1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-11-24 07:20:37 +00:00
emacs/man/maintaining.texi
2007-05-06 17:50:22 +00:00

863 lines
34 KiB
Plaintext

@c This is part of the Emacs manual.
@c Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997, 1999, 2000,
@c 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
@c See file emacs.texi for copying conditions.
@node Maintaining, Abbrevs, Building, Top
@chapter Maintaining Large Programs
This chapter describes Emacs features for maintaining large
programs. The version control features (@pxref{Version Control}) are
also particularly useful for this purpose.
@menu
* Change Log:: Maintaining a change history for your program.
* Format of ChangeLog:: What the change log file looks like.
* Tags:: Go direct to any function in your program in one
command. Tags remembers which file it is in.
@ifnottex
* Emerge:: A convenient way of merging two versions of a program.
@end ifnottex
@end menu
@node Change Log
@section Change Logs
A change log file contains a chronological record of when and why you
have changed a program, consisting of a sequence of entries describing
individual changes. Normally it is kept in a file called
@file{ChangeLog} in the same directory as the file you are editing, or
one of its parent directories. A single @file{ChangeLog} file can
record changes for all the files in its directory and all its
subdirectories.
@cindex change log
@kindex C-x 4 a
@findex add-change-log-entry-other-window
The Emacs command @kbd{C-x 4 a} adds a new entry to the change log
file for the file you are editing
(@code{add-change-log-entry-other-window}). If that file is actually
a backup file, it makes an entry appropriate for the file's
parent---that is useful for making log entries for functions that
have been deleted in the current version.
@kbd{C-x 4 a} visits the change log file and creates a new entry
unless the most recent entry is for today's date and your name. It
also creates a new item for the current file. For many languages, it
can even guess the name of the function or other object that was
changed.
@vindex add-log-keep-changes-together
When the variable @code{add-log-keep-changes-together} is
non-@code{nil}, @kbd{C-x 4 a} adds to any existing item for the file
rather than starting a new item.
@vindex add-log-always-start-new-record
If @code{add-log-always-start-new-record} is non-@code{nil},
@kbd{C-x 4 a} always makes a new entry, even if the last entry
was made by you and on the same date.
@vindex change-log-version-info-enabled
@vindex change-log-version-number-regexp-list
@cindex file version in change log entries
If the value of the variable @code{change-log-version-info-enabled}
is non-@code{nil}, @kbd{C-x 4 a} adds the file's version number to the
change log entry. It finds the version number by searching the first
ten percent of the file, using regular expressions from the variable
@code{change-log-version-number-regexp-list}.
@cindex Change Log mode
@findex change-log-mode
The change log file is visited in Change Log mode. In this major
mode, each bunch of grouped items counts as one paragraph, and each
entry is considered a page. This facilitates editing the entries.
@kbd{C-j} and auto-fill indent each new line like the previous line;
this is convenient for entering the contents of an entry.
@findex change-log-merge
You can use the command @kbd{M-x change-log-merge} to merge other
log files into a buffer in Change Log Mode, preserving the date
ordering of entries.
Version control systems are another way to keep track of changes in your
program and keep a change log. @xref{Log Buffer}.
@node Format of ChangeLog
@section Format of ChangeLog
A change log entry starts with a header line that contains the current
date, your name, and your email address (taken from the variable
@code{add-log-mailing-address}). Aside from these header lines, every
line in the change log starts with a space or a tab. The bulk of the
entry consists of @dfn{items}, each of which starts with a line starting
with whitespace and a star. Here are two entries, both dated in May
1993, with two items and one item respectively.
@iftex
@medbreak
@end iftex
@smallexample
1993-05-25 Richard Stallman <rms@@gnu.org>
* man.el: Rename symbols `man-*' to `Man-*'.
(manual-entry): Make prompt string clearer.
* simple.el (blink-matching-paren-distance):
Change default to 12,000.
1993-05-24 Richard Stallman <rms@@gnu.org>
* vc.el (minor-mode-map-alist): Don't use it if it's void.
(vc-cancel-version): Doc fix.
@end smallexample
One entry can describe several changes; each change should have its
own item, or its own line in an item. Normally there should be a
blank line between items. When items are related (parts of the same
change, in different places), group them by leaving no blank line
between them.
You should put a copyright notice and permission notice at the
end of the change log file. Here is an example:
@smallexample
Copyright 1997, 1998 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification, are
permitted provided the copyright notice and this notice are preserved.
@end smallexample
@noindent
Of course, you should substitute the proper years and copyright holder.
@node Tags
@section Tags Tables
@cindex tags table
A @dfn{tags table} is a description of how a multi-file program is
broken up into files. It lists the names of the component files and the
names and positions of the functions (or other named subunits) in each
file. Grouping the related files makes it possible to search or replace
through all the files with one command. Recording the function names
and positions makes possible the @kbd{M-.} command which finds the
definition of a function by looking up which of the files it is in.
Tags tables are stored in files called @dfn{tags table files}. The
conventional name for a tags table file is @file{TAGS}.
Each entry in the tags table records the name of one tag, the name of the
file that the tag is defined in (implicitly), and the position in that
file of the tag's definition. When a file parsed by @code{etags} is
generated from a different source file, like a C file generated from a
Cweb source file, the tags of the parsed file reference the source
file.
Just what names from the described files are recorded in the tags table
depends on the programming language of the described file. They
normally include all file names, functions and subroutines, and may
also include global variables, data types, and anything else
convenient. Each name recorded is called a @dfn{tag}.
@cindex C++ class browser, tags
@cindex tags, C++
@cindex class browser, C++
@cindex Ebrowse
See also the Ebrowse facility, which is tailored for C++.
@xref{Top,, Ebrowse, ebrowse, Ebrowse User's Manual}.
@menu
* Tag Syntax:: Tag syntax for various types of code and text files.
* Create Tags Table:: Creating a tags table with @code{etags}.
* Etags Regexps:: Create arbitrary tags using regular expressions.
* Select Tags Table:: How to visit a tags table.
* Find Tag:: Commands to find the definition of a specific tag.
* Tags Search:: Using a tags table for searching and replacing.
* List Tags:: Listing and finding tags defined in a file.
@end menu
@node Tag Syntax
@subsection Source File Tag Syntax
Here is how tag syntax is defined for the most popular languages:
@itemize @bullet
@item
In C code, any C function or typedef is a tag, and so are definitions of
@code{struct}, @code{union} and @code{enum}.
@code{#define} macro definitions, @code{#undef} and @code{enum}
constants are also
tags, unless you specify @samp{--no-defines} when making the tags table.
Similarly, global variables are tags, unless you specify
@samp{--no-globals}, and so are struct members, unless you specify
@samp{--no-members}. Use of @samp{--no-globals}, @samp{--no-defines}
and @samp{--no-members} can make the tags table file much smaller.
You can tag function declarations and external variables in addition
to function definitions by giving the @samp{--declarations} option to
@code{etags}.
@item
In C++ code, in addition to all the tag constructs of C code, member
functions are also recognized; member variables are also recognized,
unless you use the @samp{--no-members} option. Tags for variables and
functions in classes are named @samp{@var{class}::@var{variable}} and
@samp{@var{class}::@var{function}}. @code{operator} definitions have
tag names like @samp{operator+}.
@item
In Java code, tags include all the constructs recognized in C++, plus
the @code{interface}, @code{extends} and @code{implements} constructs.
Tags for variables and functions in classes are named
@samp{@var{class}.@var{variable}} and @samp{@var{class}.@var{function}}.
@item
In La@TeX{} text, the argument of any of the commands @code{\chapter},
@code{\section}, @code{\subsection}, @code{\subsubsection},
@code{\eqno}, @code{\label}, @code{\ref}, @code{\cite},
@code{\bibitem}, @code{\part}, @code{\appendix}, @code{\entry},
@code{\index}, @code{\def}, @code{\newcommand}, @code{\renewcommand},
@code{\newenvironment} or @code{\renewenvironment} is a tag.@refill
Other commands can make tags as well, if you specify them in the
environment variable @env{TEXTAGS} before invoking @code{etags}. The
value of this environment variable should be a colon-separated list of
command names. For example,
@example
TEXTAGS="mycommand:myothercommand"
export TEXTAGS
@end example
@noindent
specifies (using Bourne shell syntax) that the commands
@samp{\mycommand} and @samp{\myothercommand} also define tags.
@item
In Lisp code, any function defined with @code{defun}, any variable
defined with @code{defvar} or @code{defconst}, and in general the first
argument of any expression that starts with @samp{(def} in column zero is
a tag.
@item
In Scheme code, tags include anything defined with @code{def} or with a
construct whose name starts with @samp{def}. They also include variables
set with @code{set!} at top level in the file.
@end itemize
Several other languages are also supported:
@itemize @bullet
@item
In Ada code, functions, procedures, packages, tasks and types are
tags. Use the @samp{--packages-only} option to create tags for
packages only.
In Ada, the same name can be used for different kinds of entity
(e.g.@:, for a procedure and for a function). Also, for things like
packages, procedures and functions, there is the spec (i.e.@: the
interface) and the body (i.e.@: the implementation). To make it
easier to pick the definition you want, Ada tag name have suffixes
indicating the type of entity:
@table @samp
@item /b
package body.
@item /f
function.
@item /k
task.
@item /p
procedure.
@item /s
package spec.
@item /t
type.
@end table
Thus, @kbd{M-x find-tag @key{RET} bidule/b @key{RET}} will go
directly to the body of the package @code{bidule}, while @kbd{M-x
find-tag @key{RET} bidule @key{RET}} will just search for any tag
@code{bidule}.
@item
In assembler code, labels appearing at the beginning of a line,
followed by a colon, are tags.
@item
In Bison or Yacc input files, each rule defines as a tag the nonterminal
it constructs. The portions of the file that contain C code are parsed
as C code.
@item
In Cobol code, tags are paragraph names; that is, any word starting in
column 8 and followed by a period.
@item
In Erlang code, the tags are the functions, records and macros defined
in the file.
@item
In Fortran code, functions, subroutines and block data are tags.
@item
In HTML input files, the tags are the @code{title} and the @code{h1},
@code{h2}, @code{h3} headers. Also, tags are @code{name=} in anchors
and all occurrences of @code{id=}.
@item
In Lua input files, all functions are tags.
@item
In makefiles, targets are tags; additionally, variables are tags
unless you specify @samp{--no-globals}.
@item
In Objective C code, tags include Objective C definitions for classes,
class categories, methods and protocols. Tags for variables and
functions in classes are named @samp{@var{class}::@var{variable}} and
@samp{@var{class}::@var{function}}.
@item
In Pascal code, the tags are the functions and procedures defined in
the file.
@item
In Perl code, the tags are the packages, subroutines and variables
defined by the @code{package}, @code{sub}, @code{my} and @code{local}
keywords. Use @samp{--globals} if you want to tag global variables.
Tags for subroutines are named @samp{@var{package}::@var{sub}}. The
name for subroutines defined in the default package is
@samp{main::@var{sub}}.
@item
In PHP code, tags are functions, classes and defines. Vars are tags
too, unless you use the @samp{--no-members} option.
@item
In PostScript code, the tags are the functions.
@item
In Prolog code, tags are predicates and rules at the beginning of
line.
@item
In Python code, @code{def} or @code{class} at the beginning of a line
generate a tag.
@end itemize
You can also generate tags based on regexp matching (@pxref{Etags
Regexps}) to handle other formats and languages.
@node Create Tags Table
@subsection Creating Tags Tables
@cindex @code{etags} program
The @code{etags} program is used to create a tags table file. It knows
the syntax of several languages, as described in
@iftex
the previous section.
@end iftex
@ifnottex
@ref{Tag Syntax}.
@end ifnottex
Here is how to run @code{etags}:
@example
etags @var{inputfiles}@dots{}
@end example
@noindent
The @code{etags} program reads the specified files, and writes a tags
table named @file{TAGS} in the current working directory.
If the specified files don't exist, @code{etags} looks for
compressed versions of them and uncompresses them to read them. Under
MS-DOS, @code{etags} also looks for file names like @file{mycode.cgz}
if it is given @samp{mycode.c} on the command line and @file{mycode.c}
does not exist.
@code{etags} recognizes the language used in an input file based on
its file name and contents. You can specify the language with the
@samp{--language=@var{name}} option, described below.
If the tags table data become outdated due to changes in the files
described in the table, the way to update the tags table is the same
way it was made in the first place. If the tags table fails to record
a tag, or records it for the wrong file, then Emacs cannot possibly
find its definition until you update the tags table. However, if the
position recorded in the tags table becomes a little bit wrong (due to
other editing), the worst consequence is a slight delay in finding the
tag. Even if the stored position is very far wrong, Emacs will still
find the tag, after searching most of the file for it. That delay is
hardly noticeable with today's computers.
Thus, there is no need to update the tags table after each edit.
You should update a tags table when you define new tags that you want
to have listed, or when you move tag definitions from one file to
another, or when changes become substantial.
One tags table can virtually include another. Specify the included
tags file name with the @samp{--include=@var{file}} option when
creating the file that is to include it. The latter file then acts as
if it covered all the source files specified in the included file, as
well as the files it directly contains.
If you specify the source files with relative file names when you run
@code{etags}, the tags file will contain file names relative to the
directory where the tags file was initially written. This way, you can
move an entire directory tree containing both the tags file and the
source files, and the tags file will still refer correctly to the source
files. If the tags file is in @file{/dev}, however, the file names are
made relative to the current working directory. This is useful, for
example, when writing the tags to @file{/dev/stdout}.
When using a a relative file name, it should not be a symbolic link
pointing to a tags file in a different directory, because this would
generally render the file names invalid.
If you specify absolute file names as arguments to @code{etags}, then
the tags file will contain absolute file names. This way, the tags file
will still refer to the same files even if you move it, as long as the
source files remain in the same place. Absolute file names start with
@samp{/}, or with @samp{@var{device}:/} on MS-DOS and MS-Windows.
When you want to make a tags table from a great number of files, you
may have problems listing them on the command line, because some systems
have a limit on its length. The simplest way to circumvent this limit
is to tell @code{etags} to read the file names from its standard input,
by typing a dash in place of the file names, like this:
@smallexample
find . -name "*.[chCH]" -print | etags -
@end smallexample
Use the option @samp{--language=@var{name}} to specify the language
explicitly. You can intermix these options with file names; each one
applies to the file names that follow it. Specify
@samp{--language=auto} to tell @code{etags} to resume guessing the
language from the file names and file contents. Specify
@samp{--language=none} to turn off language-specific processing
entirely; then @code{etags} recognizes tags by regexp matching alone
(@pxref{Etags Regexps}).
The option @samp{--parse-stdin=@var{file}} is mostly useful when
calling @code{etags} from programs. It can be used (only once) in
place of a file name on the command line. @code{Etags} will read from
standard input and mark the produced tags as belonging to the file
@var{file}.
@samp{etags --help} outputs the list of the languages @code{etags}
knows, and the file name rules for guessing the language. It also prints
a list of all the available @code{etags} options, together with a short
explanation. If followed by one or more @samp{--language=@var{lang}}
options, it outputs detailed information about how tags are generated for
@var{lang}.
@node Etags Regexps
@subsection Etags Regexps
The @samp{--regex} option provides a general way of recognizing tags
based on regexp matching. You can freely intermix this option with
file names, and each one applies to the source files that follow it.
If you specify multiple @samp{--regex} options, all of them are used
in parallel. The syntax is:
@smallexample
--regex=[@var{@{language@}}]/@var{tagregexp}/[@var{nameregexp}/]@var{modifiers}
@end smallexample
The essential part of the option value is @var{tagregexp}, the
regexp for matching tags. It is always used anchored, that is, it
only matches at the beginning of a line. If you want to allow
indented tags, use a regexp that matches initial whitespace; start it
with @samp{[ \t]*}.
In these regular expressions, @samp{\} quotes the next character, and
all the GCC character escape sequences are supported (@samp{\a} for
bell, @samp{\b} for back space, @samp{\d} for delete, @samp{\e} for
escape, @samp{\f} for formfeed, @samp{\n} for newline, @samp{\r} for
carriage return, @samp{\t} for tab, and @samp{\v} for vertical tab).
Ideally, @var{tagregexp} should not match more characters than are
needed to recognize what you want to tag. If the syntax requires you
to write @var{tagregexp} so it matches more characters beyond the tag
itself, you should add a @var{nameregexp}, to pick out just the tag.
This will enable Emacs to find tags more accurately and to do
completion on tag names more reliably. You can find some examples
below.
The @var{modifiers} are a sequence of zero or more characters that
modify the way @code{etags} does the matching. A regexp with no
modifiers is applied sequentially to each line of the input file, in a
case-sensitive way. The modifiers and their meanings are:
@table @samp
@item i
Ignore case when matching this regexp.
@item m
Match this regular expression against the whole file, so that
multi-line matches are possible.
@item s
Match this regular expression against the whole file, and allow
@samp{.} in @var{tagregexp} to match newlines.
@end table
The @samp{-R} option cancels all the regexps defined by preceding
@samp{--regex} options. It too applies to the file names following
it. Here's an example:
@smallexample
etags --regex=/@var{reg1}/i voo.doo --regex=/@var{reg2}/m \
bar.ber -R --lang=lisp los.er
@end smallexample
@noindent
Here @code{etags} chooses the parsing language for @file{voo.doo} and
@file{bar.ber} according to their contents. @code{etags} also uses
@var{reg1} to recognize additional tags in @file{voo.doo}, and both
@var{reg1} and @var{reg2} to recognize additional tags in
@file{bar.ber}. @var{reg1} is checked against each line of
@file{voo.doo} and @file{bar.ber}, in a case-insensitive way, while
@var{reg2} is checked against the whole @file{bar.ber} file,
permitting multi-line matches, in a case-sensitive way. @code{etags}
uses only the Lisp tags rules, with no user-specified regexp matching,
to recognize tags in @file{los.er}.
You can restrict a @samp{--regex} option to match only files of a
given language by using the optional prefix @var{@{language@}}.
(@samp{etags --help} prints the list of languages recognized by
@code{etags}.) This is particularly useful when storing many
predefined regular expressions for @code{etags} in a file. The
following example tags the @code{DEFVAR} macros in the Emacs source
files, for the C language only:
@smallexample
--regex='@{c@}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/'
@end smallexample
@noindent
When you have complex regular expressions, you can store the list of
them in a file. The following option syntax instructs @code{etags} to
read two files of regular expressions. The regular expressions
contained in the second file are matched without regard to case.
@smallexample
--regex=@@@var{case-sensitive-file} --ignore-case-regex=@@@var{ignore-case-file}
@end smallexample
@noindent
A regex file for @code{etags} contains one regular expression per
line. Empty lines, and lines beginning with space or tab are ignored.
When the first character in a line is @samp{@@}, @code{etags} assumes
that the rest of the line is the name of another file of regular
expressions; thus, one such file can include another file. All the
other lines are taken to be regular expressions. If the first
non-whitespace text on the line is @samp{--}, that line is a comment.
For example, we can create a file called @samp{emacs.tags} with the
following contents:
@smallexample
-- This is for GNU Emacs C source files
@{c@}/[ \t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/
@end smallexample
@noindent
and then use it like this:
@smallexample
etags --regex=@@emacs.tags *.[ch] */*.[ch]
@end smallexample
Here are some more examples. The regexps are quoted to protect them
from shell interpretation.
@itemize @bullet
@item
Tag Octave files:
@smallexample
etags --language=none \
--regex='/[ \t]*function.*=[ \t]*\([^ \t]*\)[ \t]*(/\1/' \
--regex='/###key \(.*\)/\1/' \
--regex='/[ \t]*global[ \t].*/' \
*.m
@end smallexample
@noindent
Note that tags are not generated for scripts, so that you have to add
a line by yourself of the form @samp{###key @var{scriptname}} if you
want to jump to it.
@item
Tag Tcl files:
@smallexample
etags --language=none --regex='/proc[ \t]+\([^ \t]+\)/\1/' *.tcl
@end smallexample
@item
Tag VHDL files:
@smallexample
etags --language=none \
--regex='/[ \t]*\(ARCHITECTURE\|CONFIGURATION\) +[^ ]* +OF/' \
--regex='/[ \t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\
\( BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[ \t]+\([^ \t(]+\)/\3/'
@end smallexample
@end itemize
@node Select Tags Table
@subsection Selecting a Tags Table
@vindex tags-file-name
@findex visit-tags-table
Emacs has at any time one @dfn{selected} tags table, and all the
commands for working with tags tables use the selected one. To select
a tags table, type @kbd{M-x visit-tags-table}, which reads the tags
table file name as an argument, with @file{TAGS} in the default
directory as the default.
Emacs does not actually read in the tags table contents until you
try to use them; all @code{visit-tags-table} does is store the file
name in the variable @code{tags-file-name}, and setting the variable
yourself is just as good. The variable's initial value is @code{nil};
that value tells all the commands for working with tags tables that
they must ask for a tags table file name to use.
Using @code{visit-tags-table} when a tags table is already loaded
gives you a choice: you can add the new tags table to the current list
of tags tables, or start a new list. The tags commands use all the tags
tables in the current list. If you start a new list, the new tags table
is used @emph{instead} of others. If you add the new table to the
current list, it is used @emph{as well as} the others.
@vindex tags-table-list
You can specify a precise list of tags tables by setting the variable
@code{tags-table-list} to a list of strings, like this:
@c keep this on two lines for formatting in smallbook
@example
@group
(setq tags-table-list
'("~/emacs" "/usr/local/lib/emacs/src"))
@end group
@end example
@noindent
This tells the tags commands to look at the @file{TAGS} files in your
@file{~/emacs} directory and in the @file{/usr/local/lib/emacs/src}
directory. The order depends on which file you are in and which tags
table mentions that file, as explained above.
Do not set both @code{tags-file-name} and @code{tags-table-list}.
@node Find Tag
@subsection Finding a Tag
The most important thing that a tags table enables you to do is to find
the definition of a specific tag.
@table @kbd
@item M-.@: @var{tag} @key{RET}
Find first definition of @var{tag} (@code{find-tag}).
@item C-u M-.
Find next alternate definition of last tag specified.
@item C-u - M-.
Go back to previous tag found.
@item C-M-. @var{pattern} @key{RET}
Find a tag whose name matches @var{pattern} (@code{find-tag-regexp}).
@item C-u C-M-.
Find the next tag whose name matches the last pattern used.
@item C-x 4 .@: @var{tag} @key{RET}
Find first definition of @var{tag}, but display it in another window
(@code{find-tag-other-window}).
@item C-x 5 .@: @var{tag} @key{RET}
Find first definition of @var{tag}, and create a new frame to select the
buffer (@code{find-tag-other-frame}).
@item M-*
Pop back to where you previously invoked @kbd{M-.} and friends.
@end table
@kindex M-.
@findex find-tag
@kbd{M-.}@: (@code{find-tag}) is the command to find the definition of
a specified tag. It searches through the tags table for that tag, as a
string, and then uses the tags table info to determine the file that the
definition is in and the approximate character position in the file of
the definition. Then @code{find-tag} visits that file, moves point to
the approximate character position, and searches ever-increasing
distances away to find the tag definition.
If an empty argument is given (just type @key{RET}), the balanced
expression in the buffer before or around point is used as the
@var{tag} argument. @xref{Expressions}.
You don't need to give @kbd{M-.} the full name of the tag; a part
will do. This is because @kbd{M-.} finds tags in the table which
contain @var{tag} as a substring. However, it prefers an exact match
to a substring match. To find other tags that match the same
substring, give @code{find-tag} a numeric argument, as in @kbd{C-u
M-.}; this does not read a tag name, but continues searching the tags
table's text for another tag containing the same substring last used.
If you have a real @key{META} key, @kbd{M-0 M-.}@: is an easier
alternative to @kbd{C-u M-.}.
@kindex C-x 4 .
@findex find-tag-other-window
@kindex C-x 5 .
@findex find-tag-other-frame
Like most commands that can switch buffers, @code{find-tag} has a
variant that displays the new buffer in another window, and one that
makes a new frame for it. The former is @w{@kbd{C-x 4 .}}, which invokes
the command @code{find-tag-other-window}. The latter is @w{@kbd{C-x 5 .}},
which invokes @code{find-tag-other-frame}.
To move back to places you've found tags recently, use @kbd{C-u -
M-.}; more generally, @kbd{M-.} with a negative numeric argument. This
command can take you to another buffer. @w{@kbd{C-x 4 .}} with a negative
argument finds the previous tag location in another window.
@kindex M-*
@findex pop-tag-mark
@vindex find-tag-marker-ring-length
As well as going back to places you've found tags recently, you can go
back to places @emph{from where} you found them. Use @kbd{M-*}, which
invokes the command @code{pop-tag-mark}, for this. Typically you would
find and study the definition of something with @kbd{M-.} and then
return to where you were with @kbd{M-*}.
Both @kbd{C-u - M-.} and @kbd{M-*} allow you to retrace your steps to
a depth determined by the variable @code{find-tag-marker-ring-length}.
@findex find-tag-regexp
@kindex C-M-.
The command @kbd{C-M-.} (@code{find-tag-regexp}) visits the tags that
match a specified regular expression. It is just like @kbd{M-.} except
that it does regexp matching instead of substring matching.
@node Tags Search
@subsection Searching and Replacing with Tags Tables
@cindex search and replace in multiple files
@cindex multiple-file search and replace
The commands in this section visit and search all the files listed
in the selected tags table, one by one. For these commands, the tags
table serves only to specify a sequence of files to search. These
commands scan the list of tags tables starting with the first tags
table (if any) that describes the current file, proceed from there to
the end of the list, and then scan from the beginning of the list
until they have covered all the tables in the list.
@table @kbd
@item M-x tags-search @key{RET} @var{regexp} @key{RET}
Search for @var{regexp} through the files in the selected tags
table.
@item M-x tags-query-replace @key{RET} @var{regexp} @key{RET} @var{replacement} @key{RET}
Perform a @code{query-replace-regexp} on each file in the selected tags table.
@item M-,
Restart one of the commands above, from the current location of point
(@code{tags-loop-continue}).
@end table
@findex tags-search
@kbd{M-x tags-search} reads a regexp using the minibuffer, then
searches for matches in all the files in the selected tags table, one
file at a time. It displays the name of the file being searched so you
can follow its progress. As soon as it finds an occurrence,
@code{tags-search} returns.
@kindex M-,
@findex tags-loop-continue
Having found one match, you probably want to find all the rest. To find
one more match, type @kbd{M-,} (@code{tags-loop-continue}) to resume the
@code{tags-search}. This searches the rest of the current buffer, followed
by the remaining files of the tags table.@refill
@findex tags-query-replace
@kbd{M-x tags-query-replace} performs a single
@code{query-replace-regexp} through all the files in the tags table. It
reads a regexp to search for and a string to replace with, just like
ordinary @kbd{M-x query-replace-regexp}. It searches much like @kbd{M-x
tags-search}, but repeatedly, processing matches according to your
input. @xref{Replace}, for more information on query replace.
@vindex tags-case-fold-search
@cindex case-sensitivity and tags search
You can control the case-sensitivity of tags search commands by
customizing the value of the variable @code{tags-case-fold-search}. The
default is to use the same setting as the value of
@code{case-fold-search} (@pxref{Search Case}).
It is possible to get through all the files in the tags table with a
single invocation of @kbd{M-x tags-query-replace}. But often it is
useful to exit temporarily, which you can do with any input event that
has no special query replace meaning. You can resume the query replace
subsequently by typing @kbd{M-,}; this command resumes the last tags
search or replace command that you did.
The commands in this section carry out much broader searches than the
@code{find-tag} family. The @code{find-tag} commands search only for
definitions of tags that match your substring or regexp. The commands
@code{tags-search} and @code{tags-query-replace} find every occurrence
of the regexp, as ordinary search commands and replace commands do in
the current buffer.
These commands create buffers only temporarily for the files that they
have to search (those which are not already visited in Emacs buffers).
Buffers in which no match is found are quickly killed; the others
continue to exist.
It may have struck you that @code{tags-search} is a lot like
@code{grep}. You can also run @code{grep} itself as an inferior of
Emacs and have Emacs show you the matching lines one by one.
@xref{Grep Searching}.
@node List Tags
@subsection Tags Table Inquiries
@table @kbd
@item M-x list-tags @key{RET} @var{file} @key{RET}
Display a list of the tags defined in the program file @var{file}.
@item M-x tags-apropos @key{RET} @var{regexp} @key{RET}
Display a list of all tags matching @var{regexp}.
@end table
@findex list-tags
@kbd{M-x list-tags} reads the name of one of the files described by
the selected tags table, and displays a list of all the tags defined in
that file. The ``file name'' argument is really just a string to
compare against the file names recorded in the tags table; it is read as
a string rather than as a file name. Therefore, completion and
defaulting are not available, and you must enter the file name the same
way it appears in the tags table. Do not include a directory as part of
the file name unless the file name recorded in the tags table includes a
directory.
@findex tags-apropos
@vindex tags-apropos-verbose
@kbd{M-x tags-apropos} is like @code{apropos} for tags
(@pxref{Apropos}). It finds all the tags in the selected tags table
whose entries match @var{regexp}, and displays them. If the variable
@code{tags-apropos-verbose} is non-@code{nil}, it displays the names
of the tags files together with the tag names.
@vindex tags-tag-face
@vindex tags-apropos-additional-actions
You can customize the appearance of the output by setting the
variable @code{tags-tag-face} to a face. You can display additional
output with @kbd{M-x tags-apropos} by customizing the variable
@code{tags-apropos-additional-actions}---see its documentation for
details.
You can also use the collection of tag names to complete a symbol
name in the buffer. @xref{Symbol Completion}.
@ifnottex
@include emerge-xtra.texi
@end ifnottex
@ignore
arch-tag: b9d83dfb-82ea-4ff6-bab5-05a3617091fb
@end ignore