mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-23 10:34:07 +00:00
0e963201d0
Run admin/update-copyright.
674 lines
23 KiB
EmacsLisp
674 lines
23 KiB
EmacsLisp
;;; avl-tree.el --- balanced binary trees, AVL-trees -*- lexical-binding:t -*-
|
|
|
|
;; Copyright (C) 1995, 2007-2016 Free Software Foundation, Inc.
|
|
|
|
;; Author: Per Cederqvist <ceder@lysator.liu.se>
|
|
;; Inge Wallin <inge@lysator.liu.se>
|
|
;; Thomas Bellman <bellman@lysator.liu.se>
|
|
;; Toby Cubitt <toby-predictive@dr-qubit.org>
|
|
;; Maintainer: emacs-devel@gnu.org
|
|
;; Created: 10 May 1991
|
|
;; Keywords: extensions, data structures, AVL, tree
|
|
|
|
;; This file is part of GNU Emacs.
|
|
|
|
;; GNU Emacs is free software: you can redistribute it and/or modify
|
|
;; it under the terms of the GNU General Public License as published by
|
|
;; the Free Software Foundation, either version 3 of the License, or
|
|
;; (at your option) any later version.
|
|
|
|
;; GNU Emacs is distributed in the hope that it will be useful,
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
;; GNU General Public License for more details.
|
|
|
|
;; You should have received a copy of the GNU General Public License
|
|
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
;;; Commentary:
|
|
|
|
;; An AVL tree is a self-balancing binary tree. As such, inserting,
|
|
;; deleting, and retrieving data from an AVL tree containing n elements
|
|
;; is O(log n). It is somewhat more rigidly balanced than other
|
|
;; self-balancing binary trees (such as red-black trees and AA trees),
|
|
;; making insertion slightly slower, deletion somewhat slower, and
|
|
;; retrieval somewhat faster (the asymptotic scaling is of course the
|
|
;; same for all types). Thus it may be a good choice when the tree will
|
|
;; be relatively static, i.e. data will be retrieved more often than
|
|
;; they are modified.
|
|
;;
|
|
;; Internally, a tree consists of two elements, the root node and the
|
|
;; comparison function. The actual tree has a dummy node as its root
|
|
;; with the real root in the left pointer, which allows the root node to
|
|
;; be treated on a par with all other nodes.
|
|
;;
|
|
;; Each node of the tree consists of one data element, one left
|
|
;; sub-tree, one right sub-tree, and a balance count. The latter is the
|
|
;; difference in depth of the left and right sub-trees.
|
|
;;
|
|
;; The functions with names of the form "avl-tree--" are intended for
|
|
;; internal use only.
|
|
|
|
;;; Code:
|
|
|
|
(eval-when-compile (require 'cl-lib))
|
|
|
|
|
|
|
|
;; ================================================================
|
|
;;; Internal functions and macros for use in the AVL tree package
|
|
|
|
|
|
;; ----------------------------------------------------------------
|
|
;; Functions and macros handling an AVL tree.
|
|
|
|
(cl-defstruct (avl-tree-
|
|
;; A tagged list is the pre-defstruct representation.
|
|
;; (:type list)
|
|
:named
|
|
(:constructor nil)
|
|
(:constructor avl-tree--create (cmpfun))
|
|
(:predicate avl-tree-p)
|
|
(:copier nil))
|
|
(dummyroot (avl-tree--node-create nil nil nil 0))
|
|
cmpfun)
|
|
|
|
(defmacro avl-tree--root (tree)
|
|
;; Return the root node for an AVL tree. INTERNAL USE ONLY.
|
|
`(avl-tree--node-left (avl-tree--dummyroot ,tree)))
|
|
|
|
;; ----------------------------------------------------------------
|
|
;; Functions and macros handling an AVL tree node.
|
|
|
|
(cl-defstruct (avl-tree--node
|
|
;; We force a representation without tag so it matches the
|
|
;; pre-defstruct representation. Also we use the underlying
|
|
;; representation in the implementation of
|
|
;; avl-tree--node-branch.
|
|
(:type vector)
|
|
(:constructor nil)
|
|
(:constructor avl-tree--node-create (left right data balance))
|
|
(:copier nil))
|
|
left right data balance)
|
|
|
|
|
|
(defalias 'avl-tree--node-branch #'aref
|
|
;; This implementation is efficient but breaks the defstruct
|
|
;; abstraction. An alternative could be (funcall (aref [avl-tree-left
|
|
;; avl-tree-right avl-tree-data] branch) node)
|
|
"Get value of a branch of a node.
|
|
NODE is the node, and BRANCH is the branch.
|
|
0 for left pointer, 1 for right pointer and 2 for the data.")
|
|
|
|
|
|
;; The funcall/aref trick wouldn't work for the setf method, unless we
|
|
;; tried to access the underlying setter function, but this wouldn't be
|
|
;; portable either.
|
|
(gv-define-simple-setter avl-tree--node-branch aset)
|
|
|
|
|
|
|
|
;; ----------------------------------------------------------------
|
|
;; Convenience macros
|
|
|
|
(defmacro avl-tree--switch-dir (dir)
|
|
"Return opposite direction to DIR (0 = left, 1 = right)."
|
|
`(- 1 ,dir))
|
|
|
|
(defmacro avl-tree--dir-to-sign (dir)
|
|
"Convert direction (0,1) to sign factor (-1,+1)."
|
|
`(1- (* 2 ,dir)))
|
|
|
|
(defmacro avl-tree--sign-to-dir (dir)
|
|
"Convert sign factor (-x,+x) to direction (0,1)."
|
|
`(if (< ,dir 0) 0 1))
|
|
|
|
|
|
;; ----------------------------------------------------------------
|
|
;; Deleting data
|
|
|
|
(defun avl-tree--del-balance (node branch dir)
|
|
"Rebalance a tree after deleting a node.
|
|
The deletion was done from the left (DIR=0) or right (DIR=1) sub-tree of the
|
|
left (BRANCH=0) or right (BRANCH=1) child of NODE.
|
|
Return t if the height of the tree has shrunk."
|
|
;; (or is it vice-versa for BRANCH?)
|
|
(let ((br (avl-tree--node-branch node branch))
|
|
;; opposite direction: 0,1 -> 1,0
|
|
(opp (avl-tree--switch-dir dir))
|
|
;; direction 0,1 -> sign factor -1,+1
|
|
(sgn (avl-tree--dir-to-sign dir))
|
|
p1 b1 p2 b2)
|
|
(cond
|
|
((> (* sgn (avl-tree--node-balance br)) 0)
|
|
(setf (avl-tree--node-balance br) 0)
|
|
t)
|
|
|
|
((= (avl-tree--node-balance br) 0)
|
|
(setf (avl-tree--node-balance br) (- sgn))
|
|
nil)
|
|
|
|
(t
|
|
;; Rebalance.
|
|
(setq p1 (avl-tree--node-branch br opp)
|
|
b1 (avl-tree--node-balance p1))
|
|
(if (<= (* sgn b1) 0)
|
|
;; Single rotation.
|
|
(progn
|
|
(setf (avl-tree--node-branch br opp)
|
|
(avl-tree--node-branch p1 dir)
|
|
(avl-tree--node-branch p1 dir) br
|
|
(avl-tree--node-branch node branch) p1)
|
|
(if (= 0 b1)
|
|
(progn
|
|
(setf (avl-tree--node-balance br) (- sgn)
|
|
(avl-tree--node-balance p1) sgn)
|
|
nil) ; height hasn't changed
|
|
(setf (avl-tree--node-balance br) 0)
|
|
(setf (avl-tree--node-balance p1) 0)
|
|
t)) ; height has changed
|
|
|
|
;; Double rotation.
|
|
(setf p2 (avl-tree--node-branch p1 dir)
|
|
b2 (avl-tree--node-balance p2)
|
|
(avl-tree--node-branch p1 dir)
|
|
(avl-tree--node-branch p2 opp)
|
|
(avl-tree--node-branch p2 opp) p1
|
|
(avl-tree--node-branch br opp)
|
|
(avl-tree--node-branch p2 dir)
|
|
(avl-tree--node-branch p2 dir) br
|
|
(avl-tree--node-balance br)
|
|
(if (< (* sgn b2) 0) sgn 0)
|
|
(avl-tree--node-balance p1)
|
|
(if (> (* sgn b2) 0) (- sgn) 0)
|
|
(avl-tree--node-branch node branch) p2
|
|
(avl-tree--node-balance p2) 0)
|
|
t)))))
|
|
|
|
(defun avl-tree--do-del-internal (node branch q)
|
|
(let ((br (avl-tree--node-branch node branch)))
|
|
(if (avl-tree--node-right br)
|
|
(if (avl-tree--do-del-internal br 1 q)
|
|
(avl-tree--del-balance node branch 1))
|
|
(setf (avl-tree--node-data q) (avl-tree--node-data br)
|
|
(avl-tree--node-branch node branch)
|
|
(avl-tree--node-left br))
|
|
t)))
|
|
|
|
(defun avl-tree--do-delete (cmpfun root branch data test nilflag)
|
|
"Delete DATA from BRANCH of node ROOT.
|
|
\(See `avl-tree-delete' for TEST and NILFLAG).
|
|
|
|
Return cons cell (SHRUNK . DATA), where SHRUNK is t if the
|
|
height of the tree has shrunk and nil otherwise, and DATA is
|
|
the related data."
|
|
(let ((br (avl-tree--node-branch root branch)))
|
|
(cond
|
|
;; DATA not in tree.
|
|
((null br)
|
|
(cons nil nilflag))
|
|
|
|
((funcall cmpfun data (avl-tree--node-data br))
|
|
(let ((ret (avl-tree--do-delete cmpfun br 0 data test nilflag)))
|
|
(cons (if (car ret) (avl-tree--del-balance root branch 0))
|
|
(cdr ret))))
|
|
|
|
((funcall cmpfun (avl-tree--node-data br) data)
|
|
(let ((ret (avl-tree--do-delete cmpfun br 1 data test nilflag)))
|
|
(cons (if (car ret) (avl-tree--del-balance root branch 1))
|
|
(cdr ret))))
|
|
|
|
(t ; Found it.
|
|
;; if it fails TEST, do nothing
|
|
(if (and test (not (funcall test (avl-tree--node-data br))))
|
|
(cons nil nilflag)
|
|
(cond
|
|
((null (avl-tree--node-right br))
|
|
(setf (avl-tree--node-branch root branch)
|
|
(avl-tree--node-left br))
|
|
(cons t (avl-tree--node-data br)))
|
|
|
|
((null (avl-tree--node-left br))
|
|
(setf (avl-tree--node-branch root branch)
|
|
(avl-tree--node-right br))
|
|
(cons t (avl-tree--node-data br)))
|
|
|
|
(t
|
|
(if (avl-tree--do-del-internal br 0 br)
|
|
(cons (avl-tree--del-balance root branch 0)
|
|
(avl-tree--node-data br))
|
|
(cons nil (avl-tree--node-data br))))
|
|
))))))
|
|
|
|
|
|
|
|
;; ----------------------------------------------------------------
|
|
;; Entering data
|
|
|
|
(defun avl-tree--enter-balance (node branch dir)
|
|
"Rebalance tree after an insertion
|
|
into the left (DIR=0) or right (DIR=1) sub-tree of the
|
|
left (BRANCH=0) or right (BRANCH=1) child of NODE.
|
|
Return t if the height of the tree has grown."
|
|
(let ((br (avl-tree--node-branch node branch))
|
|
;; opposite direction: 0,1 -> 1,0
|
|
(opp (avl-tree--switch-dir dir))
|
|
;; direction 0,1 -> sign factor -1,+1
|
|
(sgn (avl-tree--dir-to-sign dir))
|
|
p1 p2 b2)
|
|
(cond
|
|
((< (* sgn (avl-tree--node-balance br)) 0)
|
|
(setf (avl-tree--node-balance br) 0)
|
|
nil)
|
|
|
|
((= (avl-tree--node-balance br) 0)
|
|
(setf (avl-tree--node-balance br) sgn)
|
|
t)
|
|
|
|
(t
|
|
;; Tree has grown => Rebalance.
|
|
(setq p1 (avl-tree--node-branch br dir))
|
|
(if (> (* sgn (avl-tree--node-balance p1)) 0)
|
|
;; Single rotation.
|
|
(progn
|
|
(setf (avl-tree--node-branch br dir)
|
|
(avl-tree--node-branch p1 opp))
|
|
(setf (avl-tree--node-branch p1 opp) br)
|
|
(setf (avl-tree--node-balance br) 0)
|
|
(setf (avl-tree--node-branch node branch) p1))
|
|
|
|
;; Double rotation.
|
|
(setf p2 (avl-tree--node-branch p1 opp)
|
|
b2 (avl-tree--node-balance p2)
|
|
(avl-tree--node-branch p1 opp)
|
|
(avl-tree--node-branch p2 dir)
|
|
(avl-tree--node-branch p2 dir) p1
|
|
(avl-tree--node-branch br dir)
|
|
(avl-tree--node-branch p2 opp)
|
|
(avl-tree--node-branch p2 opp) br
|
|
(avl-tree--node-balance br)
|
|
(if (> (* sgn b2) 0) (- sgn) 0)
|
|
(avl-tree--node-balance p1)
|
|
(if (< (* sgn b2) 0) sgn 0)
|
|
(avl-tree--node-branch node branch) p2))
|
|
(setf (avl-tree--node-balance
|
|
(avl-tree--node-branch node branch))
|
|
0)
|
|
nil))))
|
|
|
|
(defun avl-tree--do-enter (cmpfun root branch data &optional updatefun)
|
|
"Enter DATA in BRANCH of ROOT node.
|
|
\(See `avl-tree-enter' for UPDATEFUN).
|
|
|
|
Return cons cell (GREW . DATA), where GREW is t if height
|
|
of tree ROOT has grown and nil otherwise, and DATA is the
|
|
inserted data."
|
|
(let ((br (avl-tree--node-branch root branch)))
|
|
(cond
|
|
((null br)
|
|
;; Data not in tree, insert it.
|
|
(setf (avl-tree--node-branch root branch)
|
|
(avl-tree--node-create nil nil data 0))
|
|
(cons t data))
|
|
|
|
((funcall cmpfun data (avl-tree--node-data br))
|
|
(let ((ret (avl-tree--do-enter cmpfun br 0 data updatefun)))
|
|
(cons (and (car ret) (avl-tree--enter-balance root branch 0))
|
|
(cdr ret))))
|
|
|
|
((funcall cmpfun (avl-tree--node-data br) data)
|
|
(let ((ret (avl-tree--do-enter cmpfun br 1 data updatefun)))
|
|
(cons (and (car ret) (avl-tree--enter-balance root branch 1))
|
|
(cdr ret))))
|
|
|
|
;; Data already in tree, update it.
|
|
(t
|
|
(let ((newdata
|
|
(if updatefun
|
|
(funcall updatefun data (avl-tree--node-data br))
|
|
data)))
|
|
(if (or (funcall cmpfun newdata data)
|
|
(funcall cmpfun data newdata))
|
|
(error "avl-tree-enter:\
|
|
updated data does not match existing data"))
|
|
(setf (avl-tree--node-data br) newdata)
|
|
(cons nil newdata)) ; return value
|
|
))))
|
|
|
|
(defun avl-tree--check (tree)
|
|
"Check the tree's balance."
|
|
(avl-tree--check-node (avl-tree--root tree)))
|
|
(defun avl-tree--check-node (node)
|
|
(if (null node) 0
|
|
(let ((dl (avl-tree--check-node (avl-tree--node-left node)))
|
|
(dr (avl-tree--check-node (avl-tree--node-right node))))
|
|
(cl-assert (= (- dr dl) (avl-tree--node-balance node)))
|
|
(1+ (max dl dr)))))
|
|
|
|
;; ----------------------------------------------------------------
|
|
|
|
|
|
;;; INTERNAL USE ONLY
|
|
(defun avl-tree--mapc (map-function root dir)
|
|
"Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
|
|
The function is applied in-order, either ascending (DIR=0) or
|
|
descending (DIR=1).
|
|
|
|
Note: MAP-FUNCTION is applied to the node and not to the data
|
|
itself."
|
|
(let ((node root)
|
|
(stack nil)
|
|
(go-dir t))
|
|
(push nil stack)
|
|
(while node
|
|
(if (and go-dir
|
|
(avl-tree--node-branch node dir))
|
|
;; Do the DIR subtree first.
|
|
(progn
|
|
(push node stack)
|
|
(setq node (avl-tree--node-branch node dir)))
|
|
;; Apply the function...
|
|
(funcall map-function node)
|
|
;; and do the opposite subtree.
|
|
(setq node (if (setq go-dir (avl-tree--node-branch
|
|
node (avl-tree--switch-dir dir)))
|
|
(avl-tree--node-branch
|
|
node (avl-tree--switch-dir dir))
|
|
(pop stack)))))))
|
|
|
|
;;; INTERNAL USE ONLY
|
|
(defun avl-tree--do-copy (root)
|
|
"Copy the AVL tree with ROOT as root. Highly recursive."
|
|
(if (null root)
|
|
nil
|
|
(avl-tree--node-create
|
|
(avl-tree--do-copy (avl-tree--node-left root))
|
|
(avl-tree--do-copy (avl-tree--node-right root))
|
|
(avl-tree--node-data root)
|
|
(avl-tree--node-balance root))))
|
|
|
|
(cl-defstruct (avl-tree--stack
|
|
(:constructor nil)
|
|
(:constructor avl-tree--stack-create
|
|
(tree &optional reverse
|
|
&aux
|
|
(store
|
|
(if (avl-tree-empty tree)
|
|
nil
|
|
(list (avl-tree--root tree))))))
|
|
(:copier nil))
|
|
reverse store)
|
|
|
|
(defalias 'avl-tree-stack-p #'avl-tree--stack-p
|
|
"Return t if argument is an avl-tree-stack, nil otherwise.")
|
|
|
|
(defun avl-tree--stack-repopulate (stack)
|
|
;; Recursively push children of the node at the head of STACK onto the
|
|
;; front of the STACK, until a leaf is reached.
|
|
(let ((node (car (avl-tree--stack-store stack)))
|
|
(dir (if (avl-tree--stack-reverse stack) 1 0)))
|
|
(when node ; check for empty stack
|
|
(while (setq node (avl-tree--node-branch node dir))
|
|
(push node (avl-tree--stack-store stack))))))
|
|
|
|
|
|
;; ================================================================
|
|
;;; The public functions which operate on AVL trees.
|
|
|
|
;; define public alias for constructors so that we can set docstring
|
|
(defalias 'avl-tree-create #'avl-tree--create
|
|
"Create an empty AVL tree.
|
|
COMPARE-FUNCTION is a function which takes two arguments, A and B,
|
|
and returns non-nil if A is less than B, and nil otherwise.")
|
|
|
|
(defalias 'avl-tree-compare-function #'avl-tree--cmpfun
|
|
"Return the comparison function for the AVL tree TREE.
|
|
|
|
\(fn TREE)")
|
|
|
|
(defun avl-tree-empty (tree)
|
|
"Return t if AVL tree TREE is empty, otherwise return nil."
|
|
(null (avl-tree--root tree)))
|
|
|
|
(defun avl-tree-enter (tree data &optional updatefun)
|
|
"Insert DATA into the AVL tree TREE.
|
|
|
|
If an element that matches DATA (according to the tree's
|
|
comparison function, see `avl-tree-create') already exists in
|
|
TREE, it will be replaced by DATA by default.
|
|
|
|
If UPDATEFUN is supplied and an element matching DATA already
|
|
exists in TREE, UPDATEFUN is called with two arguments: DATA, and
|
|
the matching element. Its return value replaces the existing
|
|
element. This value *must* itself match DATA (and hence the
|
|
pre-existing data), or an error will occur.
|
|
|
|
Returns the new data."
|
|
(cdr (avl-tree--do-enter (avl-tree--cmpfun tree)
|
|
(avl-tree--dummyroot tree)
|
|
0 data updatefun)))
|
|
|
|
(defun avl-tree-delete (tree data &optional test nilflag)
|
|
"Delete the element matching DATA from the AVL tree TREE.
|
|
Matching uses the comparison function previously specified in
|
|
`avl-tree-create' when TREE was created.
|
|
|
|
Returns the deleted element, or nil if no matching element was
|
|
found.
|
|
|
|
Optional argument NILFLAG specifies a value to return instead of
|
|
nil if nothing was deleted, so that this case can be
|
|
distinguished from the case of a successfully deleted null
|
|
element.
|
|
|
|
If supplied, TEST specifies a test that a matching element must
|
|
pass before it is deleted. If a matching element is found, it is
|
|
passed as an argument to TEST, and is deleted only if the return
|
|
value is non-nil."
|
|
(cdr (avl-tree--do-delete (avl-tree--cmpfun tree)
|
|
(avl-tree--dummyroot tree)
|
|
0 data test nilflag)))
|
|
|
|
|
|
(defun avl-tree-member (tree data &optional nilflag)
|
|
"Return the element in the AVL tree TREE which matches DATA.
|
|
Matching uses the comparison function previously specified in
|
|
`avl-tree-create' when TREE was created.
|
|
|
|
If there is no such element in the tree, nil is
|
|
returned. Optional argument NILFLAG specifies a value to return
|
|
instead of nil in this case. This allows non-existent elements to
|
|
be distinguished from a null element. (See also
|
|
`avl-tree-member-p', which does this for you.)"
|
|
(let ((node (avl-tree--root tree))
|
|
(compare-function (avl-tree--cmpfun tree)))
|
|
(catch 'found
|
|
(while node
|
|
(cond
|
|
((funcall compare-function data (avl-tree--node-data node))
|
|
(setq node (avl-tree--node-left node)))
|
|
((funcall compare-function (avl-tree--node-data node) data)
|
|
(setq node (avl-tree--node-right node)))
|
|
(t (throw 'found (avl-tree--node-data node)))))
|
|
nilflag)))
|
|
|
|
|
|
(defun avl-tree-member-p (tree data)
|
|
"Return t if an element matching DATA exists in the AVL tree TREE.
|
|
Otherwise return nil. Matching uses the comparison function
|
|
previously specified in `avl-tree-create' when TREE was created."
|
|
(let ((flag '(nil)))
|
|
(not (eq (avl-tree-member tree data flag) flag))))
|
|
|
|
|
|
(defun avl-tree-map (fun tree &optional reverse)
|
|
"Modify all elements in the AVL tree TREE by applying FUNCTION.
|
|
|
|
Each element is replaced by the return value of FUNCTION applied
|
|
to that element.
|
|
|
|
FUNCTION is applied to the elements in ascending order, or
|
|
descending order if REVERSE is non-nil."
|
|
(avl-tree--mapc
|
|
(lambda (node)
|
|
(setf (avl-tree--node-data node)
|
|
(funcall fun (avl-tree--node-data node))))
|
|
(avl-tree--root tree)
|
|
(if reverse 1 0)))
|
|
|
|
|
|
(defun avl-tree-mapc (fun tree &optional reverse)
|
|
"Apply FUNCTION to all elements in AVL tree TREE,
|
|
for side-effect only.
|
|
|
|
FUNCTION is applied to the elements in ascending order, or
|
|
descending order if REVERSE is non-nil."
|
|
(avl-tree--mapc
|
|
(lambda (node)
|
|
(funcall fun (avl-tree--node-data node)))
|
|
(avl-tree--root tree)
|
|
(if reverse 1 0)))
|
|
|
|
|
|
(defun avl-tree-mapf
|
|
(fun combinator tree &optional reverse)
|
|
"Apply FUNCTION to all elements in AVL tree TREE,
|
|
and combine the results using COMBINATOR.
|
|
|
|
The FUNCTION is applied and the results are combined in ascending
|
|
order, or descending order if REVERSE is non-nil."
|
|
(let (avl-tree-mapf--accumulate)
|
|
(avl-tree--mapc
|
|
(lambda (node)
|
|
(setq avl-tree-mapf--accumulate
|
|
(funcall combinator
|
|
(funcall fun
|
|
(avl-tree--node-data node))
|
|
avl-tree-mapf--accumulate)))
|
|
(avl-tree--root tree)
|
|
(if reverse 0 1))
|
|
(nreverse avl-tree-mapf--accumulate)))
|
|
|
|
|
|
(defun avl-tree-mapcar (fun tree &optional reverse)
|
|
"Apply FUNCTION to all elements in AVL tree TREE,
|
|
and make a list of the results.
|
|
|
|
The FUNCTION is applied and the list constructed in ascending
|
|
order, or descending order if REVERSE is non-nil.
|
|
|
|
Note that if you don't care about the order in which FUNCTION is
|
|
applied, just that the resulting list is in the correct order,
|
|
then
|
|
|
|
(avl-tree-mapf function \\='cons tree (not reverse))
|
|
|
|
is more efficient."
|
|
(nreverse (avl-tree-mapf fun 'cons tree reverse)))
|
|
|
|
|
|
(defun avl-tree-first (tree)
|
|
"Return the first element in TREE, or nil if TREE is empty."
|
|
(let ((node (avl-tree--root tree)))
|
|
(when node
|
|
(while (avl-tree--node-left node)
|
|
(setq node (avl-tree--node-left node)))
|
|
(avl-tree--node-data node))))
|
|
|
|
(defun avl-tree-last (tree)
|
|
"Return the last element in TREE, or nil if TREE is empty."
|
|
(let ((node (avl-tree--root tree)))
|
|
(when node
|
|
(while (avl-tree--node-right node)
|
|
(setq node (avl-tree--node-right node)))
|
|
(avl-tree--node-data node))))
|
|
|
|
(defun avl-tree-copy (tree)
|
|
"Return a copy of the AVL tree TREE."
|
|
(let ((new-tree (avl-tree-create (avl-tree--cmpfun tree))))
|
|
(setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree)))
|
|
new-tree))
|
|
|
|
(defun avl-tree-flatten (tree)
|
|
"Return a sorted list containing all elements of TREE."
|
|
(let ((treelist nil))
|
|
(avl-tree--mapc
|
|
(lambda (node) (push (avl-tree--node-data node) treelist))
|
|
(avl-tree--root tree) 1)
|
|
treelist))
|
|
|
|
(defun avl-tree-size (tree)
|
|
"Return the number of elements in TREE."
|
|
(let ((treesize 0))
|
|
(avl-tree--mapc
|
|
(lambda (_) (setq treesize (1+ treesize)))
|
|
(avl-tree--root tree) 0)
|
|
treesize))
|
|
|
|
(defun avl-tree-clear (tree)
|
|
"Clear the AVL tree TREE."
|
|
(setf (avl-tree--root tree) nil))
|
|
|
|
|
|
(defun avl-tree-stack (tree &optional reverse)
|
|
"Return an object that behaves like a sorted stack
|
|
of all elements of TREE.
|
|
|
|
If REVERSE is non-nil, the stack is sorted in reverse order.
|
|
\(See also `avl-tree-stack-pop').
|
|
|
|
Note that any modification to TREE *immediately* invalidates all
|
|
avl-tree-stacks created before the modification (in particular,
|
|
calling `avl-tree-stack-pop' will give unpredictable results).
|
|
|
|
Operations on these objects are significantly more efficient than
|
|
constructing a real stack with `avl-tree-flatten' and using
|
|
standard stack functions. As such, they can be useful in
|
|
implementing efficient algorithms of AVL trees. However, in cases
|
|
where mapping functions `avl-tree-mapc', `avl-tree-mapcar' or
|
|
`avl-tree-mapf' would be sufficient, it is better to use one of
|
|
those instead."
|
|
(let ((stack (avl-tree--stack-create tree reverse)))
|
|
(avl-tree--stack-repopulate stack)
|
|
stack))
|
|
|
|
|
|
(defun avl-tree-stack-pop (avl-tree-stack &optional nilflag)
|
|
"Pop the first element from AVL-TREE-STACK.
|
|
\(See also `avl-tree-stack').
|
|
|
|
Returns nil if the stack is empty, or NILFLAG if specified.
|
|
\(The latter allows an empty stack to be distinguished from
|
|
a null element stored in the AVL tree.)"
|
|
(let (node next)
|
|
(if (not (setq node (pop (avl-tree--stack-store avl-tree-stack))))
|
|
nilflag
|
|
(when (setq next
|
|
(avl-tree--node-branch
|
|
node
|
|
(if (avl-tree--stack-reverse avl-tree-stack) 0 1)))
|
|
(push next (avl-tree--stack-store avl-tree-stack))
|
|
(avl-tree--stack-repopulate avl-tree-stack))
|
|
(avl-tree--node-data node))))
|
|
|
|
|
|
(defun avl-tree-stack-first (avl-tree-stack &optional nilflag)
|
|
"Return the first element of AVL-TREE-STACK, without removing it
|
|
from the stack.
|
|
|
|
Returns nil if the stack is empty, or NILFLAG if specified.
|
|
\(The latter allows an empty stack to be distinguished from
|
|
a null element stored in the AVL tree.)"
|
|
(or (car (avl-tree--stack-store avl-tree-stack))
|
|
nilflag))
|
|
|
|
|
|
(defun avl-tree-stack-empty-p (avl-tree-stack)
|
|
"Return t if AVL-TREE-STACK is empty, nil otherwise."
|
|
(null (avl-tree--stack-store avl-tree-stack)))
|
|
|
|
|
|
(provide 'avl-tree)
|
|
|
|
;;; avl-tree.el ends here
|