mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-11-26 07:33:47 +00:00
59ce725a3b
Revision: emacs@sv.gnu.org/emacs--devo--0--patch-987
1016 lines
33 KiB
EmacsLisp
1016 lines
33 KiB
EmacsLisp
;;; calc-funcs.el --- well-known functions for Calc
|
|
|
|
;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
|
|
;; 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
|
|
|
;; Author: David Gillespie <daveg@synaptics.com>
|
|
;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
|
|
|
|
;; This file is part of GNU Emacs.
|
|
|
|
;; GNU Emacs is free software; you can redistribute it and/or modify
|
|
;; it under the terms of the GNU General Public License as published by
|
|
;; the Free Software Foundation; either version 3, or (at your option)
|
|
;; any later version.
|
|
|
|
;; GNU Emacs is distributed in the hope that it will be useful,
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
;; GNU General Public License for more details.
|
|
|
|
;; You should have received a copy of the GNU General Public License
|
|
;; along with GNU Emacs; see the file COPYING. If not, write to the
|
|
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
;; Boston, MA 02110-1301, USA.
|
|
|
|
;;; Commentary:
|
|
|
|
;;; Code:
|
|
|
|
;; This file is autoloaded from calc-ext.el.
|
|
|
|
(require 'calc-ext)
|
|
(require 'calc-macs)
|
|
|
|
(defun calc-inc-gamma (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(if (calc-is-inverse)
|
|
(if (calc-is-hyperbolic)
|
|
(calc-binary-op "gamG" 'calcFunc-gammaG arg)
|
|
(calc-binary-op "gamQ" 'calcFunc-gammaQ arg))
|
|
(if (calc-is-hyperbolic)
|
|
(calc-binary-op "gamg" 'calcFunc-gammag arg)
|
|
(calc-binary-op "gamP" 'calcFunc-gammaP arg)))))
|
|
|
|
(defun calc-erf (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(if (calc-is-inverse)
|
|
(calc-unary-op "erfc" 'calcFunc-erfc arg)
|
|
(calc-unary-op "erf" 'calcFunc-erf arg))))
|
|
|
|
(defun calc-erfc (arg)
|
|
(interactive "P")
|
|
(calc-invert-func)
|
|
(calc-erf arg))
|
|
|
|
(defun calc-beta (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(calc-binary-op "beta" 'calcFunc-beta arg)))
|
|
|
|
(defun calc-inc-beta ()
|
|
(interactive)
|
|
(calc-slow-wrapper
|
|
(if (calc-is-hyperbolic)
|
|
(calc-enter-result 3 "betB" (cons 'calcFunc-betaB (calc-top-list-n 3)))
|
|
(calc-enter-result 3 "betI" (cons 'calcFunc-betaI (calc-top-list-n 3))))))
|
|
|
|
(defun calc-bessel-J (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(calc-binary-op "besJ" 'calcFunc-besJ arg)))
|
|
|
|
(defun calc-bessel-Y (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(calc-binary-op "besY" 'calcFunc-besY arg)))
|
|
|
|
(defun calc-bernoulli-number (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(if (calc-is-hyperbolic)
|
|
(calc-binary-op "bern" 'calcFunc-bern arg)
|
|
(calc-unary-op "bern" 'calcFunc-bern arg))))
|
|
|
|
(defun calc-euler-number (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(if (calc-is-hyperbolic)
|
|
(calc-binary-op "eulr" 'calcFunc-euler arg)
|
|
(calc-unary-op "eulr" 'calcFunc-euler arg))))
|
|
|
|
(defun calc-stirling-number (arg)
|
|
(interactive "P")
|
|
(calc-slow-wrapper
|
|
(if (calc-is-hyperbolic)
|
|
(calc-binary-op "str2" 'calcFunc-stir2 arg)
|
|
(calc-binary-op "str1" 'calcFunc-stir1 arg))))
|
|
|
|
(defun calc-utpb ()
|
|
(interactive)
|
|
(calc-prob-dist "b" 3))
|
|
|
|
(defun calc-utpc ()
|
|
(interactive)
|
|
(calc-prob-dist "c" 2))
|
|
|
|
(defun calc-utpf ()
|
|
(interactive)
|
|
(calc-prob-dist "f" 3))
|
|
|
|
(defun calc-utpn ()
|
|
(interactive)
|
|
(calc-prob-dist "n" 3))
|
|
|
|
(defun calc-utpp ()
|
|
(interactive)
|
|
(calc-prob-dist "p" 2))
|
|
|
|
(defun calc-utpt ()
|
|
(interactive)
|
|
(calc-prob-dist "t" 2))
|
|
|
|
(defun calc-prob-dist (letter nargs)
|
|
(calc-slow-wrapper
|
|
(if (calc-is-inverse)
|
|
(calc-enter-result nargs (concat "ltp" letter)
|
|
(append (list (intern (concat "calcFunc-ltp" letter))
|
|
(calc-top-n 1))
|
|
(calc-top-list-n (1- nargs) 2)))
|
|
(calc-enter-result nargs (concat "utp" letter)
|
|
(append (list (intern (concat "calcFunc-utp" letter))
|
|
(calc-top-n 1))
|
|
(calc-top-list-n (1- nargs) 2))))))
|
|
|
|
|
|
|
|
|
|
;;; Sources: Numerical Recipes, Press et al;
|
|
;;; Handbook of Mathematical Functions, Abramowitz & Stegun.
|
|
|
|
|
|
;;; Gamma function.
|
|
|
|
(defun calcFunc-gamma (x)
|
|
(or (math-numberp x) (math-reject-arg x 'numberp))
|
|
(calcFunc-fact (math-add x -1)))
|
|
|
|
(defun math-gammap1-raw (x &optional fprec nfprec)
|
|
"Compute gamma(1+X) to the appropriate precision."
|
|
(or fprec
|
|
(setq fprec (math-float calc-internal-prec)
|
|
nfprec (math-float (- calc-internal-prec))))
|
|
(cond ((math-lessp-float (calcFunc-re x) fprec)
|
|
(if (math-lessp-float (calcFunc-re x) nfprec)
|
|
(math-neg (math-div
|
|
(math-pi)
|
|
(math-mul (math-gammap1-raw
|
|
(math-add (math-neg x)
|
|
'(float -1 0))
|
|
fprec nfprec)
|
|
(math-sin-raw
|
|
(math-mul (math-pi) x)))))
|
|
(let ((xplus1 (math-add x '(float 1 0))))
|
|
(math-div (math-gammap1-raw xplus1 fprec nfprec) xplus1))))
|
|
((and (math-realp x)
|
|
(math-lessp-float '(float 736276 0) x))
|
|
(math-overflow))
|
|
(t ; re(x) now >= 10.0
|
|
(let ((xinv (math-div 1 x))
|
|
(lnx (math-ln-raw x)))
|
|
(math-mul (math-sqrt-two-pi)
|
|
(math-exp-raw
|
|
(math-gamma-series
|
|
(math-sub (math-mul (math-add x '(float 5 -1))
|
|
lnx)
|
|
x)
|
|
xinv
|
|
(math-sqr xinv)
|
|
'(float 0 0)
|
|
2)))))))
|
|
|
|
(defun math-gamma-series (sum x xinvsqr oterm n)
|
|
(math-working "gamma" sum)
|
|
(let* ((bn (math-bernoulli-number n))
|
|
(term (math-mul (math-div-float (math-float (nth 1 bn))
|
|
(math-float (* (nth 2 bn)
|
|
(* n (1- n)))))
|
|
x))
|
|
(next (math-add sum term)))
|
|
(if (math-nearly-equal sum next)
|
|
next
|
|
(if (> n (* 2 calc-internal-prec))
|
|
(progn
|
|
;; Need this because series eventually diverges for large enough n.
|
|
(calc-record-why
|
|
"*Gamma computation stopped early, not all digits may be valid")
|
|
next)
|
|
(math-gamma-series next (math-mul x xinvsqr) xinvsqr term (+ n 2))))))
|
|
|
|
|
|
;;; Incomplete gamma function.
|
|
|
|
(defvar math-current-gamma-value nil)
|
|
(defun calcFunc-gammaP (a x)
|
|
(if (equal x '(var inf var-inf))
|
|
'(float 1 0)
|
|
(math-inexact-result)
|
|
(or (Math-numberp a) (math-reject-arg a 'numberp))
|
|
(or (math-numberp x) (math-reject-arg x 'numberp))
|
|
(if (and (math-num-integerp a)
|
|
(integerp (setq a (math-trunc a)))
|
|
(> a 0) (< a 20))
|
|
(math-sub 1 (calcFunc-gammaQ a x))
|
|
(let ((math-current-gamma-value (calcFunc-gamma a)))
|
|
(math-div (calcFunc-gammag a x) math-current-gamma-value)))))
|
|
|
|
(defun calcFunc-gammaQ (a x)
|
|
(if (equal x '(var inf var-inf))
|
|
'(float 0 0)
|
|
(math-inexact-result)
|
|
(or (Math-numberp a) (math-reject-arg a 'numberp))
|
|
(or (math-numberp x) (math-reject-arg x 'numberp))
|
|
(if (and (math-num-integerp a)
|
|
(integerp (setq a (math-trunc a)))
|
|
(> a 0) (< a 20))
|
|
(let ((n 0)
|
|
(sum '(float 1 0))
|
|
(term '(float 1 0)))
|
|
(math-with-extra-prec 1
|
|
(while (< (setq n (1+ n)) a)
|
|
(setq term (math-div (math-mul term x) n)
|
|
sum (math-add sum term))
|
|
(math-working "gamma" sum))
|
|
(math-mul sum (calcFunc-exp (math-neg x)))))
|
|
(let ((math-current-gamma-value (calcFunc-gamma a)))
|
|
(math-div (calcFunc-gammaG a x) math-current-gamma-value)))))
|
|
|
|
(defun calcFunc-gammag (a x)
|
|
(if (equal x '(var inf var-inf))
|
|
(calcFunc-gamma a)
|
|
(math-inexact-result)
|
|
(or (Math-numberp a) (math-reject-arg a 'numberp))
|
|
(or (Math-numberp x) (math-reject-arg x 'numberp))
|
|
(math-with-extra-prec 2
|
|
(setq a (math-float a))
|
|
(setq x (math-float x))
|
|
(if (or (math-negp (calcFunc-re a))
|
|
(math-lessp-float (calcFunc-re x)
|
|
(math-add-float (calcFunc-re a)
|
|
'(float 1 0))))
|
|
(math-inc-gamma-series a x)
|
|
(math-sub (or math-current-gamma-value (calcFunc-gamma a))
|
|
(math-inc-gamma-cfrac a x))))))
|
|
|
|
(defun calcFunc-gammaG (a x)
|
|
(if (equal x '(var inf var-inf))
|
|
'(float 0 0)
|
|
(math-inexact-result)
|
|
(or (Math-numberp a) (math-reject-arg a 'numberp))
|
|
(or (Math-numberp x) (math-reject-arg x 'numberp))
|
|
(math-with-extra-prec 2
|
|
(setq a (math-float a))
|
|
(setq x (math-float x))
|
|
(if (or (math-negp (calcFunc-re a))
|
|
(math-lessp-float (calcFunc-re x)
|
|
(math-add-float (math-abs-approx a)
|
|
'(float 1 0))))
|
|
(math-sub (or math-current-gamma-value (calcFunc-gamma a))
|
|
(math-inc-gamma-series a x))
|
|
(math-inc-gamma-cfrac a x)))))
|
|
|
|
(defun math-inc-gamma-series (a x)
|
|
(if (Math-zerop x)
|
|
'(float 0 0)
|
|
(math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
|
|
(math-with-extra-prec 2
|
|
(let ((start (math-div '(float 1 0) a)))
|
|
(math-inc-gamma-series-step start start a x))))))
|
|
|
|
(defun math-inc-gamma-series-step (sum term a x)
|
|
(math-working "gamma" sum)
|
|
(setq a (math-add a '(float 1 0))
|
|
term (math-div (math-mul term x) a))
|
|
(let ((next (math-add sum term)))
|
|
(if (math-nearly-equal sum next)
|
|
next
|
|
(math-inc-gamma-series-step next term a x))))
|
|
|
|
(defun math-inc-gamma-cfrac (a x)
|
|
(if (Math-zerop x)
|
|
(or math-current-gamma-value (calcFunc-gamma a))
|
|
(math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
|
|
(math-inc-gamma-cfrac-step '(float 1 0) x
|
|
'(float 0 0) '(float 1 0)
|
|
'(float 1 0) '(float 1 0) '(float 0 0)
|
|
a x))))
|
|
|
|
(defun math-inc-gamma-cfrac-step (a0 a1 b0 b1 n fac g a x)
|
|
(let ((ana (math-sub n a))
|
|
(anf (math-mul n fac)))
|
|
(setq n (math-add n '(float 1 0))
|
|
a0 (math-mul (math-add a1 (math-mul a0 ana)) fac)
|
|
b0 (math-mul (math-add b1 (math-mul b0 ana)) fac)
|
|
a1 (math-add (math-mul x a0) (math-mul anf a1))
|
|
b1 (math-add (math-mul x b0) (math-mul anf b1)))
|
|
(if (math-zerop a1)
|
|
(math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac g a x)
|
|
(setq fac (math-div '(float 1 0) a1))
|
|
(let ((next (math-mul b1 fac)))
|
|
(math-working "gamma" next)
|
|
(if (math-nearly-equal next g)
|
|
next
|
|
(math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac next a x))))))
|
|
|
|
|
|
;;; Error function.
|
|
|
|
(defun calcFunc-erf (x)
|
|
(if (equal x '(var inf var-inf))
|
|
'(float 1 0)
|
|
(if (equal x '(neg (var inf var-inf)))
|
|
'(float -1 0)
|
|
(if (Math-zerop x)
|
|
x
|
|
(let ((math-current-gamma-value (math-sqrt-pi)))
|
|
(math-to-same-complex-quad
|
|
(math-div (calcFunc-gammag '(float 5 -1)
|
|
(math-sqr (math-to-complex-quad-one x)))
|
|
math-current-gamma-value)
|
|
x))))))
|
|
|
|
(defun calcFunc-erfc (x)
|
|
(if (equal x '(var inf var-inf))
|
|
'(float 0 0)
|
|
(if (math-posp x)
|
|
(let ((math-current-gamma-value (math-sqrt-pi)))
|
|
(math-div (calcFunc-gammaG '(float 5 -1) (math-sqr x))
|
|
math-current-gamma-value))
|
|
(math-sub 1 (calcFunc-erf x)))))
|
|
|
|
(defun math-to-complex-quad-one (x)
|
|
(if (eq (car-safe x) 'polar) (setq x (math-complex x)))
|
|
(if (eq (car-safe x) 'cplx)
|
|
(list 'cplx (math-abs (nth 1 x)) (math-abs (nth 2 x)))
|
|
x))
|
|
|
|
(defun math-to-same-complex-quad (x y)
|
|
(if (eq (car-safe y) 'cplx)
|
|
(if (eq (car-safe x) 'cplx)
|
|
(list 'cplx
|
|
(if (math-negp (nth 1 y)) (math-neg (nth 1 x)) (nth 1 x))
|
|
(if (math-negp (nth 2 y)) (math-neg (nth 2 x)) (nth 2 x)))
|
|
(if (math-negp (nth 1 y)) (math-neg x) x))
|
|
(if (math-negp y)
|
|
(if (eq (car-safe x) 'cplx)
|
|
(list 'cplx (math-neg (nth 1 x)) (nth 2 x))
|
|
(math-neg x))
|
|
x)))
|
|
|
|
|
|
;;; Beta function.
|
|
|
|
(defun calcFunc-beta (a b)
|
|
(if (math-num-integerp a)
|
|
(let ((am (math-add a -1)))
|
|
(or (math-numberp b) (math-reject-arg b 'numberp))
|
|
(math-div 1 (math-mul b (calcFunc-choose (math-add b am) am))))
|
|
(if (math-num-integerp b)
|
|
(calcFunc-beta b a)
|
|
(math-div (math-mul (calcFunc-gamma a) (calcFunc-gamma b))
|
|
(calcFunc-gamma (math-add a b))))))
|
|
|
|
|
|
;;; Incomplete beta function.
|
|
|
|
(defvar math-current-beta-value nil)
|
|
(defun calcFunc-betaI (x a b)
|
|
(cond ((math-zerop x)
|
|
'(float 0 0))
|
|
((math-equal-int x 1)
|
|
'(float 1 0))
|
|
((or (math-zerop a)
|
|
(and (math-num-integerp a)
|
|
(math-negp a)))
|
|
(if (or (math-zerop b)
|
|
(and (math-num-integerp b)
|
|
(math-negp b)))
|
|
(math-reject-arg b 'range)
|
|
'(float 1 0)))
|
|
((or (math-zerop b)
|
|
(and (math-num-integerp b)
|
|
(math-negp b)))
|
|
'(float 0 0))
|
|
((not (math-numberp a)) (math-reject-arg a 'numberp))
|
|
((not (math-numberp b)) (math-reject-arg b 'numberp))
|
|
((math-inexact-result))
|
|
(t (let ((math-current-beta-value (calcFunc-beta a b)))
|
|
(math-div (calcFunc-betaB x a b) math-current-beta-value)))))
|
|
|
|
(defun calcFunc-betaB (x a b)
|
|
(cond
|
|
((math-zerop x)
|
|
'(float 0 0))
|
|
((math-equal-int x 1)
|
|
(calcFunc-beta a b))
|
|
((not (math-numberp x)) (math-reject-arg x 'numberp))
|
|
((not (math-numberp a)) (math-reject-arg a 'numberp))
|
|
((not (math-numberp b)) (math-reject-arg b 'numberp))
|
|
((math-zerop a) (math-reject-arg a 'nonzerop))
|
|
((math-zerop b) (math-reject-arg b 'nonzerop))
|
|
((and (math-num-integerp b)
|
|
(if (math-negp b)
|
|
(math-reject-arg b 'range)
|
|
(Math-natnum-lessp (setq b (math-trunc b)) 20)))
|
|
(and calc-symbolic-mode (or (math-floatp a) (math-floatp b))
|
|
(math-inexact-result))
|
|
(math-mul
|
|
(math-with-extra-prec 2
|
|
(let* ((i 0)
|
|
(term 1)
|
|
(sum (math-div term a)))
|
|
(while (< (setq i (1+ i)) b)
|
|
(setq term (math-mul (math-div (math-mul term (- i b)) i) x)
|
|
sum (math-add sum (math-div term (math-add a i))))
|
|
(math-working "beta" sum))
|
|
sum))
|
|
(math-pow x a)))
|
|
((and (math-num-integerp a)
|
|
(if (math-negp a)
|
|
(math-reject-arg a 'range)
|
|
(Math-natnum-lessp (setq a (math-trunc a)) 20)))
|
|
(math-sub (or math-current-beta-value (calcFunc-beta a b))
|
|
(calcFunc-betaB (math-sub 1 x) b a)))
|
|
(t
|
|
(math-inexact-result)
|
|
(math-with-extra-prec 2
|
|
(setq x (math-float x))
|
|
(setq a (math-float a))
|
|
(setq b (math-float b))
|
|
(let ((bt (math-exp-raw (math-add (math-mul a (math-ln-raw x))
|
|
(math-mul b (math-ln-raw
|
|
(math-sub '(float 1 0)
|
|
x)))))))
|
|
(if (Math-lessp x (math-div (math-add a '(float 1 0))
|
|
(math-add (math-add a b) '(float 2 0))))
|
|
(math-div (math-mul bt (math-beta-cfrac a b x)) a)
|
|
(math-sub (or math-current-beta-value (calcFunc-beta a b))
|
|
(math-div (math-mul bt
|
|
(math-beta-cfrac b a (math-sub 1 x)))
|
|
b))))))))
|
|
|
|
(defun math-beta-cfrac (a b x)
|
|
(let ((qab (math-add a b))
|
|
(qap (math-add a '(float 1 0)))
|
|
(qam (math-add a '(float -1 0))))
|
|
(math-beta-cfrac-step '(float 1 0)
|
|
(math-sub '(float 1 0)
|
|
(math-div (math-mul qab x) qap))
|
|
'(float 1 0) '(float 1 0)
|
|
'(float 1 0)
|
|
qab qap qam a b x)))
|
|
|
|
(defun math-beta-cfrac-step (az bz am bm m qab qap qam a b x)
|
|
(let* ((two-m (math-mul m '(float 2 0)))
|
|
(d (math-div (math-mul (math-mul (math-sub b m) m) x)
|
|
(math-mul (math-add qam two-m) (math-add a two-m))))
|
|
(ap (math-add az (math-mul d am)))
|
|
(bp (math-add bz (math-mul d bm)))
|
|
(d2 (math-neg
|
|
(math-div (math-mul (math-mul (math-add a m) (math-add qab m)) x)
|
|
(math-mul (math-add qap two-m) (math-add a two-m)))))
|
|
(app (math-add ap (math-mul d2 az)))
|
|
(bpp (math-add bp (math-mul d2 bz)))
|
|
(next (math-div app bpp)))
|
|
(math-working "beta" next)
|
|
(if (math-nearly-equal next az)
|
|
next
|
|
(math-beta-cfrac-step next '(float 1 0)
|
|
(math-div ap bpp) (math-div bp bpp)
|
|
(math-add m '(float 1 0))
|
|
qab qap qam a b x))))
|
|
|
|
|
|
;;; Bessel functions.
|
|
|
|
;;; Should generalize this to handle arbitrary precision!
|
|
|
|
(defun calcFunc-besJ (v x)
|
|
(or (math-numberp v) (math-reject-arg v 'numberp))
|
|
(or (math-numberp x) (math-reject-arg x 'numberp))
|
|
(let ((calc-internal-prec (min 8 calc-internal-prec)))
|
|
(math-with-extra-prec 3
|
|
(setq x (math-float (math-normalize x)))
|
|
(setq v (math-float (math-normalize v)))
|
|
(cond ((math-zerop x)
|
|
(if (math-zerop v)
|
|
'(float 1 0)
|
|
'(float 0 0)))
|
|
((math-inexact-result))
|
|
((not (math-num-integerp v))
|
|
(let ((start (math-div 1 (calcFunc-fact v))))
|
|
(math-mul (math-besJ-series start start
|
|
0
|
|
(math-mul '(float -25 -2)
|
|
(math-sqr x))
|
|
v)
|
|
(math-pow (math-div x 2) v))))
|
|
((math-negp (setq v (math-trunc v)))
|
|
(if (math-oddp v)
|
|
(math-neg (calcFunc-besJ (math-neg v) x))
|
|
(calcFunc-besJ (math-neg v) x)))
|
|
((eq v 0)
|
|
(math-besJ0 x))
|
|
((eq v 1)
|
|
(math-besJ1 x))
|
|
((Math-lessp v (math-abs-approx x))
|
|
(let ((j 0)
|
|
(bjm (math-besJ0 x))
|
|
(bj (math-besJ1 x))
|
|
(two-over-x (math-div 2 x))
|
|
bjp)
|
|
(while (< (setq j (1+ j)) v)
|
|
(setq bjp (math-sub (math-mul (math-mul j two-over-x) bj)
|
|
bjm)
|
|
bjm bj
|
|
bj bjp))
|
|
bj))
|
|
(t
|
|
(if (Math-lessp 100 v) (math-reject-arg v 'range))
|
|
(let* ((j (logior (+ v (math-isqrt-small (* 40 v))) 1))
|
|
(two-over-x (math-div 2 x))
|
|
(jsum nil)
|
|
(bjp '(float 0 0))
|
|
(sum '(float 0 0))
|
|
(bj '(float 1 0))
|
|
bjm ans)
|
|
(while (> (setq j (1- j)) 0)
|
|
(setq bjm (math-sub (math-mul (math-mul j two-over-x) bj)
|
|
bjp)
|
|
bjp bj
|
|
bj bjm)
|
|
(if (> (nth 2 (math-abs-approx bj)) 10)
|
|
(setq bj (math-mul bj '(float 1 -10))
|
|
bjp (math-mul bjp '(float 1 -10))
|
|
ans (and ans (math-mul ans '(float 1 -10)))
|
|
sum (math-mul sum '(float 1 -10))))
|
|
(or (setq jsum (not jsum))
|
|
(setq sum (math-add sum bj)))
|
|
(if (= j v)
|
|
(setq ans bjp)))
|
|
(math-div ans (math-sub (math-mul 2 sum) bj))))))))
|
|
|
|
(defun math-besJ-series (sum term k zz vk)
|
|
(math-working "besJ" sum)
|
|
(setq k (1+ k)
|
|
vk (math-add 1 vk)
|
|
term (math-div (math-mul term zz) (math-mul k vk)))
|
|
(let ((next (math-add sum term)))
|
|
(if (math-nearly-equal next sum)
|
|
next
|
|
(math-besJ-series next term k zz vk))))
|
|
|
|
(defun math-besJ0 (x &optional yflag)
|
|
(cond ((and (not yflag) (math-negp (calcFunc-re x)))
|
|
(math-besJ0 (math-neg x)))
|
|
((Math-lessp '(float 8 0) (math-abs-approx x))
|
|
(let* ((z (math-div '(float 8 0) x))
|
|
(y (math-sqr z))
|
|
(xx (math-add x
|
|
(math-read-number-simple "-0.785398164")))
|
|
(a1 (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "0.0000002093887211")
|
|
(math-read-number-simple "-0.000002073370639")
|
|
(math-read-number-simple "0.00002734510407")
|
|
(math-read-number-simple "-0.001098628627")
|
|
'(float 1 0))))
|
|
(a2 (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "-0.0000000934935152")
|
|
(math-read-number-simple "0.0000007621095161")
|
|
(math-read-number-simple "-0.000006911147651")
|
|
(math-read-number-simple "0.0001430488765")
|
|
(math-read-number-simple "-0.01562499995"))))
|
|
(sc (math-sin-cos-raw xx)))
|
|
(if yflag
|
|
(setq sc (cons (math-neg (cdr sc)) (car sc))))
|
|
(math-mul (math-sqrt
|
|
(math-div (math-read-number-simple "0.636619722")
|
|
x))
|
|
(math-sub (math-mul (cdr sc) a1)
|
|
(math-mul (car sc) (math-mul z a2))))))
|
|
(t
|
|
(let ((y (math-sqr x)))
|
|
(math-div (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "-184.9052456")
|
|
(math-read-number-simple "77392.33017")
|
|
(math-read-number-simple "-11214424.18")
|
|
(math-read-number-simple "651619640.7")
|
|
(math-read-number-simple "-13362590354.0")
|
|
(math-read-number-simple "57568490574.0")))
|
|
(math-poly-eval y
|
|
(list
|
|
'(float 1 0)
|
|
(math-read-number-simple "267.8532712")
|
|
(math-read-number-simple "59272.64853")
|
|
(math-read-number-simple "9494680.718")
|
|
(math-read-number-simple "1029532985.0")
|
|
(math-read-number-simple "57568490411.0"))))))))
|
|
|
|
(defun math-besJ1 (x &optional yflag)
|
|
(cond ((and (math-negp (calcFunc-re x)) (not yflag))
|
|
(math-neg (math-besJ1 (math-neg x))))
|
|
((Math-lessp '(float 8 0) (math-abs-approx x))
|
|
(let* ((z (math-div '(float 8 0) x))
|
|
(y (math-sqr z))
|
|
(xx (math-add x (math-read-number-simple "-2.356194491")))
|
|
(a1 (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "-0.000000240337019")
|
|
(math-read-number-simple "0.000002457520174")
|
|
(math-read-number-simple "-0.00003516396496")
|
|
'(float 183105 -8)
|
|
'(float 1 0))))
|
|
(a2 (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "0.000000105787412")
|
|
(math-read-number-simple "-0.00000088228987")
|
|
(math-read-number-simple "0.000008449199096")
|
|
(math-read-number-simple "-0.0002002690873")
|
|
(math-read-number-simple "0.04687499995"))))
|
|
(sc (math-sin-cos-raw xx)))
|
|
(if yflag
|
|
(setq sc (cons (math-neg (cdr sc)) (car sc)))
|
|
(if (math-negp x)
|
|
(setq sc (cons (math-neg (car sc)) (math-neg (cdr sc))))))
|
|
(math-mul (math-sqrt (math-div
|
|
(math-read-number-simple "0.636619722")
|
|
x))
|
|
(math-sub (math-mul (cdr sc) a1)
|
|
(math-mul (car sc) (math-mul z a2))))))
|
|
(t
|
|
(let ((y (math-sqr x)))
|
|
(math-mul
|
|
x
|
|
(math-div (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "-30.16036606")
|
|
(math-read-number-simple "15704.4826")
|
|
(math-read-number-simple "-2972611.439")
|
|
(math-read-number-simple "242396853.1")
|
|
(math-read-number-simple "-7895059235.0")
|
|
(math-read-number-simple "72362614232.0")))
|
|
(math-poly-eval y
|
|
(list
|
|
'(float 1 0)
|
|
(math-read-number-simple "376.9991397")
|
|
(math-read-number-simple "99447.43394")
|
|
(math-read-number-simple "18583304.74")
|
|
(math-read-number-simple "2300535178.0")
|
|
(math-read-number-simple "144725228442.0")))))))))
|
|
|
|
(defun calcFunc-besY (v x)
|
|
(math-inexact-result)
|
|
(or (math-numberp v) (math-reject-arg v 'numberp))
|
|
(or (math-numberp x) (math-reject-arg x 'numberp))
|
|
(let ((calc-internal-prec (min 8 calc-internal-prec)))
|
|
(math-with-extra-prec 3
|
|
(setq x (math-float (math-normalize x)))
|
|
(setq v (math-float (math-normalize v)))
|
|
(cond ((not (math-num-integerp v))
|
|
(let ((sc (math-sin-cos-raw (math-mul v (math-pi)))))
|
|
(math-div (math-sub (math-mul (calcFunc-besJ v x) (cdr sc))
|
|
(calcFunc-besJ (math-neg v) x))
|
|
(car sc))))
|
|
((math-negp (setq v (math-trunc v)))
|
|
(if (math-oddp v)
|
|
(math-neg (calcFunc-besY (math-neg v) x))
|
|
(calcFunc-besY (math-neg v) x)))
|
|
((eq v 0)
|
|
(math-besY0 x))
|
|
((eq v 1)
|
|
(math-besY1 x))
|
|
(t
|
|
(let ((j 0)
|
|
(bym (math-besY0 x))
|
|
(by (math-besY1 x))
|
|
(two-over-x (math-div 2 x))
|
|
byp)
|
|
(while (< (setq j (1+ j)) v)
|
|
(setq byp (math-sub (math-mul (math-mul j two-over-x) by)
|
|
bym)
|
|
bym by
|
|
by byp))
|
|
by))))))
|
|
|
|
(defun math-besY0 (x)
|
|
(cond ((Math-lessp (math-abs-approx x) '(float 8 0))
|
|
(let ((y (math-sqr x)))
|
|
(math-add
|
|
(math-div (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "228.4622733")
|
|
(math-read-number-simple "-86327.92757")
|
|
(math-read-number-simple "10879881.29")
|
|
(math-read-number-simple "-512359803.6")
|
|
(math-read-number-simple "7062834065.0")
|
|
(math-read-number-simple "-2957821389.0")))
|
|
(math-poly-eval y
|
|
(list
|
|
'(float 1 0)
|
|
(math-read-number-simple "226.1030244")
|
|
(math-read-number-simple "47447.2647")
|
|
(math-read-number-simple "7189466.438")
|
|
(math-read-number-simple "745249964.8")
|
|
(math-read-number-simple "40076544269.0"))))
|
|
(math-mul (math-read-number-simple "0.636619772")
|
|
(math-mul (math-besJ0 x) (math-ln-raw x))))))
|
|
((math-negp (calcFunc-re x))
|
|
(math-add (math-besJ0 (math-neg x) t)
|
|
(math-mul '(cplx 0 2)
|
|
(math-besJ0 (math-neg x)))))
|
|
(t
|
|
(math-besJ0 x t))))
|
|
|
|
(defun math-besY1 (x)
|
|
(cond ((Math-lessp (math-abs-approx x) '(float 8 0))
|
|
(let ((y (math-sqr x)))
|
|
(math-add
|
|
(math-mul
|
|
x
|
|
(math-div (math-poly-eval y
|
|
(list
|
|
(math-read-number-simple "8511.937935")
|
|
(math-read-number-simple "-4237922.726")
|
|
(math-read-number-simple "734926455.1")
|
|
(math-read-number-simple "-51534381390.0")
|
|
(math-read-number-simple "1275274390000.0")
|
|
(math-read-number-simple "-4900604943000.0")))
|
|
(math-poly-eval y
|
|
(list
|
|
'(float 1 0)
|
|
(math-read-number-simple "354.9632885")
|
|
(math-read-number-simple "102042.605")
|
|
(math-read-number-simple "22459040.02")
|
|
(math-read-number-simple "3733650367.0")
|
|
(math-read-number-simple "424441966400.0")
|
|
(math-read-number-simple "24995805700000.0")))))
|
|
(math-mul (math-read-number-simple "0.636619772")
|
|
(math-sub (math-mul (math-besJ1 x) (math-ln-raw x))
|
|
(math-div 1 x))))))
|
|
((math-negp (calcFunc-re x))
|
|
(math-neg
|
|
(math-add (math-besJ1 (math-neg x) t)
|
|
(math-mul '(cplx 0 2)
|
|
(math-besJ1 (math-neg x))))))
|
|
(t
|
|
(math-besJ1 x t))))
|
|
|
|
(defun math-poly-eval (x coefs)
|
|
(let ((accum (car coefs)))
|
|
(while (setq coefs (cdr coefs))
|
|
(setq accum (math-add (car coefs) (math-mul accum x))))
|
|
accum))
|
|
|
|
|
|
;;;; Bernoulli and Euler polynomials and numbers.
|
|
|
|
(defun calcFunc-bern (n &optional x)
|
|
(if (and x (not (math-zerop x)))
|
|
(if (and calc-symbolic-mode (math-floatp x))
|
|
(math-inexact-result)
|
|
(math-build-polynomial-expr (math-bernoulli-coefs n) x))
|
|
(or (math-num-natnump n) (math-reject-arg n 'natnump))
|
|
(if (consp n)
|
|
(progn
|
|
(math-inexact-result)
|
|
(math-float (math-bernoulli-number (math-trunc n))))
|
|
(math-bernoulli-number n))))
|
|
|
|
(defun calcFunc-euler (n &optional x)
|
|
(or (math-num-natnump n) (math-reject-arg n 'natnump))
|
|
(if x
|
|
(let* ((n1 (math-add n 1))
|
|
(coefs (math-bernoulli-coefs n1))
|
|
(fac (math-div (math-pow 2 n1) n1))
|
|
(k -1)
|
|
(x1 (math-div (math-add x 1) 2))
|
|
(x2 (math-div x 2)))
|
|
(if (math-numberp x)
|
|
(if (and calc-symbolic-mode (math-floatp x))
|
|
(math-inexact-result)
|
|
(math-mul fac
|
|
(math-sub (math-build-polynomial-expr coefs x1)
|
|
(math-build-polynomial-expr coefs x2))))
|
|
(calcFunc-collect
|
|
(math-reduce-vec
|
|
'math-add
|
|
(cons 'vec
|
|
(mapcar (function
|
|
(lambda (c)
|
|
(setq k (1+ k))
|
|
(math-mul (math-mul fac c)
|
|
(math-sub (math-pow x1 k)
|
|
(math-pow x2 k)))))
|
|
coefs)))
|
|
x)))
|
|
(math-mul (math-pow 2 n)
|
|
(if (consp n)
|
|
(progn
|
|
(math-inexact-result)
|
|
(calcFunc-euler n '(float 5 -1)))
|
|
(calcFunc-euler n '(frac 1 2))))))
|
|
|
|
(defvar math-bernoulli-b-cache
|
|
(list
|
|
(list 'frac
|
|
-174611
|
|
(math-read-number-simple "802857662698291200000"))
|
|
(list 'frac
|
|
43867
|
|
(math-read-number-simple "5109094217170944000"))
|
|
(list 'frac
|
|
-3617
|
|
(math-read-number-simple "10670622842880000"))
|
|
(list 'frac
|
|
1
|
|
(math-read-number-simple "74724249600"))
|
|
(list 'frac
|
|
-691
|
|
(math-read-number-simple "1307674368000"))
|
|
(list 'frac
|
|
1
|
|
(math-read-number-simple "47900160"))
|
|
(list 'frac
|
|
-1
|
|
(math-read-number-simple "1209600"))
|
|
(list 'frac
|
|
1
|
|
30240)
|
|
(list 'frac
|
|
-1
|
|
720)
|
|
(list 'frac
|
|
1
|
|
12)
|
|
1 ))
|
|
|
|
(defvar math-bernoulli-B-cache
|
|
'((frac -174611 330) (frac 43867 798)
|
|
(frac -3617 510) (frac 7 6) (frac -691 2730)
|
|
(frac 5 66) (frac -1 30) (frac 1 42)
|
|
(frac -1 30) (frac 1 6) 1 ))
|
|
|
|
(defvar math-bernoulli-cache-size 11)
|
|
(defun math-bernoulli-coefs (n)
|
|
(let* ((coefs (list (calcFunc-bern n)))
|
|
(nn (math-trunc n))
|
|
(k nn)
|
|
(term nn)
|
|
coef
|
|
(calc-prefer-frac (or (integerp n) calc-prefer-frac)))
|
|
(while (>= (setq k (1- k)) 0)
|
|
(setq term (math-div term (- nn k))
|
|
coef (math-mul term (math-bernoulli-number k))
|
|
coefs (cons (if (consp n) (math-float coef) coef) coefs)
|
|
term (math-mul term k)))
|
|
(nreverse coefs)))
|
|
|
|
(defun math-bernoulli-number (n)
|
|
(if (= (% n 2) 1)
|
|
(if (= n 1)
|
|
'(frac -1 2)
|
|
0)
|
|
(setq n (/ n 2))
|
|
(while (>= n math-bernoulli-cache-size)
|
|
(let* ((sum 0)
|
|
(nk 1) ; nk = n-k+1
|
|
(fact 1) ; fact = (n-k+1)!
|
|
ofact
|
|
(p math-bernoulli-b-cache)
|
|
(calc-prefer-frac t))
|
|
(math-working "bernoulli B" (* 2 math-bernoulli-cache-size))
|
|
(while p
|
|
(setq nk (+ nk 2)
|
|
ofact fact
|
|
fact (math-mul fact (* nk (1- nk)))
|
|
sum (math-add sum (math-div (car p) fact))
|
|
p (cdr p)))
|
|
(setq ofact (math-mul ofact (1- nk))
|
|
sum (math-sub (math-div '(frac 1 2) ofact) sum)
|
|
math-bernoulli-b-cache (cons sum math-bernoulli-b-cache)
|
|
math-bernoulli-B-cache (cons (math-mul sum ofact)
|
|
math-bernoulli-B-cache)
|
|
math-bernoulli-cache-size (1+ math-bernoulli-cache-size))))
|
|
(nth (- math-bernoulli-cache-size n 1) math-bernoulli-B-cache)))
|
|
|
|
;;; Bn = n! bn
|
|
;;; bn = - sum_k=0^n-1 bk / (n-k+1)!
|
|
|
|
;;; A faster method would be to use "tangent numbers", c.f., Concrete
|
|
;;; Mathematics pg. 273.
|
|
|
|
|
|
;;; Probability distributions.
|
|
|
|
;;; Binomial.
|
|
(defun calcFunc-utpb (x n p)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-betaI p x (list '+ (list '- n x) 1)))
|
|
(calcFunc-betaI p x (math-add (math-sub n x) 1))))
|
|
(put 'calcFunc-utpb 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpb (x n p)
|
|
(math-sub 1 (calcFunc-utpb x n p)))
|
|
(put 'calcFunc-ltpb 'math-expandable t)
|
|
|
|
;;; Chi-square.
|
|
(defun calcFunc-utpc (chisq v)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-gammaQ (list '/ v 2) (list '/ chisq 2)))
|
|
(calcFunc-gammaQ (math-div v 2) (math-div chisq 2))))
|
|
(put 'calcFunc-utpc 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpc (chisq v)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-gammaP (list '/ v 2) (list '/ chisq 2)))
|
|
(calcFunc-gammaP (math-div v 2) (math-div chisq 2))))
|
|
(put 'calcFunc-ltpc 'math-expandable t)
|
|
|
|
;;; F-distribution.
|
|
(defun calcFunc-utpf (f v1 v2)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-betaI
|
|
(list '/ v2 (list '+ v2 (list '* v1 f)))
|
|
(list '/ v2 2)
|
|
(list '/ v1 2)))
|
|
(calcFunc-betaI (math-div v2 (math-add v2 (math-mul v1 f)))
|
|
(math-div v2 2)
|
|
(math-div v1 2))))
|
|
(put 'calcFunc-utpf 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpf (f v1 v2)
|
|
(math-sub 1 (calcFunc-utpf f v1 v2)))
|
|
(put 'calcFunc-ltpf 'math-expandable t)
|
|
|
|
;;; Normal.
|
|
(defun calcFunc-utpn (x mean sdev)
|
|
(if math-expand-formulas
|
|
(math-normalize
|
|
(list '/
|
|
(list '+ 1
|
|
(list 'calcFunc-erf
|
|
(list '/ (list '- mean x)
|
|
(list '* sdev (list 'calcFunc-sqrt 2)))))
|
|
2))
|
|
(math-mul (math-add '(float 1 0)
|
|
(calcFunc-erf
|
|
(math-div (math-sub mean x)
|
|
(math-mul sdev (math-sqrt-2)))))
|
|
'(float 5 -1))))
|
|
(put 'calcFunc-utpn 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpn (x mean sdev)
|
|
(if math-expand-formulas
|
|
(math-normalize
|
|
(list '/
|
|
(list '+ 1
|
|
(list 'calcFunc-erf
|
|
(list '/ (list '- x mean)
|
|
(list '* sdev (list 'calcFunc-sqrt 2)))))
|
|
2))
|
|
(math-mul (math-add '(float 1 0)
|
|
(calcFunc-erf
|
|
(math-div (math-sub x mean)
|
|
(math-mul sdev (math-sqrt-2)))))
|
|
'(float 5 -1))))
|
|
(put 'calcFunc-ltpn 'math-expandable t)
|
|
|
|
;;; Poisson.
|
|
(defun calcFunc-utpp (n x)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-gammaP x n))
|
|
(calcFunc-gammaP x n)))
|
|
(put 'calcFunc-utpp 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpp (n x)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-gammaQ x n))
|
|
(calcFunc-gammaQ x n)))
|
|
(put 'calcFunc-ltpp 'math-expandable t)
|
|
|
|
;;; Student's t. (As defined in Abramowitz & Stegun and Numerical Recipes.)
|
|
(defun calcFunc-utpt (tt v)
|
|
(if math-expand-formulas
|
|
(math-normalize (list 'calcFunc-betaI
|
|
(list '/ v (list '+ v (list '^ tt 2)))
|
|
(list '/ v 2)
|
|
'(float 5 -1)))
|
|
(calcFunc-betaI (math-div v (math-add v (math-sqr tt)))
|
|
(math-div v 2)
|
|
'(float 5 -1))))
|
|
(put 'calcFunc-utpt 'math-expandable t)
|
|
|
|
(defun calcFunc-ltpt (tt v)
|
|
(math-sub 1 (calcFunc-utpt tt v)))
|
|
(put 'calcFunc-ltpt 'math-expandable t)
|
|
|
|
(provide 'calc-funcs)
|
|
|
|
;;; arch-tag: 421ddb7a-550f-4dda-a31c-06638ebfc43a
|
|
;;; calc-funcs.el ends here
|