions}, in
|
|
order of appearance, with no arguments. These functions can ask for
|
|
additional confirmation from the user. If any of them returns
|
|
@code{nil}, @code{save-buffers-kill-emacs} does not kill Emacs, and
|
|
does not run the remaining functions in this hook. Calling
|
|
@code{kill-emacs} directly does not run this hook.
|
|
@end defvar
|
|
|
|
@defvar kill-emacs-hook
|
|
This variable is a normal hook; once @code{save-buffers-kill-emacs} is
|
|
finished with all file saving and confirmation, it calls
|
|
@code{kill-emacs} which runs the functions in this hook.
|
|
@code{kill-emacs} does not run this hook in batch mode.
|
|
|
|
@code{kill-emacs} may be invoked directly (that is not via
|
|
@code{save-buffers-kill-emacs}) if the terminal is disconnected, or in
|
|
similar situations where interaction with the user is not possible.
|
|
Thus, if your hook needs to interact with the user, put it on
|
|
@code{kill-emacs-query-functions}; if it needs to run regardless of
|
|
how Emacs is killed, put it on @code{kill-emacs-hook}.
|
|
@end defvar
|
|
|
|
@node Suspending Emacs
|
|
@subsection Suspending Emacs
|
|
@cindex suspending Emacs
|
|
|
|
@dfn{Suspending Emacs} means stopping Emacs temporarily and returning
|
|
control to its superior process, which is usually the shell. This
|
|
allows you to resume editing later in the same Emacs process, with the
|
|
same buffers, the same kill ring, the same undo history, and so on. To
|
|
resume Emacs, use the appropriate command in the parent shell---most
|
|
likely @code{fg}.
|
|
|
|
Some operating systems do not support suspension of jobs; on these
|
|
systems, ``suspension'' actually creates a new shell temporarily as a
|
|
subprocess of Emacs. Then you would exit the shell to return to Emacs.
|
|
|
|
Suspension is not useful with window systems, because the Emacs job
|
|
may not have a parent that can resume it again, and in any case you can
|
|
give input to some other job such as a shell merely by moving to a
|
|
different window. Therefore, suspending is not allowed when Emacs is using
|
|
a window system (X, MS Windows, or Mac).
|
|
|
|
@defun suspend-emacs &optional string
|
|
This function stops Emacs and returns control to the superior process.
|
|
If and when the superior process resumes Emacs, @code{suspend-emacs}
|
|
returns @code{nil} to its caller in Lisp.
|
|
|
|
If @var{string} is non-@code{nil}, its characters are sent to be read
|
|
as terminal input by Emacs's superior shell. The characters in
|
|
@var{string} are not echoed by the superior shell; only the results
|
|
appear.
|
|
|
|
Before suspending, @code{suspend-emacs} runs the normal hook
|
|
@code{suspend-hook}.
|
|
|
|
After the user resumes Emacs, @code{suspend-emacs} runs the normal hook
|
|
@code{suspend-resume-hook}. @xref{Hooks}.
|
|
|
|
The next redisplay after resumption will redraw the entire screen,
|
|
unless the variable @code{no-redraw-on-reenter} is non-@code{nil}
|
|
(@pxref{Refresh Screen}).
|
|
|
|
In the following example, note that @samp{pwd} is not echoed after
|
|
Emacs is suspended. But it is read and executed by the shell.
|
|
|
|
@smallexample
|
|
@group
|
|
(suspend-emacs)
|
|
@result{} nil
|
|
@end group
|
|
|
|
@group
|
|
(add-hook 'suspend-hook
|
|
(function (lambda ()
|
|
(or (y-or-n-p
|
|
"Really suspend? ")
|
|
(error "Suspend canceled")))))
|
|
@result{} (lambda nil
|
|
(or (y-or-n-p "Really suspend? ")
|
|
(error "Suspend canceled")))
|
|
@end group
|
|
@group
|
|
(add-hook 'suspend-resume-hook
|
|
(function (lambda () (message "Resumed!"))))
|
|
@result{} (lambda nil (message "Resumed!"))
|
|
@end group
|
|
@group
|
|
(suspend-emacs "pwd")
|
|
@result{} nil
|
|
@end group
|
|
@group
|
|
---------- Buffer: Minibuffer ----------
|
|
Really suspend? @kbd{y}
|
|
---------- Buffer: Minibuffer ----------
|
|
@end group
|
|
|
|
@group
|
|
---------- Parent Shell ----------
|
|
lewis@@slug[23] % /user/lewis/manual
|
|
lewis@@slug[24] % fg
|
|
@end group
|
|
|
|
@group
|
|
---------- Echo Area ----------
|
|
Resumed!
|
|
@end group
|
|
@end smallexample
|
|
@end defun
|
|
|
|
@defvar suspend-hook
|
|
This variable is a normal hook that Emacs runs before suspending.
|
|
@end defvar
|
|
|
|
@defvar suspend-resume-hook
|
|
This variable is a normal hook that Emacs runs on resuming
|
|
after a suspension.
|
|
@end defvar
|
|
|
|
@node System Environment
|
|
@section Operating System Environment
|
|
@cindex operating system environment
|
|
|
|
Emacs provides access to variables in the operating system environment
|
|
through various functions. These variables include the name of the
|
|
system, the user's @acronym{UID}, and so on.
|
|
|
|
@defvar system-configuration
|
|
This variable holds the standard GNU configuration name for the
|
|
hardware/software configuration of your system, as a string. The
|
|
convenient way to test parts of this string is with
|
|
@code{string-match}.
|
|
@end defvar
|
|
|
|
@defvar system-type
|
|
The value of this variable is a symbol indicating the type of operating
|
|
system Emacs is operating on. Here is a table of the possible values:
|
|
|
|
@table @code
|
|
@item alpha-vms
|
|
VMS on the Alpha.
|
|
|
|
@item aix-v3
|
|
AIX.
|
|
|
|
@item berkeley-unix
|
|
Berkeley BSD.
|
|
|
|
@item cygwin
|
|
Cygwin.
|
|
|
|
@item dgux
|
|
Data General DGUX operating system.
|
|
|
|
@item gnu
|
|
the GNU system (using the GNU kernel, which consists of the HURD and Mach).
|
|
|
|
@item gnu/linux
|
|
A GNU/Linux system---that is, a variant GNU system, using the Linux
|
|
kernel. (These systems are the ones people often call ``Linux,'' but
|
|
actually Linux is just the kernel, not the whole system.)
|
|
|
|
@item hpux
|
|
Hewlett-Packard HPUX operating system.
|
|
|
|
@item irix
|
|
Silicon Graphics Irix system.
|
|
|
|
@item ms-dos
|
|
Microsoft MS-DOS ``operating system.'' Emacs compiled with DJGPP for
|
|
MS-DOS binds @code{system-type} to @code{ms-dos} even when you run it on
|
|
MS-Windows.
|
|
|
|
@item next-mach
|
|
NeXT Mach-based system.
|
|
|
|
@item rtu
|
|
Masscomp RTU, UCB universe.
|
|
|
|
@item unisoft-unix
|
|
UniSoft UniPlus.
|
|
|
|
@item usg-unix-v
|
|
AT&T System V.
|
|
|
|
@item vax-vms
|
|
VAX VMS.
|
|
|
|
@item windows-nt
|
|
Microsoft windows NT. The same executable supports Windows 9X, but the
|
|
value of @code{system-type} is @code{windows-nt} in either case.
|
|
|
|
@item xenix
|
|
SCO Xenix 386.
|
|
@end table
|
|
|
|
We do not wish to add new symbols to make finer distinctions unless it
|
|
is absolutely necessary! In fact, we hope to eliminate some of these
|
|
alternatives in the future. We recommend using
|
|
@code{system-configuration} to distinguish between different operating
|
|
systems.
|
|
@end defvar
|
|
|
|
@defun system-name
|
|
This function returns the name of the machine you are running on.
|
|
@example
|
|
(system-name)
|
|
@result{} "www.gnu.org"
|
|
@end example
|
|
@end defun
|
|
|
|
The symbol @code{system-name} is a variable as well as a function. In
|
|
fact, the function returns whatever value the variable
|
|
@code{system-name} currently holds. Thus, you can set the variable
|
|
@code{system-name} in case Emacs is confused about the name of your
|
|
system. The variable is also useful for constructing frame titles
|
|
(@pxref{Frame Titles}).
|
|
|
|
@defvar mail-host-address
|
|
If this variable is non-@code{nil}, it is used instead of
|
|
@code{system-name} for purposes of generating email addresses. For
|
|
example, it is used when constructing the default value of
|
|
@code{user-mail-address}. @xref{User Identification}. (Since this is
|
|
done when Emacs starts up, the value actually used is the one saved when
|
|
Emacs was dumped. @xref{Building Emacs}.)
|
|
@end defvar
|
|
|
|
@deffn Command getenv var
|
|
@cindex environment variable access
|
|
This function returns the value of the environment variable @var{var},
|
|
as a string. @var{var} should be a string. If @var{var} is undefined
|
|
in the environment, @code{getenv} returns @code{nil}. If returns
|
|
@samp{""} if @var{var} is set but null. Within Emacs, the environment
|
|
variable values are kept in the Lisp variable @code{process-environment}.
|
|
|
|
@example
|
|
@group
|
|
(getenv "USER")
|
|
@result{} "lewis"
|
|
@end group
|
|
|
|
@group
|
|
lewis@@slug[10] % printenv
|
|
PATH=.:/user/lewis/bin:/usr/bin:/usr/local/bin
|
|
USER=lewis
|
|
@end group
|
|
@group
|
|
TERM=ibmapa16
|
|
SHELL=/bin/csh
|
|
HOME=/user/lewis
|
|
@end group
|
|
@end example
|
|
@end deffn
|
|
|
|
@c Emacs 19 feature
|
|
@deffn Command setenv variable &optional value
|
|
This command sets the value of the environment variable named
|
|
@var{variable} to @var{value}. @var{variable} should be a string.
|
|
Internally, Emacs Lisp can handle any string. However, normally
|
|
@var{variable} should be a valid shell identifier, that is, a sequence
|
|
of letters, digits and underscores, starting with a letter or
|
|
underscore. Otherwise, errors may occur if subprocesses of Emacs try
|
|
to access the value of @var{variable}. If @var{value} is omitted or
|
|
@code{nil}, @code{setenv} removes @var{variable} from the environment.
|
|
Otherwise, @var{value} should be a string.
|
|
|
|
@code{setenv} works by modifying @code{process-environment}; binding
|
|
that variable with @code{let} is also reasonable practice.
|
|
|
|
@code{setenv} returns the new value of @var{variable}, or @code{nil}
|
|
if it removed @var{variable} from the environment.
|
|
@end deffn
|
|
|
|
@defvar process-environment
|
|
This variable is a list of strings, each describing one environment
|
|
variable. The functions @code{getenv} and @code{setenv} work by means
|
|
of this variable.
|
|
|
|
@smallexample
|
|
@group
|
|
process-environment
|
|
@result{} ("l=/usr/stanford/lib/gnuemacs/lisp"
|
|
"PATH=.:/user/lewis/bin:/usr/class:/nfsusr/local/bin"
|
|
"USER=lewis"
|
|
@end group
|
|
@group
|
|
"TERM=ibmapa16"
|
|
"SHELL=/bin/csh"
|
|
"HOME=/user/lewis")
|
|
@end group
|
|
@end smallexample
|
|
|
|
If @code{process-environment} contains ``duplicate'' elements that
|
|
specify the same environment variable, the first of these elements
|
|
specifies the variable, and the other ``duplicates'' are ignored.
|
|
@end defvar
|
|
|
|
@defvar path-separator
|
|
This variable holds a string which says which character separates
|
|
directories in a search path (as found in an environment variable). Its
|
|
value is @code{":"} for Unix and GNU systems, and @code{";"} for MS-DOS
|
|
and MS-Windows.
|
|
@end defvar
|
|
|
|
@defun parse-colon-path path
|
|
This function takes a search path string such as would be the value of
|
|
the @code{PATH} environment variable, and splits it at the separators,
|
|
returning a list of directory names. @code{nil} in this list stands for
|
|
``use the current directory.'' Although the function's name says
|
|
``colon,'' it actually uses the value of @code{path-separator}.
|
|
|
|
@example
|
|
(parse-colon-path ":/foo:/bar")
|
|
@result{} (nil "/foo/" "/bar/")
|
|
@end example
|
|
@end defun
|
|
|
|
@defvar invocation-name
|
|
This variable holds the program name under which Emacs was invoked. The
|
|
value is a string, and does not include a directory name.
|
|
@end defvar
|
|
|
|
@defvar invocation-directory
|
|
This variable holds the directory from which the Emacs executable was
|
|
invoked, or perhaps @code{nil} if that directory cannot be determined.
|
|
@end defvar
|
|
|
|
@defvar installation-directory
|
|
If non-@code{nil}, this is a directory within which to look for the
|
|
@file{lib-src} and @file{etc} subdirectories. This is non-@code{nil}
|
|
when Emacs can't find those directories in their standard installed
|
|
locations, but can find them in a directory related somehow to the one
|
|
containing the Emacs executable.
|
|
@end defvar
|
|
|
|
@defun load-average &optional use-float
|
|
This function returns the current 1-minute, 5-minute, and 15-minute load
|
|
averages, in a list.
|
|
|
|
By default, the values are integers that are 100 times the system load
|
|
averages, which indicate the average number of processes trying to run.
|
|
If @var{use-float} is non-@code{nil}, then they are returned
|
|
as floating point numbers and without multiplying by 100.
|
|
|
|
If it is impossible to obtain the load average, this function signals
|
|
an error. On some platforms, access to load averages requires
|
|
installing Emacs as setuid or setgid so that it can read kernel
|
|
information, and that usually isn't advisable.
|
|
|
|
If the 1-minute load average is available, but the 5- or 15-minute
|
|
averages are not, this function returns a shortened list containing
|
|
the available averages.
|
|
|
|
@example
|
|
@group
|
|
(load-average)
|
|
@result{} (169 48 36)
|
|
@end group
|
|
@group
|
|
(load-average t)
|
|
@result{} (1.69 0.48 0.36)
|
|
@end group
|
|
|
|
@group
|
|
lewis@@rocky[5] % uptime
|
|
11:55am up 1 day, 19:37, 3 users,
|
|
load average: 1.69, 0.48, 0.36
|
|
@end group
|
|
@end example
|
|
@end defun
|
|
|
|
@defun emacs-pid
|
|
This function returns the process @acronym{ID} of the Emacs process,
|
|
as an integer.
|
|
@end defun
|
|
|
|
@defvar tty-erase-char
|
|
This variable holds the erase character that was selected
|
|
in the system's terminal driver, before Emacs was started.
|
|
The value is @code{nil} if Emacs is running under a window system.
|
|
@end defvar
|
|
|
|
@defun setprv privilege-name &optional setp getprv
|
|
This function sets or resets a VMS privilege. (It does not exist on
|
|
other systems.) The first argument is the privilege name, as a string.
|
|
The second argument, @var{setp}, is @code{t} or @code{nil}, indicating
|
|
whether the privilege is to be turned on or off. Its default is
|
|
@code{nil}. The function returns @code{t} if successful, @code{nil}
|
|
otherwise.
|
|
|
|
If the third argument, @var{getprv}, is non-@code{nil}, @code{setprv}
|
|
does not change the privilege, but returns @code{t} or @code{nil}
|
|
indicating whether the privilege is currently enabled.
|
|
@end defun
|
|
|
|
@node User Identification
|
|
@section User Identification
|
|
|
|
@defvar init-file-user
|
|
This variable says which user's init files should be used by
|
|
Emacs---or @code{nil} if none. @code{""} stands for the user who
|
|
originally logged in. The value reflects command-line options such as
|
|
@samp{-q} or @samp{-u @var{user}}.
|
|
|
|
Lisp packages that load files of customizations, or any other sort of
|
|
user profile, should obey this variable in deciding where to find it.
|
|
They should load the profile of the user name found in this variable.
|
|
If @code{init-file-user} is @code{nil}, meaning that the @samp{-q}
|
|
option was used, then Lisp packages should not load any customization
|
|
files or user profile.
|
|
@end defvar
|
|
|
|
@defvar user-mail-address
|
|
This holds the nominal email address of the user who is using Emacs.
|
|
Emacs normally sets this variable to a default value after reading your
|
|
init files, but not if you have already set it. So you can set the
|
|
variable to some other value in your init file if you do not
|
|
want to use the default value.
|
|
@end defvar
|
|
|
|
@defun user-login-name &optional uid
|
|
If you don't specify @var{uid}, this function returns the name under
|
|
which the user is logged in. If the environment variable @code{LOGNAME}
|
|
is set, that value is used. Otherwise, if the environment variable
|
|
@code{USER} is set, that value is used. Otherwise, the value is based
|
|
on the effective @acronym{UID}, not the real @acronym{UID}.
|
|
|
|
If you specify @var{uid}, the value is the user name that corresponds
|
|
to @var{uid} (which should be an integer), or @code{nil} if there is
|
|
no such user.
|
|
|
|
@example
|
|
@group
|
|
(user-login-name)
|
|
@result{} "lewis"
|
|
@end group
|
|
@end example
|
|
@end defun
|
|
|
|
@defun user-real-login-name
|
|
This function returns the user name corresponding to Emacs's real
|
|
@acronym{UID}. This ignores the effective @acronym{UID} and ignores the
|
|
environment variables @code{LOGNAME} and @code{USER}.
|
|
@end defun
|
|
|
|
@defun user-full-name &optional uid
|
|
This function returns the full name of the logged-in user---or the value
|
|
of the environment variable @code{NAME}, if that is set.
|
|
|
|
@c "Bil" is the correct spelling.
|
|
@example
|
|
@group
|
|
(user-full-name)
|
|
@result{} "Bil Lewis"
|
|
@end group
|
|
@end example
|
|
|
|
If the Emacs job's user-id does not correspond to any known user (and
|
|
provided @code{NAME} is not set), the value is @code{"unknown"}.
|
|
|
|
If @var{uid} is non-@code{nil}, then it should be a number (a user-id)
|
|
or a string (a login name). Then @code{user-full-name} returns the full
|
|
name corresponding to that user-id or login name. If you specify a
|
|
user-id or login name that isn't defined, it returns @code{nil}.
|
|
@end defun
|
|
|
|
@vindex user-full-name
|
|
@vindex user-real-login-name
|
|
@vindex user-login-name
|
|
The symbols @code{user-login-name}, @code{user-real-login-name} and
|
|
@code{user-full-name} are variables as well as functions. The functions
|
|
return the same values that the variables hold. These variables allow
|
|
you to ``fake out'' Emacs by telling the functions what to return. The
|
|
variables are also useful for constructing frame titles (@pxref{Frame
|
|
Titles}).
|
|
|
|
@defun user-real-uid
|
|
This function returns the real @acronym{UID} of the user.
|
|
The value may be a floating point number.
|
|
|
|
@example
|
|
@group
|
|
(user-real-uid)
|
|
@result{} 19
|
|
@end group
|
|
@end example
|
|
@end defun
|
|
|
|
@defun user-uid
|
|
This function returns the effective @acronym{UID} of the user.
|
|
The value may be a floating point number.
|
|
@end defun
|
|
|
|
@node Time of Day
|
|
@section Time of Day
|
|
|
|
This section explains how to determine the current time and the time
|
|
zone.
|
|
|
|
@defun current-time-string &optional time-value
|
|
This function returns the current time and date as a human-readable
|
|
string. The format of the string is unvarying; the number of characters
|
|
used for each part is always the same, so you can reliably use
|
|
@code{substring} to extract pieces of it. It is wise to count the
|
|
characters from the beginning of the string rather than from the end, as
|
|
additional information may some day be added at the end.
|
|
|
|
@c Emacs 19 feature
|
|
The argument @var{time-value}, if given, specifies a time to format
|
|
instead of the current time. The argument should be a list whose first
|
|
two elements are integers. Thus, you can use times obtained from
|
|
@code{current-time} (see below) and from @code{file-attributes}
|
|
(@pxref{Definition of file-attributes}). @var{time-value} can also be
|
|
a cons of two integers, but this is considered obsolete.
|
|
|
|
@example
|
|
@group
|
|
(current-time-string)
|
|
@result{} "Wed Oct 14 22:21:05 1987"
|
|
@end group
|
|
@end example
|
|
@end defun
|
|
|
|
@c Emacs 19 feature
|
|
@defun current-time
|
|
This function returns the system's time value as a list of three
|
|
integers: @code{(@var{high} @var{low} @var{microsec})}. The integers
|
|
@var{high} and @var{low} combine to give the number of seconds since
|
|
0:00 January 1, 1970 UTC (Coordinated Universal Time), which is
|
|
@ifnottex
|
|
@var{high} * 2**16 + @var{low}.
|
|
@end ifnottex
|
|
@tex
|
|
$high*2^{16}+low$.
|
|
@end tex
|
|
|
|
The third element, @var{microsec}, gives the microseconds since the
|
|
start of the current second (or 0 for systems that return time with
|
|
the resolution of only one second).
|
|
|
|
The first two elements can be compared with file time values such as you
|
|
get with the function @code{file-attributes}.
|
|
@xref{Definition of file-attributes}.
|
|
@end defun
|
|
|
|
@c Emacs 19 feature
|
|
@defun current-time-zone &optional time-value
|
|
This function returns a list describing the time zone that the user is
|
|
in.
|
|
|
|
The value has the form @code{(@var{offset} @var{name})}. Here
|
|
@var{offset} is an integer giving the number of seconds ahead of UTC
|
|
(east of Greenwich). A negative value means west of Greenwich. The
|
|
second element, @var{name}, is a string giving the name of the time
|
|
zone. Both elements change when daylight savings time begins or ends;
|
|
if the user has specified a time zone that does not use a seasonal time
|
|
adjustment, then the value is constant through time.
|
|
|
|
If the operating system doesn't supply all the information necessary to
|
|
compute the value, the unknown elements of the list are @code{nil}.
|
|
|
|
The argument @var{time-value}, if given, specifies a time to analyze
|
|
instead of the current time. The argument should have the same form
|
|
as for @code{current-time-string} (see above). Thus, you can use
|
|
times obtained from @code{current-time} (see above) and from
|
|
@code{file-attributes}. @xref{Definition of file-attributes}.
|
|
@end defun
|
|
|
|
@defun set-time-zone-rule tz
|
|
This function specifies the local time zone according to @var{tz}. If
|
|
@var{tz} is @code{nil}, that means to use an implementation-defined
|
|
default time zone. If @var{tz} is @code{t}, that means to use
|
|
Universal Time. Otherwise, @var{tz} should be a string specifying a
|
|
time zone rule.
|
|
@end defun
|
|
|
|
@defun float-time &optional time-value
|
|
This function returns the current time as a floating-point number of
|
|
seconds since the epoch. The argument @var{time-value}, if given,
|
|
specifies a time to convert instead of the current time. The argument
|
|
should have the same form as for @code{current-time-string} (see
|
|
above). Thus, it accepts the output of @code{current-time} and
|
|
@code{file-attributes}.
|
|
|
|
@emph{Warning}: Since the result is floating point, it may not be
|
|
exact. Do not use this function if precise time stamps are required.
|
|
@end defun
|
|
|
|
@node Time Conversion
|
|
@section Time Conversion
|
|
|
|
These functions convert time values (lists of two or three integers)
|
|
to calendrical information and vice versa. You can get time values
|
|
from the functions @code{current-time} (@pxref{Time of Day}) and
|
|
@code{file-attributes} (@pxref{Definition of file-attributes}).
|
|
|
|
Many operating systems are limited to time values that contain 32 bits
|
|
of information; these systems typically handle only the times from
|
|
1901-12-13 20:45:52 UTC through 2038-01-19 03:14:07 UTC. However, some
|
|
operating systems have larger time values, and can represent times far
|
|
in the past or future.
|
|
|
|
Time conversion functions always use the Gregorian calendar, even
|
|
for dates before the Gregorian calendar was introduced. Year numbers
|
|
count the number of years since the year 1 B.C., and do not skip zero
|
|
as traditional Gregorian years do; for example, the year number
|
|
@minus{}37 represents the Gregorian year 38 B.C@.
|
|
|
|
@defun decode-time &optional time
|
|
This function converts a time value into calendrical information. If
|
|
you don't specify @var{time}, it decodes the current time. The return
|
|
value is a list of nine elements, as follows:
|
|
|
|
@example
|
|
(@var{seconds} @var{minutes} @var{hour} @var{day} @var{month} @var{year} @var{dow} @var{dst} @var{zone})
|
|
@end example
|
|
|
|
Here is what the elements mean:
|
|
|
|
@table @var
|
|
@item seconds
|
|
The number of seconds past the minute, as an integer between 0 and 59.
|
|
On some operating systems, this is 60 for leap seconds.
|
|
@item minutes
|
|
The number of minutes past the hour, as an integer between 0 and 59.
|
|
@item hour
|
|
The hour of the day, as an integer between 0 and 23.
|
|
@item day
|
|
The day of the month, as an integer between 1 and 31.
|
|
@item month
|
|
The month of the year, as an integer between 1 and 12.
|
|
@item year
|
|
The year, an integer typically greater than 1900.
|
|
@item dow
|
|
The day of week, as an integer between 0 and 6, where 0 stands for
|
|
Sunday.
|
|
@item dst
|
|
@code{t} if daylight savings time is effect, otherwise @code{nil}.
|
|
@item zone
|
|
An integer indicating the time zone, as the number of seconds east of
|
|
Greenwich.
|
|
@end table
|
|
|
|
@strong{Common Lisp Note:} Common Lisp has different meanings for
|
|
@var{dow} and @var{zone}.
|
|
@end defun
|
|
|
|
@defun encode-time seconds minutes hour day month year &optional zone
|
|
This function is the inverse of @code{decode-time}. It converts seven
|
|
items of calendrical data into a time value. For the meanings of the
|
|
arguments, see the table above under @code{decode-time}.
|
|
|
|
Year numbers less than 100 are not treated specially. If you want them
|
|
to stand for years above 1900, or years above 2000, you must alter them
|
|
yourself before you call @code{encode-time}.
|
|
|
|
The optional argument @var{zone} defaults to the current time zone and
|
|
its daylight savings time rules. If specified, it can be either a list
|
|
(as you would get from @code{current-time-zone}), a string as in the
|
|
@code{TZ} environment variable, @code{t} for Universal Time, or an
|
|
integer (as you would get from @code{decode-time}). The specified
|
|
zone is used without any further alteration for daylight savings time.
|
|
|
|
If you pass more than seven arguments to @code{encode-time}, the first
|
|
six are used as @var{seconds} through @var{year}, the last argument is
|
|
used as @var{zone}, and the arguments in between are ignored. This
|
|
feature makes it possible to use the elements of a list returned by
|
|
@code{decode-time} as the arguments to @code{encode-time}, like this:
|
|
|
|
@example
|
|
(apply 'encode-time (decode-time @dots{}))
|
|
@end example
|
|
|
|
You can perform simple date arithmetic by using out-of-range values for
|
|
the @var{seconds}, @var{minutes}, @var{hour}, @var{day}, and @var{month}
|
|
arguments; for example, day 0 means the day preceding the given month.
|
|
|
|
The operating system puts limits on the range of possible time values;
|
|
if you try to encode a time that is out of range, an error results.
|
|
For instance, years before 1970 do not work on some systems;
|
|
on others, years as early as 1901 do work.
|
|
@end defun
|
|
|
|
@node Time Parsing
|
|
@section Parsing and Formatting Times
|
|
|
|
These functions convert time values (lists of two or three integers)
|
|
to text in a string, and vice versa.
|
|
|
|
@defun date-to-time string
|
|
This function parses the time-string @var{string} and returns the
|
|
corresponding time value.
|
|
@end defun
|
|
|
|
@defun format-time-string format-string &optional time universal
|
|
This function converts @var{time} (or the current time, if @var{time} is
|
|
omitted) to a string according to @var{format-string}. The argument
|
|
@var{format-string} may contain @samp{%}-sequences which say to
|
|
substitute parts of the time. Here is a table of what the
|
|
@samp{%}-sequences mean:
|
|
|
|
@table @samp
|
|
@item %a
|
|
This stands for the abbreviated name of the day of week.
|
|
@item %A
|
|
This stands for the full name of the day of week.
|
|
@item %b
|
|
This stands for the abbreviated name of the month.
|
|
@item %B
|
|
This stands for the full name of the month.
|
|
@item %c
|
|
This is a synonym for @samp{%x %X}.
|
|
@item %C
|
|
This has a locale-specific meaning. In the default locale (named C), it
|
|
is equivalent to @samp{%A, %B %e, %Y}.
|
|
@item %d
|
|
This stands for the day of month, zero-padded.
|
|
@item %D
|
|
This is a synonym for @samp{%m/%d/%y}.
|
|
@item %e
|
|
This stands for the day of month, blank-padded.
|
|
@item %h
|
|
This is a synonym for @samp{%b}.
|
|
@item %H
|
|
This stands for the hour (00-23).
|
|
@item %I
|
|
This stands for the hour (01-12).
|
|
@item %j
|
|
This stands for the day of the year (001-366).
|
|
@item %k
|
|
This stands for the hour (0-23), blank padded.
|
|
@item %l
|
|
This stands for the hour (1-12), blank padded.
|
|
@item %m
|
|
This stands for the month (01-12).
|
|
@item %M
|
|
This stands for the minute (00-59).
|
|
@item %n
|
|
This stands for a newline.
|
|
@item %p
|
|
This stands for @samp{AM} or @samp{PM}, as appropriate.
|
|
@item %r
|
|
This is a synonym for @samp{%I:%M:%S %p}.
|
|
@item %R
|
|
This is a synonym for @samp{%H:%M}.
|
|
@item %S
|
|
This stands for the seconds (00-59).
|
|
@item %t
|
|
This stands for a tab character.
|
|
@item %T
|
|
This is a synonym for @samp{%H:%M:%S}.
|
|
@item %U
|
|
This stands for the week of the year (01-52), assuming that weeks
|
|
start on Sunday.
|
|
@item %w
|
|
This stands for the numeric day of week (0-6). Sunday is day 0.
|
|
@item %W
|
|
This stands for the week of the year (01-52), assuming that weeks
|
|
start on Monday.
|
|
@item %x
|
|
This has a locale-specific meaning. In the default locale (named
|
|
@samp{C}), it is equivalent to @samp{%D}.
|
|
@item %X
|
|
This has a locale-specific meaning. In the default locale (named
|
|
@samp{C}), it is equivalent to @samp{%T}.
|
|
@item %y
|
|
This stands for the year without century (00-99).
|
|
@item %Y
|
|
This stands for the year with century.
|
|
@item %Z
|
|
This stands for the time zone abbreviation (e.g., @samp{EST}).
|
|
@item %z
|
|
This stands for the time zone numerical offset (e.g., @samp{-0500}).
|
|
@end table
|
|
|
|
You can also specify the field width and type of padding for any of
|
|
these @samp{%}-sequences. This works as in @code{printf}: you write
|
|
the field width as digits in the middle of a @samp{%}-sequences. If you
|
|
start the field width with @samp{0}, it means to pad with zeros. If you
|
|
start the field width with @samp{_}, it means to pad with spaces.
|
|
|
|
For example, @samp{%S} specifies the number of seconds since the minute;
|
|
@samp{%03S} means to pad this with zeros to 3 positions, @samp{%_3S} to
|
|
pad with spaces to 3 positions. Plain @samp{%3S} pads with zeros,
|
|
because that is how @samp{%S} normally pads to two positions.
|
|
|
|
The characters @samp{E} and @samp{O} act as modifiers when used between
|
|
@samp{%} and one of the letters in the table above. @samp{E} specifies
|
|
using the current locale's ``alternative'' version of the date and time.
|
|
In a Japanese locale, for example, @code{%Ex} might yield a date format
|
|
based on the Japanese Emperors' reigns. @samp{E} is allowed in
|
|
@samp{%Ec}, @samp{%EC}, @samp{%Ex}, @samp{%EX}, @samp{%Ey}, and
|
|
@samp{%EY}.
|
|
|
|
@samp{O} means to use the current locale's ``alternative''
|
|
representation of numbers, instead of the ordinary decimal digits. This
|
|
is allowed with most letters, all the ones that output numbers.
|
|
|
|
If @var{universal} is non-@code{nil}, that means to describe the time as
|
|
Universal Time; @code{nil} means describe it using what Emacs believes
|
|
is the local time zone (see @code{current-time-zone}).
|
|
|
|
This function uses the C library function @code{strftime}
|
|
(@pxref{Formatting Calendar Time,,, libc, The GNU C Library Reference
|
|
Manual}) to do most of the work. In order to communicate with that
|
|
function, it first encodes its argument using the coding system
|
|
specified by @code{locale-coding-system} (@pxref{Locales}); after
|
|
@code{strftime} returns the resulting string,
|
|
@code{format-time-string} decodes the string using that same coding
|
|
system.
|
|
@end defun
|
|
|
|
@defun seconds-to-time seconds
|
|
This function converts @var{seconds}, a floating point number of
|
|
seconds since the epoch, to a time value and returns that. To perform
|
|
the inverse conversion, use @code{float-time}.
|
|
@end defun
|
|
|
|
@node Processor Run Time
|
|
@section Processor Run time
|
|
|
|
@defun get-internal-run-time
|
|
This function returns the processor run time used by Emacs as a list
|
|
of three integers: @code{(@var{high} @var{low} @var{microsec})}. The
|
|
integers @var{high} and @var{low} combine to give the number of
|
|
seconds, which is
|
|
@ifnottex
|
|
@var{high} * 2**16 + @var{low}.
|
|
@end ifnottex
|
|
@tex
|
|
$high*2^{16}+low$.
|
|
@end tex
|
|
|
|
The third element, @var{microsec}, gives the microseconds (or 0 for
|
|
systems that return time with the resolution of only one second).
|
|
|
|
If the system doesn't provide a way to determine the processor run
|
|
time, get-internal-run-time returns the same time as current-time.
|
|
@end defun
|
|
|
|
@node Time Calculations
|
|
@section Time Calculations
|
|
|
|
These functions perform calendrical computations using time values
|
|
(the kind of list that @code{current-time} returns).
|
|
|
|
@defun time-less-p t1 t2
|
|
This returns @code{t} if time value @var{t1} is less than time value
|
|
@var{t2}.
|
|
@end defun
|
|
|
|
@defun time-subtract t1 t2
|
|
This returns the time difference @var{t1} @minus{} @var{t2} between
|
|
two time values, in the same format as a time value.
|
|
@end defun
|
|
|
|
@defun time-add t1 t2
|
|
This returns the sum of two time values, one of which ought to
|
|
represent a time difference rather than a point in time.
|
|
Here is how to add a number of seconds to a time value:
|
|
|
|
@example
|
|
(time-add @var{time} (seconds-to-time @var{seconds}))
|
|
@end example
|
|
@end defun
|
|
|
|
@defun time-to-days time
|
|
This function returns the number of days between the beginning of year
|
|
1 and @var{time}.
|
|
@end defun
|
|
|
|
@defun time-to-day-in-year time
|
|
This returns the day number within the year corresponding to @var{time}.
|
|
@end defun
|
|
|
|
@defun date-leap-year-p year
|
|
This function returns @code{t} if @var{year} is a leap year.
|
|
@end defun
|
|
|
|
@node Timers
|
|
@section Timers for Delayed Execution
|
|
@cindex timer
|
|
|
|
You can set up a @dfn{timer} to call a function at a specified
|
|
future time or after a certain length of idleness.
|
|
|
|
Emacs cannot run timers at any arbitrary point in a Lisp program; it
|
|
can run them only when Emacs could accept output from a subprocess:
|
|
namely, while waiting or inside certain primitive functions such as
|
|
@code{sit-for} or @code{read-event} which @emph{can} wait. Therefore, a
|
|
timer's execution may be delayed if Emacs is busy. However, the time of
|
|
execution is very precise if Emacs is idle.
|
|
|
|
Emacs binds @code{inhibit-quit} to @code{t} before calling the timer
|
|
function, because quitting out of many timer functions can leave
|
|
things in an inconsistent state. This is normally unproblematical
|
|
because most timer functions don't do a lot of work. Indeed, for a
|
|
timer to call a function that takes substantial time to run is likely
|
|
to be annoying. If a timer function needs to allow quitting, it
|
|
should use @code{with-local-quit} (@pxref{Quitting}). For example, if
|
|
a timer function calls @code{accept-process-output} to receive output
|
|
from an external process, that call should be wrapped inside
|
|
@code{with-local-quit}, to ensure that @kbd{C-g} works if the external
|
|
process hangs.
|
|
|
|
It is usually a bad idea for timer functions to alter buffer
|
|
contents. When they do, they usually should call @code{undo-boundary}
|
|
both before and after changing the buffer, to separate the timer's
|
|
changes from user commands' changes and prevent a single undo entry
|
|
from growing to be quite large.
|
|
|
|
Timer functions should also avoid calling functions that cause Emacs
|
|
to wait, such as @code{sit-for} (@pxref{Waiting}). This can lead to
|
|
unpredictable effects, since other timers (or even the same timer) can
|
|
run while waiting. If a timer function needs to perform an action
|
|
after a certain time has elapsed, it can do this by scheduling a new
|
|
timer.
|
|
|
|
If a timer function calls functions that can change the match data,
|
|
it should save and restore the match data. @xref{Saving Match Data}.
|
|
|
|
@deffn Command run-at-time time repeat function &rest args
|
|
This sets up a timer that calls the function @var{function} with
|
|
arguments @var{args} at time @var{time}. If @var{repeat} is a number
|
|
(integer or floating point), the timer is scheduled to run again every
|
|
@var{repeat} seconds after @var{time}. If @var{repeat} is @code{nil},
|
|
the timer runs only once.
|
|
|
|
@var{time} may specify an absolute or a relative time.
|
|
|
|
Absolute times may be specified in a wide variety of formats; this
|
|
function tries to accept all the commonly used date formats. The most
|
|
convenient formats are strings. Valid such formats include these two,
|
|
|
|
@example
|
|
@var{year}-@var{month}-@var{day} @var{hour}:@var{min}:@var{sec} @var{timezone}
|
|
|
|
@var{hour}:@var{min}:@var{sec} @var{timezone} @var{month}/@var{day}/@var{year}
|
|
@end example
|
|
|
|
@noindent
|
|
where in both examples all fields are numbers; the format that
|
|
@code{current-time-string} returns is also allowed, and many others
|
|
as well.
|
|
|
|
To specify a relative time as a string, use numbers followed by units.
|
|
For example:
|
|
|
|
@table @samp
|
|
@item 1 min
|
|
denotes 1 minute from now.
|
|
@item 1 min 5 sec
|
|
denotes 65 seconds from now.
|
|
@item 1 min 2 sec 3 hour 4 day 5 week 6 fortnight 7 month 8 year
|
|
denotes exactly 103 months, 123 days, and 10862 seconds from now.
|
|
@end table
|
|
|
|
For relative time values, Emacs considers a month to be exactly thirty
|
|
days, and a year to be exactly 365.25 days.
|
|
|
|
Not all convenient formats are strings. If @var{time} is a number
|
|
(integer or floating point), that specifies a relative time measured
|
|
in seconds.
|
|
|
|
In most cases, @var{repeat} has no effect on when @emph{first} call
|
|
takes place---@var{time} alone specifies that. There is one exception:
|
|
if @var{time} is @code{t}, then the timer runs whenever the time is a
|
|
multiple of @var{repeat} seconds after the epoch. This is useful for
|
|
functions like @code{display-time}.
|
|
|
|
The function @code{run-at-time} returns a timer value that identifies
|
|
the particular scheduled future action. You can use this value to call
|
|
@code{cancel-timer} (see below).
|
|
@end deffn
|
|
|
|
A repeating timer nominally ought to run every @var{repeat} seconds,
|
|
but remember that any invocation of a timer can be late. Lateness of
|
|
one repetition has no effect on the scheduled time of the next
|
|
repetition. For instance, if Emacs is busy computing for long enough
|
|
to cover three scheduled repetitions of the timer, and then starts to
|
|
wait, it will immediately call the timer function three times in
|
|
immediate succession (presuming no other timers trigger before or
|
|
between them). If you want a timer to run again no less than @var{n}
|
|
seconds after the last invocation, don't use the @var{repeat} argument.
|
|
Instead, the timer function should explicitly reschedule the timer.
|
|
|
|
@defvar timer-max-repeats
|
|
This variable's value specifies the maximum number of times to repeat
|
|
calling a timer function in a row, when many previously scheduled
|
|
calls were unavoidably delayed.
|
|
@end defvar
|
|
|
|
@defmac with-timeout (seconds timeout-forms@dots{}) body@dots{}
|
|
Execute @var{body}, but give up after @var{seconds} seconds. If
|
|
@var{body} finishes before the time is up, @code{with-timeout} returns
|
|
the value of the last form in @var{body}. If, however, the execution of
|
|
@var{body} is cut short by the timeout, then @code{with-timeout}
|
|
executes all the @var{timeout-forms} and returns the value of the last
|
|
of them.
|
|
|
|
This macro works by setting a timer to run after @var{seconds} seconds. If
|
|
@var{body} finishes before that time, it cancels the timer. If the
|
|
timer actually runs, it terminates execution of @var{body}, then
|
|
executes @var{timeout-forms}.
|
|
|
|
Since timers can run within a Lisp program only when the program calls a
|
|
primitive that can wait, @code{with-timeout} cannot stop executing
|
|
@var{body} while it is in the midst of a computation---only when it
|
|
calls one of those primitives. So use @code{with-timeout} only with a
|
|
@var{body} that waits for input, not one that does a long computation.
|
|
@end defmac
|
|
|
|
The function @code{y-or-n-p-with-timeout} provides a simple way to use
|
|
a timer to avoid waiting too long for an answer. @xref{Yes-or-No
|
|
Queries}.
|
|
|
|
@defun cancel-timer timer
|
|
This cancels the requested action for @var{timer}, which should be a
|
|
timer---usually, one previously returned by @code{run-at-time} or
|
|
@code{run-with-idle-timer}. This cancels the effect of that call to
|
|
one of these functions; the arrival of the specified time will not
|
|
cause anything special to happen.
|
|
@end defun
|
|
|
|
@node Idle Timers
|
|
@section Idle Timers
|
|
|
|
Here is how to set up a timer that runs when Emacs is idle for a
|
|
certain length of time. Aside from how to set them up, idle timers
|
|
work just like ordinary timers.
|
|
|
|
@deffn Command run-with-idle-timer secs repeat function &rest args
|
|
Set up a timer which runs when Emacs has been idle for @var{secs}
|
|
seconds. The value of @var{secs} may be an integer or a floating point
|
|
number; a value of the type returned by @code{current-idle-time}
|
|
is also allowed.
|
|
|
|
If @var{repeat} is @code{nil}, the timer runs just once, the first time
|
|
Emacs remains idle for a long enough time. More often @var{repeat} is
|
|
non-@code{nil}, which means to run the timer @emph{each time} Emacs
|
|
remains idle for @var{secs} seconds.
|
|
|
|
The function @code{run-with-idle-timer} returns a timer value which you
|
|
can use in calling @code{cancel-timer} (@pxref{Timers}).
|
|
@end deffn
|
|
|
|
@cindex idleness
|
|
Emacs becomes ``idle'' when it starts waiting for user input, and it
|
|
remains idle until the user provides some input. If a timer is set for
|
|
five seconds of idleness, it runs approximately five seconds after Emacs
|
|
first becomes idle. Even if @var{repeat} is non-@code{nil}, this timer
|
|
will not run again as long as Emacs remains idle, because the duration
|
|
of idleness will continue to increase and will not go down to five
|
|
seconds again.
|
|
|
|
Emacs can do various things while idle: garbage collect, autosave or
|
|
handle data from a subprocess. But these interludes during idleness do
|
|
not interfere with idle timers, because they do not reset the clock of
|
|
idleness to zero. An idle timer set for 600 seconds will run when ten
|
|
minutes have elapsed since the last user command was finished, even if
|
|
subprocess output has been accepted thousands of times within those ten
|
|
minutes, and even if there have been garbage collections and autosaves.
|
|
|
|
When the user supplies input, Emacs becomes non-idle while executing the
|
|
input. Then it becomes idle again, and all the idle timers that are
|
|
set up to repeat will subsequently run another time, one by one.
|
|
|
|
@c Emacs 19 feature
|
|
@defun current-idle-time
|
|
This function returns the length of time Emacs has been idle, as a
|
|
list of three integers: @code{(@var{high} @var{low} @var{microsec})}.
|
|
The integers @var{high} and @var{low} combine to give the number of
|
|
seconds of idleness, which is
|
|
@ifnottex
|
|
@var{high} * 2**16 + @var{low}.
|
|
@end ifnottex
|
|
@tex
|
|
$high*2^{16}+low$.
|
|
@end tex
|
|
|
|
The third element, @var{microsec}, gives the microseconds since the
|
|
start of the current second (or 0 for systems that return time with
|
|
the resolution of only one second).
|
|
|
|
The main use of this function is when an idle timer function wants to
|
|
``take a break'' for a while. It can set up another idle timer to
|
|
call the same function again, after a few seconds more idleness.
|
|
Here's an example:
|
|
|
|
@smallexample
|
|
(defvar resume-timer nil
|
|
"Timer that `timer-function' used to reschedule itself, or nil.")
|
|
|
|
(defun timer-function ()
|
|
;; @r{If the user types a command while @code{resume-timer}}
|
|
;; @r{is active, the next time this function is called from}
|
|
;; @r{its main idle timer, deactivate @code{resume-timer}.}
|
|
(when resume-timer
|
|
(cancel-timer resume-timer))
|
|
...@var{do the work for a while}...
|
|
(when @var{taking-a-break}
|
|
(setq resume-timer
|
|
(run-with-idle-timer
|
|
;; Compute an idle time @var{break-length}
|
|
;; more than the current value.
|
|
(time-add (current-idle-time)
|
|
(seconds-to-time @var{break-length}))
|
|
nil
|
|
'timer-function))))
|
|
@end smallexample
|
|
@end defun
|
|
|
|
Some idle timer functions in user Lisp packages have a loop that
|
|
does a certain amount of processing each time around, and exits when
|
|
@code{(input-pending-p)} is non-@code{nil}. That approach seems very
|
|
natural but has two problems:
|
|
|
|
@itemize
|
|
@item
|
|
It blocks out all process output (since Emacs accepts process output
|
|
only while waiting).
|
|
|
|
@item
|
|
It blocks out any idle timers that ought to run during that time.
|
|
@end itemize
|
|
|
|
@noindent
|
|
To avoid these problems, don't use that technique. Instead, write
|
|
such idle timers to reschedule themselves after a brief pause, using
|
|
the method in the @code{timer-function} example above.
|
|
|
|
@node Terminal Input
|
|
@section Terminal Input
|
|
@cindex terminal input
|
|
|
|
This section describes functions and variables for recording or
|
|
manipulating terminal input. See @ref{Display}, for related
|
|
functions.
|
|
|
|
@menu
|
|
* Input Modes:: Options for how input is processed.
|
|
* Recording Input:: Saving histories of recent or all input events.
|
|
@end menu
|
|
|
|
@node Input Modes
|
|
@subsection Input Modes
|
|
@cindex input modes
|
|
@cindex terminal input modes
|
|
|
|
@defun set-input-mode interrupt flow meta &optional quit-char
|
|
This function sets the mode for reading keyboard input. If
|
|
@var{interrupt} is non-null, then Emacs uses input interrupts. If it is
|
|
@code{nil}, then it uses @sc{cbreak} mode. The default setting is
|
|
system-dependent. Some systems always use @sc{cbreak} mode regardless
|
|
of what is specified.
|
|
|
|
When Emacs communicates directly with X, it ignores this argument and
|
|
uses interrupts if that is the way it knows how to communicate.
|
|
|
|
If @var{flow} is non-@code{nil}, then Emacs uses @sc{xon/xoff}
|
|
(@kbd{C-q}, @kbd{C-s}) flow control for output to the terminal. This
|
|
has no effect except in @sc{cbreak} mode.
|
|
|
|
@c Emacs 19 feature
|
|
The argument @var{meta} controls support for input character codes
|
|
above 127. If @var{meta} is @code{t}, Emacs converts characters with
|
|
the 8th bit set into Meta characters. If @var{meta} is @code{nil},
|
|
Emacs disregards the 8th bit; this is necessary when the terminal uses
|
|
it as a parity bit. If @var{meta} is neither @code{t} nor @code{nil},
|
|
Emacs uses all 8 bits of input unchanged. This is good for terminals
|
|
that use 8-bit character sets.
|
|
|
|
@c Emacs 19 feature
|
|
If @var{quit-char} is non-@code{nil}, it specifies the character to
|
|
use for quitting. Normally this character is @kbd{C-g}.
|
|
@xref{Quitting}.
|
|
@end defun
|
|
|
|
The @code{current-input-mode} function returns the input mode settings
|
|
Emacs is currently using.
|
|
|
|
@c Emacs 19 feature
|
|
@defun current-input-mode
|
|
This function returns the current mode for reading keyboard input. It
|
|
returns a list, corresponding to the arguments of @code{set-input-mode},
|
|
of the form @code{(@var{interrupt} @var{flow} @var{meta} @var{quit})} in
|
|
which:
|
|
@table @var
|
|
@item interrupt
|
|
is non-@code{nil} when Emacs is using interrupt-driven input. If
|
|
@code{nil}, Emacs is using @sc{cbreak} mode.
|
|
@item flow
|
|
is non-@code{nil} if Emacs uses @sc{xon/xoff} (@kbd{C-q}, @kbd{C-s})
|
|
flow control for output to the terminal. This value is meaningful only
|
|
when @var{interrupt} is @code{nil}.
|
|
@item meta
|
|
is @code{t} if Emacs treats the eighth bit of input characters as
|
|
the meta bit; @code{nil} means Emacs clears the eighth bit of every
|
|
input character; any other value means Emacs uses all eight bits as the
|
|
basic character code.
|
|
@item quit
|
|
is the character Emacs currently uses for quitting, usually @kbd{C-g}.
|
|
@end table
|
|
@end defun
|
|
|
|
@node Recording Input
|
|
@subsection Recording Input
|
|
|
|
@defun recent-keys
|
|
This function returns a vector containing the last 100 input events from
|
|
the keyboard or mouse. All input events are included, whether or not
|
|
they were used as parts of key sequences. Thus, you always get the last
|
|
100 input events, not counting events generated by keyboard macros.
|
|
(These are excluded because they are less interesting for debugging; it
|
|
should be enough to see the events that invoked the macros.)
|
|
|
|
A call to @code{clear-this-command-keys} (@pxref{Command Loop Info})
|
|
causes this function to return an empty vector immediately afterward.
|
|
@end defun
|
|
|
|
@deffn Command open-dribble-file filename
|
|
@cindex dribble file
|
|
This function opens a @dfn{dribble file} named @var{filename}. When a
|
|
dribble file is open, each input event from the keyboard or mouse (but
|
|
not those from keyboard macros) is written in that file. A
|
|
non-character event is expressed using its printed representation
|
|
surrounded by @samp{<@dots{}>}.
|
|
|
|
You close the dribble file by calling this function with an argument
|
|
of @code{nil}.
|
|
|
|
This function is normally used to record the input necessary to
|
|
trigger an Emacs bug, for the sake of a bug report.
|
|
|
|
@example
|
|
@group
|
|
(open-dribble-file "~/dribble")
|
|
@result{} nil
|
|
@end group
|
|
@end example
|
|
@end deffn
|
|
|
|
See also the @code{open-termscript} function (@pxref{Terminal Output}).
|
|
|
|
@node Terminal Output
|
|
@section Terminal Output
|
|
@cindex terminal output
|
|
|
|
The terminal output functions send output to a text terminal, or keep
|
|
track of output sent to the terminal. The variable @code{baud-rate}
|
|
tells you what Emacs thinks is the output speed of the terminal.
|
|
|
|
@defvar baud-rate
|
|
This variable's value is the output speed of the terminal, as far as
|
|
Emacs knows. Setting this variable does not change the speed of actual
|
|
data transmission, but the value is used for calculations such as
|
|
padding.
|
|
|
|
It also affects decisions about whether to scroll part of the
|
|
screen or repaint on text terminals. @xref{Forcing Redisplay},
|
|
for the corresponding functionality on graphical terminals.
|
|
|
|
The value is measured in baud.
|
|
@end defvar
|
|
|
|
If you are running across a network, and different parts of the
|
|
network work at different baud rates, the value returned by Emacs may be
|
|
different from the value used by your local terminal. Some network
|
|
protocols communicate the local terminal speed to the remote machine, so
|
|
that Emacs and other programs can get the proper value, but others do
|
|
not. If Emacs has the wrong value, it makes decisions that are less
|
|
than optimal. To fix the problem, set @code{baud-rate}.
|
|
|
|
@defun baud-rate
|
|
This obsolete function returns the value of the variable
|
|
@code{baud-rate}.
|
|
@end defun
|
|
|
|
@defun send-string-to-terminal string
|
|
This function sends @var{string} to the terminal without alteration.
|
|
Control characters in @var{string} have terminal-dependent effects.
|
|
This function operates only on text terminals.
|
|
|
|
One use of this function is to define function keys on terminals that
|
|
have downloadable function key definitions. For example, this is how (on
|
|
certain terminals) to define function key 4 to move forward four
|
|
characters (by transmitting the characters @kbd{C-u C-f} to the
|
|
computer):
|
|
|
|
@example
|
|
@group
|
|
(send-string-to-terminal "\eF4\^U\^F")
|
|
@result{} nil
|
|
@end group
|
|
@end example
|
|
@end defun
|
|
|
|
@deffn Command open-termscript filename
|
|
@cindex termscript file
|
|
This function is used to open a @dfn{termscript file} that will record
|
|
all the characters sent by Emacs to the terminal. It returns
|
|
@code{nil}. Termscript files are useful for investigating problems
|
|
where Emacs garbles the screen, problems that are due to incorrect
|
|
Termcap entries or to undesirable settings of terminal options more
|
|
often than to actual Emacs bugs. Once you are certain which characters
|
|
were actually output, you can determine reliably whether they correspond
|
|
to the Termcap specifications in use.
|
|
|
|
You close the termscript file by calling this function with an
|
|
argument of @code{nil}.
|
|
|
|
See also @code{open-dribble-file} in @ref{Recording Input}.
|
|
|
|
@example
|
|
@group
|
|
(open-termscript "../junk/termscript")
|
|
@result{} nil
|
|
@end group
|
|
@end example
|
|
@end deffn
|
|
|
|
@node Sound Output
|
|
@section Sound Output
|
|
@cindex sound
|
|
|
|
To play sound using Emacs, use the function @code{play-sound}. Only
|
|
certain systems are supported; if you call @code{play-sound} on a system
|
|
which cannot really do the job, it gives an error. Emacs version 20 and
|
|
earlier did not support sound at all.
|
|
|
|
The sound must be stored as a file in RIFF-WAVE format (@samp{.wav})
|
|
or Sun Audio format (@samp{.au}).
|
|
|
|
@defun play-sound sound
|
|
This function plays a specified sound. The argument, @var{sound}, has
|
|
the form @code{(sound @var{properties}...)}, where the @var{properties}
|
|
consist of alternating keywords (particular symbols recognized
|
|
specially) and values corresponding to them.
|
|
|
|
Here is a table of the keywords that are currently meaningful in
|
|
@var{sound}, and their meanings:
|
|
|
|
@table @code
|
|
@item :file @var{file}
|
|
This specifies the file containing the sound to play.
|
|
If the file name is not absolute, it is expanded against
|
|
the directory @code{data-directory}.
|
|
|
|
@item :data @var{data}
|
|
This specifies the sound to play without need to refer to a file. The
|
|
value, @var{data}, should be a string containing the same bytes as a
|
|
sound file. We recommend using a unibyte string.
|
|
|
|
@item :volume @var{volume}
|
|
This specifies how loud to play the sound. It should be a number in the
|
|
range of 0 to 1. The default is to use whatever volume has been
|
|
specified before.
|
|
|
|
@item :device @var{device}
|
|
This specifies the system device on which to play the sound, as a
|
|
string. The default device is system-dependent.
|
|
@end table
|
|
|
|
Before actually playing the sound, @code{play-sound}
|
|
calls the functions in the list @code{play-sound-functions}.
|
|
Each function is called with one argument, @var{sound}.
|
|
@end defun
|
|
|
|
@defun play-sound-file file &optional volume device
|
|
This function is an alternative interface to playing a sound @var{file}
|
|
specifying an optional @var{volume} and @var{device}.
|
|
@end defun
|
|
|
|
@defvar play-sound-functions
|
|
A list of functions to be called before playing a sound. Each function
|
|
is called with one argument, a property list that describes the sound.
|
|
@end defvar
|
|
|
|
@node X11 Keysyms
|
|
@section Operating on X11 Keysyms
|
|
|
|
To define system-specific X11 keysyms, set the variable
|
|
@code{system-key-alist}.
|
|
|
|
@defvar system-key-alist
|
|
This variable's value should be an alist with one element for each
|
|
system-specific keysym. Each element has the form @code{(@var{code}
|
|
. @var{symbol})}, where @var{code} is the numeric keysym code (not
|
|
including the ``vendor specific'' bit,
|
|
@ifnottex
|
|
-2**28),
|
|
@end ifnottex
|
|
@tex
|
|
$-2^{28}$),
|
|
@end tex
|
|
and @var{symbol} is the name for the function key.
|
|
|
|
For example @code{(168 . mute-acute)} defines a system-specific key (used
|
|
by HP X servers) whose numeric code is
|
|
@ifnottex
|
|
-2**28
|
|
@end ifnottex
|
|
@tex
|
|
$-2^{28}$
|
|
@end tex
|
|
+ 168.
|
|
|
|
It is not crucial to exclude from the alist the keysyms of other X
|
|
servers; those do no harm, as long as they don't conflict with the ones
|
|
used by the X server actually in use.
|
|
|
|
The variable is always local to the current terminal, and cannot be
|
|
buffer-local. @xref{Multiple Displays}.
|
|
@end defvar
|
|
|
|
You can specify which keysyms Emacs should use for the Meta, Alt, Hyper, and Super modifiers by setting these variables:
|
|
|
|
@defvar x-alt-keysym
|
|
@defvarx x-meta-keysym
|
|
@defvarx x-hyper-keysym
|
|
@defvarx x-super-keysym
|
|
The name of the keysym that should stand for the Alt modifier
|
|
(respectively, for Meta, Hyper, and Super). For example, here is
|
|
how to swap the Meta and Alt modifiers within Emacs:
|
|
@lisp
|
|
(setq x-alt-keysym 'meta)
|
|
(setq x-meta-keysym 'alt)
|
|
@end lisp
|
|
@end defvar
|
|
|
|
@node Batch Mode
|
|
@section Batch Mode
|
|
@cindex batch mode
|
|
@cindex noninteractive use
|
|
|
|
The command-line option @samp{-batch} causes Emacs to run
|
|
noninteractively. In this mode, Emacs does not read commands from the
|
|
terminal, it does not alter the terminal modes, and it does not expect
|
|
to be outputting to an erasable screen. The idea is that you specify
|
|
Lisp programs to run; when they are finished, Emacs should exit. The
|
|
way to specify the programs to run is with @samp{-l @var{file}}, which
|
|
loads the library named @var{file}, or @samp{-f @var{function}}, which
|
|
calls @var{function} with no arguments, or @samp{--eval @var{form}}.
|
|
|
|
Any Lisp program output that would normally go to the echo area,
|
|
either using @code{message}, or using @code{prin1}, etc., with @code{t}
|
|
as the stream, goes instead to Emacs's standard error descriptor when
|
|
in batch mode. Similarly, input that would normally come from the
|
|
minibuffer is read from the standard input descriptor.
|
|
Thus, Emacs behaves much like a noninteractive
|
|
application program. (The echo area output that Emacs itself normally
|
|
generates, such as command echoing, is suppressed entirely.)
|
|
|
|
@defvar noninteractive
|
|
This variable is non-@code{nil} when Emacs is running in batch mode.
|
|
@end defvar
|
|
|
|
@node Session Management
|
|
@section Session Management
|
|
@cindex session manager
|
|
|
|
Emacs supports the X Session Management Protocol for suspension and
|
|
restart of applications. In the X Window System, a program called the
|
|
@dfn{session manager} has the responsibility to keep track of the
|
|
applications that are running. During shutdown, the session manager
|
|
asks applications to save their state, and delays the actual shutdown
|
|
until they respond. An application can also cancel the shutdown.
|
|
|
|
When the session manager restarts a suspended session, it directs
|
|
these applications to individually reload their saved state. It does
|
|
this by specifying a special command-line argument that says what
|
|
saved session to restore. For Emacs, this argument is @samp{--smid
|
|
@var{session}}.
|
|
|
|
@defvar emacs-save-session-functions
|
|
Emacs supports saving state by using a hook called
|
|
@code{emacs-save-session-functions}. Each function in this hook is
|
|
called when the session manager tells Emacs that the window system is
|
|
shutting down. The functions are called with no arguments and with the
|
|
current buffer set to a temporary buffer. Each function can use
|
|
@code{insert} to add Lisp code to this buffer. At the end, Emacs
|
|
saves the buffer in a file that a subsequent Emacs invocation will
|
|
load in order to restart the saved session.
|
|
|
|
If a function in @code{emacs-save-session-functions} returns
|
|
non-@code{nil}, Emacs tells the session manager to cancel the
|
|
shutdown.
|
|
@end defvar
|
|
|
|
Here is an example that just inserts some text into @samp{*scratch*} when
|
|
Emacs is restarted by the session manager.
|
|
|
|
@example
|
|
@group
|
|
(add-hook 'emacs-save-session-functions 'save-yourself-test)
|
|
@end group
|
|
|
|
@group
|
|
(defun save-yourself-test ()
|
|
(insert "(save-excursion
|
|
(switch-to-buffer \"*scratch*\")
|
|
(insert \"I am restored\"))")
|
|
nil)
|
|
@end group
|
|
@end example
|
|
|
|
@ignore
|
|
arch-tag: 8378814a-30d7-467c-9615-74a80b9988a7
|
|
@end ignore
|