mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-15 09:47:20 +00:00
4346235f61
src/alloc.c (cleanup_vector): Don't dereference a font driver pointer if it is NULL.
7021 lines
185 KiB
C
7021 lines
185 KiB
C
/* Storage allocation and gc for GNU Emacs Lisp interpreter.
|
||
|
||
Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
|
||
Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
#include <limits.h> /* For CHAR_BIT. */
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
#include <signal.h> /* For SIGABRT. */
|
||
#endif
|
||
|
||
#ifdef HAVE_PTHREAD
|
||
#include <pthread.h>
|
||
#endif
|
||
|
||
#include "lisp.h"
|
||
#include "process.h"
|
||
#include "intervals.h"
|
||
#include "puresize.h"
|
||
#include "character.h"
|
||
#include "buffer.h"
|
||
#include "window.h"
|
||
#include "keyboard.h"
|
||
#include "frame.h"
|
||
#include "blockinput.h"
|
||
#include "termhooks.h" /* For struct terminal. */
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
#include TERM_HEADER
|
||
#endif /* HAVE_WINDOW_SYSTEM */
|
||
|
||
#include <verify.h>
|
||
|
||
#if (defined ENABLE_CHECKING \
|
||
&& defined HAVE_VALGRIND_VALGRIND_H \
|
||
&& !defined USE_VALGRIND)
|
||
# define USE_VALGRIND 1
|
||
#endif
|
||
|
||
#if USE_VALGRIND
|
||
#include <valgrind/valgrind.h>
|
||
#include <valgrind/memcheck.h>
|
||
static bool valgrind_p;
|
||
#endif
|
||
|
||
/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
|
||
Doable only if GC_MARK_STACK. */
|
||
#if ! GC_MARK_STACK
|
||
# undef GC_CHECK_MARKED_OBJECTS
|
||
#endif
|
||
|
||
/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
|
||
memory. Can do this only if using gmalloc.c and if not checking
|
||
marked objects. */
|
||
|
||
#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
|
||
|| defined GC_CHECK_MARKED_OBJECTS)
|
||
#undef GC_MALLOC_CHECK
|
||
#endif
|
||
|
||
#include <unistd.h>
|
||
#include <fcntl.h>
|
||
|
||
#ifdef USE_GTK
|
||
# include "gtkutil.h"
|
||
#endif
|
||
#ifdef WINDOWSNT
|
||
#include "w32.h"
|
||
#include "w32heap.h" /* for sbrk */
|
||
#endif
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
|
||
#include <malloc.h>
|
||
|
||
/* Specify maximum number of areas to mmap. It would be nice to use a
|
||
value that explicitly means "no limit". */
|
||
|
||
#define MMAP_MAX_AREAS 100000000
|
||
|
||
#endif /* not DOUG_LEA_MALLOC */
|
||
|
||
/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
|
||
to a struct Lisp_String. */
|
||
|
||
#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
|
||
#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
|
||
#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
|
||
|
||
#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
|
||
#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
|
||
#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
|
||
|
||
/* Default value of gc_cons_threshold (see below). */
|
||
|
||
#define GC_DEFAULT_THRESHOLD (100000 * word_size)
|
||
|
||
/* Global variables. */
|
||
struct emacs_globals globals;
|
||
|
||
/* Number of bytes of consing done since the last gc. */
|
||
|
||
EMACS_INT consing_since_gc;
|
||
|
||
/* Similar minimum, computed from Vgc_cons_percentage. */
|
||
|
||
EMACS_INT gc_relative_threshold;
|
||
|
||
/* Minimum number of bytes of consing since GC before next GC,
|
||
when memory is full. */
|
||
|
||
EMACS_INT memory_full_cons_threshold;
|
||
|
||
/* True during GC. */
|
||
|
||
bool gc_in_progress;
|
||
|
||
/* True means abort if try to GC.
|
||
This is for code which is written on the assumption that
|
||
no GC will happen, so as to verify that assumption. */
|
||
|
||
bool abort_on_gc;
|
||
|
||
/* Number of live and free conses etc. */
|
||
|
||
static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
|
||
static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
|
||
static EMACS_INT total_free_floats, total_floats;
|
||
|
||
/* Points to memory space allocated as "spare", to be freed if we run
|
||
out of memory. We keep one large block, four cons-blocks, and
|
||
two string blocks. */
|
||
|
||
static char *spare_memory[7];
|
||
|
||
/* Amount of spare memory to keep in large reserve block, or to see
|
||
whether this much is available when malloc fails on a larger request. */
|
||
|
||
#define SPARE_MEMORY (1 << 14)
|
||
|
||
/* Initialize it to a nonzero value to force it into data space
|
||
(rather than bss space). That way unexec will remap it into text
|
||
space (pure), on some systems. We have not implemented the
|
||
remapping on more recent systems because this is less important
|
||
nowadays than in the days of small memories and timesharing. */
|
||
|
||
EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
|
||
#define PUREBEG (char *) pure
|
||
|
||
/* Pointer to the pure area, and its size. */
|
||
|
||
static char *purebeg;
|
||
static ptrdiff_t pure_size;
|
||
|
||
/* Number of bytes of pure storage used before pure storage overflowed.
|
||
If this is non-zero, this implies that an overflow occurred. */
|
||
|
||
static ptrdiff_t pure_bytes_used_before_overflow;
|
||
|
||
/* True if P points into pure space. */
|
||
|
||
#define PURE_POINTER_P(P) \
|
||
((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
|
||
|
||
/* Index in pure at which next pure Lisp object will be allocated.. */
|
||
|
||
static ptrdiff_t pure_bytes_used_lisp;
|
||
|
||
/* Number of bytes allocated for non-Lisp objects in pure storage. */
|
||
|
||
static ptrdiff_t pure_bytes_used_non_lisp;
|
||
|
||
/* If nonzero, this is a warning delivered by malloc and not yet
|
||
displayed. */
|
||
|
||
const char *pending_malloc_warning;
|
||
|
||
/* Maximum amount of C stack to save when a GC happens. */
|
||
|
||
#ifndef MAX_SAVE_STACK
|
||
#define MAX_SAVE_STACK 16000
|
||
#endif
|
||
|
||
/* Buffer in which we save a copy of the C stack at each GC. */
|
||
|
||
#if MAX_SAVE_STACK > 0
|
||
static char *stack_copy;
|
||
static ptrdiff_t stack_copy_size;
|
||
|
||
/* Copy to DEST a block of memory from SRC of size SIZE bytes,
|
||
avoiding any address sanitization. */
|
||
|
||
static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
|
||
no_sanitize_memcpy (void *dest, void const *src, size_t size)
|
||
{
|
||
if (! ADDRESS_SANITIZER)
|
||
return memcpy (dest, src, size);
|
||
else
|
||
{
|
||
size_t i;
|
||
char *d = dest;
|
||
char const *s = src;
|
||
for (i = 0; i < size; i++)
|
||
d[i] = s[i];
|
||
return dest;
|
||
}
|
||
}
|
||
|
||
#endif /* MAX_SAVE_STACK > 0 */
|
||
|
||
static Lisp_Object Qconses;
|
||
static Lisp_Object Qsymbols;
|
||
static Lisp_Object Qmiscs;
|
||
static Lisp_Object Qstrings;
|
||
static Lisp_Object Qvectors;
|
||
static Lisp_Object Qfloats;
|
||
static Lisp_Object Qintervals;
|
||
static Lisp_Object Qbuffers;
|
||
static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
|
||
static Lisp_Object Qgc_cons_threshold;
|
||
Lisp_Object Qautomatic_gc;
|
||
Lisp_Object Qchar_table_extra_slots;
|
||
|
||
/* Hook run after GC has finished. */
|
||
|
||
static Lisp_Object Qpost_gc_hook;
|
||
|
||
static void mark_terminals (void);
|
||
static void gc_sweep (void);
|
||
static Lisp_Object make_pure_vector (ptrdiff_t);
|
||
static void mark_buffer (struct buffer *);
|
||
|
||
#if !defined REL_ALLOC || defined SYSTEM_MALLOC
|
||
static void refill_memory_reserve (void);
|
||
#endif
|
||
static void compact_small_strings (void);
|
||
static void free_large_strings (void);
|
||
extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
|
||
|
||
/* When scanning the C stack for live Lisp objects, Emacs keeps track of
|
||
what memory allocated via lisp_malloc and lisp_align_malloc is intended
|
||
for what purpose. This enumeration specifies the type of memory. */
|
||
|
||
enum mem_type
|
||
{
|
||
MEM_TYPE_NON_LISP,
|
||
MEM_TYPE_BUFFER,
|
||
MEM_TYPE_CONS,
|
||
MEM_TYPE_STRING,
|
||
MEM_TYPE_MISC,
|
||
MEM_TYPE_SYMBOL,
|
||
MEM_TYPE_FLOAT,
|
||
/* Since all non-bool pseudovectors are small enough to be
|
||
allocated from vector blocks, this memory type denotes
|
||
large regular vectors and large bool pseudovectors. */
|
||
MEM_TYPE_VECTORLIKE,
|
||
/* Special type to denote vector blocks. */
|
||
MEM_TYPE_VECTOR_BLOCK,
|
||
/* Special type to denote reserved memory. */
|
||
MEM_TYPE_SPARE
|
||
};
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
|
||
/* A unique object in pure space used to make some Lisp objects
|
||
on free lists recognizable in O(1). */
|
||
|
||
static Lisp_Object Vdead;
|
||
#define DEADP(x) EQ (x, Vdead)
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
|
||
enum mem_type allocated_mem_type;
|
||
|
||
#endif /* GC_MALLOC_CHECK */
|
||
|
||
/* A node in the red-black tree describing allocated memory containing
|
||
Lisp data. Each such block is recorded with its start and end
|
||
address when it is allocated, and removed from the tree when it
|
||
is freed.
|
||
|
||
A red-black tree is a balanced binary tree with the following
|
||
properties:
|
||
|
||
1. Every node is either red or black.
|
||
2. Every leaf is black.
|
||
3. If a node is red, then both of its children are black.
|
||
4. Every simple path from a node to a descendant leaf contains
|
||
the same number of black nodes.
|
||
5. The root is always black.
|
||
|
||
When nodes are inserted into the tree, or deleted from the tree,
|
||
the tree is "fixed" so that these properties are always true.
|
||
|
||
A red-black tree with N internal nodes has height at most 2
|
||
log(N+1). Searches, insertions and deletions are done in O(log N).
|
||
Please see a text book about data structures for a detailed
|
||
description of red-black trees. Any book worth its salt should
|
||
describe them. */
|
||
|
||
struct mem_node
|
||
{
|
||
/* Children of this node. These pointers are never NULL. When there
|
||
is no child, the value is MEM_NIL, which points to a dummy node. */
|
||
struct mem_node *left, *right;
|
||
|
||
/* The parent of this node. In the root node, this is NULL. */
|
||
struct mem_node *parent;
|
||
|
||
/* Start and end of allocated region. */
|
||
void *start, *end;
|
||
|
||
/* Node color. */
|
||
enum {MEM_BLACK, MEM_RED} color;
|
||
|
||
/* Memory type. */
|
||
enum mem_type type;
|
||
};
|
||
|
||
/* Base address of stack. Set in main. */
|
||
|
||
Lisp_Object *stack_base;
|
||
|
||
/* Root of the tree describing allocated Lisp memory. */
|
||
|
||
static struct mem_node *mem_root;
|
||
|
||
/* Lowest and highest known address in the heap. */
|
||
|
||
static void *min_heap_address, *max_heap_address;
|
||
|
||
/* Sentinel node of the tree. */
|
||
|
||
static struct mem_node mem_z;
|
||
#define MEM_NIL &mem_z
|
||
|
||
static struct mem_node *mem_insert (void *, void *, enum mem_type);
|
||
static void mem_insert_fixup (struct mem_node *);
|
||
static void mem_rotate_left (struct mem_node *);
|
||
static void mem_rotate_right (struct mem_node *);
|
||
static void mem_delete (struct mem_node *);
|
||
static void mem_delete_fixup (struct mem_node *);
|
||
static struct mem_node *mem_find (void *);
|
||
|
||
#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
|
||
|
||
#ifndef DEADP
|
||
# define DEADP(x) 0
|
||
#endif
|
||
|
||
/* Recording what needs to be marked for gc. */
|
||
|
||
struct gcpro *gcprolist;
|
||
|
||
/* Addresses of staticpro'd variables. Initialize it to a nonzero
|
||
value; otherwise some compilers put it into BSS. */
|
||
|
||
enum { NSTATICS = 2048 };
|
||
static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
|
||
|
||
/* Index of next unused slot in staticvec. */
|
||
|
||
static int staticidx;
|
||
|
||
static void *pure_alloc (size_t, int);
|
||
|
||
/* Return X rounded to the next multiple of Y. Arguments should not
|
||
have side effects, as they are evaluated more than once. Assume X
|
||
+ Y - 1 does not overflow. Tune for Y being a power of 2. */
|
||
|
||
#define ROUNDUP(x, y) ((y) & ((y) - 1) \
|
||
? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
|
||
: ((x) + (y) - 1) & ~ ((y) - 1))
|
||
|
||
/* Return PTR rounded up to the next multiple of ALIGNMENT. */
|
||
|
||
static void *
|
||
ALIGN (void *ptr, int alignment)
|
||
{
|
||
return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
|
||
}
|
||
|
||
static void
|
||
XFLOAT_INIT (Lisp_Object f, double n)
|
||
{
|
||
XFLOAT (f)->u.data = n;
|
||
}
|
||
|
||
|
||
/************************************************************************
|
||
Malloc
|
||
************************************************************************/
|
||
|
||
/* Function malloc calls this if it finds we are near exhausting storage. */
|
||
|
||
void
|
||
malloc_warning (const char *str)
|
||
{
|
||
pending_malloc_warning = str;
|
||
}
|
||
|
||
|
||
/* Display an already-pending malloc warning. */
|
||
|
||
void
|
||
display_malloc_warning (void)
|
||
{
|
||
call3 (intern ("display-warning"),
|
||
intern ("alloc"),
|
||
build_string (pending_malloc_warning),
|
||
intern ("emergency"));
|
||
pending_malloc_warning = 0;
|
||
}
|
||
|
||
/* Called if we can't allocate relocatable space for a buffer. */
|
||
|
||
void
|
||
buffer_memory_full (ptrdiff_t nbytes)
|
||
{
|
||
/* If buffers use the relocating allocator, no need to free
|
||
spare_memory, because we may have plenty of malloc space left
|
||
that we could get, and if we don't, the malloc that fails will
|
||
itself cause spare_memory to be freed. If buffers don't use the
|
||
relocating allocator, treat this like any other failing
|
||
malloc. */
|
||
|
||
#ifndef REL_ALLOC
|
||
memory_full (nbytes);
|
||
#else
|
||
/* This used to call error, but if we've run out of memory, we could
|
||
get infinite recursion trying to build the string. */
|
||
xsignal (Qnil, Vmemory_signal_data);
|
||
#endif
|
||
}
|
||
|
||
/* A common multiple of the positive integers A and B. Ideally this
|
||
would be the least common multiple, but there's no way to do that
|
||
as a constant expression in C, so do the best that we can easily do. */
|
||
#define COMMON_MULTIPLE(a, b) \
|
||
((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
|
||
|
||
#ifndef XMALLOC_OVERRUN_CHECK
|
||
#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
|
||
#else
|
||
|
||
/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
|
||
around each block.
|
||
|
||
The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
|
||
followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
|
||
block size in little-endian order. The trailer consists of
|
||
XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
|
||
|
||
The header is used to detect whether this block has been allocated
|
||
through these functions, as some low-level libc functions may
|
||
bypass the malloc hooks. */
|
||
|
||
#define XMALLOC_OVERRUN_CHECK_SIZE 16
|
||
#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
|
||
(2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
|
||
|
||
/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
|
||
hold a size_t value and (2) the header size is a multiple of the
|
||
alignment that Emacs needs for C types and for USE_LSB_TAG. */
|
||
#define XMALLOC_BASE_ALIGNMENT \
|
||
alignof (union { long double d; intmax_t i; void *p; })
|
||
|
||
#if USE_LSB_TAG
|
||
# define XMALLOC_HEADER_ALIGNMENT \
|
||
COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
|
||
#else
|
||
# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
|
||
#endif
|
||
#define XMALLOC_OVERRUN_SIZE_SIZE \
|
||
(((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
|
||
+ XMALLOC_HEADER_ALIGNMENT - 1) \
|
||
/ XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
|
||
- XMALLOC_OVERRUN_CHECK_SIZE)
|
||
|
||
static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
|
||
{ '\x9a', '\x9b', '\xae', '\xaf',
|
||
'\xbf', '\xbe', '\xce', '\xcf',
|
||
'\xea', '\xeb', '\xec', '\xed',
|
||
'\xdf', '\xde', '\x9c', '\x9d' };
|
||
|
||
static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
|
||
{ '\xaa', '\xab', '\xac', '\xad',
|
||
'\xba', '\xbb', '\xbc', '\xbd',
|
||
'\xca', '\xcb', '\xcc', '\xcd',
|
||
'\xda', '\xdb', '\xdc', '\xdd' };
|
||
|
||
/* Insert and extract the block size in the header. */
|
||
|
||
static void
|
||
xmalloc_put_size (unsigned char *ptr, size_t size)
|
||
{
|
||
int i;
|
||
for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
|
||
{
|
||
*--ptr = size & ((1 << CHAR_BIT) - 1);
|
||
size >>= CHAR_BIT;
|
||
}
|
||
}
|
||
|
||
static size_t
|
||
xmalloc_get_size (unsigned char *ptr)
|
||
{
|
||
size_t size = 0;
|
||
int i;
|
||
ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
|
||
for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
|
||
{
|
||
size <<= CHAR_BIT;
|
||
size += *ptr++;
|
||
}
|
||
return size;
|
||
}
|
||
|
||
|
||
/* Like malloc, but wraps allocated block with header and trailer. */
|
||
|
||
static void *
|
||
overrun_check_malloc (size_t size)
|
||
{
|
||
register unsigned char *val;
|
||
if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
|
||
emacs_abort ();
|
||
|
||
val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
|
||
if (val)
|
||
{
|
||
memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
|
||
xmalloc_put_size (val, size);
|
||
memcpy (val + size, xmalloc_overrun_check_trailer,
|
||
XMALLOC_OVERRUN_CHECK_SIZE);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Like realloc, but checks old block for overrun, and wraps new block
|
||
with header and trailer. */
|
||
|
||
static void *
|
||
overrun_check_realloc (void *block, size_t size)
|
||
{
|
||
register unsigned char *val = (unsigned char *) block;
|
||
if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
|
||
emacs_abort ();
|
||
|
||
if (val
|
||
&& memcmp (xmalloc_overrun_check_header,
|
||
val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
|
||
XMALLOC_OVERRUN_CHECK_SIZE) == 0)
|
||
{
|
||
size_t osize = xmalloc_get_size (val);
|
||
if (memcmp (xmalloc_overrun_check_trailer, val + osize,
|
||
XMALLOC_OVERRUN_CHECK_SIZE))
|
||
emacs_abort ();
|
||
memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
|
||
memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
|
||
}
|
||
|
||
val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
|
||
|
||
if (val)
|
||
{
|
||
memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
|
||
xmalloc_put_size (val, size);
|
||
memcpy (val + size, xmalloc_overrun_check_trailer,
|
||
XMALLOC_OVERRUN_CHECK_SIZE);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
/* Like free, but checks block for overrun. */
|
||
|
||
static void
|
||
overrun_check_free (void *block)
|
||
{
|
||
unsigned char *val = (unsigned char *) block;
|
||
|
||
if (val
|
||
&& memcmp (xmalloc_overrun_check_header,
|
||
val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
|
||
XMALLOC_OVERRUN_CHECK_SIZE) == 0)
|
||
{
|
||
size_t osize = xmalloc_get_size (val);
|
||
if (memcmp (xmalloc_overrun_check_trailer, val + osize,
|
||
XMALLOC_OVERRUN_CHECK_SIZE))
|
||
emacs_abort ();
|
||
#ifdef XMALLOC_CLEAR_FREE_MEMORY
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
|
||
memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
|
||
#else
|
||
memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
|
||
val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
|
||
memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
|
||
#endif
|
||
}
|
||
|
||
free (val);
|
||
}
|
||
|
||
#undef malloc
|
||
#undef realloc
|
||
#undef free
|
||
#define malloc overrun_check_malloc
|
||
#define realloc overrun_check_realloc
|
||
#define free overrun_check_free
|
||
#endif
|
||
|
||
/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
|
||
BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
|
||
If that variable is set, block input while in one of Emacs's memory
|
||
allocation functions. There should be no need for this debugging
|
||
option, since signal handlers do not allocate memory, but Emacs
|
||
formerly allocated memory in signal handlers and this compile-time
|
||
option remains as a way to help debug the issue should it rear its
|
||
ugly head again. */
|
||
#ifdef XMALLOC_BLOCK_INPUT_CHECK
|
||
bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
|
||
static void
|
||
malloc_block_input (void)
|
||
{
|
||
if (block_input_in_memory_allocators)
|
||
block_input ();
|
||
}
|
||
static void
|
||
malloc_unblock_input (void)
|
||
{
|
||
if (block_input_in_memory_allocators)
|
||
unblock_input ();
|
||
}
|
||
# define MALLOC_BLOCK_INPUT malloc_block_input ()
|
||
# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
|
||
#else
|
||
# define MALLOC_BLOCK_INPUT ((void) 0)
|
||
# define MALLOC_UNBLOCK_INPUT ((void) 0)
|
||
#endif
|
||
|
||
#define MALLOC_PROBE(size) \
|
||
do { \
|
||
if (profiler_memory_running) \
|
||
malloc_probe (size); \
|
||
} while (0)
|
||
|
||
|
||
/* Like malloc but check for no memory and block interrupt input.. */
|
||
|
||
void *
|
||
xmalloc (size_t size)
|
||
{
|
||
void *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
val = malloc (size);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
if (!val && size)
|
||
memory_full (size);
|
||
MALLOC_PROBE (size);
|
||
return val;
|
||
}
|
||
|
||
/* Like the above, but zeroes out the memory just allocated. */
|
||
|
||
void *
|
||
xzalloc (size_t size)
|
||
{
|
||
void *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
val = malloc (size);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
if (!val && size)
|
||
memory_full (size);
|
||
memset (val, 0, size);
|
||
MALLOC_PROBE (size);
|
||
return val;
|
||
}
|
||
|
||
/* Like realloc but check for no memory and block interrupt input.. */
|
||
|
||
void *
|
||
xrealloc (void *block, size_t size)
|
||
{
|
||
void *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
/* We must call malloc explicitly when BLOCK is 0, since some
|
||
reallocs don't do this. */
|
||
if (! block)
|
||
val = malloc (size);
|
||
else
|
||
val = realloc (block, size);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
if (!val && size)
|
||
memory_full (size);
|
||
MALLOC_PROBE (size);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Like free but block interrupt input. */
|
||
|
||
void
|
||
xfree (void *block)
|
||
{
|
||
if (!block)
|
||
return;
|
||
MALLOC_BLOCK_INPUT;
|
||
free (block);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
/* We don't call refill_memory_reserve here
|
||
because in practice the call in r_alloc_free seems to suffice. */
|
||
}
|
||
|
||
|
||
/* Other parts of Emacs pass large int values to allocator functions
|
||
expecting ptrdiff_t. This is portable in practice, but check it to
|
||
be safe. */
|
||
verify (INT_MAX <= PTRDIFF_MAX);
|
||
|
||
|
||
/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
|
||
Signal an error on memory exhaustion, and block interrupt input. */
|
||
|
||
void *
|
||
xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
|
||
{
|
||
eassert (0 <= nitems && 0 < item_size);
|
||
if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
|
||
memory_full (SIZE_MAX);
|
||
return xmalloc (nitems * item_size);
|
||
}
|
||
|
||
|
||
/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
|
||
Signal an error on memory exhaustion, and block interrupt input. */
|
||
|
||
void *
|
||
xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
|
||
{
|
||
eassert (0 <= nitems && 0 < item_size);
|
||
if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
|
||
memory_full (SIZE_MAX);
|
||
return xrealloc (pa, nitems * item_size);
|
||
}
|
||
|
||
|
||
/* Grow PA, which points to an array of *NITEMS items, and return the
|
||
location of the reallocated array, updating *NITEMS to reflect its
|
||
new size. The new array will contain at least NITEMS_INCR_MIN more
|
||
items, but will not contain more than NITEMS_MAX items total.
|
||
ITEM_SIZE is the size of each item, in bytes.
|
||
|
||
ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
|
||
nonnegative. If NITEMS_MAX is -1, it is treated as if it were
|
||
infinity.
|
||
|
||
If PA is null, then allocate a new array instead of reallocating
|
||
the old one.
|
||
|
||
Block interrupt input as needed. If memory exhaustion occurs, set
|
||
*NITEMS to zero if PA is null, and signal an error (i.e., do not
|
||
return).
|
||
|
||
Thus, to grow an array A without saving its old contents, do
|
||
{ xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
|
||
The A = NULL avoids a dangling pointer if xpalloc exhausts memory
|
||
and signals an error, and later this code is reexecuted and
|
||
attempts to free A. */
|
||
|
||
void *
|
||
xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
|
||
ptrdiff_t nitems_max, ptrdiff_t item_size)
|
||
{
|
||
/* The approximate size to use for initial small allocation
|
||
requests. This is the largest "small" request for the GNU C
|
||
library malloc. */
|
||
enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
|
||
|
||
/* If the array is tiny, grow it to about (but no greater than)
|
||
DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
|
||
ptrdiff_t n = *nitems;
|
||
ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
|
||
ptrdiff_t half_again = n >> 1;
|
||
ptrdiff_t incr_estimate = max (tiny_max, half_again);
|
||
|
||
/* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
|
||
NITEMS_MAX, and what the C language can represent safely. */
|
||
ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
|
||
ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
|
||
? nitems_max : C_language_max);
|
||
ptrdiff_t nitems_incr_max = n_max - n;
|
||
ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
|
||
|
||
eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
|
||
if (! pa)
|
||
*nitems = 0;
|
||
if (nitems_incr_max < incr)
|
||
memory_full (SIZE_MAX);
|
||
n += incr;
|
||
pa = xrealloc (pa, n * item_size);
|
||
*nitems = n;
|
||
return pa;
|
||
}
|
||
|
||
|
||
/* Like strdup, but uses xmalloc. */
|
||
|
||
char *
|
||
xstrdup (const char *s)
|
||
{
|
||
ptrdiff_t size;
|
||
eassert (s);
|
||
size = strlen (s) + 1;
|
||
return memcpy (xmalloc (size), s, size);
|
||
}
|
||
|
||
/* Like above, but duplicates Lisp string to C string. */
|
||
|
||
char *
|
||
xlispstrdup (Lisp_Object string)
|
||
{
|
||
ptrdiff_t size = SBYTES (string) + 1;
|
||
return memcpy (xmalloc (size), SSDATA (string), size);
|
||
}
|
||
|
||
/* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
|
||
pointed to. If STRING is null, assign it without copying anything.
|
||
Allocate before freeing, to avoid a dangling pointer if allocation
|
||
fails. */
|
||
|
||
void
|
||
dupstring (char **ptr, char const *string)
|
||
{
|
||
char *old = *ptr;
|
||
*ptr = string ? xstrdup (string) : 0;
|
||
xfree (old);
|
||
}
|
||
|
||
|
||
/* Like putenv, but (1) use the equivalent of xmalloc and (2) the
|
||
argument is a const pointer. */
|
||
|
||
void
|
||
xputenv (char const *string)
|
||
{
|
||
if (putenv ((char *) string) != 0)
|
||
memory_full (0);
|
||
}
|
||
|
||
/* Return a newly allocated memory block of SIZE bytes, remembering
|
||
to free it when unwinding. */
|
||
void *
|
||
record_xmalloc (size_t size)
|
||
{
|
||
void *p = xmalloc (size);
|
||
record_unwind_protect_ptr (xfree, p);
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Like malloc but used for allocating Lisp data. NBYTES is the
|
||
number of bytes to allocate, TYPE describes the intended use of the
|
||
allocated memory block (for strings, for conses, ...). */
|
||
|
||
#if ! USE_LSB_TAG
|
||
void *lisp_malloc_loser EXTERNALLY_VISIBLE;
|
||
#endif
|
||
|
||
static void *
|
||
lisp_malloc (size_t nbytes, enum mem_type type)
|
||
{
|
||
register void *val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
allocated_mem_type = type;
|
||
#endif
|
||
|
||
val = malloc (nbytes);
|
||
|
||
#if ! USE_LSB_TAG
|
||
/* If the memory just allocated cannot be addressed thru a Lisp
|
||
object's pointer, and it needs to be,
|
||
that's equivalent to running out of memory. */
|
||
if (val && type != MEM_TYPE_NON_LISP)
|
||
{
|
||
Lisp_Object tem;
|
||
XSETCONS (tem, (char *) val + nbytes - 1);
|
||
if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
|
||
{
|
||
lisp_malloc_loser = val;
|
||
free (val);
|
||
val = 0;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
if (val && type != MEM_TYPE_NON_LISP)
|
||
mem_insert (val, (char *) val + nbytes, type);
|
||
#endif
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
if (!val && nbytes)
|
||
memory_full (nbytes);
|
||
MALLOC_PROBE (nbytes);
|
||
return val;
|
||
}
|
||
|
||
/* Free BLOCK. This must be called to free memory allocated with a
|
||
call to lisp_malloc. */
|
||
|
||
static void
|
||
lisp_free (void *block)
|
||
{
|
||
MALLOC_BLOCK_INPUT;
|
||
free (block);
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_delete (mem_find (block));
|
||
#endif
|
||
MALLOC_UNBLOCK_INPUT;
|
||
}
|
||
|
||
/***** Allocation of aligned blocks of memory to store Lisp data. *****/
|
||
|
||
/* The entry point is lisp_align_malloc which returns blocks of at most
|
||
BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
|
||
|
||
/* Use aligned_alloc if it or a simple substitute is available.
|
||
Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
|
||
clang 3.3 anyway. */
|
||
|
||
#if ! ADDRESS_SANITIZER
|
||
# if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
|
||
# define USE_ALIGNED_ALLOC 1
|
||
/* Defined in gmalloc.c. */
|
||
void *aligned_alloc (size_t, size_t);
|
||
# elif defined HAVE_ALIGNED_ALLOC
|
||
# define USE_ALIGNED_ALLOC 1
|
||
# elif defined HAVE_POSIX_MEMALIGN
|
||
# define USE_ALIGNED_ALLOC 1
|
||
static void *
|
||
aligned_alloc (size_t alignment, size_t size)
|
||
{
|
||
void *p;
|
||
return posix_memalign (&p, alignment, size) == 0 ? p : 0;
|
||
}
|
||
# endif
|
||
#endif
|
||
|
||
/* BLOCK_ALIGN has to be a power of 2. */
|
||
#define BLOCK_ALIGN (1 << 10)
|
||
|
||
/* Padding to leave at the end of a malloc'd block. This is to give
|
||
malloc a chance to minimize the amount of memory wasted to alignment.
|
||
It should be tuned to the particular malloc library used.
|
||
On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
|
||
aligned_alloc on the other hand would ideally prefer a value of 4
|
||
because otherwise, there's 1020 bytes wasted between each ablocks.
|
||
In Emacs, testing shows that those 1020 can most of the time be
|
||
efficiently used by malloc to place other objects, so a value of 0 can
|
||
still preferable unless you have a lot of aligned blocks and virtually
|
||
nothing else. */
|
||
#define BLOCK_PADDING 0
|
||
#define BLOCK_BYTES \
|
||
(BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
|
||
|
||
/* Internal data structures and constants. */
|
||
|
||
#define ABLOCKS_SIZE 16
|
||
|
||
/* An aligned block of memory. */
|
||
struct ablock
|
||
{
|
||
union
|
||
{
|
||
char payload[BLOCK_BYTES];
|
||
struct ablock *next_free;
|
||
} x;
|
||
/* `abase' is the aligned base of the ablocks. */
|
||
/* It is overloaded to hold the virtual `busy' field that counts
|
||
the number of used ablock in the parent ablocks.
|
||
The first ablock has the `busy' field, the others have the `abase'
|
||
field. To tell the difference, we assume that pointers will have
|
||
integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
|
||
is used to tell whether the real base of the parent ablocks is `abase'
|
||
(if not, the word before the first ablock holds a pointer to the
|
||
real base). */
|
||
struct ablocks *abase;
|
||
/* The padding of all but the last ablock is unused. The padding of
|
||
the last ablock in an ablocks is not allocated. */
|
||
#if BLOCK_PADDING
|
||
char padding[BLOCK_PADDING];
|
||
#endif
|
||
};
|
||
|
||
/* A bunch of consecutive aligned blocks. */
|
||
struct ablocks
|
||
{
|
||
struct ablock blocks[ABLOCKS_SIZE];
|
||
};
|
||
|
||
/* Size of the block requested from malloc or aligned_alloc. */
|
||
#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
|
||
|
||
#define ABLOCK_ABASE(block) \
|
||
(((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
|
||
? (struct ablocks *)(block) \
|
||
: (block)->abase)
|
||
|
||
/* Virtual `busy' field. */
|
||
#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
|
||
|
||
/* Pointer to the (not necessarily aligned) malloc block. */
|
||
#ifdef USE_ALIGNED_ALLOC
|
||
#define ABLOCKS_BASE(abase) (abase)
|
||
#else
|
||
#define ABLOCKS_BASE(abase) \
|
||
(1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
|
||
#endif
|
||
|
||
/* The list of free ablock. */
|
||
static struct ablock *free_ablock;
|
||
|
||
/* Allocate an aligned block of nbytes.
|
||
Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
|
||
smaller or equal to BLOCK_BYTES. */
|
||
static void *
|
||
lisp_align_malloc (size_t nbytes, enum mem_type type)
|
||
{
|
||
void *base, *val;
|
||
struct ablocks *abase;
|
||
|
||
eassert (nbytes <= BLOCK_BYTES);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
allocated_mem_type = type;
|
||
#endif
|
||
|
||
if (!free_ablock)
|
||
{
|
||
int i;
|
||
intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs. */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
#ifdef USE_ALIGNED_ALLOC
|
||
abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
|
||
#else
|
||
base = malloc (ABLOCKS_BYTES);
|
||
abase = ALIGN (base, BLOCK_ALIGN);
|
||
#endif
|
||
|
||
if (base == 0)
|
||
{
|
||
MALLOC_UNBLOCK_INPUT;
|
||
memory_full (ABLOCKS_BYTES);
|
||
}
|
||
|
||
aligned = (base == abase);
|
||
if (!aligned)
|
||
((void **) abase)[-1] = base;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
#if ! USE_LSB_TAG
|
||
/* If the memory just allocated cannot be addressed thru a Lisp
|
||
object's pointer, and it needs to be, that's equivalent to
|
||
running out of memory. */
|
||
if (type != MEM_TYPE_NON_LISP)
|
||
{
|
||
Lisp_Object tem;
|
||
char *end = (char *) base + ABLOCKS_BYTES - 1;
|
||
XSETCONS (tem, end);
|
||
if ((char *) XCONS (tem) != end)
|
||
{
|
||
lisp_malloc_loser = base;
|
||
free (base);
|
||
MALLOC_UNBLOCK_INPUT;
|
||
memory_full (SIZE_MAX);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Initialize the blocks and put them on the free list.
|
||
If `base' was not properly aligned, we can't use the last block. */
|
||
for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
|
||
{
|
||
abase->blocks[i].abase = abase;
|
||
abase->blocks[i].x.next_free = free_ablock;
|
||
free_ablock = &abase->blocks[i];
|
||
}
|
||
ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
|
||
|
||
eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
|
||
eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
|
||
eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
|
||
eassert (ABLOCKS_BASE (abase) == base);
|
||
eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
|
||
}
|
||
|
||
abase = ABLOCK_ABASE (free_ablock);
|
||
ABLOCKS_BUSY (abase)
|
||
= (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
|
||
val = free_ablock;
|
||
free_ablock = free_ablock->x.next_free;
|
||
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
if (type != MEM_TYPE_NON_LISP)
|
||
mem_insert (val, (char *) val + nbytes, type);
|
||
#endif
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
MALLOC_PROBE (nbytes);
|
||
|
||
eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
|
||
return val;
|
||
}
|
||
|
||
static void
|
||
lisp_align_free (void *block)
|
||
{
|
||
struct ablock *ablock = block;
|
||
struct ablocks *abase = ABLOCK_ABASE (ablock);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_delete (mem_find (block));
|
||
#endif
|
||
/* Put on free list. */
|
||
ablock->x.next_free = free_ablock;
|
||
free_ablock = ablock;
|
||
/* Update busy count. */
|
||
ABLOCKS_BUSY (abase)
|
||
= (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
|
||
|
||
if (2 > (intptr_t) ABLOCKS_BUSY (abase))
|
||
{ /* All the blocks are free. */
|
||
int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
|
||
struct ablock **tem = &free_ablock;
|
||
struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
|
||
|
||
while (*tem)
|
||
{
|
||
if (*tem >= (struct ablock *) abase && *tem < atop)
|
||
{
|
||
i++;
|
||
*tem = (*tem)->x.next_free;
|
||
}
|
||
else
|
||
tem = &(*tem)->x.next_free;
|
||
}
|
||
eassert ((aligned & 1) == aligned);
|
||
eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
|
||
#ifdef USE_POSIX_MEMALIGN
|
||
eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
|
||
#endif
|
||
free (ABLOCKS_BASE (abase));
|
||
}
|
||
MALLOC_UNBLOCK_INPUT;
|
||
}
|
||
|
||
|
||
/***********************************************************************
|
||
Interval Allocation
|
||
***********************************************************************/
|
||
|
||
/* Number of intervals allocated in an interval_block structure.
|
||
The 1020 is 1024 minus malloc overhead. */
|
||
|
||
#define INTERVAL_BLOCK_SIZE \
|
||
((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
|
||
|
||
/* Intervals are allocated in chunks in the form of an interval_block
|
||
structure. */
|
||
|
||
struct interval_block
|
||
{
|
||
/* Place `intervals' first, to preserve alignment. */
|
||
struct interval intervals[INTERVAL_BLOCK_SIZE];
|
||
struct interval_block *next;
|
||
};
|
||
|
||
/* Current interval block. Its `next' pointer points to older
|
||
blocks. */
|
||
|
||
static struct interval_block *interval_block;
|
||
|
||
/* Index in interval_block above of the next unused interval
|
||
structure. */
|
||
|
||
static int interval_block_index = INTERVAL_BLOCK_SIZE;
|
||
|
||
/* Number of free and live intervals. */
|
||
|
||
static EMACS_INT total_free_intervals, total_intervals;
|
||
|
||
/* List of free intervals. */
|
||
|
||
static INTERVAL interval_free_list;
|
||
|
||
/* Return a new interval. */
|
||
|
||
INTERVAL
|
||
make_interval (void)
|
||
{
|
||
INTERVAL val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (interval_free_list)
|
||
{
|
||
val = interval_free_list;
|
||
interval_free_list = INTERVAL_PARENT (interval_free_list);
|
||
}
|
||
else
|
||
{
|
||
if (interval_block_index == INTERVAL_BLOCK_SIZE)
|
||
{
|
||
struct interval_block *newi
|
||
= lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
|
||
|
||
newi->next = interval_block;
|
||
interval_block = newi;
|
||
interval_block_index = 0;
|
||
total_free_intervals += INTERVAL_BLOCK_SIZE;
|
||
}
|
||
val = &interval_block->intervals[interval_block_index++];
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
consing_since_gc += sizeof (struct interval);
|
||
intervals_consed++;
|
||
total_free_intervals--;
|
||
RESET_INTERVAL (val);
|
||
val->gcmarkbit = 0;
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Mark Lisp objects in interval I. */
|
||
|
||
static void
|
||
mark_interval (register INTERVAL i, Lisp_Object dummy)
|
||
{
|
||
/* Intervals should never be shared. So, if extra internal checking is
|
||
enabled, GC aborts if it seems to have visited an interval twice. */
|
||
eassert (!i->gcmarkbit);
|
||
i->gcmarkbit = 1;
|
||
mark_object (i->plist);
|
||
}
|
||
|
||
/* Mark the interval tree rooted in I. */
|
||
|
||
#define MARK_INTERVAL_TREE(i) \
|
||
do { \
|
||
if (i && !i->gcmarkbit) \
|
||
traverse_intervals_noorder (i, mark_interval, Qnil); \
|
||
} while (0)
|
||
|
||
/***********************************************************************
|
||
String Allocation
|
||
***********************************************************************/
|
||
|
||
/* Lisp_Strings are allocated in string_block structures. When a new
|
||
string_block is allocated, all the Lisp_Strings it contains are
|
||
added to a free-list string_free_list. When a new Lisp_String is
|
||
needed, it is taken from that list. During the sweep phase of GC,
|
||
string_blocks that are entirely free are freed, except two which
|
||
we keep.
|
||
|
||
String data is allocated from sblock structures. Strings larger
|
||
than LARGE_STRING_BYTES, get their own sblock, data for smaller
|
||
strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
|
||
|
||
Sblocks consist internally of sdata structures, one for each
|
||
Lisp_String. The sdata structure points to the Lisp_String it
|
||
belongs to. The Lisp_String points back to the `u.data' member of
|
||
its sdata structure.
|
||
|
||
When a Lisp_String is freed during GC, it is put back on
|
||
string_free_list, and its `data' member and its sdata's `string'
|
||
pointer is set to null. The size of the string is recorded in the
|
||
`n.nbytes' member of the sdata. So, sdata structures that are no
|
||
longer used, can be easily recognized, and it's easy to compact the
|
||
sblocks of small strings which we do in compact_small_strings. */
|
||
|
||
/* Size in bytes of an sblock structure used for small strings. This
|
||
is 8192 minus malloc overhead. */
|
||
|
||
#define SBLOCK_SIZE 8188
|
||
|
||
/* Strings larger than this are considered large strings. String data
|
||
for large strings is allocated from individual sblocks. */
|
||
|
||
#define LARGE_STRING_BYTES 1024
|
||
|
||
/* The SDATA typedef is a struct or union describing string memory
|
||
sub-allocated from an sblock. This is where the contents of Lisp
|
||
strings are stored. */
|
||
|
||
struct sdata
|
||
{
|
||
/* Back-pointer to the string this sdata belongs to. If null, this
|
||
structure is free, and NBYTES (in this structure or in the union below)
|
||
contains the string's byte size (the same value that STRING_BYTES
|
||
would return if STRING were non-null). If non-null, STRING_BYTES
|
||
(STRING) is the size of the data, and DATA contains the string's
|
||
contents. */
|
||
struct Lisp_String *string;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
ptrdiff_t nbytes;
|
||
#endif
|
||
|
||
unsigned char data[FLEXIBLE_ARRAY_MEMBER];
|
||
};
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
typedef struct sdata sdata;
|
||
#define SDATA_NBYTES(S) (S)->nbytes
|
||
#define SDATA_DATA(S) (S)->data
|
||
|
||
#else
|
||
|
||
typedef union
|
||
{
|
||
struct Lisp_String *string;
|
||
|
||
/* When STRING is nonnull, this union is actually of type 'struct sdata',
|
||
which has a flexible array member. However, if implemented by
|
||
giving this union a member of type 'struct sdata', the union
|
||
could not be the last (flexible) member of 'struct sblock',
|
||
because C99 prohibits a flexible array member from having a type
|
||
that is itself a flexible array. So, comment this member out here,
|
||
but remember that the option's there when using this union. */
|
||
#if 0
|
||
struct sdata u;
|
||
#endif
|
||
|
||
/* When STRING is null. */
|
||
struct
|
||
{
|
||
struct Lisp_String *string;
|
||
ptrdiff_t nbytes;
|
||
} n;
|
||
} sdata;
|
||
|
||
#define SDATA_NBYTES(S) (S)->n.nbytes
|
||
#define SDATA_DATA(S) ((struct sdata *) (S))->data
|
||
|
||
#endif /* not GC_CHECK_STRING_BYTES */
|
||
|
||
enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
|
||
|
||
/* Structure describing a block of memory which is sub-allocated to
|
||
obtain string data memory for strings. Blocks for small strings
|
||
are of fixed size SBLOCK_SIZE. Blocks for large strings are made
|
||
as large as needed. */
|
||
|
||
struct sblock
|
||
{
|
||
/* Next in list. */
|
||
struct sblock *next;
|
||
|
||
/* Pointer to the next free sdata block. This points past the end
|
||
of the sblock if there isn't any space left in this block. */
|
||
sdata *next_free;
|
||
|
||
/* String data. */
|
||
sdata data[FLEXIBLE_ARRAY_MEMBER];
|
||
};
|
||
|
||
/* Number of Lisp strings in a string_block structure. The 1020 is
|
||
1024 minus malloc overhead. */
|
||
|
||
#define STRING_BLOCK_SIZE \
|
||
((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
|
||
|
||
/* Structure describing a block from which Lisp_String structures
|
||
are allocated. */
|
||
|
||
struct string_block
|
||
{
|
||
/* Place `strings' first, to preserve alignment. */
|
||
struct Lisp_String strings[STRING_BLOCK_SIZE];
|
||
struct string_block *next;
|
||
};
|
||
|
||
/* Head and tail of the list of sblock structures holding Lisp string
|
||
data. We always allocate from current_sblock. The NEXT pointers
|
||
in the sblock structures go from oldest_sblock to current_sblock. */
|
||
|
||
static struct sblock *oldest_sblock, *current_sblock;
|
||
|
||
/* List of sblocks for large strings. */
|
||
|
||
static struct sblock *large_sblocks;
|
||
|
||
/* List of string_block structures. */
|
||
|
||
static struct string_block *string_blocks;
|
||
|
||
/* Free-list of Lisp_Strings. */
|
||
|
||
static struct Lisp_String *string_free_list;
|
||
|
||
/* Number of live and free Lisp_Strings. */
|
||
|
||
static EMACS_INT total_strings, total_free_strings;
|
||
|
||
/* Number of bytes used by live strings. */
|
||
|
||
static EMACS_INT total_string_bytes;
|
||
|
||
/* Given a pointer to a Lisp_String S which is on the free-list
|
||
string_free_list, return a pointer to its successor in the
|
||
free-list. */
|
||
|
||
#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
|
||
|
||
/* Return a pointer to the sdata structure belonging to Lisp string S.
|
||
S must be live, i.e. S->data must not be null. S->data is actually
|
||
a pointer to the `u.data' member of its sdata structure; the
|
||
structure starts at a constant offset in front of that. */
|
||
|
||
#define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
|
||
|
||
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
|
||
/* We check for overrun in string data blocks by appending a small
|
||
"cookie" after each allocated string data block, and check for the
|
||
presence of this cookie during GC. */
|
||
|
||
#define GC_STRING_OVERRUN_COOKIE_SIZE 4
|
||
static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
|
||
{ '\xde', '\xad', '\xbe', '\xef' };
|
||
|
||
#else
|
||
#define GC_STRING_OVERRUN_COOKIE_SIZE 0
|
||
#endif
|
||
|
||
/* Value is the size of an sdata structure large enough to hold NBYTES
|
||
bytes of string data. The value returned includes a terminating
|
||
NUL byte, the size of the sdata structure, and padding. */
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
#define SDATA_SIZE(NBYTES) \
|
||
((SDATA_DATA_OFFSET \
|
||
+ (NBYTES) + 1 \
|
||
+ sizeof (ptrdiff_t) - 1) \
|
||
& ~(sizeof (ptrdiff_t) - 1))
|
||
|
||
#else /* not GC_CHECK_STRING_BYTES */
|
||
|
||
/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
|
||
less than the size of that member. The 'max' is not needed when
|
||
SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
|
||
alignment code reserves enough space. */
|
||
|
||
#define SDATA_SIZE(NBYTES) \
|
||
((SDATA_DATA_OFFSET \
|
||
+ (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
|
||
? NBYTES \
|
||
: max (NBYTES, sizeof (ptrdiff_t) - 1)) \
|
||
+ 1 \
|
||
+ sizeof (ptrdiff_t) - 1) \
|
||
& ~(sizeof (ptrdiff_t) - 1))
|
||
|
||
#endif /* not GC_CHECK_STRING_BYTES */
|
||
|
||
/* Extra bytes to allocate for each string. */
|
||
|
||
#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
|
||
|
||
/* Exact bound on the number of bytes in a string, not counting the
|
||
terminating null. A string cannot contain more bytes than
|
||
STRING_BYTES_BOUND, nor can it be so long that the size_t
|
||
arithmetic in allocate_string_data would overflow while it is
|
||
calculating a value to be passed to malloc. */
|
||
static ptrdiff_t const STRING_BYTES_MAX =
|
||
min (STRING_BYTES_BOUND,
|
||
((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
|
||
- GC_STRING_EXTRA
|
||
- offsetof (struct sblock, data)
|
||
- SDATA_DATA_OFFSET)
|
||
& ~(sizeof (EMACS_INT) - 1)));
|
||
|
||
/* Initialize string allocation. Called from init_alloc_once. */
|
||
|
||
static void
|
||
init_strings (void)
|
||
{
|
||
empty_unibyte_string = make_pure_string ("", 0, 0, 0);
|
||
empty_multibyte_string = make_pure_string ("", 0, 0, 1);
|
||
}
|
||
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
|
||
static int check_string_bytes_count;
|
||
|
||
/* Like STRING_BYTES, but with debugging check. Can be
|
||
called during GC, so pay attention to the mark bit. */
|
||
|
||
ptrdiff_t
|
||
string_bytes (struct Lisp_String *s)
|
||
{
|
||
ptrdiff_t nbytes =
|
||
(s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
|
||
|
||
if (!PURE_POINTER_P (s)
|
||
&& s->data
|
||
&& nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
|
||
emacs_abort ();
|
||
return nbytes;
|
||
}
|
||
|
||
/* Check validity of Lisp strings' string_bytes member in B. */
|
||
|
||
static void
|
||
check_sblock (struct sblock *b)
|
||
{
|
||
sdata *from, *end, *from_end;
|
||
|
||
end = b->next_free;
|
||
|
||
for (from = b->data; from < end; from = from_end)
|
||
{
|
||
/* Compute the next FROM here because copying below may
|
||
overwrite data we need to compute it. */
|
||
ptrdiff_t nbytes;
|
||
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
|
||
: SDATA_NBYTES (from));
|
||
from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
|
||
}
|
||
}
|
||
|
||
|
||
/* Check validity of Lisp strings' string_bytes member. ALL_P
|
||
means check all strings, otherwise check only most
|
||
recently allocated strings. Used for hunting a bug. */
|
||
|
||
static void
|
||
check_string_bytes (bool all_p)
|
||
{
|
||
if (all_p)
|
||
{
|
||
struct sblock *b;
|
||
|
||
for (b = large_sblocks; b; b = b->next)
|
||
{
|
||
struct Lisp_String *s = b->data[0].string;
|
||
if (s)
|
||
string_bytes (s);
|
||
}
|
||
|
||
for (b = oldest_sblock; b; b = b->next)
|
||
check_sblock (b);
|
||
}
|
||
else if (current_sblock)
|
||
check_sblock (current_sblock);
|
||
}
|
||
|
||
#else /* not GC_CHECK_STRING_BYTES */
|
||
|
||
#define check_string_bytes(all) ((void) 0)
|
||
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
#ifdef GC_CHECK_STRING_FREE_LIST
|
||
|
||
/* Walk through the string free list looking for bogus next pointers.
|
||
This may catch buffer overrun from a previous string. */
|
||
|
||
static void
|
||
check_string_free_list (void)
|
||
{
|
||
struct Lisp_String *s;
|
||
|
||
/* Pop a Lisp_String off the free-list. */
|
||
s = string_free_list;
|
||
while (s != NULL)
|
||
{
|
||
if ((uintptr_t) s < 1024)
|
||
emacs_abort ();
|
||
s = NEXT_FREE_LISP_STRING (s);
|
||
}
|
||
}
|
||
#else
|
||
#define check_string_free_list()
|
||
#endif
|
||
|
||
/* Return a new Lisp_String. */
|
||
|
||
static struct Lisp_String *
|
||
allocate_string (void)
|
||
{
|
||
struct Lisp_String *s;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
/* If the free-list is empty, allocate a new string_block, and
|
||
add all the Lisp_Strings in it to the free-list. */
|
||
if (string_free_list == NULL)
|
||
{
|
||
struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
|
||
int i;
|
||
|
||
b->next = string_blocks;
|
||
string_blocks = b;
|
||
|
||
for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
|
||
{
|
||
s = b->strings + i;
|
||
/* Every string on a free list should have NULL data pointer. */
|
||
s->data = NULL;
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
}
|
||
|
||
total_free_strings += STRING_BLOCK_SIZE;
|
||
}
|
||
|
||
check_string_free_list ();
|
||
|
||
/* Pop a Lisp_String off the free-list. */
|
||
s = string_free_list;
|
||
string_free_list = NEXT_FREE_LISP_STRING (s);
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
--total_free_strings;
|
||
++total_strings;
|
||
++strings_consed;
|
||
consing_since_gc += sizeof *s;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (!noninteractive)
|
||
{
|
||
if (++check_string_bytes_count == 200)
|
||
{
|
||
check_string_bytes_count = 0;
|
||
check_string_bytes (1);
|
||
}
|
||
else
|
||
check_string_bytes (0);
|
||
}
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
return s;
|
||
}
|
||
|
||
|
||
/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
|
||
plus a NUL byte at the end. Allocate an sdata structure for S, and
|
||
set S->data to its `u.data' member. Store a NUL byte at the end of
|
||
S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
|
||
S->data if it was initially non-null. */
|
||
|
||
void
|
||
allocate_string_data (struct Lisp_String *s,
|
||
EMACS_INT nchars, EMACS_INT nbytes)
|
||
{
|
||
sdata *data, *old_data;
|
||
struct sblock *b;
|
||
ptrdiff_t needed, old_nbytes;
|
||
|
||
if (STRING_BYTES_MAX < nbytes)
|
||
string_overflow ();
|
||
|
||
/* Determine the number of bytes needed to store NBYTES bytes
|
||
of string data. */
|
||
needed = SDATA_SIZE (nbytes);
|
||
if (s->data)
|
||
{
|
||
old_data = SDATA_OF_STRING (s);
|
||
old_nbytes = STRING_BYTES (s);
|
||
}
|
||
else
|
||
old_data = NULL;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (nbytes > LARGE_STRING_BYTES)
|
||
{
|
||
size_t size = offsetof (struct sblock, data) + needed;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs.
|
||
|
||
In case you think of allowing it in a dumped Emacs at the
|
||
cost of not being able to re-dump, there's another reason:
|
||
mmap'ed data typically have an address towards the top of the
|
||
address space, which won't fit into an EMACS_INT (at least on
|
||
32-bit systems with the current tagging scheme). --fx */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
b->next_free = b->data;
|
||
b->data[0].string = NULL;
|
||
b->next = large_sblocks;
|
||
large_sblocks = b;
|
||
}
|
||
else if (current_sblock == NULL
|
||
|| (((char *) current_sblock + SBLOCK_SIZE
|
||
- (char *) current_sblock->next_free)
|
||
< (needed + GC_STRING_EXTRA)))
|
||
{
|
||
/* Not enough room in the current sblock. */
|
||
b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
|
||
b->next_free = b->data;
|
||
b->data[0].string = NULL;
|
||
b->next = NULL;
|
||
|
||
if (current_sblock)
|
||
current_sblock->next = b;
|
||
else
|
||
oldest_sblock = b;
|
||
current_sblock = b;
|
||
}
|
||
else
|
||
b = current_sblock;
|
||
|
||
data = b->next_free;
|
||
b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
data->string = s;
|
||
s->data = SDATA_DATA (data);
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
SDATA_NBYTES (data) = nbytes;
|
||
#endif
|
||
s->size = nchars;
|
||
s->size_byte = nbytes;
|
||
s->data[nbytes] = '\0';
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
memcpy ((char *) data + needed, string_overrun_cookie,
|
||
GC_STRING_OVERRUN_COOKIE_SIZE);
|
||
#endif
|
||
|
||
/* Note that Faset may call to this function when S has already data
|
||
assigned. In this case, mark data as free by setting it's string
|
||
back-pointer to null, and record the size of the data in it. */
|
||
if (old_data)
|
||
{
|
||
SDATA_NBYTES (old_data) = old_nbytes;
|
||
old_data->string = NULL;
|
||
}
|
||
|
||
consing_since_gc += needed;
|
||
}
|
||
|
||
|
||
/* Sweep and compact strings. */
|
||
|
||
static void
|
||
sweep_strings (void)
|
||
{
|
||
struct string_block *b, *next;
|
||
struct string_block *live_blocks = NULL;
|
||
|
||
string_free_list = NULL;
|
||
total_strings = total_free_strings = 0;
|
||
total_string_bytes = 0;
|
||
|
||
/* Scan strings_blocks, free Lisp_Strings that aren't marked. */
|
||
for (b = string_blocks; b; b = next)
|
||
{
|
||
int i, nfree = 0;
|
||
struct Lisp_String *free_list_before = string_free_list;
|
||
|
||
next = b->next;
|
||
|
||
for (i = 0; i < STRING_BLOCK_SIZE; ++i)
|
||
{
|
||
struct Lisp_String *s = b->strings + i;
|
||
|
||
if (s->data)
|
||
{
|
||
/* String was not on free-list before. */
|
||
if (STRING_MARKED_P (s))
|
||
{
|
||
/* String is live; unmark it and its intervals. */
|
||
UNMARK_STRING (s);
|
||
|
||
/* Do not use string_(set|get)_intervals here. */
|
||
s->intervals = balance_intervals (s->intervals);
|
||
|
||
++total_strings;
|
||
total_string_bytes += STRING_BYTES (s);
|
||
}
|
||
else
|
||
{
|
||
/* String is dead. Put it on the free-list. */
|
||
sdata *data = SDATA_OF_STRING (s);
|
||
|
||
/* Save the size of S in its sdata so that we know
|
||
how large that is. Reset the sdata's string
|
||
back-pointer so that we know it's free. */
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
if (string_bytes (s) != SDATA_NBYTES (data))
|
||
emacs_abort ();
|
||
#else
|
||
data->n.nbytes = STRING_BYTES (s);
|
||
#endif
|
||
data->string = NULL;
|
||
|
||
/* Reset the strings's `data' member so that we
|
||
know it's free. */
|
||
s->data = NULL;
|
||
|
||
/* Put the string on the free-list. */
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
++nfree;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* S was on the free-list before. Put it there again. */
|
||
NEXT_FREE_LISP_STRING (s) = string_free_list;
|
||
string_free_list = s;
|
||
++nfree;
|
||
}
|
||
}
|
||
|
||
/* Free blocks that contain free Lisp_Strings only, except
|
||
the first two of them. */
|
||
if (nfree == STRING_BLOCK_SIZE
|
||
&& total_free_strings > STRING_BLOCK_SIZE)
|
||
{
|
||
lisp_free (b);
|
||
string_free_list = free_list_before;
|
||
}
|
||
else
|
||
{
|
||
total_free_strings += nfree;
|
||
b->next = live_blocks;
|
||
live_blocks = b;
|
||
}
|
||
}
|
||
|
||
check_string_free_list ();
|
||
|
||
string_blocks = live_blocks;
|
||
free_large_strings ();
|
||
compact_small_strings ();
|
||
|
||
check_string_free_list ();
|
||
}
|
||
|
||
|
||
/* Free dead large strings. */
|
||
|
||
static void
|
||
free_large_strings (void)
|
||
{
|
||
struct sblock *b, *next;
|
||
struct sblock *live_blocks = NULL;
|
||
|
||
for (b = large_sblocks; b; b = next)
|
||
{
|
||
next = b->next;
|
||
|
||
if (b->data[0].string == NULL)
|
||
lisp_free (b);
|
||
else
|
||
{
|
||
b->next = live_blocks;
|
||
live_blocks = b;
|
||
}
|
||
}
|
||
|
||
large_sblocks = live_blocks;
|
||
}
|
||
|
||
|
||
/* Compact data of small strings. Free sblocks that don't contain
|
||
data of live strings after compaction. */
|
||
|
||
static void
|
||
compact_small_strings (void)
|
||
{
|
||
struct sblock *b, *tb, *next;
|
||
sdata *from, *to, *end, *tb_end;
|
||
sdata *to_end, *from_end;
|
||
|
||
/* TB is the sblock we copy to, TO is the sdata within TB we copy
|
||
to, and TB_END is the end of TB. */
|
||
tb = oldest_sblock;
|
||
tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
|
||
to = tb->data;
|
||
|
||
/* Step through the blocks from the oldest to the youngest. We
|
||
expect that old blocks will stabilize over time, so that less
|
||
copying will happen this way. */
|
||
for (b = oldest_sblock; b; b = b->next)
|
||
{
|
||
end = b->next_free;
|
||
eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
|
||
|
||
for (from = b->data; from < end; from = from_end)
|
||
{
|
||
/* Compute the next FROM here because copying below may
|
||
overwrite data we need to compute it. */
|
||
ptrdiff_t nbytes;
|
||
struct Lisp_String *s = from->string;
|
||
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
if (s && string_bytes (s) != SDATA_NBYTES (from))
|
||
emacs_abort ();
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
|
||
nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
|
||
eassert (nbytes <= LARGE_STRING_BYTES);
|
||
|
||
nbytes = SDATA_SIZE (nbytes);
|
||
from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
|
||
|
||
#ifdef GC_CHECK_STRING_OVERRUN
|
||
if (memcmp (string_overrun_cookie,
|
||
(char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
|
||
GC_STRING_OVERRUN_COOKIE_SIZE))
|
||
emacs_abort ();
|
||
#endif
|
||
|
||
/* Non-NULL S means it's alive. Copy its data. */
|
||
if (s)
|
||
{
|
||
/* If TB is full, proceed with the next sblock. */
|
||
to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
|
||
if (to_end > tb_end)
|
||
{
|
||
tb->next_free = to;
|
||
tb = tb->next;
|
||
tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
|
||
to = tb->data;
|
||
to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
|
||
}
|
||
|
||
/* Copy, and update the string's `data' pointer. */
|
||
if (from != to)
|
||
{
|
||
eassert (tb != b || to < from);
|
||
memmove (to, from, nbytes + GC_STRING_EXTRA);
|
||
to->string->data = SDATA_DATA (to);
|
||
}
|
||
|
||
/* Advance past the sdata we copied to. */
|
||
to = to_end;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The rest of the sblocks following TB don't contain live data, so
|
||
we can free them. */
|
||
for (b = tb->next; b; b = next)
|
||
{
|
||
next = b->next;
|
||
lisp_free (b);
|
||
}
|
||
|
||
tb->next_free = to;
|
||
tb->next = NULL;
|
||
current_sblock = tb;
|
||
}
|
||
|
||
void
|
||
string_overflow (void)
|
||
{
|
||
error ("Maximum string size exceeded");
|
||
}
|
||
|
||
DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
|
||
doc: /* Return a newly created string of length LENGTH, with INIT in each element.
|
||
LENGTH must be an integer.
|
||
INIT must be an integer that represents a character. */)
|
||
(Lisp_Object length, Lisp_Object init)
|
||
{
|
||
register Lisp_Object val;
|
||
int c;
|
||
EMACS_INT nbytes;
|
||
|
||
CHECK_NATNUM (length);
|
||
CHECK_CHARACTER (init);
|
||
|
||
c = XFASTINT (init);
|
||
if (ASCII_CHAR_P (c))
|
||
{
|
||
nbytes = XINT (length);
|
||
val = make_uninit_string (nbytes);
|
||
memset (SDATA (val), c, nbytes);
|
||
SDATA (val)[nbytes] = 0;
|
||
}
|
||
else
|
||
{
|
||
unsigned char str[MAX_MULTIBYTE_LENGTH];
|
||
ptrdiff_t len = CHAR_STRING (c, str);
|
||
EMACS_INT string_len = XINT (length);
|
||
unsigned char *p, *beg, *end;
|
||
|
||
if (string_len > STRING_BYTES_MAX / len)
|
||
string_overflow ();
|
||
nbytes = len * string_len;
|
||
val = make_uninit_multibyte_string (string_len, nbytes);
|
||
for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
|
||
{
|
||
/* First time we just copy `str' to the data of `val'. */
|
||
if (p == beg)
|
||
memcpy (p, str, len);
|
||
else
|
||
{
|
||
/* Next time we copy largest possible chunk from
|
||
initialized to uninitialized part of `val'. */
|
||
len = min (p - beg, end - p);
|
||
memcpy (p, beg, len);
|
||
}
|
||
}
|
||
*p = 0;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
|
||
Return A. */
|
||
|
||
Lisp_Object
|
||
bool_vector_fill (Lisp_Object a, Lisp_Object init)
|
||
{
|
||
EMACS_INT nbits = bool_vector_size (a);
|
||
if (0 < nbits)
|
||
{
|
||
unsigned char *data = bool_vector_uchar_data (a);
|
||
int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
|
||
ptrdiff_t nbytes = bool_vector_bytes (nbits);
|
||
int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
|
||
memset (data, pattern, nbytes - 1);
|
||
data[nbytes - 1] = pattern & last_mask;
|
||
}
|
||
return a;
|
||
}
|
||
|
||
/* Return a newly allocated, uninitialized bool vector of size NBITS. */
|
||
|
||
Lisp_Object
|
||
make_uninit_bool_vector (EMACS_INT nbits)
|
||
{
|
||
Lisp_Object val;
|
||
EMACS_INT words = bool_vector_words (nbits);
|
||
EMACS_INT word_bytes = words * sizeof (bits_word);
|
||
EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
|
||
+ word_size - 1)
|
||
/ word_size);
|
||
struct Lisp_Bool_Vector *p
|
||
= (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
|
||
XSETVECTOR (val, p);
|
||
XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
|
||
p->size = nbits;
|
||
|
||
/* Clear padding at the end. */
|
||
if (words)
|
||
p->data[words - 1] = 0;
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
|
||
doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
|
||
LENGTH must be a number. INIT matters only in whether it is t or nil. */)
|
||
(Lisp_Object length, Lisp_Object init)
|
||
{
|
||
Lisp_Object val;
|
||
|
||
CHECK_NATNUM (length);
|
||
val = make_uninit_bool_vector (XFASTINT (length));
|
||
return bool_vector_fill (val, init);
|
||
}
|
||
|
||
|
||
/* Make a string from NBYTES bytes at CONTENTS, and compute the number
|
||
of characters from the contents. This string may be unibyte or
|
||
multibyte, depending on the contents. */
|
||
|
||
Lisp_Object
|
||
make_string (const char *contents, ptrdiff_t nbytes)
|
||
{
|
||
register Lisp_Object val;
|
||
ptrdiff_t nchars, multibyte_nbytes;
|
||
|
||
parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
|
||
&nchars, &multibyte_nbytes);
|
||
if (nbytes == nchars || nbytes != multibyte_nbytes)
|
||
/* CONTENTS contains no multibyte sequences or contains an invalid
|
||
multibyte sequence. We must make unibyte string. */
|
||
val = make_unibyte_string (contents, nbytes);
|
||
else
|
||
val = make_multibyte_string (contents, nchars, nbytes);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make an unibyte string from LENGTH bytes at CONTENTS. */
|
||
|
||
Lisp_Object
|
||
make_unibyte_string (const char *contents, ptrdiff_t length)
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_string (length);
|
||
memcpy (SDATA (val), contents, length);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a multibyte string from NCHARS characters occupying NBYTES
|
||
bytes at CONTENTS. */
|
||
|
||
Lisp_Object
|
||
make_multibyte_string (const char *contents,
|
||
ptrdiff_t nchars, ptrdiff_t nbytes)
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
memcpy (SDATA (val), contents, nbytes);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from NCHARS characters occupying NBYTES bytes at
|
||
CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
|
||
|
||
Lisp_Object
|
||
make_string_from_bytes (const char *contents,
|
||
ptrdiff_t nchars, ptrdiff_t nbytes)
|
||
{
|
||
register Lisp_Object val;
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
memcpy (SDATA (val), contents, nbytes);
|
||
if (SBYTES (val) == SCHARS (val))
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Make a string from NCHARS characters occupying NBYTES bytes at
|
||
CONTENTS. The argument MULTIBYTE controls whether to label the
|
||
string as multibyte. If NCHARS is negative, it counts the number of
|
||
characters by itself. */
|
||
|
||
Lisp_Object
|
||
make_specified_string (const char *contents,
|
||
ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
|
||
{
|
||
Lisp_Object val;
|
||
|
||
if (nchars < 0)
|
||
{
|
||
if (multibyte)
|
||
nchars = multibyte_chars_in_text ((const unsigned char *) contents,
|
||
nbytes);
|
||
else
|
||
nchars = nbytes;
|
||
}
|
||
val = make_uninit_multibyte_string (nchars, nbytes);
|
||
memcpy (SDATA (val), contents, nbytes);
|
||
if (!multibyte)
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Return an unibyte Lisp_String set up to hold LENGTH characters
|
||
occupying LENGTH bytes. */
|
||
|
||
Lisp_Object
|
||
make_uninit_string (EMACS_INT length)
|
||
{
|
||
Lisp_Object val;
|
||
|
||
if (!length)
|
||
return empty_unibyte_string;
|
||
val = make_uninit_multibyte_string (length, length);
|
||
STRING_SET_UNIBYTE (val);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Return a multibyte Lisp_String set up to hold NCHARS characters
|
||
which occupy NBYTES bytes. */
|
||
|
||
Lisp_Object
|
||
make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
|
||
{
|
||
Lisp_Object string;
|
||
struct Lisp_String *s;
|
||
|
||
if (nchars < 0)
|
||
emacs_abort ();
|
||
if (!nbytes)
|
||
return empty_multibyte_string;
|
||
|
||
s = allocate_string ();
|
||
s->intervals = NULL;
|
||
allocate_string_data (s, nchars, nbytes);
|
||
XSETSTRING (string, s);
|
||
string_chars_consed += nbytes;
|
||
return string;
|
||
}
|
||
|
||
/* Print arguments to BUF according to a FORMAT, then return
|
||
a Lisp_String initialized with the data from BUF. */
|
||
|
||
Lisp_Object
|
||
make_formatted_string (char *buf, const char *format, ...)
|
||
{
|
||
va_list ap;
|
||
int length;
|
||
|
||
va_start (ap, format);
|
||
length = vsprintf (buf, format, ap);
|
||
va_end (ap);
|
||
return make_string (buf, length);
|
||
}
|
||
|
||
|
||
/***********************************************************************
|
||
Float Allocation
|
||
***********************************************************************/
|
||
|
||
/* We store float cells inside of float_blocks, allocating a new
|
||
float_block with malloc whenever necessary. Float cells reclaimed
|
||
by GC are put on a free list to be reallocated before allocating
|
||
any new float cells from the latest float_block. */
|
||
|
||
#define FLOAT_BLOCK_SIZE \
|
||
(((BLOCK_BYTES - sizeof (struct float_block *) \
|
||
/* The compiler might add padding at the end. */ \
|
||
- (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
|
||
/ (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
|
||
|
||
#define GETMARKBIT(block,n) \
|
||
(((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
|
||
>> ((n) % (sizeof (int) * CHAR_BIT))) \
|
||
& 1)
|
||
|
||
#define SETMARKBIT(block,n) \
|
||
(block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
|
||
|= 1 << ((n) % (sizeof (int) * CHAR_BIT))
|
||
|
||
#define UNSETMARKBIT(block,n) \
|
||
(block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
|
||
&= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
|
||
|
||
#define FLOAT_BLOCK(fptr) \
|
||
((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
|
||
|
||
#define FLOAT_INDEX(fptr) \
|
||
((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
|
||
|
||
struct float_block
|
||
{
|
||
/* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
|
||
struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
|
||
int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
|
||
struct float_block *next;
|
||
};
|
||
|
||
#define FLOAT_MARKED_P(fptr) \
|
||
GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
#define FLOAT_MARK(fptr) \
|
||
SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
#define FLOAT_UNMARK(fptr) \
|
||
UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
|
||
|
||
/* Current float_block. */
|
||
|
||
static struct float_block *float_block;
|
||
|
||
/* Index of first unused Lisp_Float in the current float_block. */
|
||
|
||
static int float_block_index = FLOAT_BLOCK_SIZE;
|
||
|
||
/* Free-list of Lisp_Floats. */
|
||
|
||
static struct Lisp_Float *float_free_list;
|
||
|
||
/* Return a new float object with value FLOAT_VALUE. */
|
||
|
||
Lisp_Object
|
||
make_float (double float_value)
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (float_free_list)
|
||
{
|
||
/* We use the data field for chaining the free list
|
||
so that we won't use the same field that has the mark bit. */
|
||
XSETFLOAT (val, float_free_list);
|
||
float_free_list = float_free_list->u.chain;
|
||
}
|
||
else
|
||
{
|
||
if (float_block_index == FLOAT_BLOCK_SIZE)
|
||
{
|
||
struct float_block *new
|
||
= lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
|
||
new->next = float_block;
|
||
memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
|
||
float_block = new;
|
||
float_block_index = 0;
|
||
total_free_floats += FLOAT_BLOCK_SIZE;
|
||
}
|
||
XSETFLOAT (val, &float_block->floats[float_block_index]);
|
||
float_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
XFLOAT_INIT (val, float_value);
|
||
eassert (!FLOAT_MARKED_P (XFLOAT (val)));
|
||
consing_since_gc += sizeof (struct Lisp_Float);
|
||
floats_consed++;
|
||
total_free_floats--;
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Cons Allocation
|
||
***********************************************************************/
|
||
|
||
/* We store cons cells inside of cons_blocks, allocating a new
|
||
cons_block with malloc whenever necessary. Cons cells reclaimed by
|
||
GC are put on a free list to be reallocated before allocating
|
||
any new cons cells from the latest cons_block. */
|
||
|
||
#define CONS_BLOCK_SIZE \
|
||
(((BLOCK_BYTES - sizeof (struct cons_block *) \
|
||
/* The compiler might add padding at the end. */ \
|
||
- (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
|
||
/ (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
|
||
|
||
#define CONS_BLOCK(fptr) \
|
||
((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
|
||
|
||
#define CONS_INDEX(fptr) \
|
||
(((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
|
||
|
||
struct cons_block
|
||
{
|
||
/* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
|
||
struct Lisp_Cons conses[CONS_BLOCK_SIZE];
|
||
int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
|
||
struct cons_block *next;
|
||
};
|
||
|
||
#define CONS_MARKED_P(fptr) \
|
||
GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
#define CONS_MARK(fptr) \
|
||
SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
#define CONS_UNMARK(fptr) \
|
||
UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
|
||
|
||
/* Current cons_block. */
|
||
|
||
static struct cons_block *cons_block;
|
||
|
||
/* Index of first unused Lisp_Cons in the current block. */
|
||
|
||
static int cons_block_index = CONS_BLOCK_SIZE;
|
||
|
||
/* Free-list of Lisp_Cons structures. */
|
||
|
||
static struct Lisp_Cons *cons_free_list;
|
||
|
||
/* Explicitly free a cons cell by putting it on the free-list. */
|
||
|
||
void
|
||
free_cons (struct Lisp_Cons *ptr)
|
||
{
|
||
ptr->u.chain = cons_free_list;
|
||
#if GC_MARK_STACK
|
||
ptr->car = Vdead;
|
||
#endif
|
||
cons_free_list = ptr;
|
||
consing_since_gc -= sizeof *ptr;
|
||
total_free_conses++;
|
||
}
|
||
|
||
DEFUN ("cons", Fcons, Scons, 2, 2, 0,
|
||
doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
|
||
(Lisp_Object car, Lisp_Object cdr)
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (cons_free_list)
|
||
{
|
||
/* We use the cdr for chaining the free list
|
||
so that we won't use the same field that has the mark bit. */
|
||
XSETCONS (val, cons_free_list);
|
||
cons_free_list = cons_free_list->u.chain;
|
||
}
|
||
else
|
||
{
|
||
if (cons_block_index == CONS_BLOCK_SIZE)
|
||
{
|
||
struct cons_block *new
|
||
= lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
|
||
memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
|
||
new->next = cons_block;
|
||
cons_block = new;
|
||
cons_block_index = 0;
|
||
total_free_conses += CONS_BLOCK_SIZE;
|
||
}
|
||
XSETCONS (val, &cons_block->conses[cons_block_index]);
|
||
cons_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
XSETCAR (val, car);
|
||
XSETCDR (val, cdr);
|
||
eassert (!CONS_MARKED_P (XCONS (val)));
|
||
consing_since_gc += sizeof (struct Lisp_Cons);
|
||
total_free_conses--;
|
||
cons_cells_consed++;
|
||
return val;
|
||
}
|
||
|
||
#ifdef GC_CHECK_CONS_LIST
|
||
/* Get an error now if there's any junk in the cons free list. */
|
||
void
|
||
check_cons_list (void)
|
||
{
|
||
struct Lisp_Cons *tail = cons_free_list;
|
||
|
||
while (tail)
|
||
tail = tail->u.chain;
|
||
}
|
||
#endif
|
||
|
||
/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
|
||
|
||
Lisp_Object
|
||
list1 (Lisp_Object arg1)
|
||
{
|
||
return Fcons (arg1, Qnil);
|
||
}
|
||
|
||
Lisp_Object
|
||
list2 (Lisp_Object arg1, Lisp_Object arg2)
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Qnil));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
|
||
}
|
||
|
||
|
||
Lisp_Object
|
||
list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
|
||
{
|
||
return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
|
||
Fcons (arg5, Qnil)))));
|
||
}
|
||
|
||
/* Make a list of COUNT Lisp_Objects, where ARG is the
|
||
first one. Allocate conses from pure space if TYPE
|
||
is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
|
||
|
||
Lisp_Object
|
||
listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
|
||
{
|
||
va_list ap;
|
||
ptrdiff_t i;
|
||
Lisp_Object val, *objp;
|
||
|
||
/* Change to SAFE_ALLOCA if you hit this eassert. */
|
||
eassert (count <= MAX_ALLOCA / word_size);
|
||
|
||
objp = alloca (count * word_size);
|
||
objp[0] = arg;
|
||
va_start (ap, arg);
|
||
for (i = 1; i < count; i++)
|
||
objp[i] = va_arg (ap, Lisp_Object);
|
||
va_end (ap);
|
||
|
||
for (val = Qnil, i = count - 1; i >= 0; i--)
|
||
{
|
||
if (type == CONSTYPE_PURE)
|
||
val = pure_cons (objp[i], val);
|
||
else if (type == CONSTYPE_HEAP)
|
||
val = Fcons (objp[i], val);
|
||
else
|
||
emacs_abort ();
|
||
}
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("list", Flist, Slist, 0, MANY, 0,
|
||
doc: /* Return a newly created list with specified arguments as elements.
|
||
Any number of arguments, even zero arguments, are allowed.
|
||
usage: (list &rest OBJECTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
register Lisp_Object val;
|
||
val = Qnil;
|
||
|
||
while (nargs > 0)
|
||
{
|
||
nargs--;
|
||
val = Fcons (args[nargs], val);
|
||
}
|
||
return val;
|
||
}
|
||
|
||
|
||
DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
|
||
doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
|
||
(register Lisp_Object length, Lisp_Object init)
|
||
{
|
||
register Lisp_Object val;
|
||
register EMACS_INT size;
|
||
|
||
CHECK_NATNUM (length);
|
||
size = XFASTINT (length);
|
||
|
||
val = Qnil;
|
||
while (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
|
||
if (size > 0)
|
||
{
|
||
val = Fcons (init, val);
|
||
--size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Vector Allocation
|
||
***********************************************************************/
|
||
|
||
/* Sometimes a vector's contents are merely a pointer internally used
|
||
in vector allocation code. On the rare platforms where a null
|
||
pointer cannot be tagged, represent it with a Lisp 0.
|
||
Usually you don't want to touch this. */
|
||
|
||
enum { TAGGABLE_NULL = (DATA_SEG_BITS & ~VALMASK) == 0 };
|
||
|
||
static struct Lisp_Vector *
|
||
next_vector (struct Lisp_Vector *v)
|
||
{
|
||
if (! TAGGABLE_NULL && EQ (v->contents[0], make_number (0)))
|
||
return 0;
|
||
return XUNTAG (v->contents[0], 0);
|
||
}
|
||
|
||
static void
|
||
set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
|
||
{
|
||
v->contents[0] = TAGGABLE_NULL || p ? make_lisp_ptr (p, 0) : make_number (0);
|
||
}
|
||
|
||
/* This value is balanced well enough to avoid too much internal overhead
|
||
for the most common cases; it's not required to be a power of two, but
|
||
it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
|
||
|
||
#define VECTOR_BLOCK_SIZE 4096
|
||
|
||
enum
|
||
{
|
||
/* Alignment of struct Lisp_Vector objects. */
|
||
vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
|
||
USE_LSB_TAG ? GCALIGNMENT : 1),
|
||
|
||
/* Vector size requests are a multiple of this. */
|
||
roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
|
||
};
|
||
|
||
/* Verify assumptions described above. */
|
||
verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
|
||
verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
|
||
|
||
/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
|
||
#define vroundup_ct(x) ROUNDUP (x, roundup_size)
|
||
/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
|
||
#define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
|
||
|
||
/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
|
||
|
||
#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
|
||
|
||
/* Size of the minimal vector allocated from block. */
|
||
|
||
#define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
|
||
|
||
/* Size of the largest vector allocated from block. */
|
||
|
||
#define VBLOCK_BYTES_MAX \
|
||
vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
|
||
|
||
/* We maintain one free list for each possible block-allocated
|
||
vector size, and this is the number of free lists we have. */
|
||
|
||
#define VECTOR_MAX_FREE_LIST_INDEX \
|
||
((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
|
||
|
||
/* Common shortcut to advance vector pointer over a block data. */
|
||
|
||
#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
|
||
|
||
/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
|
||
|
||
#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
|
||
|
||
/* Common shortcut to setup vector on a free list. */
|
||
|
||
#define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
|
||
do { \
|
||
(tmp) = ((nbytes - header_size) / word_size); \
|
||
XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
|
||
eassert ((nbytes) % roundup_size == 0); \
|
||
(tmp) = VINDEX (nbytes); \
|
||
eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
|
||
set_next_vector (v, vector_free_lists[tmp]); \
|
||
vector_free_lists[tmp] = (v); \
|
||
total_free_vector_slots += (nbytes) / word_size; \
|
||
} while (0)
|
||
|
||
/* This internal type is used to maintain the list of large vectors
|
||
which are allocated at their own, e.g. outside of vector blocks.
|
||
|
||
struct large_vector itself cannot contain a struct Lisp_Vector, as
|
||
the latter contains a flexible array member and C99 does not allow
|
||
such structs to be nested. Instead, each struct large_vector
|
||
object LV is followed by a struct Lisp_Vector, which is at offset
|
||
large_vector_offset from LV, and whose address is therefore
|
||
large_vector_vec (&LV). */
|
||
|
||
struct large_vector
|
||
{
|
||
struct large_vector *next;
|
||
};
|
||
|
||
enum
|
||
{
|
||
large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
|
||
};
|
||
|
||
static struct Lisp_Vector *
|
||
large_vector_vec (struct large_vector *p)
|
||
{
|
||
return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
|
||
}
|
||
|
||
/* This internal type is used to maintain an underlying storage
|
||
for small vectors. */
|
||
|
||
struct vector_block
|
||
{
|
||
char data[VECTOR_BLOCK_BYTES];
|
||
struct vector_block *next;
|
||
};
|
||
|
||
/* Chain of vector blocks. */
|
||
|
||
static struct vector_block *vector_blocks;
|
||
|
||
/* Vector free lists, where NTH item points to a chain of free
|
||
vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
|
||
|
||
static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
|
||
|
||
/* Singly-linked list of large vectors. */
|
||
|
||
static struct large_vector *large_vectors;
|
||
|
||
/* The only vector with 0 slots, allocated from pure space. */
|
||
|
||
Lisp_Object zero_vector;
|
||
|
||
/* Number of live vectors. */
|
||
|
||
static EMACS_INT total_vectors;
|
||
|
||
/* Total size of live and free vectors, in Lisp_Object units. */
|
||
|
||
static EMACS_INT total_vector_slots, total_free_vector_slots;
|
||
|
||
/* Get a new vector block. */
|
||
|
||
static struct vector_block *
|
||
allocate_vector_block (void)
|
||
{
|
||
struct vector_block *block = xmalloc (sizeof *block);
|
||
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
|
||
MEM_TYPE_VECTOR_BLOCK);
|
||
#endif
|
||
|
||
block->next = vector_blocks;
|
||
vector_blocks = block;
|
||
return block;
|
||
}
|
||
|
||
/* Called once to initialize vector allocation. */
|
||
|
||
static void
|
||
init_vectors (void)
|
||
{
|
||
zero_vector = make_pure_vector (0);
|
||
}
|
||
|
||
/* Allocate vector from a vector block. */
|
||
|
||
static struct Lisp_Vector *
|
||
allocate_vector_from_block (size_t nbytes)
|
||
{
|
||
struct Lisp_Vector *vector;
|
||
struct vector_block *block;
|
||
size_t index, restbytes;
|
||
|
||
eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
|
||
eassert (nbytes % roundup_size == 0);
|
||
|
||
/* First, try to allocate from a free list
|
||
containing vectors of the requested size. */
|
||
index = VINDEX (nbytes);
|
||
if (vector_free_lists[index])
|
||
{
|
||
vector = vector_free_lists[index];
|
||
vector_free_lists[index] = next_vector (vector);
|
||
total_free_vector_slots -= nbytes / word_size;
|
||
return vector;
|
||
}
|
||
|
||
/* Next, check free lists containing larger vectors. Since
|
||
we will split the result, we should have remaining space
|
||
large enough to use for one-slot vector at least. */
|
||
for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
|
||
index < VECTOR_MAX_FREE_LIST_INDEX; index++)
|
||
if (vector_free_lists[index])
|
||
{
|
||
/* This vector is larger than requested. */
|
||
vector = vector_free_lists[index];
|
||
vector_free_lists[index] = next_vector (vector);
|
||
total_free_vector_slots -= nbytes / word_size;
|
||
|
||
/* Excess bytes are used for the smaller vector,
|
||
which should be set on an appropriate free list. */
|
||
restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
|
||
eassert (restbytes % roundup_size == 0);
|
||
SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
|
||
return vector;
|
||
}
|
||
|
||
/* Finally, need a new vector block. */
|
||
block = allocate_vector_block ();
|
||
|
||
/* New vector will be at the beginning of this block. */
|
||
vector = (struct Lisp_Vector *) block->data;
|
||
|
||
/* If the rest of space from this block is large enough
|
||
for one-slot vector at least, set up it on a free list. */
|
||
restbytes = VECTOR_BLOCK_BYTES - nbytes;
|
||
if (restbytes >= VBLOCK_BYTES_MIN)
|
||
{
|
||
eassert (restbytes % roundup_size == 0);
|
||
SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
|
||
}
|
||
return vector;
|
||
}
|
||
|
||
/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
|
||
|
||
#define VECTOR_IN_BLOCK(vector, block) \
|
||
((char *) (vector) <= (block)->data \
|
||
+ VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
|
||
|
||
/* Return the memory footprint of V in bytes. */
|
||
|
||
static ptrdiff_t
|
||
vector_nbytes (struct Lisp_Vector *v)
|
||
{
|
||
ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
|
||
ptrdiff_t nwords;
|
||
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
{
|
||
if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
|
||
{
|
||
struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
|
||
ptrdiff_t word_bytes = (bool_vector_words (bv->size)
|
||
* sizeof (bits_word));
|
||
ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
|
||
verify (header_size <= bool_header_size);
|
||
nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
|
||
}
|
||
else
|
||
nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
|
||
+ ((size & PSEUDOVECTOR_REST_MASK)
|
||
>> PSEUDOVECTOR_SIZE_BITS));
|
||
}
|
||
else
|
||
nwords = size;
|
||
return vroundup (header_size + word_size * nwords);
|
||
}
|
||
|
||
/* Release extra resources still in use by VECTOR, which may be any
|
||
vector-like object. For now, this is used just to free data in
|
||
font objects. */
|
||
|
||
static void
|
||
cleanup_vector (struct Lisp_Vector *vector)
|
||
{
|
||
if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
|
||
&& ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
|
||
== FONT_OBJECT_MAX))
|
||
{
|
||
struct font_driver *drv = ((struct font *) vector)->driver;
|
||
|
||
/* The font driver might sometimes be NULL, e.g. if Emacs was
|
||
interrupted before it had time to set it up. */
|
||
if (drv)
|
||
{
|
||
/* Attempt to catch subtle bugs like Bug#16140. */
|
||
eassert (valid_font_driver (drv));
|
||
drv->close ((struct font *) vector);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Reclaim space used by unmarked vectors. */
|
||
|
||
static void
|
||
sweep_vectors (void)
|
||
{
|
||
struct vector_block *block, **bprev = &vector_blocks;
|
||
struct large_vector *lv, **lvprev = &large_vectors;
|
||
struct Lisp_Vector *vector, *next;
|
||
|
||
total_vectors = total_vector_slots = total_free_vector_slots = 0;
|
||
memset (vector_free_lists, 0, sizeof (vector_free_lists));
|
||
|
||
/* Looking through vector blocks. */
|
||
|
||
for (block = vector_blocks; block; block = *bprev)
|
||
{
|
||
bool free_this_block = 0;
|
||
ptrdiff_t nbytes;
|
||
|
||
for (vector = (struct Lisp_Vector *) block->data;
|
||
VECTOR_IN_BLOCK (vector, block); vector = next)
|
||
{
|
||
if (VECTOR_MARKED_P (vector))
|
||
{
|
||
VECTOR_UNMARK (vector);
|
||
total_vectors++;
|
||
nbytes = vector_nbytes (vector);
|
||
total_vector_slots += nbytes / word_size;
|
||
next = ADVANCE (vector, nbytes);
|
||
}
|
||
else
|
||
{
|
||
ptrdiff_t total_bytes;
|
||
|
||
cleanup_vector (vector);
|
||
nbytes = vector_nbytes (vector);
|
||
total_bytes = nbytes;
|
||
next = ADVANCE (vector, nbytes);
|
||
|
||
/* While NEXT is not marked, try to coalesce with VECTOR,
|
||
thus making VECTOR of the largest possible size. */
|
||
|
||
while (VECTOR_IN_BLOCK (next, block))
|
||
{
|
||
if (VECTOR_MARKED_P (next))
|
||
break;
|
||
cleanup_vector (next);
|
||
nbytes = vector_nbytes (next);
|
||
total_bytes += nbytes;
|
||
next = ADVANCE (next, nbytes);
|
||
}
|
||
|
||
eassert (total_bytes % roundup_size == 0);
|
||
|
||
if (vector == (struct Lisp_Vector *) block->data
|
||
&& !VECTOR_IN_BLOCK (next, block))
|
||
/* This block should be freed because all of it's
|
||
space was coalesced into the only free vector. */
|
||
free_this_block = 1;
|
||
else
|
||
{
|
||
size_t tmp;
|
||
SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (free_this_block)
|
||
{
|
||
*bprev = block->next;
|
||
#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
|
||
mem_delete (mem_find (block->data));
|
||
#endif
|
||
xfree (block);
|
||
}
|
||
else
|
||
bprev = &block->next;
|
||
}
|
||
|
||
/* Sweep large vectors. */
|
||
|
||
for (lv = large_vectors; lv; lv = *lvprev)
|
||
{
|
||
vector = large_vector_vec (lv);
|
||
if (VECTOR_MARKED_P (vector))
|
||
{
|
||
VECTOR_UNMARK (vector);
|
||
total_vectors++;
|
||
if (vector->header.size & PSEUDOVECTOR_FLAG)
|
||
{
|
||
/* All non-bool pseudovectors are small enough to be allocated
|
||
from vector blocks. This code should be redesigned if some
|
||
pseudovector type grows beyond VBLOCK_BYTES_MAX. */
|
||
eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
|
||
total_vector_slots += vector_nbytes (vector) / word_size;
|
||
}
|
||
else
|
||
total_vector_slots
|
||
+= header_size / word_size + vector->header.size;
|
||
lvprev = &lv->next;
|
||
}
|
||
else
|
||
{
|
||
*lvprev = lv->next;
|
||
lisp_free (lv);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Value is a pointer to a newly allocated Lisp_Vector structure
|
||
with room for LEN Lisp_Objects. */
|
||
|
||
static struct Lisp_Vector *
|
||
allocate_vectorlike (ptrdiff_t len)
|
||
{
|
||
struct Lisp_Vector *p;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (len == 0)
|
||
p = XVECTOR (zero_vector);
|
||
else
|
||
{
|
||
size_t nbytes = header_size + len * word_size;
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
|
||
because mapped region contents are not preserved in
|
||
a dumped Emacs. */
|
||
mallopt (M_MMAP_MAX, 0);
|
||
#endif
|
||
|
||
if (nbytes <= VBLOCK_BYTES_MAX)
|
||
p = allocate_vector_from_block (vroundup (nbytes));
|
||
else
|
||
{
|
||
struct large_vector *lv
|
||
= lisp_malloc ((large_vector_offset + header_size
|
||
+ len * word_size),
|
||
MEM_TYPE_VECTORLIKE);
|
||
lv->next = large_vectors;
|
||
large_vectors = lv;
|
||
p = large_vector_vec (lv);
|
||
}
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
/* Back to a reasonable maximum of mmap'ed areas. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
|
||
#endif
|
||
|
||
consing_since_gc += nbytes;
|
||
vector_cells_consed += len;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Allocate a vector with LEN slots. */
|
||
|
||
struct Lisp_Vector *
|
||
allocate_vector (EMACS_INT len)
|
||
{
|
||
struct Lisp_Vector *v;
|
||
ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
|
||
|
||
if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
|
||
memory_full (SIZE_MAX);
|
||
v = allocate_vectorlike (len);
|
||
v->header.size = len;
|
||
return v;
|
||
}
|
||
|
||
|
||
/* Allocate other vector-like structures. */
|
||
|
||
struct Lisp_Vector *
|
||
allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
|
||
{
|
||
struct Lisp_Vector *v = allocate_vectorlike (memlen);
|
||
int i;
|
||
|
||
/* Catch bogus values. */
|
||
eassert (tag <= PVEC_FONT);
|
||
eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
|
||
eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
|
||
|
||
/* Only the first lisplen slots will be traced normally by the GC. */
|
||
for (i = 0; i < lisplen; ++i)
|
||
v->contents[i] = Qnil;
|
||
|
||
XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
|
||
return v;
|
||
}
|
||
|
||
struct buffer *
|
||
allocate_buffer (void)
|
||
{
|
||
struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
|
||
|
||
BUFFER_PVEC_INIT (b);
|
||
/* Put B on the chain of all buffers including killed ones. */
|
||
b->next = all_buffers;
|
||
all_buffers = b;
|
||
/* Note that the rest fields of B are not initialized. */
|
||
return b;
|
||
}
|
||
|
||
struct Lisp_Hash_Table *
|
||
allocate_hash_table (void)
|
||
{
|
||
return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
|
||
}
|
||
|
||
struct window *
|
||
allocate_window (void)
|
||
{
|
||
struct window *w;
|
||
|
||
w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
|
||
/* Users assumes that non-Lisp data is zeroed. */
|
||
memset (&w->current_matrix, 0,
|
||
sizeof (*w) - offsetof (struct window, current_matrix));
|
||
return w;
|
||
}
|
||
|
||
struct terminal *
|
||
allocate_terminal (void)
|
||
{
|
||
struct terminal *t;
|
||
|
||
t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
|
||
/* Users assumes that non-Lisp data is zeroed. */
|
||
memset (&t->next_terminal, 0,
|
||
sizeof (*t) - offsetof (struct terminal, next_terminal));
|
||
return t;
|
||
}
|
||
|
||
struct frame *
|
||
allocate_frame (void)
|
||
{
|
||
struct frame *f;
|
||
|
||
f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
|
||
/* Users assumes that non-Lisp data is zeroed. */
|
||
memset (&f->face_cache, 0,
|
||
sizeof (*f) - offsetof (struct frame, face_cache));
|
||
return f;
|
||
}
|
||
|
||
struct Lisp_Process *
|
||
allocate_process (void)
|
||
{
|
||
struct Lisp_Process *p;
|
||
|
||
p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
|
||
/* Users assumes that non-Lisp data is zeroed. */
|
||
memset (&p->pid, 0,
|
||
sizeof (*p) - offsetof (struct Lisp_Process, pid));
|
||
return p;
|
||
}
|
||
|
||
DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
|
||
doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
|
||
See also the function `vector'. */)
|
||
(register Lisp_Object length, Lisp_Object init)
|
||
{
|
||
Lisp_Object vector;
|
||
register ptrdiff_t sizei;
|
||
register ptrdiff_t i;
|
||
register struct Lisp_Vector *p;
|
||
|
||
CHECK_NATNUM (length);
|
||
|
||
p = allocate_vector (XFASTINT (length));
|
||
sizei = XFASTINT (length);
|
||
for (i = 0; i < sizei; i++)
|
||
p->contents[i] = init;
|
||
|
||
XSETVECTOR (vector, p);
|
||
return vector;
|
||
}
|
||
|
||
|
||
DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
|
||
doc: /* Return a newly created vector with specified arguments as elements.
|
||
Any number of arguments, even zero arguments, are allowed.
|
||
usage: (vector &rest OBJECTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t i;
|
||
register Lisp_Object val = make_uninit_vector (nargs);
|
||
register struct Lisp_Vector *p = XVECTOR (val);
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
p->contents[i] = args[i];
|
||
return val;
|
||
}
|
||
|
||
void
|
||
make_byte_code (struct Lisp_Vector *v)
|
||
{
|
||
/* Don't allow the global zero_vector to become a byte code object. */
|
||
eassert (0 < v->header.size);
|
||
|
||
if (v->header.size > 1 && STRINGP (v->contents[1])
|
||
&& STRING_MULTIBYTE (v->contents[1]))
|
||
/* BYTECODE-STRING must have been produced by Emacs 20.2 or the
|
||
earlier because they produced a raw 8-bit string for byte-code
|
||
and now such a byte-code string is loaded as multibyte while
|
||
raw 8-bit characters converted to multibyte form. Thus, now we
|
||
must convert them back to the original unibyte form. */
|
||
v->contents[1] = Fstring_as_unibyte (v->contents[1]);
|
||
XSETPVECTYPE (v, PVEC_COMPILED);
|
||
}
|
||
|
||
DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
|
||
doc: /* Create a byte-code object with specified arguments as elements.
|
||
The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
|
||
vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
|
||
and (optional) INTERACTIVE-SPEC.
|
||
The first four arguments are required; at most six have any
|
||
significance.
|
||
The ARGLIST can be either like the one of `lambda', in which case the arguments
|
||
will be dynamically bound before executing the byte code, or it can be an
|
||
integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
|
||
minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
|
||
of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
|
||
argument to catch the left-over arguments. If such an integer is used, the
|
||
arguments will not be dynamically bound but will be instead pushed on the
|
||
stack before executing the byte-code.
|
||
usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t i;
|
||
register Lisp_Object val = make_uninit_vector (nargs);
|
||
register struct Lisp_Vector *p = XVECTOR (val);
|
||
|
||
/* We used to purecopy everything here, if purify-flag was set. This worked
|
||
OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
|
||
dangerous, since make-byte-code is used during execution to build
|
||
closures, so any closure built during the preload phase would end up
|
||
copied into pure space, including its free variables, which is sometimes
|
||
just wasteful and other times plainly wrong (e.g. those free vars may want
|
||
to be setcar'd). */
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
p->contents[i] = args[i];
|
||
make_byte_code (p);
|
||
XSETCOMPILED (val, p);
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Symbol Allocation
|
||
***********************************************************************/
|
||
|
||
/* Like struct Lisp_Symbol, but padded so that the size is a multiple
|
||
of the required alignment if LSB tags are used. */
|
||
|
||
union aligned_Lisp_Symbol
|
||
{
|
||
struct Lisp_Symbol s;
|
||
#if USE_LSB_TAG
|
||
unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
|
||
& -GCALIGNMENT];
|
||
#endif
|
||
};
|
||
|
||
/* Each symbol_block is just under 1020 bytes long, since malloc
|
||
really allocates in units of powers of two and uses 4 bytes for its
|
||
own overhead. */
|
||
|
||
#define SYMBOL_BLOCK_SIZE \
|
||
((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
|
||
|
||
struct symbol_block
|
||
{
|
||
/* Place `symbols' first, to preserve alignment. */
|
||
union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
|
||
struct symbol_block *next;
|
||
};
|
||
|
||
/* Current symbol block and index of first unused Lisp_Symbol
|
||
structure in it. */
|
||
|
||
static struct symbol_block *symbol_block;
|
||
static int symbol_block_index = SYMBOL_BLOCK_SIZE;
|
||
/* Pointer to the first symbol_block that contains pinned symbols.
|
||
Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
|
||
10K of which are pinned (and all but 250 of them are interned in obarray),
|
||
whereas a "typical session" has in the order of 30K symbols.
|
||
`symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
|
||
than 30K to find the 10K symbols we need to mark. */
|
||
static struct symbol_block *symbol_block_pinned;
|
||
|
||
/* List of free symbols. */
|
||
|
||
static struct Lisp_Symbol *symbol_free_list;
|
||
|
||
static void
|
||
set_symbol_name (Lisp_Object sym, Lisp_Object name)
|
||
{
|
||
XSYMBOL (sym)->name = name;
|
||
}
|
||
|
||
DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
|
||
doc: /* Return a newly allocated uninterned symbol whose name is NAME.
|
||
Its value is void, and its function definition and property list are nil. */)
|
||
(Lisp_Object name)
|
||
{
|
||
register Lisp_Object val;
|
||
register struct Lisp_Symbol *p;
|
||
|
||
CHECK_STRING (name);
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (symbol_free_list)
|
||
{
|
||
XSETSYMBOL (val, symbol_free_list);
|
||
symbol_free_list = symbol_free_list->next;
|
||
}
|
||
else
|
||
{
|
||
if (symbol_block_index == SYMBOL_BLOCK_SIZE)
|
||
{
|
||
struct symbol_block *new
|
||
= lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
|
||
new->next = symbol_block;
|
||
symbol_block = new;
|
||
symbol_block_index = 0;
|
||
total_free_symbols += SYMBOL_BLOCK_SIZE;
|
||
}
|
||
XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
|
||
symbol_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
p = XSYMBOL (val);
|
||
set_symbol_name (val, name);
|
||
set_symbol_plist (val, Qnil);
|
||
p->redirect = SYMBOL_PLAINVAL;
|
||
SET_SYMBOL_VAL (p, Qunbound);
|
||
set_symbol_function (val, Qnil);
|
||
set_symbol_next (val, NULL);
|
||
p->gcmarkbit = false;
|
||
p->interned = SYMBOL_UNINTERNED;
|
||
p->constant = 0;
|
||
p->declared_special = false;
|
||
p->pinned = false;
|
||
consing_since_gc += sizeof (struct Lisp_Symbol);
|
||
symbols_consed++;
|
||
total_free_symbols--;
|
||
return val;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Marker (Misc) Allocation
|
||
***********************************************************************/
|
||
|
||
/* Like union Lisp_Misc, but padded so that its size is a multiple of
|
||
the required alignment when LSB tags are used. */
|
||
|
||
union aligned_Lisp_Misc
|
||
{
|
||
union Lisp_Misc m;
|
||
#if USE_LSB_TAG
|
||
unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
|
||
& -GCALIGNMENT];
|
||
#endif
|
||
};
|
||
|
||
/* Allocation of markers and other objects that share that structure.
|
||
Works like allocation of conses. */
|
||
|
||
#define MARKER_BLOCK_SIZE \
|
||
((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
|
||
|
||
struct marker_block
|
||
{
|
||
/* Place `markers' first, to preserve alignment. */
|
||
union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
|
||
struct marker_block *next;
|
||
};
|
||
|
||
static struct marker_block *marker_block;
|
||
static int marker_block_index = MARKER_BLOCK_SIZE;
|
||
|
||
static union Lisp_Misc *marker_free_list;
|
||
|
||
/* Return a newly allocated Lisp_Misc object of specified TYPE. */
|
||
|
||
static Lisp_Object
|
||
allocate_misc (enum Lisp_Misc_Type type)
|
||
{
|
||
Lisp_Object val;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
|
||
if (marker_free_list)
|
||
{
|
||
XSETMISC (val, marker_free_list);
|
||
marker_free_list = marker_free_list->u_free.chain;
|
||
}
|
||
else
|
||
{
|
||
if (marker_block_index == MARKER_BLOCK_SIZE)
|
||
{
|
||
struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
|
||
new->next = marker_block;
|
||
marker_block = new;
|
||
marker_block_index = 0;
|
||
total_free_markers += MARKER_BLOCK_SIZE;
|
||
}
|
||
XSETMISC (val, &marker_block->markers[marker_block_index].m);
|
||
marker_block_index++;
|
||
}
|
||
|
||
MALLOC_UNBLOCK_INPUT;
|
||
|
||
--total_free_markers;
|
||
consing_since_gc += sizeof (union Lisp_Misc);
|
||
misc_objects_consed++;
|
||
XMISCANY (val)->type = type;
|
||
XMISCANY (val)->gcmarkbit = 0;
|
||
return val;
|
||
}
|
||
|
||
/* Free a Lisp_Misc object. */
|
||
|
||
void
|
||
free_misc (Lisp_Object misc)
|
||
{
|
||
XMISCANY (misc)->type = Lisp_Misc_Free;
|
||
XMISC (misc)->u_free.chain = marker_free_list;
|
||
marker_free_list = XMISC (misc);
|
||
consing_since_gc -= sizeof (union Lisp_Misc);
|
||
total_free_markers++;
|
||
}
|
||
|
||
/* Verify properties of Lisp_Save_Value's representation
|
||
that are assumed here and elsewhere. */
|
||
|
||
verify (SAVE_UNUSED == 0);
|
||
verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
|
||
>> SAVE_SLOT_BITS)
|
||
== 0);
|
||
|
||
/* Return Lisp_Save_Value objects for the various combinations
|
||
that callers need. */
|
||
|
||
Lisp_Object
|
||
make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_INT_INT_INT;
|
||
p->data[0].integer = a;
|
||
p->data[1].integer = b;
|
||
p->data[2].integer = c;
|
||
return val;
|
||
}
|
||
|
||
Lisp_Object
|
||
make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
|
||
Lisp_Object d)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
|
||
p->data[0].object = a;
|
||
p->data[1].object = b;
|
||
p->data[2].object = c;
|
||
p->data[3].object = d;
|
||
return val;
|
||
}
|
||
|
||
Lisp_Object
|
||
make_save_ptr (void *a)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_POINTER;
|
||
p->data[0].pointer = a;
|
||
return val;
|
||
}
|
||
|
||
Lisp_Object
|
||
make_save_ptr_int (void *a, ptrdiff_t b)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_PTR_INT;
|
||
p->data[0].pointer = a;
|
||
p->data[1].integer = b;
|
||
return val;
|
||
}
|
||
|
||
#if ! (defined USE_X_TOOLKIT || defined USE_GTK)
|
||
Lisp_Object
|
||
make_save_ptr_ptr (void *a, void *b)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_PTR_PTR;
|
||
p->data[0].pointer = a;
|
||
p->data[1].pointer = b;
|
||
return val;
|
||
}
|
||
#endif
|
||
|
||
Lisp_Object
|
||
make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
|
||
p->data[0].funcpointer = a;
|
||
p->data[1].pointer = b;
|
||
p->data[2].object = c;
|
||
return val;
|
||
}
|
||
|
||
/* Return a Lisp_Save_Value object that represents an array A
|
||
of N Lisp objects. */
|
||
|
||
Lisp_Object
|
||
make_save_memory (Lisp_Object *a, ptrdiff_t n)
|
||
{
|
||
Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
|
||
struct Lisp_Save_Value *p = XSAVE_VALUE (val);
|
||
p->save_type = SAVE_TYPE_MEMORY;
|
||
p->data[0].pointer = a;
|
||
p->data[1].integer = n;
|
||
return val;
|
||
}
|
||
|
||
/* Free a Lisp_Save_Value object. Do not use this function
|
||
if SAVE contains pointer other than returned by xmalloc. */
|
||
|
||
void
|
||
free_save_value (Lisp_Object save)
|
||
{
|
||
xfree (XSAVE_POINTER (save, 0));
|
||
free_misc (save);
|
||
}
|
||
|
||
/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
|
||
|
||
Lisp_Object
|
||
build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
|
||
{
|
||
register Lisp_Object overlay;
|
||
|
||
overlay = allocate_misc (Lisp_Misc_Overlay);
|
||
OVERLAY_START (overlay) = start;
|
||
OVERLAY_END (overlay) = end;
|
||
set_overlay_plist (overlay, plist);
|
||
XOVERLAY (overlay)->next = NULL;
|
||
return overlay;
|
||
}
|
||
|
||
DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
|
||
doc: /* Return a newly allocated marker which does not point at any place. */)
|
||
(void)
|
||
{
|
||
register Lisp_Object val;
|
||
register struct Lisp_Marker *p;
|
||
|
||
val = allocate_misc (Lisp_Misc_Marker);
|
||
p = XMARKER (val);
|
||
p->buffer = 0;
|
||
p->bytepos = 0;
|
||
p->charpos = 0;
|
||
p->next = NULL;
|
||
p->insertion_type = 0;
|
||
p->need_adjustment = 0;
|
||
return val;
|
||
}
|
||
|
||
/* Return a newly allocated marker which points into BUF
|
||
at character position CHARPOS and byte position BYTEPOS. */
|
||
|
||
Lisp_Object
|
||
build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
|
||
{
|
||
Lisp_Object obj;
|
||
struct Lisp_Marker *m;
|
||
|
||
/* No dead buffers here. */
|
||
eassert (BUFFER_LIVE_P (buf));
|
||
|
||
/* Every character is at least one byte. */
|
||
eassert (charpos <= bytepos);
|
||
|
||
obj = allocate_misc (Lisp_Misc_Marker);
|
||
m = XMARKER (obj);
|
||
m->buffer = buf;
|
||
m->charpos = charpos;
|
||
m->bytepos = bytepos;
|
||
m->insertion_type = 0;
|
||
m->need_adjustment = 0;
|
||
m->next = BUF_MARKERS (buf);
|
||
BUF_MARKERS (buf) = m;
|
||
return obj;
|
||
}
|
||
|
||
/* Put MARKER back on the free list after using it temporarily. */
|
||
|
||
void
|
||
free_marker (Lisp_Object marker)
|
||
{
|
||
unchain_marker (XMARKER (marker));
|
||
free_misc (marker);
|
||
}
|
||
|
||
|
||
/* Return a newly created vector or string with specified arguments as
|
||
elements. If all the arguments are characters that can fit
|
||
in a string of events, make a string; otherwise, make a vector.
|
||
|
||
Any number of arguments, even zero arguments, are allowed. */
|
||
|
||
Lisp_Object
|
||
make_event_array (ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
/* The things that fit in a string
|
||
are characters that are in 0...127,
|
||
after discarding the meta bit and all the bits above it. */
|
||
if (!INTEGERP (args[i])
|
||
|| (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
|
||
return Fvector (nargs, args);
|
||
|
||
/* Since the loop exited, we know that all the things in it are
|
||
characters, so we can make a string. */
|
||
{
|
||
Lisp_Object result;
|
||
|
||
result = Fmake_string (make_number (nargs), make_number (0));
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
SSET (result, i, XINT (args[i]));
|
||
/* Move the meta bit to the right place for a string char. */
|
||
if (XINT (args[i]) & CHAR_META)
|
||
SSET (result, i, SREF (result, i) | 0x80);
|
||
}
|
||
|
||
return result;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/************************************************************************
|
||
Memory Full Handling
|
||
************************************************************************/
|
||
|
||
|
||
/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
|
||
there may have been size_t overflow so that malloc was never
|
||
called, or perhaps malloc was invoked successfully but the
|
||
resulting pointer had problems fitting into a tagged EMACS_INT. In
|
||
either case this counts as memory being full even though malloc did
|
||
not fail. */
|
||
|
||
void
|
||
memory_full (size_t nbytes)
|
||
{
|
||
/* Do not go into hysterics merely because a large request failed. */
|
||
bool enough_free_memory = 0;
|
||
if (SPARE_MEMORY < nbytes)
|
||
{
|
||
void *p;
|
||
|
||
MALLOC_BLOCK_INPUT;
|
||
p = malloc (SPARE_MEMORY);
|
||
if (p)
|
||
{
|
||
free (p);
|
||
enough_free_memory = 1;
|
||
}
|
||
MALLOC_UNBLOCK_INPUT;
|
||
}
|
||
|
||
if (! enough_free_memory)
|
||
{
|
||
int i;
|
||
|
||
Vmemory_full = Qt;
|
||
|
||
memory_full_cons_threshold = sizeof (struct cons_block);
|
||
|
||
/* The first time we get here, free the spare memory. */
|
||
for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
|
||
if (spare_memory[i])
|
||
{
|
||
if (i == 0)
|
||
free (spare_memory[i]);
|
||
else if (i >= 1 && i <= 4)
|
||
lisp_align_free (spare_memory[i]);
|
||
else
|
||
lisp_free (spare_memory[i]);
|
||
spare_memory[i] = 0;
|
||
}
|
||
}
|
||
|
||
/* This used to call error, but if we've run out of memory, we could
|
||
get infinite recursion trying to build the string. */
|
||
xsignal (Qnil, Vmemory_signal_data);
|
||
}
|
||
|
||
/* If we released our reserve (due to running out of memory),
|
||
and we have a fair amount free once again,
|
||
try to set aside another reserve in case we run out once more.
|
||
|
||
This is called when a relocatable block is freed in ralloc.c,
|
||
and also directly from this file, in case we're not using ralloc.c. */
|
||
|
||
void
|
||
refill_memory_reserve (void)
|
||
{
|
||
#ifndef SYSTEM_MALLOC
|
||
if (spare_memory[0] == 0)
|
||
spare_memory[0] = malloc (SPARE_MEMORY);
|
||
if (spare_memory[1] == 0)
|
||
spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[2] == 0)
|
||
spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[3] == 0)
|
||
spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[4] == 0)
|
||
spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[5] == 0)
|
||
spare_memory[5] = lisp_malloc (sizeof (struct string_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[6] == 0)
|
||
spare_memory[6] = lisp_malloc (sizeof (struct string_block),
|
||
MEM_TYPE_SPARE);
|
||
if (spare_memory[0] && spare_memory[1] && spare_memory[5])
|
||
Vmemory_full = Qnil;
|
||
#endif
|
||
}
|
||
|
||
/************************************************************************
|
||
C Stack Marking
|
||
************************************************************************/
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
|
||
/* Conservative C stack marking requires a method to identify possibly
|
||
live Lisp objects given a pointer value. We do this by keeping
|
||
track of blocks of Lisp data that are allocated in a red-black tree
|
||
(see also the comment of mem_node which is the type of nodes in
|
||
that tree). Function lisp_malloc adds information for an allocated
|
||
block to the red-black tree with calls to mem_insert, and function
|
||
lisp_free removes it with mem_delete. Functions live_string_p etc
|
||
call mem_find to lookup information about a given pointer in the
|
||
tree, and use that to determine if the pointer points to a Lisp
|
||
object or not. */
|
||
|
||
/* Initialize this part of alloc.c. */
|
||
|
||
static void
|
||
mem_init (void)
|
||
{
|
||
mem_z.left = mem_z.right = MEM_NIL;
|
||
mem_z.parent = NULL;
|
||
mem_z.color = MEM_BLACK;
|
||
mem_z.start = mem_z.end = NULL;
|
||
mem_root = MEM_NIL;
|
||
}
|
||
|
||
|
||
/* Value is a pointer to the mem_node containing START. Value is
|
||
MEM_NIL if there is no node in the tree containing START. */
|
||
|
||
static struct mem_node *
|
||
mem_find (void *start)
|
||
{
|
||
struct mem_node *p;
|
||
|
||
if (start < min_heap_address || start > max_heap_address)
|
||
return MEM_NIL;
|
||
|
||
/* Make the search always successful to speed up the loop below. */
|
||
mem_z.start = start;
|
||
mem_z.end = (char *) start + 1;
|
||
|
||
p = mem_root;
|
||
while (start < p->start || start >= p->end)
|
||
p = start < p->start ? p->left : p->right;
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Insert a new node into the tree for a block of memory with start
|
||
address START, end address END, and type TYPE. Value is a
|
||
pointer to the node that was inserted. */
|
||
|
||
static struct mem_node *
|
||
mem_insert (void *start, void *end, enum mem_type type)
|
||
{
|
||
struct mem_node *c, *parent, *x;
|
||
|
||
if (min_heap_address == NULL || start < min_heap_address)
|
||
min_heap_address = start;
|
||
if (max_heap_address == NULL || end > max_heap_address)
|
||
max_heap_address = end;
|
||
|
||
/* See where in the tree a node for START belongs. In this
|
||
particular application, it shouldn't happen that a node is already
|
||
present. For debugging purposes, let's check that. */
|
||
c = mem_root;
|
||
parent = NULL;
|
||
|
||
#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
|
||
|
||
while (c != MEM_NIL)
|
||
{
|
||
if (start >= c->start && start < c->end)
|
||
emacs_abort ();
|
||
parent = c;
|
||
c = start < c->start ? c->left : c->right;
|
||
}
|
||
|
||
#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
|
||
|
||
while (c != MEM_NIL)
|
||
{
|
||
parent = c;
|
||
c = start < c->start ? c->left : c->right;
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
|
||
|
||
/* Create a new node. */
|
||
#ifdef GC_MALLOC_CHECK
|
||
x = malloc (sizeof *x);
|
||
if (x == NULL)
|
||
emacs_abort ();
|
||
#else
|
||
x = xmalloc (sizeof *x);
|
||
#endif
|
||
x->start = start;
|
||
x->end = end;
|
||
x->type = type;
|
||
x->parent = parent;
|
||
x->left = x->right = MEM_NIL;
|
||
x->color = MEM_RED;
|
||
|
||
/* Insert it as child of PARENT or install it as root. */
|
||
if (parent)
|
||
{
|
||
if (start < parent->start)
|
||
parent->left = x;
|
||
else
|
||
parent->right = x;
|
||
}
|
||
else
|
||
mem_root = x;
|
||
|
||
/* Re-establish red-black tree properties. */
|
||
mem_insert_fixup (x);
|
||
|
||
return x;
|
||
}
|
||
|
||
|
||
/* Re-establish the red-black properties of the tree, and thereby
|
||
balance the tree, after node X has been inserted; X is always red. */
|
||
|
||
static void
|
||
mem_insert_fixup (struct mem_node *x)
|
||
{
|
||
while (x != mem_root && x->parent->color == MEM_RED)
|
||
{
|
||
/* X is red and its parent is red. This is a violation of
|
||
red-black tree property #3. */
|
||
|
||
if (x->parent == x->parent->parent->left)
|
||
{
|
||
/* We're on the left side of our grandparent, and Y is our
|
||
"uncle". */
|
||
struct mem_node *y = x->parent->parent->right;
|
||
|
||
if (y->color == MEM_RED)
|
||
{
|
||
/* Uncle and parent are red but should be black because
|
||
X is red. Change the colors accordingly and proceed
|
||
with the grandparent. */
|
||
x->parent->color = MEM_BLACK;
|
||
y->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
x = x->parent->parent;
|
||
}
|
||
else
|
||
{
|
||
/* Parent and uncle have different colors; parent is
|
||
red, uncle is black. */
|
||
if (x == x->parent->right)
|
||
{
|
||
x = x->parent;
|
||
mem_rotate_left (x);
|
||
}
|
||
|
||
x->parent->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
mem_rotate_right (x->parent->parent);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* This is the symmetrical case of above. */
|
||
struct mem_node *y = x->parent->parent->left;
|
||
|
||
if (y->color == MEM_RED)
|
||
{
|
||
x->parent->color = MEM_BLACK;
|
||
y->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
x = x->parent->parent;
|
||
}
|
||
else
|
||
{
|
||
if (x == x->parent->left)
|
||
{
|
||
x = x->parent;
|
||
mem_rotate_right (x);
|
||
}
|
||
|
||
x->parent->color = MEM_BLACK;
|
||
x->parent->parent->color = MEM_RED;
|
||
mem_rotate_left (x->parent->parent);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* The root may have been changed to red due to the algorithm. Set
|
||
it to black so that property #5 is satisfied. */
|
||
mem_root->color = MEM_BLACK;
|
||
}
|
||
|
||
|
||
/* (x) (y)
|
||
/ \ / \
|
||
a (y) ===> (x) c
|
||
/ \ / \
|
||
b c a b */
|
||
|
||
static void
|
||
mem_rotate_left (struct mem_node *x)
|
||
{
|
||
struct mem_node *y;
|
||
|
||
/* Turn y's left sub-tree into x's right sub-tree. */
|
||
y = x->right;
|
||
x->right = y->left;
|
||
if (y->left != MEM_NIL)
|
||
y->left->parent = x;
|
||
|
||
/* Y's parent was x's parent. */
|
||
if (y != MEM_NIL)
|
||
y->parent = x->parent;
|
||
|
||
/* Get the parent to point to y instead of x. */
|
||
if (x->parent)
|
||
{
|
||
if (x == x->parent->left)
|
||
x->parent->left = y;
|
||
else
|
||
x->parent->right = y;
|
||
}
|
||
else
|
||
mem_root = y;
|
||
|
||
/* Put x on y's left. */
|
||
y->left = x;
|
||
if (x != MEM_NIL)
|
||
x->parent = y;
|
||
}
|
||
|
||
|
||
/* (x) (Y)
|
||
/ \ / \
|
||
(y) c ===> a (x)
|
||
/ \ / \
|
||
a b b c */
|
||
|
||
static void
|
||
mem_rotate_right (struct mem_node *x)
|
||
{
|
||
struct mem_node *y = x->left;
|
||
|
||
x->left = y->right;
|
||
if (y->right != MEM_NIL)
|
||
y->right->parent = x;
|
||
|
||
if (y != MEM_NIL)
|
||
y->parent = x->parent;
|
||
if (x->parent)
|
||
{
|
||
if (x == x->parent->right)
|
||
x->parent->right = y;
|
||
else
|
||
x->parent->left = y;
|
||
}
|
||
else
|
||
mem_root = y;
|
||
|
||
y->right = x;
|
||
if (x != MEM_NIL)
|
||
x->parent = y;
|
||
}
|
||
|
||
|
||
/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
|
||
|
||
static void
|
||
mem_delete (struct mem_node *z)
|
||
{
|
||
struct mem_node *x, *y;
|
||
|
||
if (!z || z == MEM_NIL)
|
||
return;
|
||
|
||
if (z->left == MEM_NIL || z->right == MEM_NIL)
|
||
y = z;
|
||
else
|
||
{
|
||
y = z->right;
|
||
while (y->left != MEM_NIL)
|
||
y = y->left;
|
||
}
|
||
|
||
if (y->left != MEM_NIL)
|
||
x = y->left;
|
||
else
|
||
x = y->right;
|
||
|
||
x->parent = y->parent;
|
||
if (y->parent)
|
||
{
|
||
if (y == y->parent->left)
|
||
y->parent->left = x;
|
||
else
|
||
y->parent->right = x;
|
||
}
|
||
else
|
||
mem_root = x;
|
||
|
||
if (y != z)
|
||
{
|
||
z->start = y->start;
|
||
z->end = y->end;
|
||
z->type = y->type;
|
||
}
|
||
|
||
if (y->color == MEM_BLACK)
|
||
mem_delete_fixup (x);
|
||
|
||
#ifdef GC_MALLOC_CHECK
|
||
free (y);
|
||
#else
|
||
xfree (y);
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Re-establish the red-black properties of the tree, after a
|
||
deletion. */
|
||
|
||
static void
|
||
mem_delete_fixup (struct mem_node *x)
|
||
{
|
||
while (x != mem_root && x->color == MEM_BLACK)
|
||
{
|
||
if (x == x->parent->left)
|
||
{
|
||
struct mem_node *w = x->parent->right;
|
||
|
||
if (w->color == MEM_RED)
|
||
{
|
||
w->color = MEM_BLACK;
|
||
x->parent->color = MEM_RED;
|
||
mem_rotate_left (x->parent);
|
||
w = x->parent->right;
|
||
}
|
||
|
||
if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
|
||
{
|
||
w->color = MEM_RED;
|
||
x = x->parent;
|
||
}
|
||
else
|
||
{
|
||
if (w->right->color == MEM_BLACK)
|
||
{
|
||
w->left->color = MEM_BLACK;
|
||
w->color = MEM_RED;
|
||
mem_rotate_right (w);
|
||
w = x->parent->right;
|
||
}
|
||
w->color = x->parent->color;
|
||
x->parent->color = MEM_BLACK;
|
||
w->right->color = MEM_BLACK;
|
||
mem_rotate_left (x->parent);
|
||
x = mem_root;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
struct mem_node *w = x->parent->left;
|
||
|
||
if (w->color == MEM_RED)
|
||
{
|
||
w->color = MEM_BLACK;
|
||
x->parent->color = MEM_RED;
|
||
mem_rotate_right (x->parent);
|
||
w = x->parent->left;
|
||
}
|
||
|
||
if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
|
||
{
|
||
w->color = MEM_RED;
|
||
x = x->parent;
|
||
}
|
||
else
|
||
{
|
||
if (w->left->color == MEM_BLACK)
|
||
{
|
||
w->right->color = MEM_BLACK;
|
||
w->color = MEM_RED;
|
||
mem_rotate_left (w);
|
||
w = x->parent->left;
|
||
}
|
||
|
||
w->color = x->parent->color;
|
||
x->parent->color = MEM_BLACK;
|
||
w->left->color = MEM_BLACK;
|
||
mem_rotate_right (x->parent);
|
||
x = mem_root;
|
||
}
|
||
}
|
||
}
|
||
|
||
x->color = MEM_BLACK;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp string on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_string_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_STRING)
|
||
{
|
||
struct string_block *b = m->start;
|
||
ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
|
||
|
||
/* P must point to the start of a Lisp_String structure, and it
|
||
must not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->strings[0] == 0
|
||
&& offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
|
||
&& ((struct Lisp_String *) p)->data != NULL);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp cons on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_cons_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_CONS)
|
||
{
|
||
struct cons_block *b = m->start;
|
||
ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
|
||
|
||
/* P must point to the start of a Lisp_Cons, not be
|
||
one of the unused cells in the current cons block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->conses[0] == 0
|
||
&& offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
|
||
&& (b != cons_block
|
||
|| offset / sizeof b->conses[0] < cons_block_index)
|
||
&& !EQ (((struct Lisp_Cons *) p)->car, Vdead));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp symbol on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_symbol_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_SYMBOL)
|
||
{
|
||
struct symbol_block *b = m->start;
|
||
ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
|
||
|
||
/* P must point to the start of a Lisp_Symbol, not be
|
||
one of the unused cells in the current symbol block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->symbols[0] == 0
|
||
&& offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
|
||
&& (b != symbol_block
|
||
|| offset / sizeof b->symbols[0] < symbol_block_index)
|
||
&& !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp float on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_float_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_FLOAT)
|
||
{
|
||
struct float_block *b = m->start;
|
||
ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
|
||
|
||
/* P must point to the start of a Lisp_Float and not be
|
||
one of the unused cells in the current float block. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->floats[0] == 0
|
||
&& offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
|
||
&& (b != float_block
|
||
|| offset / sizeof b->floats[0] < float_block_index));
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live Lisp Misc on
|
||
the heap. M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_misc_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_MISC)
|
||
{
|
||
struct marker_block *b = m->start;
|
||
ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
|
||
|
||
/* P must point to the start of a Lisp_Misc, not be
|
||
one of the unused cells in the current misc block,
|
||
and not be on the free-list. */
|
||
return (offset >= 0
|
||
&& offset % sizeof b->markers[0] == 0
|
||
&& offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
|
||
&& (b != marker_block
|
||
|| offset / sizeof b->markers[0] < marker_block_index)
|
||
&& ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live vector-like object.
|
||
M is a pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_vector_p (struct mem_node *m, void *p)
|
||
{
|
||
if (m->type == MEM_TYPE_VECTOR_BLOCK)
|
||
{
|
||
/* This memory node corresponds to a vector block. */
|
||
struct vector_block *block = m->start;
|
||
struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
|
||
|
||
/* P is in the block's allocation range. Scan the block
|
||
up to P and see whether P points to the start of some
|
||
vector which is not on a free list. FIXME: check whether
|
||
some allocation patterns (probably a lot of short vectors)
|
||
may cause a substantial overhead of this loop. */
|
||
while (VECTOR_IN_BLOCK (vector, block)
|
||
&& vector <= (struct Lisp_Vector *) p)
|
||
{
|
||
if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
|
||
return 1;
|
||
else
|
||
vector = ADVANCE (vector, vector_nbytes (vector));
|
||
}
|
||
}
|
||
else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
|
||
/* This memory node corresponds to a large vector. */
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Value is non-zero if P is a pointer to a live buffer. M is a
|
||
pointer to the mem_block for P. */
|
||
|
||
static bool
|
||
live_buffer_p (struct mem_node *m, void *p)
|
||
{
|
||
/* P must point to the start of the block, and the buffer
|
||
must not have been killed. */
|
||
return (m->type == MEM_TYPE_BUFFER
|
||
&& p == m->start
|
||
&& !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
|
||
|
||
#if GC_MARK_STACK
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
|
||
/* Currently not used, but may be called from gdb. */
|
||
|
||
void dump_zombies (void) EXTERNALLY_VISIBLE;
|
||
|
||
/* Array of objects that are kept alive because the C stack contains
|
||
a pattern that looks like a reference to them. */
|
||
|
||
#define MAX_ZOMBIES 10
|
||
static Lisp_Object zombies[MAX_ZOMBIES];
|
||
|
||
/* Number of zombie objects. */
|
||
|
||
static EMACS_INT nzombies;
|
||
|
||
/* Number of garbage collections. */
|
||
|
||
static EMACS_INT ngcs;
|
||
|
||
/* Average percentage of zombies per collection. */
|
||
|
||
static double avg_zombies;
|
||
|
||
/* Max. number of live and zombie objects. */
|
||
|
||
static EMACS_INT max_live, max_zombies;
|
||
|
||
/* Average number of live objects per GC. */
|
||
|
||
static double avg_live;
|
||
|
||
DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
|
||
doc: /* Show information about live and zombie objects. */)
|
||
(void)
|
||
{
|
||
Lisp_Object args[8], zombie_list = Qnil;
|
||
EMACS_INT i;
|
||
for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
|
||
zombie_list = Fcons (zombies[i], zombie_list);
|
||
args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
|
||
args[1] = make_number (ngcs);
|
||
args[2] = make_float (avg_live);
|
||
args[3] = make_float (avg_zombies);
|
||
args[4] = make_float (avg_zombies / avg_live / 100);
|
||
args[5] = make_number (max_live);
|
||
args[6] = make_number (max_zombies);
|
||
args[7] = zombie_list;
|
||
return Fmessage (8, args);
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
|
||
|
||
|
||
/* Mark OBJ if we can prove it's a Lisp_Object. */
|
||
|
||
static void
|
||
mark_maybe_object (Lisp_Object obj)
|
||
{
|
||
void *po;
|
||
struct mem_node *m;
|
||
|
||
#if USE_VALGRIND
|
||
if (valgrind_p)
|
||
VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
|
||
#endif
|
||
|
||
if (INTEGERP (obj))
|
||
return;
|
||
|
||
po = (void *) XPNTR (obj);
|
||
m = mem_find (po);
|
||
|
||
if (m != MEM_NIL)
|
||
{
|
||
bool mark_p = 0;
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case Lisp_String:
|
||
mark_p = (live_string_p (m, po)
|
||
&& !STRING_MARKED_P ((struct Lisp_String *) po));
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
|
||
break;
|
||
|
||
case Lisp_Float:
|
||
mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
/* Note: can't check BUFFERP before we know it's a
|
||
buffer because checking that dereferences the pointer
|
||
PO which might point anywhere. */
|
||
if (live_vector_p (m, po))
|
||
mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
|
||
else if (live_buffer_p (m, po))
|
||
mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (mark_p)
|
||
{
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
if (nzombies < MAX_ZOMBIES)
|
||
zombies[nzombies] = obj;
|
||
++nzombies;
|
||
#endif
|
||
mark_object (obj);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* If P points to Lisp data, mark that as live if it isn't already
|
||
marked. */
|
||
|
||
static void
|
||
mark_maybe_pointer (void *p)
|
||
{
|
||
struct mem_node *m;
|
||
|
||
#if USE_VALGRIND
|
||
if (valgrind_p)
|
||
VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
|
||
#endif
|
||
|
||
/* Quickly rule out some values which can't point to Lisp data.
|
||
USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
|
||
Otherwise, assume that Lisp data is aligned on even addresses. */
|
||
if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
|
||
return;
|
||
|
||
m = mem_find (p);
|
||
if (m != MEM_NIL)
|
||
{
|
||
Lisp_Object obj = Qnil;
|
||
|
||
switch (m->type)
|
||
{
|
||
case MEM_TYPE_NON_LISP:
|
||
case MEM_TYPE_SPARE:
|
||
/* Nothing to do; not a pointer to Lisp memory. */
|
||
break;
|
||
|
||
case MEM_TYPE_BUFFER:
|
||
if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
|
||
XSETVECTOR (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_CONS:
|
||
if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
|
||
XSETCONS (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_STRING:
|
||
if (live_string_p (m, p)
|
||
&& !STRING_MARKED_P ((struct Lisp_String *) p))
|
||
XSETSTRING (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_MISC:
|
||
if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
|
||
XSETMISC (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_SYMBOL:
|
||
if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
|
||
XSETSYMBOL (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_FLOAT:
|
||
if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
|
||
XSETFLOAT (obj, p);
|
||
break;
|
||
|
||
case MEM_TYPE_VECTORLIKE:
|
||
case MEM_TYPE_VECTOR_BLOCK:
|
||
if (live_vector_p (m, p))
|
||
{
|
||
Lisp_Object tem;
|
||
XSETVECTOR (tem, p);
|
||
if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
|
||
obj = tem;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
|
||
if (!NILP (obj))
|
||
mark_object (obj);
|
||
}
|
||
}
|
||
|
||
|
||
/* Alignment of pointer values. Use alignof, as it sometimes returns
|
||
a smaller alignment than GCC's __alignof__ and mark_memory might
|
||
miss objects if __alignof__ were used. */
|
||
#define GC_POINTER_ALIGNMENT alignof (void *)
|
||
|
||
/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
|
||
not suffice, which is the typical case. A host where a Lisp_Object is
|
||
wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
|
||
If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
|
||
suffice to widen it to to a Lisp_Object and check it that way. */
|
||
#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
|
||
# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
|
||
/* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
|
||
nor mark_maybe_object can follow the pointers. This should not occur on
|
||
any practical porting target. */
|
||
# error "MSB type bits straddle pointer-word boundaries"
|
||
# endif
|
||
/* Marking via C pointers does not suffice, because Lisp_Objects contain
|
||
pointer words that hold pointers ORed with type bits. */
|
||
# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
|
||
#else
|
||
/* Marking via C pointers suffices, because Lisp_Objects contain pointer
|
||
words that hold unmodified pointers. */
|
||
# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
|
||
#endif
|
||
|
||
/* Mark Lisp objects referenced from the address range START+OFFSET..END
|
||
or END+OFFSET..START. */
|
||
|
||
static void ATTRIBUTE_NO_SANITIZE_ADDRESS
|
||
mark_memory (void *start, void *end)
|
||
{
|
||
void **pp;
|
||
int i;
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
nzombies = 0;
|
||
#endif
|
||
|
||
/* Make START the pointer to the start of the memory region,
|
||
if it isn't already. */
|
||
if (end < start)
|
||
{
|
||
void *tem = start;
|
||
start = end;
|
||
end = tem;
|
||
}
|
||
|
||
/* Mark Lisp data pointed to. This is necessary because, in some
|
||
situations, the C compiler optimizes Lisp objects away, so that
|
||
only a pointer to them remains. Example:
|
||
|
||
DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
|
||
()
|
||
{
|
||
Lisp_Object obj = build_string ("test");
|
||
struct Lisp_String *s = XSTRING (obj);
|
||
Fgarbage_collect ();
|
||
fprintf (stderr, "test `%s'\n", s->data);
|
||
return Qnil;
|
||
}
|
||
|
||
Here, `obj' isn't really used, and the compiler optimizes it
|
||
away. The only reference to the life string is through the
|
||
pointer `s'. */
|
||
|
||
for (pp = start; (void *) pp < end; pp++)
|
||
for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
|
||
{
|
||
void *p = *(void **) ((char *) pp + i);
|
||
mark_maybe_pointer (p);
|
||
if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
|
||
mark_maybe_object (XIL ((intptr_t) p));
|
||
}
|
||
}
|
||
|
||
#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
|
||
|
||
static bool setjmp_tested_p;
|
||
static int longjmps_done;
|
||
|
||
#define SETJMP_WILL_LIKELY_WORK "\
|
||
\n\
|
||
Emacs garbage collector has been changed to use conservative stack\n\
|
||
marking. Emacs has determined that the method it uses to do the\n\
|
||
marking will likely work on your system, but this isn't sure.\n\
|
||
\n\
|
||
If you are a system-programmer, or can get the help of a local wizard\n\
|
||
who is, please take a look at the function mark_stack in alloc.c, and\n\
|
||
verify that the methods used are appropriate for your system.\n\
|
||
\n\
|
||
Please mail the result to <emacs-devel@gnu.org>.\n\
|
||
"
|
||
|
||
#define SETJMP_WILL_NOT_WORK "\
|
||
\n\
|
||
Emacs garbage collector has been changed to use conservative stack\n\
|
||
marking. Emacs has determined that the default method it uses to do the\n\
|
||
marking will not work on your system. We will need a system-dependent\n\
|
||
solution for your system.\n\
|
||
\n\
|
||
Please take a look at the function mark_stack in alloc.c, and\n\
|
||
try to find a way to make it work on your system.\n\
|
||
\n\
|
||
Note that you may get false negatives, depending on the compiler.\n\
|
||
In particular, you need to use -O with GCC for this test.\n\
|
||
\n\
|
||
Please mail the result to <emacs-devel@gnu.org>.\n\
|
||
"
|
||
|
||
|
||
/* Perform a quick check if it looks like setjmp saves registers in a
|
||
jmp_buf. Print a message to stderr saying so. When this test
|
||
succeeds, this is _not_ a proof that setjmp is sufficient for
|
||
conservative stack marking. Only the sources or a disassembly
|
||
can prove that. */
|
||
|
||
static void
|
||
test_setjmp (void)
|
||
{
|
||
char buf[10];
|
||
register int x;
|
||
sys_jmp_buf jbuf;
|
||
|
||
/* Arrange for X to be put in a register. */
|
||
sprintf (buf, "1");
|
||
x = strlen (buf);
|
||
x = 2 * x - 1;
|
||
|
||
sys_setjmp (jbuf);
|
||
if (longjmps_done == 1)
|
||
{
|
||
/* Came here after the longjmp at the end of the function.
|
||
|
||
If x == 1, the longjmp has restored the register to its
|
||
value before the setjmp, and we can hope that setjmp
|
||
saves all such registers in the jmp_buf, although that
|
||
isn't sure.
|
||
|
||
For other values of X, either something really strange is
|
||
taking place, or the setjmp just didn't save the register. */
|
||
|
||
if (x == 1)
|
||
fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
|
||
else
|
||
{
|
||
fprintf (stderr, SETJMP_WILL_NOT_WORK);
|
||
exit (1);
|
||
}
|
||
}
|
||
|
||
++longjmps_done;
|
||
x = 2;
|
||
if (longjmps_done == 1)
|
||
sys_longjmp (jbuf, 1);
|
||
}
|
||
|
||
#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
|
||
|
||
|
||
#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
|
||
|
||
/* Abort if anything GCPRO'd doesn't survive the GC. */
|
||
|
||
static void
|
||
check_gcpros (void)
|
||
{
|
||
struct gcpro *p;
|
||
ptrdiff_t i;
|
||
|
||
for (p = gcprolist; p; p = p->next)
|
||
for (i = 0; i < p->nvars; ++i)
|
||
if (!survives_gc_p (p->var[i]))
|
||
/* FIXME: It's not necessarily a bug. It might just be that the
|
||
GCPRO is unnecessary or should release the object sooner. */
|
||
emacs_abort ();
|
||
}
|
||
|
||
#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
|
||
void
|
||
dump_zombies (void)
|
||
{
|
||
int i;
|
||
|
||
fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
|
||
for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
|
||
{
|
||
fprintf (stderr, " %d = ", i);
|
||
debug_print (zombies[i]);
|
||
}
|
||
}
|
||
|
||
#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
|
||
|
||
|
||
/* Mark live Lisp objects on the C stack.
|
||
|
||
There are several system-dependent problems to consider when
|
||
porting this to new architectures:
|
||
|
||
Processor Registers
|
||
|
||
We have to mark Lisp objects in CPU registers that can hold local
|
||
variables or are used to pass parameters.
|
||
|
||
If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
|
||
something that either saves relevant registers on the stack, or
|
||
calls mark_maybe_object passing it each register's contents.
|
||
|
||
If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
|
||
implementation assumes that calling setjmp saves registers we need
|
||
to see in a jmp_buf which itself lies on the stack. This doesn't
|
||
have to be true! It must be verified for each system, possibly
|
||
by taking a look at the source code of setjmp.
|
||
|
||
If __builtin_unwind_init is available (defined by GCC >= 2.8) we
|
||
can use it as a machine independent method to store all registers
|
||
to the stack. In this case the macros described in the previous
|
||
two paragraphs are not used.
|
||
|
||
Stack Layout
|
||
|
||
Architectures differ in the way their processor stack is organized.
|
||
For example, the stack might look like this
|
||
|
||
+----------------+
|
||
| Lisp_Object | size = 4
|
||
+----------------+
|
||
| something else | size = 2
|
||
+----------------+
|
||
| Lisp_Object | size = 4
|
||
+----------------+
|
||
| ... |
|
||
|
||
In such a case, not every Lisp_Object will be aligned equally. To
|
||
find all Lisp_Object on the stack it won't be sufficient to walk
|
||
the stack in steps of 4 bytes. Instead, two passes will be
|
||
necessary, one starting at the start of the stack, and a second
|
||
pass starting at the start of the stack + 2. Likewise, if the
|
||
minimal alignment of Lisp_Objects on the stack is 1, four passes
|
||
would be necessary, each one starting with one byte more offset
|
||
from the stack start. */
|
||
|
||
static void
|
||
mark_stack (void)
|
||
{
|
||
void *end;
|
||
|
||
#ifdef HAVE___BUILTIN_UNWIND_INIT
|
||
/* Force callee-saved registers and register windows onto the stack.
|
||
This is the preferred method if available, obviating the need for
|
||
machine dependent methods. */
|
||
__builtin_unwind_init ();
|
||
end = &end;
|
||
#else /* not HAVE___BUILTIN_UNWIND_INIT */
|
||
#ifndef GC_SAVE_REGISTERS_ON_STACK
|
||
/* jmp_buf may not be aligned enough on darwin-ppc64 */
|
||
union aligned_jmpbuf {
|
||
Lisp_Object o;
|
||
sys_jmp_buf j;
|
||
} j;
|
||
volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
|
||
#endif
|
||
/* This trick flushes the register windows so that all the state of
|
||
the process is contained in the stack. */
|
||
/* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
|
||
needed on ia64 too. See mach_dep.c, where it also says inline
|
||
assembler doesn't work with relevant proprietary compilers. */
|
||
#ifdef __sparc__
|
||
#if defined (__sparc64__) && defined (__FreeBSD__)
|
||
/* FreeBSD does not have a ta 3 handler. */
|
||
asm ("flushw");
|
||
#else
|
||
asm ("ta 3");
|
||
#endif
|
||
#endif
|
||
|
||
/* Save registers that we need to see on the stack. We need to see
|
||
registers used to hold register variables and registers used to
|
||
pass parameters. */
|
||
#ifdef GC_SAVE_REGISTERS_ON_STACK
|
||
GC_SAVE_REGISTERS_ON_STACK (end);
|
||
#else /* not GC_SAVE_REGISTERS_ON_STACK */
|
||
|
||
#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
|
||
setjmp will definitely work, test it
|
||
and print a message with the result
|
||
of the test. */
|
||
if (!setjmp_tested_p)
|
||
{
|
||
setjmp_tested_p = 1;
|
||
test_setjmp ();
|
||
}
|
||
#endif /* GC_SETJMP_WORKS */
|
||
|
||
sys_setjmp (j.j);
|
||
end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
|
||
#endif /* not GC_SAVE_REGISTERS_ON_STACK */
|
||
#endif /* not HAVE___BUILTIN_UNWIND_INIT */
|
||
|
||
/* This assumes that the stack is a contiguous region in memory. If
|
||
that's not the case, something has to be done here to iterate
|
||
over the stack segments. */
|
||
mark_memory (stack_base, end);
|
||
|
||
/* Allow for marking a secondary stack, like the register stack on the
|
||
ia64. */
|
||
#ifdef GC_MARK_SECONDARY_STACK
|
||
GC_MARK_SECONDARY_STACK ();
|
||
#endif
|
||
|
||
#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
|
||
check_gcpros ();
|
||
#endif
|
||
}
|
||
|
||
#else /* GC_MARK_STACK == 0 */
|
||
|
||
#define mark_maybe_object(obj) emacs_abort ()
|
||
|
||
#endif /* GC_MARK_STACK != 0 */
|
||
|
||
|
||
/* Determine whether it is safe to access memory at address P. */
|
||
static int
|
||
valid_pointer_p (void *p)
|
||
{
|
||
#ifdef WINDOWSNT
|
||
return w32_valid_pointer_p (p, 16);
|
||
#else
|
||
int fd[2];
|
||
|
||
/* Obviously, we cannot just access it (we would SEGV trying), so we
|
||
trick the o/s to tell us whether p is a valid pointer.
|
||
Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
|
||
not validate p in that case. */
|
||
|
||
if (emacs_pipe (fd) == 0)
|
||
{
|
||
bool valid = emacs_write (fd[1], p, 16) == 16;
|
||
emacs_close (fd[1]);
|
||
emacs_close (fd[0]);
|
||
return valid;
|
||
}
|
||
|
||
return -1;
|
||
#endif
|
||
}
|
||
|
||
/* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
|
||
valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
|
||
cannot validate OBJ. This function can be quite slow, so its primary
|
||
use is the manual debugging. The only exception is print_object, where
|
||
we use it to check whether the memory referenced by the pointer of
|
||
Lisp_Save_Value object contains valid objects. */
|
||
|
||
int
|
||
valid_lisp_object_p (Lisp_Object obj)
|
||
{
|
||
void *p;
|
||
#if GC_MARK_STACK
|
||
struct mem_node *m;
|
||
#endif
|
||
|
||
if (INTEGERP (obj))
|
||
return 1;
|
||
|
||
p = (void *) XPNTR (obj);
|
||
if (PURE_POINTER_P (p))
|
||
return 1;
|
||
|
||
if (p == &buffer_defaults || p == &buffer_local_symbols)
|
||
return 2;
|
||
|
||
#if !GC_MARK_STACK
|
||
return valid_pointer_p (p);
|
||
#else
|
||
|
||
m = mem_find (p);
|
||
|
||
if (m == MEM_NIL)
|
||
{
|
||
int valid = valid_pointer_p (p);
|
||
if (valid <= 0)
|
||
return valid;
|
||
|
||
if (SUBRP (obj))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
switch (m->type)
|
||
{
|
||
case MEM_TYPE_NON_LISP:
|
||
case MEM_TYPE_SPARE:
|
||
return 0;
|
||
|
||
case MEM_TYPE_BUFFER:
|
||
return live_buffer_p (m, p) ? 1 : 2;
|
||
|
||
case MEM_TYPE_CONS:
|
||
return live_cons_p (m, p);
|
||
|
||
case MEM_TYPE_STRING:
|
||
return live_string_p (m, p);
|
||
|
||
case MEM_TYPE_MISC:
|
||
return live_misc_p (m, p);
|
||
|
||
case MEM_TYPE_SYMBOL:
|
||
return live_symbol_p (m, p);
|
||
|
||
case MEM_TYPE_FLOAT:
|
||
return live_float_p (m, p);
|
||
|
||
case MEM_TYPE_VECTORLIKE:
|
||
case MEM_TYPE_VECTOR_BLOCK:
|
||
return live_vector_p (m, p);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Pure Storage Management
|
||
***********************************************************************/
|
||
|
||
/* Allocate room for SIZE bytes from pure Lisp storage and return a
|
||
pointer to it. TYPE is the Lisp type for which the memory is
|
||
allocated. TYPE < 0 means it's not used for a Lisp object. */
|
||
|
||
static void *
|
||
pure_alloc (size_t size, int type)
|
||
{
|
||
void *result;
|
||
#if USE_LSB_TAG
|
||
size_t alignment = GCALIGNMENT;
|
||
#else
|
||
size_t alignment = alignof (EMACS_INT);
|
||
|
||
/* Give Lisp_Floats an extra alignment. */
|
||
if (type == Lisp_Float)
|
||
alignment = alignof (struct Lisp_Float);
|
||
#endif
|
||
|
||
again:
|
||
if (type >= 0)
|
||
{
|
||
/* Allocate space for a Lisp object from the beginning of the free
|
||
space with taking account of alignment. */
|
||
result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
|
||
pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
|
||
}
|
||
else
|
||
{
|
||
/* Allocate space for a non-Lisp object from the end of the free
|
||
space. */
|
||
pure_bytes_used_non_lisp += size;
|
||
result = purebeg + pure_size - pure_bytes_used_non_lisp;
|
||
}
|
||
pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
|
||
|
||
if (pure_bytes_used <= pure_size)
|
||
return result;
|
||
|
||
/* Don't allocate a large amount here,
|
||
because it might get mmap'd and then its address
|
||
might not be usable. */
|
||
purebeg = xmalloc (10000);
|
||
pure_size = 10000;
|
||
pure_bytes_used_before_overflow += pure_bytes_used - size;
|
||
pure_bytes_used = 0;
|
||
pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
|
||
goto again;
|
||
}
|
||
|
||
|
||
/* Print a warning if PURESIZE is too small. */
|
||
|
||
void
|
||
check_pure_size (void)
|
||
{
|
||
if (pure_bytes_used_before_overflow)
|
||
message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
|
||
" bytes needed)"),
|
||
pure_bytes_used + pure_bytes_used_before_overflow);
|
||
}
|
||
|
||
|
||
/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
|
||
the non-Lisp data pool of the pure storage, and return its start
|
||
address. Return NULL if not found. */
|
||
|
||
static char *
|
||
find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
|
||
{
|
||
int i;
|
||
ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
|
||
const unsigned char *p;
|
||
char *non_lisp_beg;
|
||
|
||
if (pure_bytes_used_non_lisp <= nbytes)
|
||
return NULL;
|
||
|
||
/* Set up the Boyer-Moore table. */
|
||
skip = nbytes + 1;
|
||
for (i = 0; i < 256; i++)
|
||
bm_skip[i] = skip;
|
||
|
||
p = (const unsigned char *) data;
|
||
while (--skip > 0)
|
||
bm_skip[*p++] = skip;
|
||
|
||
last_char_skip = bm_skip['\0'];
|
||
|
||
non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
|
||
start_max = pure_bytes_used_non_lisp - (nbytes + 1);
|
||
|
||
/* See the comments in the function `boyer_moore' (search.c) for the
|
||
use of `infinity'. */
|
||
infinity = pure_bytes_used_non_lisp + 1;
|
||
bm_skip['\0'] = infinity;
|
||
|
||
p = (const unsigned char *) non_lisp_beg + nbytes;
|
||
start = 0;
|
||
do
|
||
{
|
||
/* Check the last character (== '\0'). */
|
||
do
|
||
{
|
||
start += bm_skip[*(p + start)];
|
||
}
|
||
while (start <= start_max);
|
||
|
||
if (start < infinity)
|
||
/* Couldn't find the last character. */
|
||
return NULL;
|
||
|
||
/* No less than `infinity' means we could find the last
|
||
character at `p[start - infinity]'. */
|
||
start -= infinity;
|
||
|
||
/* Check the remaining characters. */
|
||
if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
|
||
/* Found. */
|
||
return non_lisp_beg + start;
|
||
|
||
start += last_char_skip;
|
||
}
|
||
while (start <= start_max);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Return a string allocated in pure space. DATA is a buffer holding
|
||
NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
|
||
means make the result string multibyte.
|
||
|
||
Must get an error if pure storage is full, since if it cannot hold
|
||
a large string it may be able to hold conses that point to that
|
||
string; then the string is not protected from gc. */
|
||
|
||
Lisp_Object
|
||
make_pure_string (const char *data,
|
||
ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
|
||
{
|
||
Lisp_Object string;
|
||
struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
|
||
s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
|
||
if (s->data == NULL)
|
||
{
|
||
s->data = pure_alloc (nbytes + 1, -1);
|
||
memcpy (s->data, data, nbytes);
|
||
s->data[nbytes] = '\0';
|
||
}
|
||
s->size = nchars;
|
||
s->size_byte = multibyte ? nbytes : -1;
|
||
s->intervals = NULL;
|
||
XSETSTRING (string, s);
|
||
return string;
|
||
}
|
||
|
||
/* Return a string allocated in pure space. Do not
|
||
allocate the string data, just point to DATA. */
|
||
|
||
Lisp_Object
|
||
make_pure_c_string (const char *data, ptrdiff_t nchars)
|
||
{
|
||
Lisp_Object string;
|
||
struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
|
||
s->size = nchars;
|
||
s->size_byte = -1;
|
||
s->data = (unsigned char *) data;
|
||
s->intervals = NULL;
|
||
XSETSTRING (string, s);
|
||
return string;
|
||
}
|
||
|
||
static Lisp_Object purecopy (Lisp_Object obj);
|
||
|
||
/* Return a cons allocated from pure space. Give it pure copies
|
||
of CAR as car and CDR as cdr. */
|
||
|
||
Lisp_Object
|
||
pure_cons (Lisp_Object car, Lisp_Object cdr)
|
||
{
|
||
Lisp_Object new;
|
||
struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
|
||
XSETCONS (new, p);
|
||
XSETCAR (new, purecopy (car));
|
||
XSETCDR (new, purecopy (cdr));
|
||
return new;
|
||
}
|
||
|
||
|
||
/* Value is a float object with value NUM allocated from pure space. */
|
||
|
||
static Lisp_Object
|
||
make_pure_float (double num)
|
||
{
|
||
Lisp_Object new;
|
||
struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
|
||
XSETFLOAT (new, p);
|
||
XFLOAT_INIT (new, num);
|
||
return new;
|
||
}
|
||
|
||
|
||
/* Return a vector with room for LEN Lisp_Objects allocated from
|
||
pure space. */
|
||
|
||
static Lisp_Object
|
||
make_pure_vector (ptrdiff_t len)
|
||
{
|
||
Lisp_Object new;
|
||
size_t size = header_size + len * word_size;
|
||
struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
|
||
XSETVECTOR (new, p);
|
||
XVECTOR (new)->header.size = len;
|
||
return new;
|
||
}
|
||
|
||
|
||
DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
|
||
doc: /* Make a copy of object OBJ in pure storage.
|
||
Recursively copies contents of vectors and cons cells.
|
||
Does not copy symbols. Copies strings without text properties. */)
|
||
(register Lisp_Object obj)
|
||
{
|
||
if (NILP (Vpurify_flag))
|
||
return obj;
|
||
else if (MARKERP (obj) || OVERLAYP (obj)
|
||
|| HASH_TABLE_P (obj) || SYMBOLP (obj))
|
||
/* Can't purify those. */
|
||
return obj;
|
||
else
|
||
return purecopy (obj);
|
||
}
|
||
|
||
static Lisp_Object
|
||
purecopy (Lisp_Object obj)
|
||
{
|
||
if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
|
||
return obj; /* Already pure. */
|
||
|
||
if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
|
||
{
|
||
Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
|
||
if (!NILP (tmp))
|
||
return tmp;
|
||
}
|
||
|
||
if (CONSP (obj))
|
||
obj = pure_cons (XCAR (obj), XCDR (obj));
|
||
else if (FLOATP (obj))
|
||
obj = make_pure_float (XFLOAT_DATA (obj));
|
||
else if (STRINGP (obj))
|
||
obj = make_pure_string (SSDATA (obj), SCHARS (obj),
|
||
SBYTES (obj),
|
||
STRING_MULTIBYTE (obj));
|
||
else if (COMPILEDP (obj) || VECTORP (obj))
|
||
{
|
||
register struct Lisp_Vector *vec;
|
||
register ptrdiff_t i;
|
||
ptrdiff_t size;
|
||
|
||
size = ASIZE (obj);
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
vec = XVECTOR (make_pure_vector (size));
|
||
for (i = 0; i < size; i++)
|
||
vec->contents[i] = purecopy (AREF (obj, i));
|
||
if (COMPILEDP (obj))
|
||
{
|
||
XSETPVECTYPE (vec, PVEC_COMPILED);
|
||
XSETCOMPILED (obj, vec);
|
||
}
|
||
else
|
||
XSETVECTOR (obj, vec);
|
||
}
|
||
else if (SYMBOLP (obj))
|
||
{
|
||
if (!XSYMBOL (obj)->pinned)
|
||
{ /* We can't purify them, but they appear in many pure objects.
|
||
Mark them as `pinned' so we know to mark them at every GC cycle. */
|
||
XSYMBOL (obj)->pinned = true;
|
||
symbol_block_pinned = symbol_block;
|
||
}
|
||
return obj;
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = build_pure_c_string ("Don't know how to purify: %S");
|
||
args[1] = obj;
|
||
Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
|
||
}
|
||
|
||
if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
|
||
Fputhash (obj, obj, Vpurify_flag);
|
||
|
||
return obj;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Protection from GC
|
||
***********************************************************************/
|
||
|
||
/* Put an entry in staticvec, pointing at the variable with address
|
||
VARADDRESS. */
|
||
|
||
void
|
||
staticpro (Lisp_Object *varaddress)
|
||
{
|
||
if (staticidx >= NSTATICS)
|
||
fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
|
||
staticvec[staticidx++] = varaddress;
|
||
}
|
||
|
||
|
||
/***********************************************************************
|
||
Protection from GC
|
||
***********************************************************************/
|
||
|
||
/* Temporarily prevent garbage collection. */
|
||
|
||
ptrdiff_t
|
||
inhibit_garbage_collection (void)
|
||
{
|
||
ptrdiff_t count = SPECPDL_INDEX ();
|
||
|
||
specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
|
||
return count;
|
||
}
|
||
|
||
/* Used to avoid possible overflows when
|
||
converting from C to Lisp integers. */
|
||
|
||
static Lisp_Object
|
||
bounded_number (EMACS_INT number)
|
||
{
|
||
return make_number (min (MOST_POSITIVE_FIXNUM, number));
|
||
}
|
||
|
||
/* Calculate total bytes of live objects. */
|
||
|
||
static size_t
|
||
total_bytes_of_live_objects (void)
|
||
{
|
||
size_t tot = 0;
|
||
tot += total_conses * sizeof (struct Lisp_Cons);
|
||
tot += total_symbols * sizeof (struct Lisp_Symbol);
|
||
tot += total_markers * sizeof (union Lisp_Misc);
|
||
tot += total_string_bytes;
|
||
tot += total_vector_slots * word_size;
|
||
tot += total_floats * sizeof (struct Lisp_Float);
|
||
tot += total_intervals * sizeof (struct interval);
|
||
tot += total_strings * sizeof (struct Lisp_String);
|
||
return tot;
|
||
}
|
||
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
|
||
/* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
|
||
|
||
#if !defined (HAVE_NTGUI)
|
||
|
||
/* Remove unmarked font-spec and font-entity objects from ENTRY, which is
|
||
(DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
|
||
|
||
static Lisp_Object
|
||
compact_font_cache_entry (Lisp_Object entry)
|
||
{
|
||
Lisp_Object tail, *prev = &entry;
|
||
|
||
for (tail = entry; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
bool drop = 0;
|
||
Lisp_Object obj = XCAR (tail);
|
||
|
||
/* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
|
||
if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
|
||
&& !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
|
||
&& VECTORP (XCDR (obj)))
|
||
{
|
||
ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
|
||
|
||
/* If font-spec is not marked, most likely all font-entities
|
||
are not marked too. But we must be sure that nothing is
|
||
marked within OBJ before we really drop it. */
|
||
for (i = 0; i < size; i++)
|
||
if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
|
||
break;
|
||
|
||
if (i == size)
|
||
drop = 1;
|
||
}
|
||
if (drop)
|
||
*prev = XCDR (tail);
|
||
else
|
||
prev = xcdr_addr (tail);
|
||
}
|
||
return entry;
|
||
}
|
||
|
||
#endif /* not HAVE_NTGUI */
|
||
|
||
/* Compact font caches on all terminals and mark
|
||
everything which is still here after compaction. */
|
||
|
||
static void
|
||
compact_font_caches (void)
|
||
{
|
||
struct terminal *t;
|
||
|
||
for (t = terminal_list; t; t = t->next_terminal)
|
||
{
|
||
Lisp_Object cache = TERMINAL_FONT_CACHE (t);
|
||
#if !defined (HAVE_NTGUI)
|
||
if (CONSP (cache))
|
||
{
|
||
Lisp_Object entry;
|
||
|
||
for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
|
||
XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
|
||
}
|
||
#endif /* not HAVE_NTGUI */
|
||
mark_object (cache);
|
||
}
|
||
}
|
||
|
||
#else /* not HAVE_WINDOW_SYSTEM */
|
||
|
||
#define compact_font_caches() (void)(0)
|
||
|
||
#endif /* HAVE_WINDOW_SYSTEM */
|
||
|
||
/* Remove (MARKER . DATA) entries with unmarked MARKER
|
||
from buffer undo LIST and return changed list. */
|
||
|
||
static Lisp_Object
|
||
compact_undo_list (Lisp_Object list)
|
||
{
|
||
Lisp_Object tail, *prev = &list;
|
||
|
||
for (tail = list; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
if (CONSP (XCAR (tail))
|
||
&& MARKERP (XCAR (XCAR (tail)))
|
||
&& !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
|
||
*prev = XCDR (tail);
|
||
else
|
||
prev = xcdr_addr (tail);
|
||
}
|
||
return list;
|
||
}
|
||
|
||
static void
|
||
mark_pinned_symbols (void)
|
||
{
|
||
struct symbol_block *sblk;
|
||
int lim = (symbol_block_pinned == symbol_block
|
||
? symbol_block_index : SYMBOL_BLOCK_SIZE);
|
||
|
||
for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
|
||
{
|
||
union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
|
||
for (; sym < end; ++sym)
|
||
if (sym->s.pinned)
|
||
mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
|
||
|
||
lim = SYMBOL_BLOCK_SIZE;
|
||
}
|
||
}
|
||
|
||
DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
|
||
doc: /* Reclaim storage for Lisp objects no longer needed.
|
||
Garbage collection happens automatically if you cons more than
|
||
`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
||
`garbage-collect' normally returns a list with info on amount of space in use,
|
||
where each entry has the form (NAME SIZE USED FREE), where:
|
||
- NAME is a symbol describing the kind of objects this entry represents,
|
||
- SIZE is the number of bytes used by each one,
|
||
- USED is the number of those objects that were found live in the heap,
|
||
- FREE is the number of those objects that are not live but that Emacs
|
||
keeps around for future allocations (maybe because it does not know how
|
||
to return them to the OS).
|
||
However, if there was overflow in pure space, `garbage-collect'
|
||
returns nil, because real GC can't be done.
|
||
See Info node `(elisp)Garbage Collection'. */)
|
||
(void)
|
||
{
|
||
struct buffer *nextb;
|
||
char stack_top_variable;
|
||
ptrdiff_t i;
|
||
bool message_p;
|
||
ptrdiff_t count = SPECPDL_INDEX ();
|
||
struct timespec start;
|
||
Lisp_Object retval = Qnil;
|
||
size_t tot_before = 0;
|
||
|
||
if (abort_on_gc)
|
||
emacs_abort ();
|
||
|
||
/* Can't GC if pure storage overflowed because we can't determine
|
||
if something is a pure object or not. */
|
||
if (pure_bytes_used_before_overflow)
|
||
return Qnil;
|
||
|
||
/* Record this function, so it appears on the profiler's backtraces. */
|
||
record_in_backtrace (Qautomatic_gc, &Qnil, 0);
|
||
|
||
check_cons_list ();
|
||
|
||
/* Don't keep undo information around forever.
|
||
Do this early on, so it is no problem if the user quits. */
|
||
FOR_EACH_BUFFER (nextb)
|
||
compact_buffer (nextb);
|
||
|
||
if (profiler_memory_running)
|
||
tot_before = total_bytes_of_live_objects ();
|
||
|
||
start = current_timespec ();
|
||
|
||
/* In case user calls debug_print during GC,
|
||
don't let that cause a recursive GC. */
|
||
consing_since_gc = 0;
|
||
|
||
/* Save what's currently displayed in the echo area. */
|
||
message_p = push_message ();
|
||
record_unwind_protect_void (pop_message_unwind);
|
||
|
||
/* Save a copy of the contents of the stack, for debugging. */
|
||
#if MAX_SAVE_STACK > 0
|
||
if (NILP (Vpurify_flag))
|
||
{
|
||
char *stack;
|
||
ptrdiff_t stack_size;
|
||
if (&stack_top_variable < stack_bottom)
|
||
{
|
||
stack = &stack_top_variable;
|
||
stack_size = stack_bottom - &stack_top_variable;
|
||
}
|
||
else
|
||
{
|
||
stack = stack_bottom;
|
||
stack_size = &stack_top_variable - stack_bottom;
|
||
}
|
||
if (stack_size <= MAX_SAVE_STACK)
|
||
{
|
||
if (stack_copy_size < stack_size)
|
||
{
|
||
stack_copy = xrealloc (stack_copy, stack_size);
|
||
stack_copy_size = stack_size;
|
||
}
|
||
no_sanitize_memcpy (stack_copy, stack, stack_size);
|
||
}
|
||
}
|
||
#endif /* MAX_SAVE_STACK > 0 */
|
||
|
||
if (garbage_collection_messages)
|
||
message1_nolog ("Garbage collecting...");
|
||
|
||
block_input ();
|
||
|
||
shrink_regexp_cache ();
|
||
|
||
gc_in_progress = 1;
|
||
|
||
/* Mark all the special slots that serve as the roots of accessibility. */
|
||
|
||
mark_buffer (&buffer_defaults);
|
||
mark_buffer (&buffer_local_symbols);
|
||
|
||
for (i = 0; i < staticidx; i++)
|
||
mark_object (*staticvec[i]);
|
||
|
||
mark_pinned_symbols ();
|
||
mark_specpdl ();
|
||
mark_terminals ();
|
||
mark_kboards ();
|
||
|
||
#ifdef USE_GTK
|
||
xg_mark_data ();
|
||
#endif
|
||
|
||
#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
|
||
|| GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
|
||
mark_stack ();
|
||
#else
|
||
{
|
||
register struct gcpro *tail;
|
||
for (tail = gcprolist; tail; tail = tail->next)
|
||
for (i = 0; i < tail->nvars; i++)
|
||
mark_object (tail->var[i]);
|
||
}
|
||
mark_byte_stack ();
|
||
#endif
|
||
{
|
||
struct handler *handler;
|
||
for (handler = handlerlist; handler; handler = handler->next)
|
||
{
|
||
mark_object (handler->tag_or_ch);
|
||
mark_object (handler->val);
|
||
}
|
||
}
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
mark_fringe_data ();
|
||
#endif
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
mark_stack ();
|
||
#endif
|
||
|
||
/* Everything is now marked, except for the data in font caches
|
||
and undo lists. They're compacted by removing an items which
|
||
aren't reachable otherwise. */
|
||
|
||
compact_font_caches ();
|
||
|
||
FOR_EACH_BUFFER (nextb)
|
||
{
|
||
if (!EQ (BVAR (nextb, undo_list), Qt))
|
||
bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
|
||
/* Now that we have stripped the elements that need not be
|
||
in the undo_list any more, we can finally mark the list. */
|
||
mark_object (BVAR (nextb, undo_list));
|
||
}
|
||
|
||
gc_sweep ();
|
||
|
||
/* Clear the mark bits that we set in certain root slots. */
|
||
|
||
unmark_byte_stack ();
|
||
VECTOR_UNMARK (&buffer_defaults);
|
||
VECTOR_UNMARK (&buffer_local_symbols);
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
|
||
dump_zombies ();
|
||
#endif
|
||
|
||
check_cons_list ();
|
||
|
||
gc_in_progress = 0;
|
||
|
||
unblock_input ();
|
||
|
||
consing_since_gc = 0;
|
||
if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
|
||
gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
|
||
|
||
gc_relative_threshold = 0;
|
||
if (FLOATP (Vgc_cons_percentage))
|
||
{ /* Set gc_cons_combined_threshold. */
|
||
double tot = total_bytes_of_live_objects ();
|
||
|
||
tot *= XFLOAT_DATA (Vgc_cons_percentage);
|
||
if (0 < tot)
|
||
{
|
||
if (tot < TYPE_MAXIMUM (EMACS_INT))
|
||
gc_relative_threshold = tot;
|
||
else
|
||
gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
|
||
}
|
||
}
|
||
|
||
if (garbage_collection_messages)
|
||
{
|
||
if (message_p || minibuf_level > 0)
|
||
restore_message ();
|
||
else
|
||
message1_nolog ("Garbage collecting...done");
|
||
}
|
||
|
||
unbind_to (count, Qnil);
|
||
{
|
||
Lisp_Object total[11];
|
||
int total_size = 10;
|
||
|
||
total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
|
||
bounded_number (total_conses),
|
||
bounded_number (total_free_conses));
|
||
|
||
total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
|
||
bounded_number (total_symbols),
|
||
bounded_number (total_free_symbols));
|
||
|
||
total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
|
||
bounded_number (total_markers),
|
||
bounded_number (total_free_markers));
|
||
|
||
total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
|
||
bounded_number (total_strings),
|
||
bounded_number (total_free_strings));
|
||
|
||
total[4] = list3 (Qstring_bytes, make_number (1),
|
||
bounded_number (total_string_bytes));
|
||
|
||
total[5] = list3 (Qvectors,
|
||
make_number (header_size + sizeof (Lisp_Object)),
|
||
bounded_number (total_vectors));
|
||
|
||
total[6] = list4 (Qvector_slots, make_number (word_size),
|
||
bounded_number (total_vector_slots),
|
||
bounded_number (total_free_vector_slots));
|
||
|
||
total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
|
||
bounded_number (total_floats),
|
||
bounded_number (total_free_floats));
|
||
|
||
total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
|
||
bounded_number (total_intervals),
|
||
bounded_number (total_free_intervals));
|
||
|
||
total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
|
||
bounded_number (total_buffers));
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
total_size++;
|
||
total[10] = list4 (Qheap, make_number (1024),
|
||
bounded_number ((mallinfo ().uordblks + 1023) >> 10),
|
||
bounded_number ((mallinfo ().fordblks + 1023) >> 10));
|
||
#endif
|
||
retval = Flist (total_size, total);
|
||
}
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
{
|
||
/* Compute average percentage of zombies. */
|
||
double nlive
|
||
= (total_conses + total_symbols + total_markers + total_strings
|
||
+ total_vectors + total_floats + total_intervals + total_buffers);
|
||
|
||
avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
|
||
max_live = max (nlive, max_live);
|
||
avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
|
||
max_zombies = max (nzombies, max_zombies);
|
||
++ngcs;
|
||
}
|
||
#endif
|
||
|
||
if (!NILP (Vpost_gc_hook))
|
||
{
|
||
ptrdiff_t gc_count = inhibit_garbage_collection ();
|
||
safe_run_hooks (Qpost_gc_hook);
|
||
unbind_to (gc_count, Qnil);
|
||
}
|
||
|
||
/* Accumulate statistics. */
|
||
if (FLOATP (Vgc_elapsed))
|
||
{
|
||
struct timespec since_start = timespec_sub (current_timespec (), start);
|
||
Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
|
||
+ timespectod (since_start));
|
||
}
|
||
|
||
gcs_done++;
|
||
|
||
/* Collect profiling data. */
|
||
if (profiler_memory_running)
|
||
{
|
||
size_t swept = 0;
|
||
size_t tot_after = total_bytes_of_live_objects ();
|
||
if (tot_before > tot_after)
|
||
swept = tot_before - tot_after;
|
||
malloc_probe (swept);
|
||
}
|
||
|
||
return retval;
|
||
}
|
||
|
||
|
||
/* Mark Lisp objects in glyph matrix MATRIX. Currently the
|
||
only interesting objects referenced from glyphs are strings. */
|
||
|
||
static void
|
||
mark_glyph_matrix (struct glyph_matrix *matrix)
|
||
{
|
||
struct glyph_row *row = matrix->rows;
|
||
struct glyph_row *end = row + matrix->nrows;
|
||
|
||
for (; row < end; ++row)
|
||
if (row->enabled_p)
|
||
{
|
||
int area;
|
||
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
|
||
{
|
||
struct glyph *glyph = row->glyphs[area];
|
||
struct glyph *end_glyph = glyph + row->used[area];
|
||
|
||
for (; glyph < end_glyph; ++glyph)
|
||
if (STRINGP (glyph->object)
|
||
&& !STRING_MARKED_P (XSTRING (glyph->object)))
|
||
mark_object (glyph->object);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Mark reference to a Lisp_Object.
|
||
If the object referred to has not been seen yet, recursively mark
|
||
all the references contained in it. */
|
||
|
||
#define LAST_MARKED_SIZE 500
|
||
static Lisp_Object last_marked[LAST_MARKED_SIZE];
|
||
static int last_marked_index;
|
||
|
||
/* For debugging--call abort when we cdr down this many
|
||
links of a list, in mark_object. In debugging,
|
||
the call to abort will hit a breakpoint.
|
||
Normally this is zero and the check never goes off. */
|
||
ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
|
||
|
||
static void
|
||
mark_vectorlike (struct Lisp_Vector *ptr)
|
||
{
|
||
ptrdiff_t size = ptr->header.size;
|
||
ptrdiff_t i;
|
||
|
||
eassert (!VECTOR_MARKED_P (ptr));
|
||
VECTOR_MARK (ptr); /* Else mark it. */
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
|
||
/* Note that this size is not the memory-footprint size, but only
|
||
the number of Lisp_Object fields that we should trace.
|
||
The distinction is used e.g. by Lisp_Process which places extra
|
||
non-Lisp_Object fields at the end of the structure... */
|
||
for (i = 0; i < size; i++) /* ...and then mark its elements. */
|
||
mark_object (ptr->contents[i]);
|
||
}
|
||
|
||
/* Like mark_vectorlike but optimized for char-tables (and
|
||
sub-char-tables) assuming that the contents are mostly integers or
|
||
symbols. */
|
||
|
||
static void
|
||
mark_char_table (struct Lisp_Vector *ptr)
|
||
{
|
||
int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
|
||
int i;
|
||
|
||
eassert (!VECTOR_MARKED_P (ptr));
|
||
VECTOR_MARK (ptr);
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
Lisp_Object val = ptr->contents[i];
|
||
|
||
if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
|
||
continue;
|
||
if (SUB_CHAR_TABLE_P (val))
|
||
{
|
||
if (! VECTOR_MARKED_P (XVECTOR (val)))
|
||
mark_char_table (XVECTOR (val));
|
||
}
|
||
else
|
||
mark_object (val);
|
||
}
|
||
}
|
||
|
||
/* Mark the chain of overlays starting at PTR. */
|
||
|
||
static void
|
||
mark_overlay (struct Lisp_Overlay *ptr)
|
||
{
|
||
for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
|
||
{
|
||
ptr->gcmarkbit = 1;
|
||
mark_object (ptr->start);
|
||
mark_object (ptr->end);
|
||
mark_object (ptr->plist);
|
||
}
|
||
}
|
||
|
||
/* Mark Lisp_Objects and special pointers in BUFFER. */
|
||
|
||
static void
|
||
mark_buffer (struct buffer *buffer)
|
||
{
|
||
/* This is handled much like other pseudovectors... */
|
||
mark_vectorlike ((struct Lisp_Vector *) buffer);
|
||
|
||
/* ...but there are some buffer-specific things. */
|
||
|
||
MARK_INTERVAL_TREE (buffer_intervals (buffer));
|
||
|
||
/* For now, we just don't mark the undo_list. It's done later in
|
||
a special way just before the sweep phase, and after stripping
|
||
some of its elements that are not needed any more. */
|
||
|
||
mark_overlay (buffer->overlays_before);
|
||
mark_overlay (buffer->overlays_after);
|
||
|
||
/* If this is an indirect buffer, mark its base buffer. */
|
||
if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
|
||
mark_buffer (buffer->base_buffer);
|
||
}
|
||
|
||
/* Mark Lisp faces in the face cache C. */
|
||
|
||
static void
|
||
mark_face_cache (struct face_cache *c)
|
||
{
|
||
if (c)
|
||
{
|
||
int i, j;
|
||
for (i = 0; i < c->used; ++i)
|
||
{
|
||
struct face *face = FACE_FROM_ID (c->f, i);
|
||
|
||
if (face)
|
||
{
|
||
if (face->font && !VECTOR_MARKED_P (face->font))
|
||
mark_vectorlike ((struct Lisp_Vector *) face->font);
|
||
|
||
for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
|
||
mark_object (face->lface[j]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove killed buffers or items whose car is a killed buffer from
|
||
LIST, and mark other items. Return changed LIST, which is marked. */
|
||
|
||
static Lisp_Object
|
||
mark_discard_killed_buffers (Lisp_Object list)
|
||
{
|
||
Lisp_Object tail, *prev = &list;
|
||
|
||
for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
|
||
tail = XCDR (tail))
|
||
{
|
||
Lisp_Object tem = XCAR (tail);
|
||
if (CONSP (tem))
|
||
tem = XCAR (tem);
|
||
if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
|
||
*prev = XCDR (tail);
|
||
else
|
||
{
|
||
CONS_MARK (XCONS (tail));
|
||
mark_object (XCAR (tail));
|
||
prev = xcdr_addr (tail);
|
||
}
|
||
}
|
||
mark_object (tail);
|
||
return list;
|
||
}
|
||
|
||
/* Determine type of generic Lisp_Object and mark it accordingly. */
|
||
|
||
void
|
||
mark_object (Lisp_Object arg)
|
||
{
|
||
register Lisp_Object obj = arg;
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
void *po;
|
||
struct mem_node *m;
|
||
#endif
|
||
ptrdiff_t cdr_count = 0;
|
||
|
||
loop:
|
||
|
||
if (PURE_POINTER_P (XPNTR (obj)))
|
||
return;
|
||
|
||
last_marked[last_marked_index++] = obj;
|
||
if (last_marked_index == LAST_MARKED_SIZE)
|
||
last_marked_index = 0;
|
||
|
||
/* Perform some sanity checks on the objects marked here. Abort if
|
||
we encounter an object we know is bogus. This increases GC time
|
||
by ~80%, and requires compilation with GC_MARK_STACK != 0. */
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
|
||
po = (void *) XPNTR (obj);
|
||
|
||
/* Check that the object pointed to by PO is known to be a Lisp
|
||
structure allocated from the heap. */
|
||
#define CHECK_ALLOCATED() \
|
||
do { \
|
||
m = mem_find (po); \
|
||
if (m == MEM_NIL) \
|
||
emacs_abort (); \
|
||
} while (0)
|
||
|
||
/* Check that the object pointed to by PO is live, using predicate
|
||
function LIVEP. */
|
||
#define CHECK_LIVE(LIVEP) \
|
||
do { \
|
||
if (!LIVEP (m, po)) \
|
||
emacs_abort (); \
|
||
} while (0)
|
||
|
||
/* Check both of the above conditions. */
|
||
#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
|
||
do { \
|
||
CHECK_ALLOCATED (); \
|
||
CHECK_LIVE (LIVEP); \
|
||
} while (0) \
|
||
|
||
#else /* not GC_CHECK_MARKED_OBJECTS */
|
||
|
||
#define CHECK_LIVE(LIVEP) (void) 0
|
||
#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
|
||
|
||
#endif /* not GC_CHECK_MARKED_OBJECTS */
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case Lisp_String:
|
||
{
|
||
register struct Lisp_String *ptr = XSTRING (obj);
|
||
if (STRING_MARKED_P (ptr))
|
||
break;
|
||
CHECK_ALLOCATED_AND_LIVE (live_string_p);
|
||
MARK_STRING (ptr);
|
||
MARK_INTERVAL_TREE (ptr->intervals);
|
||
#ifdef GC_CHECK_STRING_BYTES
|
||
/* Check that the string size recorded in the string is the
|
||
same as the one recorded in the sdata structure. */
|
||
string_bytes (ptr);
|
||
#endif /* GC_CHECK_STRING_BYTES */
|
||
}
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
{
|
||
register struct Lisp_Vector *ptr = XVECTOR (obj);
|
||
register ptrdiff_t pvectype;
|
||
|
||
if (VECTOR_MARKED_P (ptr))
|
||
break;
|
||
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
m = mem_find (po);
|
||
if (m == MEM_NIL && !SUBRP (obj))
|
||
emacs_abort ();
|
||
#endif /* GC_CHECK_MARKED_OBJECTS */
|
||
|
||
if (ptr->header.size & PSEUDOVECTOR_FLAG)
|
||
pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
|
||
>> PSEUDOVECTOR_AREA_BITS);
|
||
else
|
||
pvectype = PVEC_NORMAL_VECTOR;
|
||
|
||
if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
|
||
CHECK_LIVE (live_vector_p);
|
||
|
||
switch (pvectype)
|
||
{
|
||
case PVEC_BUFFER:
|
||
#ifdef GC_CHECK_MARKED_OBJECTS
|
||
{
|
||
struct buffer *b;
|
||
FOR_EACH_BUFFER (b)
|
||
if (b == po)
|
||
break;
|
||
if (b == NULL)
|
||
emacs_abort ();
|
||
}
|
||
#endif /* GC_CHECK_MARKED_OBJECTS */
|
||
mark_buffer ((struct buffer *) ptr);
|
||
break;
|
||
|
||
case PVEC_COMPILED:
|
||
{ /* We could treat this just like a vector, but it is better
|
||
to save the COMPILED_CONSTANTS element for last and avoid
|
||
recursion there. */
|
||
int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
|
||
int i;
|
||
|
||
VECTOR_MARK (ptr);
|
||
for (i = 0; i < size; i++)
|
||
if (i != COMPILED_CONSTANTS)
|
||
mark_object (ptr->contents[i]);
|
||
if (size > COMPILED_CONSTANTS)
|
||
{
|
||
obj = ptr->contents[COMPILED_CONSTANTS];
|
||
goto loop;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case PVEC_FRAME:
|
||
{
|
||
struct frame *f = (struct frame *) ptr;
|
||
|
||
mark_vectorlike (ptr);
|
||
mark_face_cache (f->face_cache);
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
|
||
{
|
||
struct font *font = FRAME_FONT (f);
|
||
|
||
if (font && !VECTOR_MARKED_P (font))
|
||
mark_vectorlike ((struct Lisp_Vector *) font);
|
||
}
|
||
#endif
|
||
}
|
||
break;
|
||
|
||
case PVEC_WINDOW:
|
||
{
|
||
struct window *w = (struct window *) ptr;
|
||
|
||
mark_vectorlike (ptr);
|
||
|
||
/* Mark glyph matrices, if any. Marking window
|
||
matrices is sufficient because frame matrices
|
||
use the same glyph memory. */
|
||
if (w->current_matrix)
|
||
{
|
||
mark_glyph_matrix (w->current_matrix);
|
||
mark_glyph_matrix (w->desired_matrix);
|
||
}
|
||
|
||
/* Filter out killed buffers from both buffer lists
|
||
in attempt to help GC to reclaim killed buffers faster.
|
||
We can do it elsewhere for live windows, but this is the
|
||
best place to do it for dead windows. */
|
||
wset_prev_buffers
|
||
(w, mark_discard_killed_buffers (w->prev_buffers));
|
||
wset_next_buffers
|
||
(w, mark_discard_killed_buffers (w->next_buffers));
|
||
}
|
||
break;
|
||
|
||
case PVEC_HASH_TABLE:
|
||
{
|
||
struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
|
||
|
||
mark_vectorlike (ptr);
|
||
mark_object (h->test.name);
|
||
mark_object (h->test.user_hash_function);
|
||
mark_object (h->test.user_cmp_function);
|
||
/* If hash table is not weak, mark all keys and values.
|
||
For weak tables, mark only the vector. */
|
||
if (NILP (h->weak))
|
||
mark_object (h->key_and_value);
|
||
else
|
||
VECTOR_MARK (XVECTOR (h->key_and_value));
|
||
}
|
||
break;
|
||
|
||
case PVEC_CHAR_TABLE:
|
||
mark_char_table (ptr);
|
||
break;
|
||
|
||
case PVEC_BOOL_VECTOR:
|
||
/* No Lisp_Objects to mark in a bool vector. */
|
||
VECTOR_MARK (ptr);
|
||
break;
|
||
|
||
case PVEC_SUBR:
|
||
break;
|
||
|
||
case PVEC_FREE:
|
||
emacs_abort ();
|
||
|
||
default:
|
||
mark_vectorlike (ptr);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
{
|
||
register struct Lisp_Symbol *ptr = XSYMBOL (obj);
|
||
struct Lisp_Symbol *ptrx;
|
||
|
||
if (ptr->gcmarkbit)
|
||
break;
|
||
CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
|
||
ptr->gcmarkbit = 1;
|
||
mark_object (ptr->function);
|
||
mark_object (ptr->plist);
|
||
switch (ptr->redirect)
|
||
{
|
||
case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
|
||
case SYMBOL_VARALIAS:
|
||
{
|
||
Lisp_Object tem;
|
||
XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
|
||
mark_object (tem);
|
||
break;
|
||
}
|
||
case SYMBOL_LOCALIZED:
|
||
{
|
||
struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
|
||
Lisp_Object where = blv->where;
|
||
/* If the value is set up for a killed buffer or deleted
|
||
frame, restore it's global binding. If the value is
|
||
forwarded to a C variable, either it's not a Lisp_Object
|
||
var, or it's staticpro'd already. */
|
||
if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
|
||
|| (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
|
||
swap_in_global_binding (ptr);
|
||
mark_object (blv->where);
|
||
mark_object (blv->valcell);
|
||
mark_object (blv->defcell);
|
||
break;
|
||
}
|
||
case SYMBOL_FORWARDED:
|
||
/* If the value is forwarded to a buffer or keyboard field,
|
||
these are marked when we see the corresponding object.
|
||
And if it's forwarded to a C variable, either it's not
|
||
a Lisp_Object var, or it's staticpro'd already. */
|
||
break;
|
||
default: emacs_abort ();
|
||
}
|
||
if (!PURE_POINTER_P (XSTRING (ptr->name)))
|
||
MARK_STRING (XSTRING (ptr->name));
|
||
MARK_INTERVAL_TREE (string_intervals (ptr->name));
|
||
|
||
ptr = ptr->next;
|
||
if (ptr)
|
||
{
|
||
ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
|
||
XSETSYMBOL (obj, ptrx);
|
||
goto loop;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
CHECK_ALLOCATED_AND_LIVE (live_misc_p);
|
||
|
||
if (XMISCANY (obj)->gcmarkbit)
|
||
break;
|
||
|
||
switch (XMISCTYPE (obj))
|
||
{
|
||
case Lisp_Misc_Marker:
|
||
/* DO NOT mark thru the marker's chain.
|
||
The buffer's markers chain does not preserve markers from gc;
|
||
instead, markers are removed from the chain when freed by gc. */
|
||
XMISCANY (obj)->gcmarkbit = 1;
|
||
break;
|
||
|
||
case Lisp_Misc_Save_Value:
|
||
XMISCANY (obj)->gcmarkbit = 1;
|
||
{
|
||
struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
|
||
/* If `save_type' is zero, `data[0].pointer' is the address
|
||
of a memory area containing `data[1].integer' potential
|
||
Lisp_Objects. */
|
||
if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
|
||
{
|
||
Lisp_Object *p = ptr->data[0].pointer;
|
||
ptrdiff_t nelt;
|
||
for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
|
||
mark_maybe_object (*p);
|
||
}
|
||
else
|
||
{
|
||
/* Find Lisp_Objects in `data[N]' slots and mark them. */
|
||
int i;
|
||
for (i = 0; i < SAVE_VALUE_SLOTS; i++)
|
||
if (save_type (ptr, i) == SAVE_OBJECT)
|
||
mark_object (ptr->data[i].object);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case Lisp_Misc_Overlay:
|
||
mark_overlay (XOVERLAY (obj));
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
{
|
||
register struct Lisp_Cons *ptr = XCONS (obj);
|
||
if (CONS_MARKED_P (ptr))
|
||
break;
|
||
CHECK_ALLOCATED_AND_LIVE (live_cons_p);
|
||
CONS_MARK (ptr);
|
||
/* If the cdr is nil, avoid recursion for the car. */
|
||
if (EQ (ptr->u.cdr, Qnil))
|
||
{
|
||
obj = ptr->car;
|
||
cdr_count = 0;
|
||
goto loop;
|
||
}
|
||
mark_object (ptr->car);
|
||
obj = ptr->u.cdr;
|
||
cdr_count++;
|
||
if (cdr_count == mark_object_loop_halt)
|
||
emacs_abort ();
|
||
goto loop;
|
||
}
|
||
|
||
case Lisp_Float:
|
||
CHECK_ALLOCATED_AND_LIVE (live_float_p);
|
||
FLOAT_MARK (XFLOAT (obj));
|
||
break;
|
||
|
||
case_Lisp_Int:
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
|
||
#undef CHECK_LIVE
|
||
#undef CHECK_ALLOCATED
|
||
#undef CHECK_ALLOCATED_AND_LIVE
|
||
}
|
||
/* Mark the Lisp pointers in the terminal objects.
|
||
Called by Fgarbage_collect. */
|
||
|
||
static void
|
||
mark_terminals (void)
|
||
{
|
||
struct terminal *t;
|
||
for (t = terminal_list; t; t = t->next_terminal)
|
||
{
|
||
eassert (t->name != NULL);
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
/* If a terminal object is reachable from a stacpro'ed object,
|
||
it might have been marked already. Make sure the image cache
|
||
gets marked. */
|
||
mark_image_cache (t->image_cache);
|
||
#endif /* HAVE_WINDOW_SYSTEM */
|
||
if (!VECTOR_MARKED_P (t))
|
||
mark_vectorlike ((struct Lisp_Vector *)t);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Value is non-zero if OBJ will survive the current GC because it's
|
||
either marked or does not need to be marked to survive. */
|
||
|
||
bool
|
||
survives_gc_p (Lisp_Object obj)
|
||
{
|
||
bool survives_p;
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case_Lisp_Int:
|
||
survives_p = 1;
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
survives_p = XSYMBOL (obj)->gcmarkbit;
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
survives_p = XMISCANY (obj)->gcmarkbit;
|
||
break;
|
||
|
||
case Lisp_String:
|
||
survives_p = STRING_MARKED_P (XSTRING (obj));
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
survives_p = CONS_MARKED_P (XCONS (obj));
|
||
break;
|
||
|
||
case Lisp_Float:
|
||
survives_p = FLOAT_MARKED_P (XFLOAT (obj));
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
|
||
return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
|
||
}
|
||
|
||
|
||
|
||
/* Sweep: find all structures not marked, and free them. */
|
||
|
||
static void
|
||
gc_sweep (void)
|
||
{
|
||
/* Remove or mark entries in weak hash tables.
|
||
This must be done before any object is unmarked. */
|
||
sweep_weak_hash_tables ();
|
||
|
||
sweep_strings ();
|
||
check_string_bytes (!noninteractive);
|
||
|
||
/* Put all unmarked conses on free list. */
|
||
{
|
||
register struct cons_block *cblk;
|
||
struct cons_block **cprev = &cons_block;
|
||
register int lim = cons_block_index;
|
||
EMACS_INT num_free = 0, num_used = 0;
|
||
|
||
cons_free_list = 0;
|
||
|
||
for (cblk = cons_block; cblk; cblk = *cprev)
|
||
{
|
||
register int i = 0;
|
||
int this_free = 0;
|
||
int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
|
||
|
||
/* Scan the mark bits an int at a time. */
|
||
for (i = 0; i < ilim; i++)
|
||
{
|
||
if (cblk->gcmarkbits[i] == -1)
|
||
{
|
||
/* Fast path - all cons cells for this int are marked. */
|
||
cblk->gcmarkbits[i] = 0;
|
||
num_used += BITS_PER_INT;
|
||
}
|
||
else
|
||
{
|
||
/* Some cons cells for this int are not marked.
|
||
Find which ones, and free them. */
|
||
int start, pos, stop;
|
||
|
||
start = i * BITS_PER_INT;
|
||
stop = lim - start;
|
||
if (stop > BITS_PER_INT)
|
||
stop = BITS_PER_INT;
|
||
stop += start;
|
||
|
||
for (pos = start; pos < stop; pos++)
|
||
{
|
||
if (!CONS_MARKED_P (&cblk->conses[pos]))
|
||
{
|
||
this_free++;
|
||
cblk->conses[pos].u.chain = cons_free_list;
|
||
cons_free_list = &cblk->conses[pos];
|
||
#if GC_MARK_STACK
|
||
cons_free_list->car = Vdead;
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
CONS_UNMARK (&cblk->conses[pos]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
lim = CONS_BLOCK_SIZE;
|
||
/* If this block contains only free conses and we have already
|
||
seen more than two blocks worth of free conses then deallocate
|
||
this block. */
|
||
if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
|
||
{
|
||
*cprev = cblk->next;
|
||
/* Unhook from the free list. */
|
||
cons_free_list = cblk->conses[0].u.chain;
|
||
lisp_align_free (cblk);
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
cprev = &cblk->next;
|
||
}
|
||
}
|
||
total_conses = num_used;
|
||
total_free_conses = num_free;
|
||
}
|
||
|
||
/* Put all unmarked floats on free list. */
|
||
{
|
||
register struct float_block *fblk;
|
||
struct float_block **fprev = &float_block;
|
||
register int lim = float_block_index;
|
||
EMACS_INT num_free = 0, num_used = 0;
|
||
|
||
float_free_list = 0;
|
||
|
||
for (fblk = float_block; fblk; fblk = *fprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
for (i = 0; i < lim; i++)
|
||
if (!FLOAT_MARKED_P (&fblk->floats[i]))
|
||
{
|
||
this_free++;
|
||
fblk->floats[i].u.chain = float_free_list;
|
||
float_free_list = &fblk->floats[i];
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
FLOAT_UNMARK (&fblk->floats[i]);
|
||
}
|
||
lim = FLOAT_BLOCK_SIZE;
|
||
/* If this block contains only free floats and we have already
|
||
seen more than two blocks worth of free floats then deallocate
|
||
this block. */
|
||
if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
|
||
{
|
||
*fprev = fblk->next;
|
||
/* Unhook from the free list. */
|
||
float_free_list = fblk->floats[0].u.chain;
|
||
lisp_align_free (fblk);
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
fprev = &fblk->next;
|
||
}
|
||
}
|
||
total_floats = num_used;
|
||
total_free_floats = num_free;
|
||
}
|
||
|
||
/* Put all unmarked intervals on free list. */
|
||
{
|
||
register struct interval_block *iblk;
|
||
struct interval_block **iprev = &interval_block;
|
||
register int lim = interval_block_index;
|
||
EMACS_INT num_free = 0, num_used = 0;
|
||
|
||
interval_free_list = 0;
|
||
|
||
for (iblk = interval_block; iblk; iblk = *iprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
|
||
for (i = 0; i < lim; i++)
|
||
{
|
||
if (!iblk->intervals[i].gcmarkbit)
|
||
{
|
||
set_interval_parent (&iblk->intervals[i], interval_free_list);
|
||
interval_free_list = &iblk->intervals[i];
|
||
this_free++;
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
iblk->intervals[i].gcmarkbit = 0;
|
||
}
|
||
}
|
||
lim = INTERVAL_BLOCK_SIZE;
|
||
/* If this block contains only free intervals and we have already
|
||
seen more than two blocks worth of free intervals then
|
||
deallocate this block. */
|
||
if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
|
||
{
|
||
*iprev = iblk->next;
|
||
/* Unhook from the free list. */
|
||
interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
|
||
lisp_free (iblk);
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
iprev = &iblk->next;
|
||
}
|
||
}
|
||
total_intervals = num_used;
|
||
total_free_intervals = num_free;
|
||
}
|
||
|
||
/* Put all unmarked symbols on free list. */
|
||
{
|
||
register struct symbol_block *sblk;
|
||
struct symbol_block **sprev = &symbol_block;
|
||
register int lim = symbol_block_index;
|
||
EMACS_INT num_free = 0, num_used = 0;
|
||
|
||
symbol_free_list = NULL;
|
||
|
||
for (sblk = symbol_block; sblk; sblk = *sprev)
|
||
{
|
||
int this_free = 0;
|
||
union aligned_Lisp_Symbol *sym = sblk->symbols;
|
||
union aligned_Lisp_Symbol *end = sym + lim;
|
||
|
||
for (; sym < end; ++sym)
|
||
{
|
||
if (!sym->s.gcmarkbit)
|
||
{
|
||
if (sym->s.redirect == SYMBOL_LOCALIZED)
|
||
xfree (SYMBOL_BLV (&sym->s));
|
||
sym->s.next = symbol_free_list;
|
||
symbol_free_list = &sym->s;
|
||
#if GC_MARK_STACK
|
||
symbol_free_list->function = Vdead;
|
||
#endif
|
||
++this_free;
|
||
}
|
||
else
|
||
{
|
||
++num_used;
|
||
eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
|
||
sym->s.gcmarkbit = 0;
|
||
}
|
||
}
|
||
|
||
lim = SYMBOL_BLOCK_SIZE;
|
||
/* If this block contains only free symbols and we have already
|
||
seen more than two blocks worth of free symbols then deallocate
|
||
this block. */
|
||
if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
|
||
{
|
||
*sprev = sblk->next;
|
||
/* Unhook from the free list. */
|
||
symbol_free_list = sblk->symbols[0].s.next;
|
||
lisp_free (sblk);
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
sprev = &sblk->next;
|
||
}
|
||
}
|
||
total_symbols = num_used;
|
||
total_free_symbols = num_free;
|
||
}
|
||
|
||
/* Put all unmarked misc's on free list.
|
||
For a marker, first unchain it from the buffer it points into. */
|
||
{
|
||
register struct marker_block *mblk;
|
||
struct marker_block **mprev = &marker_block;
|
||
register int lim = marker_block_index;
|
||
EMACS_INT num_free = 0, num_used = 0;
|
||
|
||
marker_free_list = 0;
|
||
|
||
for (mblk = marker_block; mblk; mblk = *mprev)
|
||
{
|
||
register int i;
|
||
int this_free = 0;
|
||
|
||
for (i = 0; i < lim; i++)
|
||
{
|
||
if (!mblk->markers[i].m.u_any.gcmarkbit)
|
||
{
|
||
if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
|
||
unchain_marker (&mblk->markers[i].m.u_marker);
|
||
/* Set the type of the freed object to Lisp_Misc_Free.
|
||
We could leave the type alone, since nobody checks it,
|
||
but this might catch bugs faster. */
|
||
mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
|
||
mblk->markers[i].m.u_free.chain = marker_free_list;
|
||
marker_free_list = &mblk->markers[i].m;
|
||
this_free++;
|
||
}
|
||
else
|
||
{
|
||
num_used++;
|
||
mblk->markers[i].m.u_any.gcmarkbit = 0;
|
||
}
|
||
}
|
||
lim = MARKER_BLOCK_SIZE;
|
||
/* If this block contains only free markers and we have already
|
||
seen more than two blocks worth of free markers then deallocate
|
||
this block. */
|
||
if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
|
||
{
|
||
*mprev = mblk->next;
|
||
/* Unhook from the free list. */
|
||
marker_free_list = mblk->markers[0].m.u_free.chain;
|
||
lisp_free (mblk);
|
||
}
|
||
else
|
||
{
|
||
num_free += this_free;
|
||
mprev = &mblk->next;
|
||
}
|
||
}
|
||
|
||
total_markers = num_used;
|
||
total_free_markers = num_free;
|
||
}
|
||
|
||
/* Free all unmarked buffers */
|
||
{
|
||
register struct buffer *buffer, **bprev = &all_buffers;
|
||
|
||
total_buffers = 0;
|
||
for (buffer = all_buffers; buffer; buffer = *bprev)
|
||
if (!VECTOR_MARKED_P (buffer))
|
||
{
|
||
*bprev = buffer->next;
|
||
lisp_free (buffer);
|
||
}
|
||
else
|
||
{
|
||
VECTOR_UNMARK (buffer);
|
||
/* Do not use buffer_(set|get)_intervals here. */
|
||
buffer->text->intervals = balance_intervals (buffer->text->intervals);
|
||
total_buffers++;
|
||
bprev = &buffer->next;
|
||
}
|
||
}
|
||
|
||
sweep_vectors ();
|
||
check_string_bytes (!noninteractive);
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Debugging aids. */
|
||
|
||
DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
|
||
doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
|
||
This may be helpful in debugging Emacs's memory usage.
|
||
We divide the value by 1024 to make sure it fits in a Lisp integer. */)
|
||
(void)
|
||
{
|
||
Lisp_Object end;
|
||
|
||
#ifdef HAVE_NS
|
||
/* Avoid warning. sbrk has no relation to memory allocated anyway. */
|
||
XSETINT (end, 0);
|
||
#else
|
||
XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
|
||
#endif
|
||
|
||
return end;
|
||
}
|
||
|
||
DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
|
||
doc: /* Return a list of counters that measure how much consing there has been.
|
||
Each of these counters increments for a certain kind of object.
|
||
The counters wrap around from the largest positive integer to zero.
|
||
Garbage collection does not decrease them.
|
||
The elements of the value are as follows:
|
||
(CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
|
||
All are in units of 1 = one object consed
|
||
except for VECTOR-CELLS and STRING-CHARS, which count the total length of
|
||
objects consed.
|
||
MISCS include overlays, markers, and some internal types.
|
||
Frames, windows, buffers, and subprocesses count as vectors
|
||
(but the contents of a buffer's text do not count here). */)
|
||
(void)
|
||
{
|
||
return listn (CONSTYPE_HEAP, 8,
|
||
bounded_number (cons_cells_consed),
|
||
bounded_number (floats_consed),
|
||
bounded_number (vector_cells_consed),
|
||
bounded_number (symbols_consed),
|
||
bounded_number (string_chars_consed),
|
||
bounded_number (misc_objects_consed),
|
||
bounded_number (intervals_consed),
|
||
bounded_number (strings_consed));
|
||
}
|
||
|
||
/* Find at most FIND_MAX symbols which have OBJ as their value or
|
||
function. This is used in gdbinit's `xwhichsymbols' command. */
|
||
|
||
Lisp_Object
|
||
which_symbols (Lisp_Object obj, EMACS_INT find_max)
|
||
{
|
||
struct symbol_block *sblk;
|
||
ptrdiff_t gc_count = inhibit_garbage_collection ();
|
||
Lisp_Object found = Qnil;
|
||
|
||
if (! DEADP (obj))
|
||
{
|
||
for (sblk = symbol_block; sblk; sblk = sblk->next)
|
||
{
|
||
union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
|
||
int bn;
|
||
|
||
for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
|
||
{
|
||
struct Lisp_Symbol *sym = &aligned_sym->s;
|
||
Lisp_Object val;
|
||
Lisp_Object tem;
|
||
|
||
if (sblk == symbol_block && bn >= symbol_block_index)
|
||
break;
|
||
|
||
XSETSYMBOL (tem, sym);
|
||
val = find_symbol_value (tem);
|
||
if (EQ (val, obj)
|
||
|| EQ (sym->function, obj)
|
||
|| (!NILP (sym->function)
|
||
&& COMPILEDP (sym->function)
|
||
&& EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
|
||
|| (!NILP (val)
|
||
&& COMPILEDP (val)
|
||
&& EQ (AREF (val, COMPILED_BYTECODE), obj)))
|
||
{
|
||
found = Fcons (tem, found);
|
||
if (--find_max == 0)
|
||
goto out;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
out:
|
||
unbind_to (gc_count, Qnil);
|
||
return found;
|
||
}
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
|
||
bool suppress_checking;
|
||
|
||
void
|
||
die (const char *msg, const char *file, int line)
|
||
{
|
||
fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
|
||
file, line, msg);
|
||
terminate_due_to_signal (SIGABRT, INT_MAX);
|
||
}
|
||
#endif
|
||
|
||
/* Initialization. */
|
||
|
||
void
|
||
init_alloc_once (void)
|
||
{
|
||
/* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
|
||
purebeg = PUREBEG;
|
||
pure_size = PURESIZE;
|
||
|
||
#if GC_MARK_STACK || defined GC_MALLOC_CHECK
|
||
mem_init ();
|
||
Vdead = make_pure_string ("DEAD", 4, 4, 0);
|
||
#endif
|
||
|
||
#ifdef DOUG_LEA_MALLOC
|
||
mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
|
||
mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
|
||
mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
|
||
#endif
|
||
init_strings ();
|
||
init_vectors ();
|
||
|
||
refill_memory_reserve ();
|
||
gc_cons_threshold = GC_DEFAULT_THRESHOLD;
|
||
}
|
||
|
||
void
|
||
init_alloc (void)
|
||
{
|
||
gcprolist = 0;
|
||
byte_stack_list = 0;
|
||
#if GC_MARK_STACK
|
||
#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
|
||
setjmp_tested_p = longjmps_done = 0;
|
||
#endif
|
||
#endif
|
||
Vgc_elapsed = make_float (0.0);
|
||
gcs_done = 0;
|
||
|
||
#if USE_VALGRIND
|
||
valgrind_p = RUNNING_ON_VALGRIND != 0;
|
||
#endif
|
||
}
|
||
|
||
void
|
||
syms_of_alloc (void)
|
||
{
|
||
DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
|
||
doc: /* Number of bytes of consing between garbage collections.
|
||
Garbage collection can happen automatically once this many bytes have been
|
||
allocated since the last garbage collection. All data types count.
|
||
|
||
Garbage collection happens automatically only when `eval' is called.
|
||
|
||
By binding this temporarily to a large number, you can effectively
|
||
prevent garbage collection during a part of the program.
|
||
See also `gc-cons-percentage'. */);
|
||
|
||
DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
|
||
doc: /* Portion of the heap used for allocation.
|
||
Garbage collection can happen automatically once this portion of the heap
|
||
has been allocated since the last garbage collection.
|
||
If this portion is smaller than `gc-cons-threshold', this is ignored. */);
|
||
Vgc_cons_percentage = make_float (0.1);
|
||
|
||
DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
|
||
doc: /* Number of bytes of shareable Lisp data allocated so far. */);
|
||
|
||
DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
|
||
doc: /* Number of cons cells that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("floats-consed", floats_consed,
|
||
doc: /* Number of floats that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
|
||
doc: /* Number of vector cells that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("symbols-consed", symbols_consed,
|
||
doc: /* Number of symbols that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("string-chars-consed", string_chars_consed,
|
||
doc: /* Number of string characters that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
|
||
doc: /* Number of miscellaneous objects that have been consed so far.
|
||
These include markers and overlays, plus certain objects not visible
|
||
to users. */);
|
||
|
||
DEFVAR_INT ("intervals-consed", intervals_consed,
|
||
doc: /* Number of intervals that have been consed so far. */);
|
||
|
||
DEFVAR_INT ("strings-consed", strings_consed,
|
||
doc: /* Number of strings that have been consed so far. */);
|
||
|
||
DEFVAR_LISP ("purify-flag", Vpurify_flag,
|
||
doc: /* Non-nil means loading Lisp code in order to dump an executable.
|
||
This means that certain objects should be allocated in shared (pure) space.
|
||
It can also be set to a hash-table, in which case this table is used to
|
||
do hash-consing of the objects allocated to pure space. */);
|
||
|
||
DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
|
||
doc: /* Non-nil means display messages at start and end of garbage collection. */);
|
||
garbage_collection_messages = 0;
|
||
|
||
DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
|
||
doc: /* Hook run after garbage collection has finished. */);
|
||
Vpost_gc_hook = Qnil;
|
||
DEFSYM (Qpost_gc_hook, "post-gc-hook");
|
||
|
||
DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
|
||
doc: /* Precomputed `signal' argument for memory-full error. */);
|
||
/* We build this in advance because if we wait until we need it, we might
|
||
not be able to allocate the memory to hold it. */
|
||
Vmemory_signal_data
|
||
= listn (CONSTYPE_PURE, 2, Qerror,
|
||
build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
|
||
|
||
DEFVAR_LISP ("memory-full", Vmemory_full,
|
||
doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
|
||
Vmemory_full = Qnil;
|
||
|
||
DEFSYM (Qconses, "conses");
|
||
DEFSYM (Qsymbols, "symbols");
|
||
DEFSYM (Qmiscs, "miscs");
|
||
DEFSYM (Qstrings, "strings");
|
||
DEFSYM (Qvectors, "vectors");
|
||
DEFSYM (Qfloats, "floats");
|
||
DEFSYM (Qintervals, "intervals");
|
||
DEFSYM (Qbuffers, "buffers");
|
||
DEFSYM (Qstring_bytes, "string-bytes");
|
||
DEFSYM (Qvector_slots, "vector-slots");
|
||
DEFSYM (Qheap, "heap");
|
||
DEFSYM (Qautomatic_gc, "Automatic GC");
|
||
|
||
DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
|
||
DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
|
||
|
||
DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
|
||
doc: /* Accumulated time elapsed in garbage collections.
|
||
The time is in seconds as a floating point value. */);
|
||
DEFVAR_INT ("gcs-done", gcs_done,
|
||
doc: /* Accumulated number of garbage collections done. */);
|
||
|
||
defsubr (&Scons);
|
||
defsubr (&Slist);
|
||
defsubr (&Svector);
|
||
defsubr (&Smake_byte_code);
|
||
defsubr (&Smake_list);
|
||
defsubr (&Smake_vector);
|
||
defsubr (&Smake_string);
|
||
defsubr (&Smake_bool_vector);
|
||
defsubr (&Smake_symbol);
|
||
defsubr (&Smake_marker);
|
||
defsubr (&Spurecopy);
|
||
defsubr (&Sgarbage_collect);
|
||
defsubr (&Smemory_limit);
|
||
defsubr (&Smemory_use_counts);
|
||
|
||
#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
|
||
defsubr (&Sgc_status);
|
||
#endif
|
||
}
|
||
|
||
/* When compiled with GCC, GDB might say "No enum type named
|
||
pvec_type" if we don't have at least one symbol with that type, and
|
||
then xbacktrace could fail. Similarly for the other enums and
|
||
their values. Some non-GCC compilers don't like these constructs. */
|
||
#ifdef __GNUC__
|
||
union
|
||
{
|
||
enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
|
||
enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
|
||
enum char_bits char_bits;
|
||
enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
|
||
enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
|
||
enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
|
||
enum Lisp_Bits Lisp_Bits;
|
||
enum Lisp_Compiled Lisp_Compiled;
|
||
enum maxargs maxargs;
|
||
enum MAX_ALLOCA MAX_ALLOCA;
|
||
enum More_Lisp_Bits More_Lisp_Bits;
|
||
enum pvec_type pvec_type;
|
||
} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
|
||
#endif /* __GNUC__ */
|