mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-05 11:45:45 +00:00
471 lines
16 KiB
EmacsLisp
471 lines
16 KiB
EmacsLisp
;;; avl-tree.el --- balanced binary trees, AVL-trees
|
||
|
||
;; Copyright (C) 1995, 2007, 2008, 2009 Free Software Foundation, Inc.
|
||
|
||
;; Author: Per Cederqvist <ceder@lysator.liu.se>
|
||
;; Inge Wallin <inge@lysator.liu.se>
|
||
;; Thomas Bellman <bellman@lysator.liu.se>
|
||
;; Maintainer: FSF
|
||
;; Created: 10 May 1991
|
||
;; Keywords: extensions, data structures
|
||
|
||
;; This file is part of GNU Emacs.
|
||
|
||
;; GNU Emacs is free software: you can redistribute it and/or modify
|
||
;; it under the terms of the GNU General Public License as published by
|
||
;; the Free Software Foundation, either version 3 of the License, or
|
||
;; (at your option) any later version.
|
||
|
||
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
;; GNU General Public License for more details.
|
||
|
||
;; You should have received a copy of the GNU General Public License
|
||
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
;;; Commentary:
|
||
|
||
;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
|
||
;; two elements, the root node and the compare function. The actual tree
|
||
;; has a dummy node as its root with the real root in the left pointer.
|
||
;;
|
||
;; Each node of the tree consists of one data element, one left
|
||
;; sub-tree and one right sub-tree. Each node also has a balance
|
||
;; count, which is the difference in depth of the left and right
|
||
;; sub-trees.
|
||
;;
|
||
;; The functions with names of the form "avl-tree--" are intended for
|
||
;; internal use only.
|
||
|
||
;;; Code:
|
||
|
||
(eval-when-compile (require 'cl))
|
||
|
||
;; ================================================================
|
||
;;; Functions and macros handling an AVL tree node.
|
||
|
||
(defstruct (avl-tree--node
|
||
;; We force a representation without tag so it matches the
|
||
;; pre-defstruct representation. Also we use the underlying
|
||
;; representation in the implementation of avl-tree--node-branch.
|
||
(:type vector)
|
||
(:constructor nil)
|
||
(:constructor avl-tree--node-create (left right data balance))
|
||
(:copier nil))
|
||
left right data balance)
|
||
|
||
(defalias 'avl-tree--node-branch 'aref
|
||
;; This implementation is efficient but breaks the defstruct abstraction.
|
||
;; An alternative could be
|
||
;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
|
||
"Get value of a branch of a node.
|
||
|
||
NODE is the node, and BRANCH is the branch.
|
||
0 for left pointer, 1 for right pointer and 2 for the data.\"
|
||
\(fn node branch)")
|
||
;; The funcall/aref trick doesn't work for the setf method, unless we try
|
||
;; and access the underlying setter function, but this wouldn't be
|
||
;; portable either.
|
||
(defsetf avl-tree--node-branch aset)
|
||
|
||
|
||
;; ================================================================
|
||
;;; Internal functions for use in the AVL tree package
|
||
|
||
(defstruct (avl-tree-
|
||
;; A tagged list is the pre-defstruct representation.
|
||
;; (:type list)
|
||
:named
|
||
(:constructor nil)
|
||
(:constructor avl-tree-create (cmpfun))
|
||
(:predicate avl-tree-p)
|
||
(:copier nil))
|
||
(dummyroot (avl-tree--node-create nil nil nil 0))
|
||
cmpfun)
|
||
|
||
(defmacro avl-tree--root (tree)
|
||
;; Return the root node for an avl-tree. INTERNAL USE ONLY.
|
||
`(avl-tree--node-left (avl-tree--dummyroot tree)))
|
||
(defsetf avl-tree--root (tree) (node)
|
||
`(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
|
||
|
||
;; ----------------------------------------------------------------
|
||
;; Deleting data
|
||
|
||
(defun avl-tree--del-balance1 (node branch)
|
||
;; Rebalance a tree and return t if the height of the tree has shrunk.
|
||
(let ((br (avl-tree--node-branch node branch))
|
||
p1 b1 p2 b2 result)
|
||
(cond
|
||
((< (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
t)
|
||
|
||
((= (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) +1)
|
||
nil)
|
||
|
||
(t
|
||
;; Rebalance.
|
||
(setq p1 (avl-tree--node-right br)
|
||
b1 (avl-tree--node-balance p1))
|
||
(if (>= b1 0)
|
||
;; Single RR rotation.
|
||
(progn
|
||
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
|
||
(setf (avl-tree--node-left p1) br)
|
||
(if (= 0 b1)
|
||
(progn
|
||
(setf (avl-tree--node-balance br) +1)
|
||
(setf (avl-tree--node-balance p1) -1)
|
||
(setq result nil))
|
||
(setf (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance p1) 0)
|
||
(setq result t))
|
||
(setf (avl-tree--node-branch node branch) p1)
|
||
result)
|
||
|
||
;; Double RL rotation.
|
||
(setq p2 (avl-tree--node-left p1)
|
||
b2 (avl-tree--node-balance p2))
|
||
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
|
||
(setf (avl-tree--node-right p2) p1)
|
||
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
|
||
(setf (avl-tree--node-left p2) br)
|
||
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
|
||
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
|
||
(setf (avl-tree--node-branch node branch) p2)
|
||
(setf (avl-tree--node-balance p2) 0)
|
||
t)))))
|
||
|
||
(defun avl-tree--del-balance2 (node branch)
|
||
(let ((br (avl-tree--node-branch node branch))
|
||
p1 b1 p2 b2 result)
|
||
(cond
|
||
((> (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
t)
|
||
|
||
((= (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) -1)
|
||
nil)
|
||
|
||
(t
|
||
;; Rebalance.
|
||
(setq p1 (avl-tree--node-left br)
|
||
b1 (avl-tree--node-balance p1))
|
||
(if (<= b1 0)
|
||
;; Single LL rotation.
|
||
(progn
|
||
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
|
||
(setf (avl-tree--node-right p1) br)
|
||
(if (= 0 b1)
|
||
(progn
|
||
(setf (avl-tree--node-balance br) -1)
|
||
(setf (avl-tree--node-balance p1) +1)
|
||
(setq result nil))
|
||
(setf (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance p1) 0)
|
||
(setq result t))
|
||
(setf (avl-tree--node-branch node branch) p1)
|
||
result)
|
||
|
||
;; Double LR rotation.
|
||
(setq p2 (avl-tree--node-right p1)
|
||
b2 (avl-tree--node-balance p2))
|
||
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
|
||
(setf (avl-tree--node-left p2) p1)
|
||
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
|
||
(setf (avl-tree--node-right p2) br)
|
||
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
|
||
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
|
||
(setf (avl-tree--node-branch node branch) p2)
|
||
(setf (avl-tree--node-balance p2) 0)
|
||
t)))))
|
||
|
||
(defun avl-tree--do-del-internal (node branch q)
|
||
(let ((br (avl-tree--node-branch node branch)))
|
||
(if (avl-tree--node-right br)
|
||
(if (avl-tree--do-del-internal br +1 q)
|
||
(avl-tree--del-balance2 node branch))
|
||
(setf (avl-tree--node-data q) (avl-tree--node-data br))
|
||
(setf (avl-tree--node-branch node branch)
|
||
(avl-tree--node-left br))
|
||
t)))
|
||
|
||
(defun avl-tree--do-delete (cmpfun root branch data)
|
||
;; Return t if the height of the tree has shrunk.
|
||
(let ((br (avl-tree--node-branch root branch)))
|
||
(cond
|
||
((null br)
|
||
nil)
|
||
|
||
((funcall cmpfun data (avl-tree--node-data br))
|
||
(if (avl-tree--do-delete cmpfun br 0 data)
|
||
(avl-tree--del-balance1 root branch)))
|
||
|
||
((funcall cmpfun (avl-tree--node-data br) data)
|
||
(if (avl-tree--do-delete cmpfun br 1 data)
|
||
(avl-tree--del-balance2 root branch)))
|
||
|
||
(t
|
||
;; Found it. Let's delete it.
|
||
(cond
|
||
((null (avl-tree--node-right br))
|
||
(setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
|
||
t)
|
||
|
||
((null (avl-tree--node-left br))
|
||
(setf (avl-tree--node-branch root branch) (avl-tree--node-right br))
|
||
t)
|
||
|
||
(t
|
||
(if (avl-tree--do-del-internal br 0 br)
|
||
(avl-tree--del-balance1 root branch))))))))
|
||
|
||
;; ----------------------------------------------------------------
|
||
;; Entering data
|
||
|
||
(defun avl-tree--enter-balance1 (node branch)
|
||
;; Rebalance a tree and return t if the height of the tree has grown.
|
||
(let ((br (avl-tree--node-branch node branch))
|
||
p1 p2 b2 result)
|
||
(cond
|
||
((< (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
nil)
|
||
|
||
((= (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) +1)
|
||
t)
|
||
|
||
(t
|
||
;; Tree has grown => Rebalance.
|
||
(setq p1 (avl-tree--node-right br))
|
||
(if (> (avl-tree--node-balance p1) 0)
|
||
;; Single RR rotation.
|
||
(progn
|
||
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
|
||
(setf (avl-tree--node-left p1) br)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-branch node branch) p1))
|
||
|
||
;; Double RL rotation.
|
||
(setq p2 (avl-tree--node-left p1)
|
||
b2 (avl-tree--node-balance p2))
|
||
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
|
||
(setf (avl-tree--node-right p2) p1)
|
||
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
|
||
(setf (avl-tree--node-left p2) br)
|
||
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
|
||
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
|
||
(setf (avl-tree--node-branch node branch) p2))
|
||
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
|
||
nil))))
|
||
|
||
(defun avl-tree--enter-balance2 (node branch)
|
||
;; Return t if the tree has grown.
|
||
(let ((br (avl-tree--node-branch node branch))
|
||
p1 p2 b2)
|
||
(cond
|
||
((> (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
nil)
|
||
|
||
((= (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-balance br) -1)
|
||
t)
|
||
|
||
(t
|
||
;; Balance was -1 => Rebalance.
|
||
(setq p1 (avl-tree--node-left br))
|
||
(if (< (avl-tree--node-balance p1) 0)
|
||
;; Single LL rotation.
|
||
(progn
|
||
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
|
||
(setf (avl-tree--node-right p1) br)
|
||
(setf (avl-tree--node-balance br) 0)
|
||
(setf (avl-tree--node-branch node branch) p1))
|
||
|
||
;; Double LR rotation.
|
||
(setq p2 (avl-tree--node-right p1)
|
||
b2 (avl-tree--node-balance p2))
|
||
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
|
||
(setf (avl-tree--node-left p2) p1)
|
||
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
|
||
(setf (avl-tree--node-right p2) br)
|
||
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
|
||
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
|
||
(setf (avl-tree--node-branch node branch) p2))
|
||
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
|
||
nil))))
|
||
|
||
(defun avl-tree--do-enter (cmpfun root branch data)
|
||
;; Return t if height of tree ROOT has grown. INTERNAL USE ONLY.
|
||
(let ((br (avl-tree--node-branch root branch)))
|
||
(cond
|
||
((null br)
|
||
;; Data not in tree, insert it.
|
||
(setf (avl-tree--node-branch root branch)
|
||
(avl-tree--node-create nil nil data 0))
|
||
t)
|
||
|
||
((funcall cmpfun data (avl-tree--node-data br))
|
||
(and (avl-tree--do-enter cmpfun br 0 data)
|
||
(avl-tree--enter-balance2 root branch)))
|
||
|
||
((funcall cmpfun (avl-tree--node-data br) data)
|
||
(and (avl-tree--do-enter cmpfun br 1 data)
|
||
(avl-tree--enter-balance1 root branch)))
|
||
|
||
(t
|
||
(setf (avl-tree--node-data br) data)
|
||
nil))))
|
||
|
||
;; ----------------------------------------------------------------
|
||
|
||
(defun avl-tree--mapc (map-function root)
|
||
;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
|
||
;; The function is applied in-order.
|
||
;;
|
||
;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
|
||
;; INTERNAL USE ONLY.
|
||
(let ((node root)
|
||
(stack nil)
|
||
(go-left t))
|
||
(push nil stack)
|
||
(while node
|
||
(if (and go-left
|
||
(avl-tree--node-left node))
|
||
;; Do the left subtree first.
|
||
(progn
|
||
(push node stack)
|
||
(setq node (avl-tree--node-left node)))
|
||
;; Apply the function...
|
||
(funcall map-function node)
|
||
;; and do the right subtree.
|
||
(setq node (if (setq go-left (avl-tree--node-right node))
|
||
(avl-tree--node-right node)
|
||
(pop stack)))))))
|
||
|
||
(defun avl-tree--do-copy (root)
|
||
;; Copy the avl tree with ROOT as root.
|
||
;; Highly recursive. INTERNAL USE ONLY.
|
||
(if (null root)
|
||
nil
|
||
(avl-tree--node-create
|
||
(avl-tree--do-copy (avl-tree--node-left root))
|
||
(avl-tree--do-copy (avl-tree--node-right root))
|
||
(avl-tree--node-data root)
|
||
(avl-tree--node-balance root))))
|
||
|
||
|
||
;; ================================================================
|
||
;;; The public functions which operate on AVL trees.
|
||
|
||
(defalias 'avl-tree-compare-function 'avl-tree--cmpfun
|
||
"Return the comparison function for the avl tree TREE.
|
||
|
||
\(fn TREE)")
|
||
|
||
(defun avl-tree-empty (tree)
|
||
"Return t if avl tree TREE is emtpy, otherwise return nil."
|
||
(null (avl-tree--root tree)))
|
||
|
||
(defun avl-tree-enter (tree data)
|
||
"In the avl tree TREE insert DATA.
|
||
Return DATA."
|
||
(avl-tree--do-enter (avl-tree--cmpfun tree)
|
||
(avl-tree--dummyroot tree)
|
||
0
|
||
data)
|
||
data)
|
||
|
||
(defun avl-tree-delete (tree data)
|
||
"From the avl tree TREE, delete DATA.
|
||
Return the element in TREE which matched DATA,
|
||
nil if no element matched."
|
||
(avl-tree--do-delete (avl-tree--cmpfun tree)
|
||
(avl-tree--dummyroot tree)
|
||
0
|
||
data))
|
||
|
||
(defun avl-tree-member (tree data)
|
||
"Return the element in the avl tree TREE which matches DATA.
|
||
Matching uses the compare function previously specified in
|
||
`avl-tree-create' when TREE was created.
|
||
|
||
If there is no such element in the tree, the value is nil."
|
||
(let ((node (avl-tree--root tree))
|
||
(compare-function (avl-tree--cmpfun tree))
|
||
found)
|
||
(while (and node
|
||
(not found))
|
||
(cond
|
||
((funcall compare-function data (avl-tree--node-data node))
|
||
(setq node (avl-tree--node-left node)))
|
||
((funcall compare-function (avl-tree--node-data node) data)
|
||
(setq node (avl-tree--node-right node)))
|
||
(t
|
||
(setq found t))))
|
||
(if node
|
||
(avl-tree--node-data node)
|
||
nil)))
|
||
|
||
(defun avl-tree-map (__map-function__ tree)
|
||
"Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
|
||
(avl-tree--mapc
|
||
(lambda (node)
|
||
(setf (avl-tree--node-data node)
|
||
(funcall __map-function__ (avl-tree--node-data node))))
|
||
(avl-tree--root tree)))
|
||
|
||
(defun avl-tree-first (tree)
|
||
"Return the first element in TREE, or nil if TREE is empty."
|
||
(let ((node (avl-tree--root tree)))
|
||
(when node
|
||
(while (avl-tree--node-left node)
|
||
(setq node (avl-tree--node-left node)))
|
||
(avl-tree--node-data node))))
|
||
|
||
(defun avl-tree-last (tree)
|
||
"Return the last element in TREE, or nil if TREE is empty."
|
||
(let ((node (avl-tree--root tree)))
|
||
(when node
|
||
(while (avl-tree--node-right node)
|
||
(setq node (avl-tree--node-right node)))
|
||
(avl-tree--node-data node))))
|
||
|
||
(defun avl-tree-copy (tree)
|
||
"Return a copy of the avl tree TREE."
|
||
(let ((new-tree (avl-tree-create (avl-tree--cmpfun tree))))
|
||
(setf (avl-tree--root new-tree) (avl-tree--do-copy (avl-tree--root tree)))
|
||
new-tree))
|
||
|
||
(defun avl-tree-flatten (tree)
|
||
"Return a sorted list containing all elements of TREE."
|
||
(nreverse
|
||
(let ((treelist nil))
|
||
(avl-tree--mapc
|
||
(lambda (node) (push (avl-tree--node-data node) treelist))
|
||
(avl-tree--root tree))
|
||
treelist)))
|
||
|
||
(defun avl-tree-size (tree)
|
||
"Return the number of elements in TREE."
|
||
(let ((treesize 0))
|
||
(avl-tree--mapc
|
||
(lambda (data) (setq treesize (1+ treesize)))
|
||
(avl-tree--root tree))
|
||
treesize))
|
||
|
||
(defun avl-tree-clear (tree)
|
||
"Clear the avl tree TREE."
|
||
(setf (avl-tree--root tree) nil))
|
||
|
||
(provide 'avl-tree)
|
||
|
||
;; arch-tag: 47e26701-43c9-4222-bd79-739eac6357a9
|
||
;;; avl-tree.el ends here
|