1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-01-24 19:03:29 +00:00
emacs/lisp/emacs-lisp/cl-seq.el
2005-07-04 17:55:18 +00:00

965 lines
38 KiB
EmacsLisp

;;; cl-seq.el --- Common Lisp features, part 3 -*-byte-compile-dynamic: t;-*-
;; Copyright (C) 1993 Free Software Foundation, Inc.
;; Author: Dave Gillespie <daveg@synaptics.com>
;; Version: 2.02
;; Keywords: extensions
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; These are extensions to Emacs Lisp that provide a degree of
;; Common Lisp compatibility, beyond what is already built-in
;; in Emacs Lisp.
;;
;; This package was written by Dave Gillespie; it is a complete
;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
;;
;; This package works with Emacs 18, Emacs 19, and Lucid Emacs 19.
;;
;; Bug reports, comments, and suggestions are welcome!
;; This file contains the Common Lisp sequence and list functions
;; which take keyword arguments.
;; See cl.el for Change Log.
;;; Code:
(or (memq 'cl-19 features)
(error "Tried to load `cl-seq' before `cl'!"))
;;; Keyword parsing. This is special-cased here so that we can compile
;;; this file independent from cl-macs.
(defmacro cl-parsing-keywords (kwords other-keys &rest body)
(cons
'let*
(cons (mapcar
(function
(lambda (x)
(let* ((var (if (consp x) (car x) x))
(mem (list 'car (list 'cdr (list 'memq (list 'quote var)
'cl-keys)))))
(if (eq var :test-not)
(setq mem (list 'and mem (list 'setq 'cl-test mem) t)))
(if (eq var :if-not)
(setq mem (list 'and mem (list 'setq 'cl-if mem) t)))
(list (intern
(format "cl-%s" (substring (symbol-name var) 1)))
(if (consp x) (list 'or mem (car (cdr x))) mem)))))
kwords)
(append
(and (not (eq other-keys t))
(list
(list 'let '((cl-keys-temp cl-keys))
(list 'while 'cl-keys-temp
(list 'or (list 'memq '(car cl-keys-temp)
(list 'quote
(mapcar
(function
(lambda (x)
(if (consp x)
(car x) x)))
(append kwords
other-keys))))
'(car (cdr (memq (quote :allow-other-keys)
cl-keys)))
'(error "Bad keyword argument %s"
(car cl-keys-temp)))
'(setq cl-keys-temp (cdr (cdr cl-keys-temp)))))))
body))))
(put 'cl-parsing-keywords 'lisp-indent-function 2)
(put 'cl-parsing-keywords 'edebug-form-spec '(sexp sexp &rest form))
(defmacro cl-check-key (x)
(list 'if 'cl-key (list 'funcall 'cl-key x) x))
(defmacro cl-check-test-nokey (item x)
(list 'cond
(list 'cl-test
(list 'eq (list 'not (list 'funcall 'cl-test item x))
'cl-test-not))
(list 'cl-if
(list 'eq (list 'not (list 'funcall 'cl-if x)) 'cl-if-not))
(list 't (list 'if (list 'numberp item)
(list 'equal item x) (list 'eq item x)))))
(defmacro cl-check-test (item x)
(list 'cl-check-test-nokey item (list 'cl-check-key x)))
(defmacro cl-check-match (x y)
(setq x (list 'cl-check-key x) y (list 'cl-check-key y))
(list 'if 'cl-test
(list 'eq (list 'not (list 'funcall 'cl-test x y)) 'cl-test-not)
(list 'if (list 'numberp x)
(list 'equal x y) (list 'eq x y))))
(put 'cl-check-key 'edebug-form-spec 'edebug-forms)
(put 'cl-check-test 'edebug-form-spec 'edebug-forms)
(put 'cl-check-test-nokey 'edebug-form-spec 'edebug-forms)
(put 'cl-check-match 'edebug-form-spec 'edebug-forms)
(defvar cl-test) (defvar cl-test-not)
(defvar cl-if) (defvar cl-if-not)
(defvar cl-key)
(defun reduce (cl-func cl-seq &rest cl-keys)
"Reduce two-argument FUNCTION across SEQ.
\nKeywords supported: :start :end :from-end :initial-value :key
\n(fn FUNCTION SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:from-end (:start 0) :end :initial-value :key) ()
(or (listp cl-seq) (setq cl-seq (append cl-seq nil)))
(setq cl-seq (subseq cl-seq cl-start cl-end))
(if cl-from-end (setq cl-seq (nreverse cl-seq)))
(let ((cl-accum (cond ((memq :initial-value cl-keys) cl-initial-value)
(cl-seq (cl-check-key (pop cl-seq)))
(t (funcall cl-func)))))
(if cl-from-end
(while cl-seq
(setq cl-accum (funcall cl-func (cl-check-key (pop cl-seq))
cl-accum)))
(while cl-seq
(setq cl-accum (funcall cl-func cl-accum
(cl-check-key (pop cl-seq))))))
cl-accum)))
(defun fill (seq item &rest cl-keys)
"Fill the elements of SEQ with ITEM.
\nKeywords supported: :start :end
\n(fn SEQ ITEM [KEYWORD VALUE]...)"
(cl-parsing-keywords ((:start 0) :end) ()
(if (listp seq)
(let ((p (nthcdr cl-start seq))
(n (if cl-end (- cl-end cl-start) 8000000)))
(while (and p (>= (setq n (1- n)) 0))
(setcar p item)
(setq p (cdr p))))
(or cl-end (setq cl-end (length seq)))
(if (and (= cl-start 0) (= cl-end (length seq)))
(fillarray seq item)
(while (< cl-start cl-end)
(aset seq cl-start item)
(setq cl-start (1+ cl-start)))))
seq))
(defun replace (cl-seq1 cl-seq2 &rest cl-keys)
"Replace the elements of SEQ1 with the elements of SEQ2.
SEQ1 is destructively modified, then returned.
\nKeywords supported: :start1 :end1 :start2 :end2
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl-parsing-keywords ((:start1 0) :end1 (:start2 0) :end2) ()
(if (and (eq cl-seq1 cl-seq2) (<= cl-start2 cl-start1))
(or (= cl-start1 cl-start2)
(let* ((cl-len (length cl-seq1))
(cl-n (min (- (or cl-end1 cl-len) cl-start1)
(- (or cl-end2 cl-len) cl-start2))))
(while (>= (setq cl-n (1- cl-n)) 0)
(cl-set-elt cl-seq1 (+ cl-start1 cl-n)
(elt cl-seq2 (+ cl-start2 cl-n))))))
(if (listp cl-seq1)
(let ((cl-p1 (nthcdr cl-start1 cl-seq1))
(cl-n1 (if cl-end1 (- cl-end1 cl-start1) 4000000)))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2))
(cl-n (min cl-n1
(if cl-end2 (- cl-end2 cl-start2) 4000000))))
(while (and cl-p1 cl-p2 (>= (setq cl-n (1- cl-n)) 0))
(setcar cl-p1 (car cl-p2))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2))))
(setq cl-end2 (min (or cl-end2 (length cl-seq2))
(+ cl-start2 cl-n1)))
(while (and cl-p1 (< cl-start2 cl-end2))
(setcar cl-p1 (aref cl-seq2 cl-start2))
(setq cl-p1 (cdr cl-p1) cl-start2 (1+ cl-start2)))))
(setq cl-end1 (min (or cl-end1 (length cl-seq1))
(+ cl-start1 (- (or cl-end2 (length cl-seq2))
cl-start2))))
(if (listp cl-seq2)
(let ((cl-p2 (nthcdr cl-start2 cl-seq2)))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (car cl-p2))
(setq cl-p2 (cdr cl-p2) cl-start1 (1+ cl-start1))))
(while (< cl-start1 cl-end1)
(aset cl-seq1 cl-start1 (aref cl-seq2 cl-start2))
(setq cl-start2 (1+ cl-start2) cl-start1 (1+ cl-start1))))))
cl-seq1))
(defun remove* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
(if (or (nlistp cl-seq) (and cl-from-end (< cl-count 4000000)))
(let ((cl-i (cl-position cl-item cl-seq cl-start cl-end
cl-from-end)))
(if cl-i
(let ((cl-res (apply 'delete* cl-item (append cl-seq nil)
(append (if cl-from-end
(list :end (1+ cl-i))
(list :start cl-i))
cl-keys))))
(if (listp cl-seq) cl-res
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res))))
cl-seq))
(setq cl-end (- (or cl-end 8000000) cl-start))
(if (= cl-start 0)
(while (and cl-seq (> cl-end 0)
(cl-check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0))))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (if (> cl-start 0) (nthcdr cl-start cl-seq)
(setq cl-end (1- cl-end)) (cdr cl-seq))))
(while (and cl-p (> cl-end 0)
(not (cl-check-test cl-item (car cl-p))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)))
(if (and cl-p (> cl-end 0))
(nconc (ldiff cl-seq cl-p)
(if (= cl-count 1) (cdr cl-p)
(and (cdr cl-p)
(apply 'delete* cl-item
(copy-sequence (cdr cl-p))
:start 0 :end (1- cl-end)
:count (1- cl-count) cl-keys))))
cl-seq))
cl-seq)))))
(defun remove-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'remove* nil cl-list :if cl-pred cl-keys))
(defun remove-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'remove* nil cl-list :if-not cl-pred cl-keys))
(defun delete* (cl-item cl-seq &rest cl-keys)
"Remove all occurrences of ITEM in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count :from-end
(:start 0) :end) ()
(if (<= (or cl-count (setq cl-count 8000000)) 0)
cl-seq
(if (listp cl-seq)
(if (and cl-from-end (< cl-count 4000000))
(let (cl-i)
(while (and (>= (setq cl-count (1- cl-count)) 0)
(setq cl-i (cl-position cl-item cl-seq cl-start
cl-end cl-from-end)))
(if (= cl-i 0) (setq cl-seq (cdr cl-seq))
(let ((cl-tail (nthcdr (1- cl-i) cl-seq)))
(setcdr cl-tail (cdr (cdr cl-tail)))))
(setq cl-end cl-i))
cl-seq)
(setq cl-end (- (or cl-end 8000000) cl-start))
(if (= cl-start 0)
(progn
(while (and cl-seq
(> cl-end 0)
(cl-check-test cl-item (car cl-seq))
(setq cl-end (1- cl-end) cl-seq (cdr cl-seq))
(> (setq cl-count (1- cl-count)) 0)))
(setq cl-end (1- cl-end)))
(setq cl-start (1- cl-start)))
(if (and (> cl-count 0) (> cl-end 0))
(let ((cl-p (nthcdr cl-start cl-seq)))
(while (and (cdr cl-p) (> cl-end 0))
(if (cl-check-test cl-item (car (cdr cl-p)))
(progn
(setcdr cl-p (cdr (cdr cl-p)))
(if (= (setq cl-count (1- cl-count)) 0)
(setq cl-end 1)))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end)))))
cl-seq)
(apply 'remove* cl-item cl-seq cl-keys)))))
(defun delete-if (cl-pred cl-list &rest cl-keys)
"Remove all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'delete* nil cl-list :if cl-pred cl-keys))
(defun delete-if-not (cl-pred cl-list &rest cl-keys)
"Remove all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'delete* nil cl-list :if-not cl-pred cl-keys))
(defun remove-duplicates (cl-seq &rest cl-keys)
"Return a copy of SEQ with all duplicate elements removed.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl-delete-duplicates cl-seq cl-keys t))
(defun delete-duplicates (cl-seq &rest cl-keys)
"Remove all duplicate elements from SEQ (destructively).
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn SEQ [KEYWORD VALUE]...)"
(cl-delete-duplicates cl-seq cl-keys nil))
(defun cl-delete-duplicates (cl-seq cl-keys cl-copy)
(if (listp cl-seq)
(cl-parsing-keywords (:test :test-not :key (:start 0) :end :from-end :if)
()
(if cl-from-end
(let ((cl-p (nthcdr cl-start cl-seq)) cl-i)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (> cl-end 1)
(setq cl-i 0)
(while (setq cl-i (cl-position (cl-check-key (car cl-p))
(cdr cl-p) cl-i (1- cl-end)))
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr cl-start cl-seq) cl-copy nil))
(let ((cl-tail (nthcdr cl-i cl-p)))
(setcdr cl-tail (cdr (cdr cl-tail))))
(setq cl-end (1- cl-end)))
(setq cl-p (cdr cl-p) cl-end (1- cl-end)
cl-start (1+ cl-start)))
cl-seq)
(setq cl-end (- (or cl-end (length cl-seq)) cl-start))
(while (and (cdr cl-seq) (= cl-start 0) (> cl-end 1)
(cl-position (cl-check-key (car cl-seq))
(cdr cl-seq) 0 (1- cl-end)))
(setq cl-seq (cdr cl-seq) cl-end (1- cl-end)))
(let ((cl-p (if (> cl-start 0) (nthcdr (1- cl-start) cl-seq)
(setq cl-end (1- cl-end) cl-start 1) cl-seq)))
(while (and (cdr (cdr cl-p)) (> cl-end 1))
(if (cl-position (cl-check-key (car (cdr cl-p)))
(cdr (cdr cl-p)) 0 (1- cl-end))
(progn
(if cl-copy (setq cl-seq (copy-sequence cl-seq)
cl-p (nthcdr (1- cl-start) cl-seq)
cl-copy nil))
(setcdr cl-p (cdr (cdr cl-p))))
(setq cl-p (cdr cl-p)))
(setq cl-end (1- cl-end) cl-start (1+ cl-start)))
cl-seq)))
(let ((cl-res (cl-delete-duplicates (append cl-seq nil) cl-keys nil)))
(if (stringp cl-seq) (concat cl-res) (vconcat cl-res)))))
(defun substitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(if (or (eq cl-old cl-new)
(<= (or cl-count (setq cl-from-end nil cl-count 8000000)) 0))
cl-seq
(let ((cl-i (cl-position cl-old cl-seq cl-start cl-end)))
(if (not cl-i)
cl-seq
(setq cl-seq (copy-sequence cl-seq))
(or cl-from-end
(progn (cl-set-elt cl-seq cl-i cl-new)
(setq cl-i (1+ cl-i) cl-count (1- cl-count))))
(apply 'nsubstitute cl-new cl-old cl-seq :count cl-count
:start cl-i cl-keys))))))
(defun substitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'substitute cl-new nil cl-list :if cl-pred cl-keys))
(defun substitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a non-destructive function; it makes a copy of SEQ if necessary
to avoid corrupting the original SEQ.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'substitute cl-new nil cl-list :if-not cl-pred cl-keys))
(defun nsubstitute (cl-new cl-old cl-seq &rest cl-keys)
"Substitute NEW for OLD in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :test :test-not :key :count :start :end :from-end
\n(fn NEW OLD SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not :count
(:start 0) :end :from-end) ()
(or (eq cl-old cl-new) (<= (or cl-count (setq cl-count 8000000)) 0)
(if (and (listp cl-seq) (or (not cl-from-end) (> cl-count 4000000)))
(let ((cl-p (nthcdr cl-start cl-seq)))
(setq cl-end (- (or cl-end 8000000) cl-start))
(while (and cl-p (> cl-end 0) (> cl-count 0))
(if (cl-check-test cl-old (car cl-p))
(progn
(setcar cl-p cl-new)
(setq cl-count (1- cl-count))))
(setq cl-p (cdr cl-p) cl-end (1- cl-end))))
(or cl-end (setq cl-end (length cl-seq)))
(if cl-from-end
(while (and (< cl-start cl-end) (> cl-count 0))
(setq cl-end (1- cl-end))
(if (cl-check-test cl-old (elt cl-seq cl-end))
(progn
(cl-set-elt cl-seq cl-end cl-new)
(setq cl-count (1- cl-count)))))
(while (and (< cl-start cl-end) (> cl-count 0))
(if (cl-check-test cl-old (aref cl-seq cl-start))
(progn
(aset cl-seq cl-start cl-new)
(setq cl-count (1- cl-count))))
(setq cl-start (1+ cl-start))))))
cl-seq))
(defun nsubstitute-if (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'nsubstitute cl-new nil cl-list :if cl-pred cl-keys))
(defun nsubstitute-if-not (cl-new cl-pred cl-list &rest cl-keys)
"Substitute NEW for all items not satisfying PREDICATE in SEQ.
This is a destructive function; it reuses the storage of SEQ whenever possible.
\nKeywords supported: :key :count :start :end :from-end
\n(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'nsubstitute cl-new nil cl-list :if-not cl-pred cl-keys))
(defun find (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the matching ITEM, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(let ((cl-pos (apply 'position cl-item cl-seq cl-keys)))
(and cl-pos (elt cl-seq cl-pos))))
(defun find-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'find nil cl-list :if cl-pred cl-keys))
(defun find-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'find nil cl-list :if-not cl-pred cl-keys))
(defun position (cl-item cl-seq &rest cl-keys)
"Find the first occurrence of ITEM in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :test :test-not :key :start :end :from-end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not
(:start 0) :end :from-end) ()
(cl-position cl-item cl-seq cl-start cl-end cl-from-end)))
(defun cl-position (cl-item cl-seq cl-start &optional cl-end cl-from-end)
(if (listp cl-seq)
(let ((cl-p (nthcdr cl-start cl-seq)))
(or cl-end (setq cl-end 8000000))
(let ((cl-res nil))
(while (and cl-p (< cl-start cl-end) (or (not cl-res) cl-from-end))
(if (cl-check-test cl-item (car cl-p))
(setq cl-res cl-start))
(setq cl-p (cdr cl-p) cl-start (1+ cl-start)))
cl-res))
(or cl-end (setq cl-end (length cl-seq)))
(if cl-from-end
(progn
(while (and (>= (setq cl-end (1- cl-end)) cl-start)
(not (cl-check-test cl-item (aref cl-seq cl-end)))))
(and (>= cl-end cl-start) cl-end))
(while (and (< cl-start cl-end)
(not (cl-check-test cl-item (aref cl-seq cl-start))))
(setq cl-start (1+ cl-start)))
(and (< cl-start cl-end) cl-start))))
(defun position-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'position nil cl-list :if cl-pred cl-keys))
(defun position-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in SEQ.
Return the index of the matching item, or nil if not found.
\nKeywords supported: :key :start :end :from-end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'position nil cl-list :if-not cl-pred cl-keys))
(defun count (cl-item cl-seq &rest cl-keys)
"Count the number of occurrences of ITEM in SEQ.
\nKeywords supported: :test :test-not :key :start :end
\n(fn ITEM SEQ [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not (:start 0) :end) ()
(let ((cl-count 0) cl-x)
(or cl-end (setq cl-end (length cl-seq)))
(if (consp cl-seq) (setq cl-seq (nthcdr cl-start cl-seq)))
(while (< cl-start cl-end)
(setq cl-x (if (consp cl-seq) (pop cl-seq) (aref cl-seq cl-start)))
(if (cl-check-test cl-item cl-x) (setq cl-count (1+ cl-count)))
(setq cl-start (1+ cl-start)))
cl-count)))
(defun count-if (cl-pred cl-list &rest cl-keys)
"Count the number of items satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'count nil cl-list :if cl-pred cl-keys))
(defun count-if-not (cl-pred cl-list &rest cl-keys)
"Count the number of items not satisfying PREDICATE in SEQ.
\nKeywords supported: :key :start :end
\n(fn PREDICATE SEQ [KEYWORD VALUE]...)"
(apply 'count nil cl-list :if-not cl-pred cl-keys))
(defun mismatch (cl-seq1 cl-seq2 &rest cl-keys)
"Compare SEQ1 with SEQ2, return index of first mismatching element.
Return nil if the sequences match. If one sequence is a prefix of the
other, the return value indicates the end of the shorter sequence.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if cl-from-end
(progn
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl-check-match (elt cl-seq1 (1- cl-end1))
(elt cl-seq2 (1- cl-end2))))
(setq cl-end1 (1- cl-end1) cl-end2 (1- cl-end2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
(1- cl-end1)))
(let ((cl-p1 (and (listp cl-seq1) (nthcdr cl-start1 cl-seq1)))
(cl-p2 (and (listp cl-seq2) (nthcdr cl-start2 cl-seq2))))
(while (and (< cl-start1 cl-end1) (< cl-start2 cl-end2)
(cl-check-match (if cl-p1 (car cl-p1)
(aref cl-seq1 cl-start1))
(if cl-p2 (car cl-p2)
(aref cl-seq2 cl-start2))))
(setq cl-p1 (cdr cl-p1) cl-p2 (cdr cl-p2)
cl-start1 (1+ cl-start1) cl-start2 (1+ cl-start2)))
(and (or (< cl-start1 cl-end1) (< cl-start2 cl-end2))
cl-start1)))))
(defun search (cl-seq1 cl-seq2 &rest cl-keys)
"Search for SEQ1 as a subsequence of SEQ2.
Return the index of the leftmost element of the first match found;
return nil if there are no matches.
\nKeywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
\n(fn SEQ1 SEQ2 [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :from-end
(:start1 0) :end1 (:start2 0) :end2) ()
(or cl-end1 (setq cl-end1 (length cl-seq1)))
(or cl-end2 (setq cl-end2 (length cl-seq2)))
(if (>= cl-start1 cl-end1)
(if cl-from-end cl-end2 cl-start2)
(let* ((cl-len (- cl-end1 cl-start1))
(cl-first (cl-check-key (elt cl-seq1 cl-start1)))
(cl-if nil) cl-pos)
(setq cl-end2 (- cl-end2 (1- cl-len)))
(while (and (< cl-start2 cl-end2)
(setq cl-pos (cl-position cl-first cl-seq2
cl-start2 cl-end2 cl-from-end))
(apply 'mismatch cl-seq1 cl-seq2
:start1 (1+ cl-start1) :end1 cl-end1
:start2 (1+ cl-pos) :end2 (+ cl-pos cl-len)
:from-end nil cl-keys))
(if cl-from-end (setq cl-end2 cl-pos) (setq cl-start2 (1+ cl-pos))))
(and (< cl-start2 cl-end2) cl-pos)))))
(defun sort* (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(if (nlistp cl-seq)
(replace cl-seq (apply 'sort* (append cl-seq nil) cl-pred cl-keys))
(cl-parsing-keywords (:key) ()
(if (memq cl-key '(nil identity))
(sort cl-seq cl-pred)
(sort cl-seq (function (lambda (cl-x cl-y)
(funcall cl-pred (funcall cl-key cl-x)
(funcall cl-key cl-y)))))))))
(defun stable-sort (cl-seq cl-pred &rest cl-keys)
"Sort the argument SEQ stably according to PREDICATE.
This is a destructive function; it reuses the storage of SEQ if possible.
\nKeywords supported: :key
\n(fn SEQ PREDICATE [KEYWORD VALUE]...)"
(apply 'sort* cl-seq cl-pred cl-keys))
(defun merge (cl-type cl-seq1 cl-seq2 cl-pred &rest cl-keys)
"Destructively merge the two sequences to produce a new sequence.
TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
sequences, and PREDICATE is a `less-than' predicate on the elements.
\nKeywords supported: :key
\n(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)"
(or (listp cl-seq1) (setq cl-seq1 (append cl-seq1 nil)))
(or (listp cl-seq2) (setq cl-seq2 (append cl-seq2 nil)))
(cl-parsing-keywords (:key) ()
(let ((cl-res nil))
(while (and cl-seq1 cl-seq2)
(if (funcall cl-pred (cl-check-key (car cl-seq2))
(cl-check-key (car cl-seq1)))
(push (pop cl-seq2) cl-res)
(push (pop cl-seq1) cl-res)))
(coerce (nconc (nreverse cl-res) cl-seq1 cl-seq2) cl-type))))
;;; See compiler macro in cl-macs.el
(defun member* (cl-item cl-list &rest cl-keys)
"Find the first occurrence of ITEM in LIST.
Return the sublist of LIST whose car is ITEM.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(if cl-keys
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-list (not (cl-check-test cl-item (car cl-list))))
(setq cl-list (cdr cl-list)))
cl-list)
(if (and (numberp cl-item) (not (integerp cl-item)))
(member cl-item cl-list)
(memq cl-item cl-list))))
(defun member-if (cl-pred cl-list &rest cl-keys)
"Find the first item satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'member* nil cl-list :if cl-pred cl-keys))
(defun member-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item not satisfying PREDICATE in LIST.
Return the sublist of LIST whose car matches.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'member* nil cl-list :if-not cl-pred cl-keys))
(defun cl-adjoin (cl-item cl-list &rest cl-keys)
(if (cl-parsing-keywords (:key) t
(apply 'member* (cl-check-key cl-item) cl-list cl-keys))
cl-list
(cons cl-item cl-list)))
;;; See compiler macro in cl-macs.el
(defun assoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose car matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(if cl-keys
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl-check-test cl-item (car (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(if (and (numberp cl-item) (not (integerp cl-item)))
(assoc cl-item cl-alist)
(assq cl-item cl-alist))))
(defun assoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose car satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'assoc* nil cl-list :if cl-pred cl-keys))
(defun assoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose car does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'assoc* nil cl-list :if-not cl-pred cl-keys))
(defun rassoc* (cl-item cl-alist &rest cl-keys)
"Find the first item whose cdr matches ITEM in LIST.
\nKeywords supported: :test :test-not :key
\n(fn ITEM LIST [KEYWORD VALUE]...)"
(if (or cl-keys (numberp cl-item))
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(while (and cl-alist
(or (not (consp (car cl-alist)))
(not (cl-check-test cl-item (cdr (car cl-alist))))))
(setq cl-alist (cdr cl-alist)))
(and cl-alist (car cl-alist)))
(rassq cl-item cl-alist)))
(defun rassoc-if (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr satisfies PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'rassoc* nil cl-list :if cl-pred cl-keys))
(defun rassoc-if-not (cl-pred cl-list &rest cl-keys)
"Find the first item whose cdr does not satisfy PREDICATE in LIST.
\nKeywords supported: :key
\n(fn PREDICATE LIST [KEYWORD VALUE]...)"
(apply 'rassoc* nil cl-list :if-not cl-pred cl-keys))
(defun union (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) cl-list1)
(t
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (or cl-keys (numberp (car cl-list2)))
(setq cl-list1 (apply 'adjoin (car cl-list2) cl-list1 cl-keys))
(or (memq (car cl-list2) cl-list1)
(push (car cl-list2) cl-list1)))
(pop cl-list2))
cl-list1)))
(defun nunion (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-union operation.
The result list contains all items that appear in either LIST1 or LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
(t (apply 'union cl-list1 cl-list2 cl-keys))))
(defun intersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2
(if (equal cl-list1 cl-list2) cl-list1
(cl-parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(or (>= (length cl-list1) (length cl-list2))
(setq cl-list1 (prog1 cl-list2 (setq cl-list2 cl-list1))))
(while cl-list2
(if (if (or cl-keys (numberp (car cl-list2)))
(apply 'member* (cl-check-key (car cl-list2))
cl-list1 cl-keys)
(memq (car cl-list2) cl-list1))
(push (car cl-list2) cl-res))
(pop cl-list2))
cl-res)))))
(defun nintersection (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-intersection operation.
The result list contains all items that appear in both LIST1 and LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(and cl-list1 cl-list2 (apply 'intersection cl-list1 cl-list2 cl-keys)))
(defun set-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(cl-parsing-keywords (:key) (:test :test-not)
(let ((cl-res nil))
(while cl-list1
(or (if (or cl-keys (numberp (car cl-list1)))
(apply 'member* (cl-check-key (car cl-list1))
cl-list2 cl-keys)
(memq (car cl-list1) cl-list2))
(push (car cl-list1) cl-res))
(pop cl-list1))
cl-res))))
(defun nset-difference (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-difference operation.
The result list contains all items that appear in LIST1 but not LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(if (or (null cl-list1) (null cl-list2)) cl-list1
(apply 'set-difference cl-list1 cl-list2 cl-keys)))
(defun set-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a non-destructive function; it makes a copy of the data if necessary
to avoid corrupting the original LIST1 and LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (append (apply 'set-difference cl-list1 cl-list2 cl-keys)
(apply 'set-difference cl-list2 cl-list1 cl-keys)))))
(defun nset-exclusive-or (cl-list1 cl-list2 &rest cl-keys)
"Combine LIST1 and LIST2 using a set-exclusive-or operation.
The result list contains all items that appear in exactly one of LIST1, LIST2.
This is a destructive function; it reuses the storage of LIST1 and LIST2
whenever possible.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) cl-list2) ((null cl-list2) cl-list1)
((equal cl-list1 cl-list2) nil)
(t (nconc (apply 'nset-difference cl-list1 cl-list2 cl-keys)
(apply 'nset-difference cl-list2 cl-list1 cl-keys)))))
(defun subsetp (cl-list1 cl-list2 &rest cl-keys)
"Return true if LIST1 is a subset of LIST2.
I.e., if every element of LIST1 also appears in LIST2.
\nKeywords supported: :test :test-not :key
\n(fn LIST1 LIST2 [KEYWORD VALUE]...)"
(cond ((null cl-list1) t) ((null cl-list2) nil)
((equal cl-list1 cl-list2) t)
(t (cl-parsing-keywords (:key) (:test :test-not)
(while (and cl-list1
(apply 'member* (cl-check-key (car cl-list1))
cl-list2 cl-keys))
(pop cl-list1))
(null cl-list1)))))
(defun subst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'sublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
(defun subst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
Return a copy of TREE with all non-matching elements replaced by NEW.
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'sublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
(defun nsubst (cl-new cl-old cl-tree &rest cl-keys)
"Substitute NEW for OLD everywhere in TREE (destructively).
Any element of TREE which is `eql' to OLD is changed to NEW (via a call
to `setcar').
\nKeywords supported: :test :test-not :key
\n(fn NEW OLD TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons cl-old cl-new)) cl-tree cl-keys))
(defun nsubst-if (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons nil cl-new)) cl-tree :if cl-pred cl-keys))
(defun nsubst-if-not (cl-new cl-pred cl-tree &rest cl-keys)
"Substitute NEW for elements not matching PREDICATE in TREE (destructively).
Any element of TREE which matches is changed to NEW (via a call to `setcar').
\nKeywords supported: :key
\n(fn NEW PREDICATE TREE [KEYWORD VALUE]...)"
(apply 'nsublis (list (cons nil cl-new)) cl-tree :if-not cl-pred cl-keys))
(defun sublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (non-destructively).
Return a copy of TREE with all matching elements replaced.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(cl-sublis-rec cl-tree)))
(defvar cl-alist)
(defun cl-sublis-rec (cl-tree) ; uses cl-alist/key/test*/if*
(let ((cl-temp (cl-check-key cl-tree)) (cl-p cl-alist))
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (cdr (car cl-p))
(if (consp cl-tree)
(let ((cl-a (cl-sublis-rec (car cl-tree)))
(cl-d (cl-sublis-rec (cdr cl-tree))))
(if (and (eq cl-a (car cl-tree)) (eq cl-d (cdr cl-tree)))
cl-tree
(cons cl-a cl-d)))
cl-tree))))
(defun nsublis (cl-alist cl-tree &rest cl-keys)
"Perform substitutions indicated by ALIST in TREE (destructively).
Any matching element of TREE is changed via a call to `setcar'.
\nKeywords supported: :test :test-not :key
\n(fn ALIST TREE [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key :if :if-not) ()
(let ((cl-hold (list cl-tree)))
(cl-nsublis-rec cl-hold)
(car cl-hold))))
(defun cl-nsublis-rec (cl-tree) ; uses cl-alist/temp/p/key/test*/if*
(while (consp cl-tree)
(let ((cl-temp (cl-check-key (car cl-tree))) (cl-p cl-alist))
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p (setcar cl-tree (cdr (car cl-p)))
(if (consp (car cl-tree)) (cl-nsublis-rec (car cl-tree))))
(setq cl-temp (cl-check-key (cdr cl-tree)) cl-p cl-alist)
(while (and cl-p (not (cl-check-test-nokey (car (car cl-p)) cl-temp)))
(setq cl-p (cdr cl-p)))
(if cl-p
(progn (setcdr cl-tree (cdr (car cl-p))) (setq cl-tree nil))
(setq cl-tree (cdr cl-tree))))))
(defun tree-equal (cl-x cl-y &rest cl-keys)
"Return t if trees TREE1 and TREE2 have `eql' leaves.
Atoms are compared by `eql'; cons cells are compared recursively.
\nKeywords supported: :test :test-not :key
\n(fn TREE1 TREE2 [KEYWORD VALUE]...)"
(cl-parsing-keywords (:test :test-not :key) ()
(cl-tree-equal-rec cl-x cl-y)))
(defun cl-tree-equal-rec (cl-x cl-y)
(while (and (consp cl-x) (consp cl-y)
(cl-tree-equal-rec (car cl-x) (car cl-y)))
(setq cl-x (cdr cl-x) cl-y (cdr cl-y)))
(and (not (consp cl-x)) (not (consp cl-y)) (cl-check-match cl-x cl-y)))
(run-hooks 'cl-seq-load-hook)
;;; arch-tag: ec1cc072-9006-4225-b6ba-d6b07ed1710c
;;; cl-seq.el ends here