mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-05 11:45:45 +00:00
3726 lines
102 KiB
C
3726 lines
102 KiB
C
/* Evaluator for GNU Emacs Lisp interpreter.
|
||
Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1999, 2000, 2001,
|
||
2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
|
||
#include <config.h>
|
||
#include "lisp.h"
|
||
#include "blockinput.h"
|
||
#include "commands.h"
|
||
#include "keyboard.h"
|
||
#include "dispextern.h"
|
||
#include <setjmp.h>
|
||
|
||
#if HAVE_X_WINDOWS
|
||
#include "xterm.h"
|
||
#endif
|
||
|
||
/* This definition is duplicated in alloc.c and keyboard.c */
|
||
/* Putting it in lisp.h makes cc bomb out! */
|
||
|
||
struct backtrace
|
||
{
|
||
struct backtrace *next;
|
||
Lisp_Object *function;
|
||
Lisp_Object *args; /* Points to vector of args. */
|
||
int nargs; /* Length of vector.
|
||
If nargs is UNEVALLED, args points to slot holding
|
||
list of unevalled args */
|
||
char evalargs;
|
||
/* Nonzero means call value of debugger when done with this operation. */
|
||
char debug_on_exit;
|
||
};
|
||
|
||
struct backtrace *backtrace_list;
|
||
|
||
/* This structure helps implement the `catch' and `throw' control
|
||
structure. A struct catchtag contains all the information needed
|
||
to restore the state of the interpreter after a non-local jump.
|
||
|
||
Handlers for error conditions (represented by `struct handler'
|
||
structures) just point to a catch tag to do the cleanup required
|
||
for their jumps.
|
||
|
||
catchtag structures are chained together in the C calling stack;
|
||
the `next' member points to the next outer catchtag.
|
||
|
||
A call like (throw TAG VAL) searches for a catchtag whose `tag'
|
||
member is TAG, and then unbinds to it. The `val' member is used to
|
||
hold VAL while the stack is unwound; `val' is returned as the value
|
||
of the catch form.
|
||
|
||
All the other members are concerned with restoring the interpreter
|
||
state. */
|
||
|
||
struct catchtag
|
||
{
|
||
Lisp_Object tag;
|
||
Lisp_Object val;
|
||
struct catchtag *next;
|
||
struct gcpro *gcpro;
|
||
jmp_buf jmp;
|
||
struct backtrace *backlist;
|
||
struct handler *handlerlist;
|
||
int lisp_eval_depth;
|
||
int pdlcount;
|
||
int poll_suppress_count;
|
||
int interrupt_input_blocked;
|
||
struct byte_stack *byte_stack;
|
||
};
|
||
|
||
struct catchtag *catchlist;
|
||
|
||
#ifdef DEBUG_GCPRO
|
||
/* Count levels of GCPRO to detect failure to UNGCPRO. */
|
||
int gcpro_level;
|
||
#endif
|
||
|
||
Lisp_Object Qautoload, Qmacro, Qexit, Qinteractive, Qcommandp, Qdefun;
|
||
Lisp_Object Qinhibit_quit, Vinhibit_quit, Vquit_flag;
|
||
Lisp_Object Qand_rest, Qand_optional;
|
||
Lisp_Object Qdebug_on_error;
|
||
Lisp_Object Qdeclare;
|
||
|
||
/* This holds either the symbol `run-hooks' or nil.
|
||
It is nil at an early stage of startup, and when Emacs
|
||
is shutting down. */
|
||
|
||
Lisp_Object Vrun_hooks;
|
||
|
||
/* Non-nil means record all fset's and provide's, to be undone
|
||
if the file being autoloaded is not fully loaded.
|
||
They are recorded by being consed onto the front of Vautoload_queue:
|
||
(FUN . ODEF) for a defun, (0 . OFEATURES) for a provide. */
|
||
|
||
Lisp_Object Vautoload_queue;
|
||
|
||
/* Current number of specbindings allocated in specpdl. */
|
||
|
||
int specpdl_size;
|
||
|
||
/* Pointer to beginning of specpdl. */
|
||
|
||
struct specbinding *specpdl;
|
||
|
||
/* Pointer to first unused element in specpdl. */
|
||
|
||
struct specbinding *specpdl_ptr;
|
||
|
||
/* Maximum size allowed for specpdl allocation */
|
||
|
||
EMACS_INT max_specpdl_size;
|
||
|
||
/* Depth in Lisp evaluations and function calls. */
|
||
|
||
int lisp_eval_depth;
|
||
|
||
/* Maximum allowed depth in Lisp evaluations and function calls. */
|
||
|
||
EMACS_INT max_lisp_eval_depth;
|
||
|
||
/* Nonzero means enter debugger before next function call */
|
||
|
||
int debug_on_next_call;
|
||
|
||
/* Non-zero means debugger may continue. This is zero when the
|
||
debugger is called during redisplay, where it might not be safe to
|
||
continue the interrupted redisplay. */
|
||
|
||
int debugger_may_continue;
|
||
|
||
/* List of conditions (non-nil atom means all) which cause a backtrace
|
||
if an error is handled by the command loop's error handler. */
|
||
|
||
Lisp_Object Vstack_trace_on_error;
|
||
|
||
/* List of conditions (non-nil atom means all) which enter the debugger
|
||
if an error is handled by the command loop's error handler. */
|
||
|
||
Lisp_Object Vdebug_on_error;
|
||
|
||
/* List of conditions and regexps specifying error messages which
|
||
do not enter the debugger even if Vdebug_on_error says they should. */
|
||
|
||
Lisp_Object Vdebug_ignored_errors;
|
||
|
||
/* Non-nil means call the debugger even if the error will be handled. */
|
||
|
||
Lisp_Object Vdebug_on_signal;
|
||
|
||
/* Hook for edebug to use. */
|
||
|
||
Lisp_Object Vsignal_hook_function;
|
||
|
||
/* Nonzero means enter debugger if a quit signal
|
||
is handled by the command loop's error handler. */
|
||
|
||
int debug_on_quit;
|
||
|
||
/* The value of num_nonmacro_input_events as of the last time we
|
||
started to enter the debugger. If we decide to enter the debugger
|
||
again when this is still equal to num_nonmacro_input_events, then we
|
||
know that the debugger itself has an error, and we should just
|
||
signal the error instead of entering an infinite loop of debugger
|
||
invocations. */
|
||
|
||
int when_entered_debugger;
|
||
|
||
Lisp_Object Vdebugger;
|
||
|
||
/* The function from which the last `signal' was called. Set in
|
||
Fsignal. */
|
||
|
||
Lisp_Object Vsignaling_function;
|
||
|
||
/* Set to non-zero while processing X events. Checked in Feval to
|
||
make sure the Lisp interpreter isn't called from a signal handler,
|
||
which is unsafe because the interpreter isn't reentrant. */
|
||
|
||
int handling_signal;
|
||
|
||
/* Function to process declarations in defmacro forms. */
|
||
|
||
Lisp_Object Vmacro_declaration_function;
|
||
|
||
extern Lisp_Object Qrisky_local_variable;
|
||
|
||
static Lisp_Object funcall_lambda P_ ((Lisp_Object, int, Lisp_Object*));
|
||
static void unwind_to_catch P_ ((struct catchtag *, Lisp_Object)) NO_RETURN;
|
||
|
||
#if __GNUC__
|
||
/* "gcc -O3" enables automatic function inlining, which optimizes out
|
||
the arguments for the invocations of these functions, whereas they
|
||
expect these values on the stack. */
|
||
Lisp_Object apply1 () __attribute__((noinline));
|
||
Lisp_Object call2 () __attribute__((noinline));
|
||
#endif
|
||
|
||
void
|
||
init_eval_once ()
|
||
{
|
||
specpdl_size = 50;
|
||
specpdl = (struct specbinding *) xmalloc (specpdl_size * sizeof (struct specbinding));
|
||
specpdl_ptr = specpdl;
|
||
/* Don't forget to update docs (lispref node "Local Variables"). */
|
||
max_specpdl_size = 1000;
|
||
max_lisp_eval_depth = 300;
|
||
|
||
Vrun_hooks = Qnil;
|
||
}
|
||
|
||
void
|
||
init_eval ()
|
||
{
|
||
specpdl_ptr = specpdl;
|
||
catchlist = 0;
|
||
handlerlist = 0;
|
||
backtrace_list = 0;
|
||
Vquit_flag = Qnil;
|
||
debug_on_next_call = 0;
|
||
lisp_eval_depth = 0;
|
||
#ifdef DEBUG_GCPRO
|
||
gcpro_level = 0;
|
||
#endif
|
||
/* This is less than the initial value of num_nonmacro_input_events. */
|
||
when_entered_debugger = -1;
|
||
}
|
||
|
||
/* unwind-protect function used by call_debugger. */
|
||
|
||
static Lisp_Object
|
||
restore_stack_limits (data)
|
||
Lisp_Object data;
|
||
{
|
||
max_specpdl_size = XINT (XCAR (data));
|
||
max_lisp_eval_depth = XINT (XCDR (data));
|
||
return Qnil;
|
||
}
|
||
|
||
/* Call the Lisp debugger, giving it argument ARG. */
|
||
|
||
Lisp_Object
|
||
call_debugger (arg)
|
||
Lisp_Object arg;
|
||
{
|
||
int debug_while_redisplaying;
|
||
int count = SPECPDL_INDEX ();
|
||
Lisp_Object val;
|
||
int old_max = max_specpdl_size;
|
||
|
||
/* Temporarily bump up the stack limits,
|
||
so the debugger won't run out of stack. */
|
||
|
||
max_specpdl_size += 1;
|
||
record_unwind_protect (restore_stack_limits,
|
||
Fcons (make_number (old_max),
|
||
make_number (max_lisp_eval_depth)));
|
||
max_specpdl_size = old_max;
|
||
|
||
if (lisp_eval_depth + 40 > max_lisp_eval_depth)
|
||
max_lisp_eval_depth = lisp_eval_depth + 40;
|
||
|
||
if (SPECPDL_INDEX () + 100 > max_specpdl_size)
|
||
max_specpdl_size = SPECPDL_INDEX () + 100;
|
||
|
||
#ifdef HAVE_X_WINDOWS
|
||
if (display_hourglass_p)
|
||
cancel_hourglass ();
|
||
#endif
|
||
|
||
debug_on_next_call = 0;
|
||
when_entered_debugger = num_nonmacro_input_events;
|
||
|
||
/* Resetting redisplaying_p to 0 makes sure that debug output is
|
||
displayed if the debugger is invoked during redisplay. */
|
||
debug_while_redisplaying = redisplaying_p;
|
||
redisplaying_p = 0;
|
||
specbind (intern ("debugger-may-continue"),
|
||
debug_while_redisplaying ? Qnil : Qt);
|
||
specbind (Qinhibit_redisplay, Qnil);
|
||
specbind (Qdebug_on_error, Qnil);
|
||
|
||
#if 0 /* Binding this prevents execution of Lisp code during
|
||
redisplay, which necessarily leads to display problems. */
|
||
specbind (Qinhibit_eval_during_redisplay, Qt);
|
||
#endif
|
||
|
||
val = apply1 (Vdebugger, arg);
|
||
|
||
/* Interrupting redisplay and resuming it later is not safe under
|
||
all circumstances. So, when the debugger returns, abort the
|
||
interrupted redisplay by going back to the top-level. */
|
||
if (debug_while_redisplaying)
|
||
Ftop_level ();
|
||
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
void
|
||
do_debug_on_call (code)
|
||
Lisp_Object code;
|
||
{
|
||
debug_on_next_call = 0;
|
||
backtrace_list->debug_on_exit = 1;
|
||
call_debugger (Fcons (code, Qnil));
|
||
}
|
||
|
||
/* NOTE!!! Every function that can call EVAL must protect its args
|
||
and temporaries from garbage collection while it needs them.
|
||
The definition of `For' shows what you have to do. */
|
||
|
||
DEFUN ("or", For, Sor, 0, UNEVALLED, 0,
|
||
doc: /* Eval args until one of them yields non-nil, then return that value.
|
||
The remaining args are not evalled at all.
|
||
If all args return nil, return nil.
|
||
usage: (or CONDITIONS ...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object val = Qnil;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (args);
|
||
|
||
while (CONSP (args))
|
||
{
|
||
val = Feval (XCAR (args));
|
||
if (!NILP (val))
|
||
break;
|
||
args = XCDR (args);
|
||
}
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("and", Fand, Sand, 0, UNEVALLED, 0,
|
||
doc: /* Eval args until one of them yields nil, then return nil.
|
||
The remaining args are not evalled at all.
|
||
If no arg yields nil, return the last arg's value.
|
||
usage: (and CONDITIONS ...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object val = Qt;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (args);
|
||
|
||
while (CONSP (args))
|
||
{
|
||
val = Feval (XCAR (args));
|
||
if (NILP (val))
|
||
break;
|
||
args = XCDR (args);
|
||
}
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("if", Fif, Sif, 2, UNEVALLED, 0,
|
||
doc: /* If COND yields non-nil, do THEN, else do ELSE...
|
||
Returns the value of THEN or the value of the last of the ELSE's.
|
||
THEN must be one expression, but ELSE... can be zero or more expressions.
|
||
If COND yields nil, and there are no ELSE's, the value is nil.
|
||
usage: (if COND THEN ELSE...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object cond;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (args);
|
||
cond = Feval (Fcar (args));
|
||
UNGCPRO;
|
||
|
||
if (!NILP (cond))
|
||
return Feval (Fcar (Fcdr (args)));
|
||
return Fprogn (Fcdr (Fcdr (args)));
|
||
}
|
||
|
||
DEFUN ("cond", Fcond, Scond, 0, UNEVALLED, 0,
|
||
doc: /* Try each clause until one succeeds.
|
||
Each clause looks like (CONDITION BODY...). CONDITION is evaluated
|
||
and, if the value is non-nil, this clause succeeds:
|
||
then the expressions in BODY are evaluated and the last one's
|
||
value is the value of the cond-form.
|
||
If no clause succeeds, cond returns nil.
|
||
If a clause has one element, as in (CONDITION),
|
||
CONDITION's value if non-nil is returned from the cond-form.
|
||
usage: (cond CLAUSES...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object clause, val;
|
||
struct gcpro gcpro1;
|
||
|
||
val = Qnil;
|
||
GCPRO1 (args);
|
||
while (!NILP (args))
|
||
{
|
||
clause = Fcar (args);
|
||
val = Feval (Fcar (clause));
|
||
if (!NILP (val))
|
||
{
|
||
if (!EQ (XCDR (clause), Qnil))
|
||
val = Fprogn (XCDR (clause));
|
||
break;
|
||
}
|
||
args = XCDR (args);
|
||
}
|
||
UNGCPRO;
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("progn", Fprogn, Sprogn, 0, UNEVALLED, 0,
|
||
doc: /* Eval BODY forms sequentially and return value of last one.
|
||
usage: (progn BODY ...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object val = Qnil;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (args);
|
||
|
||
while (CONSP (args))
|
||
{
|
||
val = Feval (XCAR (args));
|
||
args = XCDR (args);
|
||
}
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("prog1", Fprog1, Sprog1, 1, UNEVALLED, 0,
|
||
doc: /* Eval FIRST and BODY sequentially; value from FIRST.
|
||
The value of FIRST is saved during the evaluation of the remaining args,
|
||
whose values are discarded.
|
||
usage: (prog1 FIRST BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object val;
|
||
register Lisp_Object args_left;
|
||
struct gcpro gcpro1, gcpro2;
|
||
register int argnum = 0;
|
||
|
||
if (NILP(args))
|
||
return Qnil;
|
||
|
||
args_left = args;
|
||
val = Qnil;
|
||
GCPRO2 (args, val);
|
||
|
||
do
|
||
{
|
||
if (!(argnum++))
|
||
val = Feval (Fcar (args_left));
|
||
else
|
||
Feval (Fcar (args_left));
|
||
args_left = Fcdr (args_left);
|
||
}
|
||
while (!NILP(args_left));
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("prog2", Fprog2, Sprog2, 2, UNEVALLED, 0,
|
||
doc: /* Eval FORM1, FORM2 and BODY sequentially; value from FORM2.
|
||
The value of FORM2 is saved during the evaluation of the
|
||
remaining args, whose values are discarded.
|
||
usage: (prog2 FORM1 FORM2 BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object val;
|
||
register Lisp_Object args_left;
|
||
struct gcpro gcpro1, gcpro2;
|
||
register int argnum = -1;
|
||
|
||
val = Qnil;
|
||
|
||
if (NILP (args))
|
||
return Qnil;
|
||
|
||
args_left = args;
|
||
val = Qnil;
|
||
GCPRO2 (args, val);
|
||
|
||
do
|
||
{
|
||
if (!(argnum++))
|
||
val = Feval (Fcar (args_left));
|
||
else
|
||
Feval (Fcar (args_left));
|
||
args_left = Fcdr (args_left);
|
||
}
|
||
while (!NILP (args_left));
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("setq", Fsetq, Ssetq, 0, UNEVALLED, 0,
|
||
doc: /* Set each SYM to the value of its VAL.
|
||
The symbols SYM are variables; they are literal (not evaluated).
|
||
The values VAL are expressions; they are evaluated.
|
||
Thus, (setq x (1+ y)) sets `x' to the value of `(1+ y)'.
|
||
The second VAL is not computed until after the first SYM is set, and so on;
|
||
each VAL can use the new value of variables set earlier in the `setq'.
|
||
The return value of the `setq' form is the value of the last VAL.
|
||
usage: (setq SYM VAL SYM VAL ...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object args_left;
|
||
register Lisp_Object val, sym;
|
||
struct gcpro gcpro1;
|
||
|
||
if (NILP(args))
|
||
return Qnil;
|
||
|
||
args_left = args;
|
||
GCPRO1 (args);
|
||
|
||
do
|
||
{
|
||
val = Feval (Fcar (Fcdr (args_left)));
|
||
sym = Fcar (args_left);
|
||
Fset (sym, val);
|
||
args_left = Fcdr (Fcdr (args_left));
|
||
}
|
||
while (!NILP(args_left));
|
||
|
||
UNGCPRO;
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("quote", Fquote, Squote, 1, UNEVALLED, 0,
|
||
doc: /* Return the argument, without evaluating it. `(quote x)' yields `x'.
|
||
usage: (quote ARG) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
return Fcar (args);
|
||
}
|
||
|
||
DEFUN ("function", Ffunction, Sfunction, 1, UNEVALLED, 0,
|
||
doc: /* Like `quote', but preferred for objects which are functions.
|
||
In byte compilation, `function' causes its argument to be compiled.
|
||
`quote' cannot do that.
|
||
usage: (function ARG) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
return Fcar (args);
|
||
}
|
||
|
||
|
||
DEFUN ("interactive-p", Finteractive_p, Sinteractive_p, 0, 0, 0,
|
||
doc: /* Return t if the function was run directly by user input.
|
||
This means that the function was called with `call-interactively'
|
||
\(which includes being called as the binding of a key)
|
||
and input is currently coming from the keyboard (not in keyboard macro),
|
||
and Emacs is not running in batch mode (`noninteractive' is nil).
|
||
|
||
The only known proper use of `interactive-p' is in deciding whether to
|
||
display a helpful message, or how to display it. If you're thinking
|
||
of using it for any other purpose, it is quite likely that you're
|
||
making a mistake. Think: what do you want to do when the command is
|
||
called from a keyboard macro?
|
||
|
||
If you want to test whether your function was called with
|
||
`call-interactively', the way to do that is by adding an extra
|
||
optional argument, and making the `interactive' spec specify non-nil
|
||
unconditionally for that argument. (`p' is a good way to do this.) */)
|
||
()
|
||
{
|
||
return (INTERACTIVE && interactive_p (1)) ? Qt : Qnil;
|
||
}
|
||
|
||
|
||
DEFUN ("called-interactively-p", Fcalled_interactively_p, Scalled_interactively_p, 0, 0, 0,
|
||
doc: /* Return t if the function using this was called with `call-interactively'.
|
||
This is used for implementing advice and other function-modifying
|
||
features of Emacs.
|
||
|
||
The cleanest way to test whether your function was called with
|
||
`call-interactively' is by adding an extra optional argument,
|
||
and making the `interactive' spec specify non-nil unconditionally
|
||
for that argument. (`p' is a good way to do this.) */)
|
||
()
|
||
{
|
||
return interactive_p (1) ? Qt : Qnil;
|
||
}
|
||
|
||
|
||
/* Return 1 if function in which this appears was called using
|
||
call-interactively.
|
||
|
||
EXCLUDE_SUBRS_P non-zero means always return 0 if the function
|
||
called is a built-in. */
|
||
|
||
int
|
||
interactive_p (exclude_subrs_p)
|
||
int exclude_subrs_p;
|
||
{
|
||
struct backtrace *btp;
|
||
Lisp_Object fun;
|
||
|
||
btp = backtrace_list;
|
||
|
||
/* If this isn't a byte-compiled function, there may be a frame at
|
||
the top for Finteractive_p. If so, skip it. */
|
||
fun = Findirect_function (*btp->function, Qnil);
|
||
if (SUBRP (fun) && (XSUBR (fun) == &Sinteractive_p
|
||
|| XSUBR (fun) == &Scalled_interactively_p))
|
||
btp = btp->next;
|
||
|
||
/* If we're running an Emacs 18-style byte-compiled function, there
|
||
may be a frame for Fbytecode at the top level. In any version of
|
||
Emacs there can be Fbytecode frames for subexpressions evaluated
|
||
inside catch and condition-case. Skip past them.
|
||
|
||
If this isn't a byte-compiled function, then we may now be
|
||
looking at several frames for special forms. Skip past them. */
|
||
while (btp
|
||
&& (EQ (*btp->function, Qbytecode)
|
||
|| btp->nargs == UNEVALLED))
|
||
btp = btp->next;
|
||
|
||
/* btp now points at the frame of the innermost function that isn't
|
||
a special form, ignoring frames for Finteractive_p and/or
|
||
Fbytecode at the top. If this frame is for a built-in function
|
||
(such as load or eval-region) return nil. */
|
||
fun = Findirect_function (*btp->function, Qnil);
|
||
if (exclude_subrs_p && SUBRP (fun))
|
||
return 0;
|
||
|
||
/* btp points to the frame of a Lisp function that called interactive-p.
|
||
Return t if that function was called interactively. */
|
||
if (btp && btp->next && EQ (*btp->next->function, Qcall_interactively))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
DEFUN ("defun", Fdefun, Sdefun, 2, UNEVALLED, 0,
|
||
doc: /* Define NAME as a function.
|
||
The definition is (lambda ARGLIST [DOCSTRING] BODY...).
|
||
See also the function `interactive'.
|
||
usage: (defun NAME ARGLIST [DOCSTRING] BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object fn_name;
|
||
register Lisp_Object defn;
|
||
|
||
fn_name = Fcar (args);
|
||
CHECK_SYMBOL (fn_name);
|
||
defn = Fcons (Qlambda, Fcdr (args));
|
||
if (!NILP (Vpurify_flag))
|
||
defn = Fpurecopy (defn);
|
||
if (CONSP (XSYMBOL (fn_name)->function)
|
||
&& EQ (XCAR (XSYMBOL (fn_name)->function), Qautoload))
|
||
LOADHIST_ATTACH (Fcons (Qt, fn_name));
|
||
Ffset (fn_name, defn);
|
||
LOADHIST_ATTACH (Fcons (Qdefun, fn_name));
|
||
return fn_name;
|
||
}
|
||
|
||
DEFUN ("defmacro", Fdefmacro, Sdefmacro, 2, UNEVALLED, 0,
|
||
doc: /* Define NAME as a macro.
|
||
The actual definition looks like
|
||
(macro lambda ARGLIST [DOCSTRING] [DECL] BODY...).
|
||
When the macro is called, as in (NAME ARGS...),
|
||
the function (lambda ARGLIST BODY...) is applied to
|
||
the list ARGS... as it appears in the expression,
|
||
and the result should be a form to be evaluated instead of the original.
|
||
|
||
DECL is a declaration, optional, which can specify how to indent
|
||
calls to this macro and how Edebug should handle it. It looks like this:
|
||
(declare SPECS...)
|
||
The elements can look like this:
|
||
(indent INDENT)
|
||
Set NAME's `lisp-indent-function' property to INDENT.
|
||
|
||
(debug DEBUG)
|
||
Set NAME's `edebug-form-spec' property to DEBUG. (This is
|
||
equivalent to writing a `def-edebug-spec' for the macro.)
|
||
usage: (defmacro NAME ARGLIST [DOCSTRING] [DECL] BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object fn_name;
|
||
register Lisp_Object defn;
|
||
Lisp_Object lambda_list, doc, tail;
|
||
|
||
fn_name = Fcar (args);
|
||
CHECK_SYMBOL (fn_name);
|
||
lambda_list = Fcar (Fcdr (args));
|
||
tail = Fcdr (Fcdr (args));
|
||
|
||
doc = Qnil;
|
||
if (STRINGP (Fcar (tail)))
|
||
{
|
||
doc = XCAR (tail);
|
||
tail = XCDR (tail);
|
||
}
|
||
|
||
while (CONSP (Fcar (tail))
|
||
&& EQ (Fcar (Fcar (tail)), Qdeclare))
|
||
{
|
||
if (!NILP (Vmacro_declaration_function))
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (args);
|
||
call2 (Vmacro_declaration_function, fn_name, Fcar (tail));
|
||
UNGCPRO;
|
||
}
|
||
|
||
tail = Fcdr (tail);
|
||
}
|
||
|
||
if (NILP (doc))
|
||
tail = Fcons (lambda_list, tail);
|
||
else
|
||
tail = Fcons (lambda_list, Fcons (doc, tail));
|
||
defn = Fcons (Qmacro, Fcons (Qlambda, tail));
|
||
|
||
if (!NILP (Vpurify_flag))
|
||
defn = Fpurecopy (defn);
|
||
if (CONSP (XSYMBOL (fn_name)->function)
|
||
&& EQ (XCAR (XSYMBOL (fn_name)->function), Qautoload))
|
||
LOADHIST_ATTACH (Fcons (Qt, fn_name));
|
||
Ffset (fn_name, defn);
|
||
LOADHIST_ATTACH (Fcons (Qdefun, fn_name));
|
||
return fn_name;
|
||
}
|
||
|
||
|
||
DEFUN ("defvaralias", Fdefvaralias, Sdefvaralias, 2, 3, 0,
|
||
doc: /* Make NEW-ALIAS a variable alias for symbol BASE-VARIABLE.
|
||
Aliased variables always have the same value; setting one sets the other.
|
||
Third arg DOCSTRING, if non-nil, is documentation for NEW-ALIAS. If it is
|
||
omitted or nil, NEW-ALIAS gets the documentation string of BASE-VARIABLE,
|
||
or of the variable at the end of the chain of aliases, if BASE-VARIABLE is
|
||
itself an alias.
|
||
The return value is BASE-VARIABLE. */)
|
||
(new_alias, base_variable, docstring)
|
||
Lisp_Object new_alias, base_variable, docstring;
|
||
{
|
||
struct Lisp_Symbol *sym;
|
||
|
||
CHECK_SYMBOL (new_alias);
|
||
CHECK_SYMBOL (base_variable);
|
||
|
||
if (SYMBOL_CONSTANT_P (new_alias))
|
||
error ("Cannot make a constant an alias");
|
||
|
||
sym = XSYMBOL (new_alias);
|
||
sym->indirect_variable = 1;
|
||
sym->value = base_variable;
|
||
sym->constant = SYMBOL_CONSTANT_P (base_variable);
|
||
LOADHIST_ATTACH (new_alias);
|
||
if (!NILP (docstring))
|
||
Fput (new_alias, Qvariable_documentation, docstring);
|
||
else
|
||
Fput (new_alias, Qvariable_documentation, Qnil);
|
||
|
||
return base_variable;
|
||
}
|
||
|
||
|
||
DEFUN ("defvar", Fdefvar, Sdefvar, 1, UNEVALLED, 0,
|
||
doc: /* Define SYMBOL as a variable, and return SYMBOL.
|
||
You are not required to define a variable in order to use it,
|
||
but the definition can supply documentation and an initial value
|
||
in a way that tags can recognize.
|
||
|
||
INITVALUE is evaluated, and used to set SYMBOL, only if SYMBOL's value is void.
|
||
If SYMBOL is buffer-local, its default value is what is set;
|
||
buffer-local values are not affected.
|
||
INITVALUE and DOCSTRING are optional.
|
||
If DOCSTRING starts with *, this variable is identified as a user option.
|
||
This means that M-x set-variable recognizes it.
|
||
See also `user-variable-p'.
|
||
If INITVALUE is missing, SYMBOL's value is not set.
|
||
|
||
If SYMBOL has a local binding, then this form affects the local
|
||
binding. This is usually not what you want. Thus, if you need to
|
||
load a file defining variables, with this form or with `defconst' or
|
||
`defcustom', you should always load that file _outside_ any bindings
|
||
for these variables. \(`defconst' and `defcustom' behave similarly in
|
||
this respect.)
|
||
usage: (defvar SYMBOL &optional INITVALUE DOCSTRING) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object sym, tem, tail;
|
||
|
||
sym = Fcar (args);
|
||
tail = Fcdr (args);
|
||
if (!NILP (Fcdr (Fcdr (tail))))
|
||
error ("Too many arguments");
|
||
|
||
tem = Fdefault_boundp (sym);
|
||
if (!NILP (tail))
|
||
{
|
||
if (SYMBOL_CONSTANT_P (sym))
|
||
{
|
||
/* For upward compatibility, allow (defvar :foo (quote :foo)). */
|
||
Lisp_Object tem = Fcar (tail);
|
||
if (! (CONSP (tem)
|
||
&& EQ (XCAR (tem), Qquote)
|
||
&& CONSP (XCDR (tem))
|
||
&& EQ (XCAR (XCDR (tem)), sym)))
|
||
error ("Constant symbol `%s' specified in defvar",
|
||
SDATA (SYMBOL_NAME (sym)));
|
||
}
|
||
|
||
if (NILP (tem))
|
||
Fset_default (sym, Feval (Fcar (tail)));
|
||
else
|
||
{ /* Check if there is really a global binding rather than just a let
|
||
binding that shadows the global unboundness of the var. */
|
||
volatile struct specbinding *pdl = specpdl_ptr;
|
||
while (--pdl >= specpdl)
|
||
{
|
||
if (EQ (pdl->symbol, sym) && !pdl->func
|
||
&& EQ (pdl->old_value, Qunbound))
|
||
{
|
||
message_with_string ("Warning: defvar ignored because %s is let-bound",
|
||
SYMBOL_NAME (sym), 1);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
tail = Fcdr (tail);
|
||
tem = Fcar (tail);
|
||
if (!NILP (tem))
|
||
{
|
||
if (!NILP (Vpurify_flag))
|
||
tem = Fpurecopy (tem);
|
||
Fput (sym, Qvariable_documentation, tem);
|
||
}
|
||
LOADHIST_ATTACH (sym);
|
||
}
|
||
else
|
||
/* Simple (defvar <var>) should not count as a definition at all.
|
||
It could get in the way of other definitions, and unloading this
|
||
package could try to make the variable unbound. */
|
||
;
|
||
|
||
return sym;
|
||
}
|
||
|
||
DEFUN ("defconst", Fdefconst, Sdefconst, 2, UNEVALLED, 0,
|
||
doc: /* Define SYMBOL as a constant variable.
|
||
The intent is that neither programs nor users should ever change this value.
|
||
Always sets the value of SYMBOL to the result of evalling INITVALUE.
|
||
If SYMBOL is buffer-local, its default value is what is set;
|
||
buffer-local values are not affected.
|
||
DOCSTRING is optional.
|
||
|
||
If SYMBOL has a local binding, then this form sets the local binding's
|
||
value. However, you should normally not make local bindings for
|
||
variables defined with this form.
|
||
usage: (defconst SYMBOL INITVALUE [DOCSTRING]) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object sym, tem;
|
||
|
||
sym = Fcar (args);
|
||
if (!NILP (Fcdr (Fcdr (Fcdr (args)))))
|
||
error ("Too many arguments");
|
||
|
||
tem = Feval (Fcar (Fcdr (args)));
|
||
if (!NILP (Vpurify_flag))
|
||
tem = Fpurecopy (tem);
|
||
Fset_default (sym, tem);
|
||
tem = Fcar (Fcdr (Fcdr (args)));
|
||
if (!NILP (tem))
|
||
{
|
||
if (!NILP (Vpurify_flag))
|
||
tem = Fpurecopy (tem);
|
||
Fput (sym, Qvariable_documentation, tem);
|
||
}
|
||
Fput (sym, Qrisky_local_variable, Qt);
|
||
LOADHIST_ATTACH (sym);
|
||
return sym;
|
||
}
|
||
|
||
/* Error handler used in Fuser_variable_p. */
|
||
static Lisp_Object
|
||
user_variable_p_eh (ignore)
|
||
Lisp_Object ignore;
|
||
{
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("user-variable-p", Fuser_variable_p, Suser_variable_p, 1, 1, 0,
|
||
doc: /* Return t if VARIABLE is intended to be set and modified by users.
|
||
\(The alternative is a variable used internally in a Lisp program.)
|
||
A variable is a user variable if
|
||
\(1) the first character of its documentation is `*', or
|
||
\(2) it is customizable (its property list contains a non-nil value
|
||
of `standard-value' or `custom-autoload'), or
|
||
\(3) it is an alias for another user variable.
|
||
Return nil if VARIABLE is an alias and there is a loop in the
|
||
chain of symbols. */)
|
||
(variable)
|
||
Lisp_Object variable;
|
||
{
|
||
Lisp_Object documentation;
|
||
|
||
if (!SYMBOLP (variable))
|
||
return Qnil;
|
||
|
||
/* If indirect and there's an alias loop, don't check anything else. */
|
||
if (XSYMBOL (variable)->indirect_variable
|
||
&& NILP (internal_condition_case_1 (indirect_variable, variable,
|
||
Qt, user_variable_p_eh)))
|
||
return Qnil;
|
||
|
||
while (1)
|
||
{
|
||
documentation = Fget (variable, Qvariable_documentation);
|
||
if (INTEGERP (documentation) && XINT (documentation) < 0)
|
||
return Qt;
|
||
if (STRINGP (documentation)
|
||
&& ((unsigned char) SREF (documentation, 0) == '*'))
|
||
return Qt;
|
||
/* If it is (STRING . INTEGER), a negative integer means a user variable. */
|
||
if (CONSP (documentation)
|
||
&& STRINGP (XCAR (documentation))
|
||
&& INTEGERP (XCDR (documentation))
|
||
&& XINT (XCDR (documentation)) < 0)
|
||
return Qt;
|
||
/* Customizable? See `custom-variable-p'. */
|
||
if ((!NILP (Fget (variable, intern ("standard-value"))))
|
||
|| (!NILP (Fget (variable, intern ("custom-autoload")))))
|
||
return Qt;
|
||
|
||
if (!XSYMBOL (variable)->indirect_variable)
|
||
return Qnil;
|
||
|
||
/* An indirect variable? Let's follow the chain. */
|
||
variable = XSYMBOL (variable)->value;
|
||
}
|
||
}
|
||
|
||
DEFUN ("let*", FletX, SletX, 1, UNEVALLED, 0,
|
||
doc: /* Bind variables according to VARLIST then eval BODY.
|
||
The value of the last form in BODY is returned.
|
||
Each element of VARLIST is a symbol (which is bound to nil)
|
||
or a list (SYMBOL VALUEFORM) (which binds SYMBOL to the value of VALUEFORM).
|
||
Each VALUEFORM can refer to the symbols already bound by this VARLIST.
|
||
usage: (let* VARLIST BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object varlist, val, elt;
|
||
int count = SPECPDL_INDEX ();
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
GCPRO3 (args, elt, varlist);
|
||
|
||
varlist = Fcar (args);
|
||
while (!NILP (varlist))
|
||
{
|
||
QUIT;
|
||
elt = Fcar (varlist);
|
||
if (SYMBOLP (elt))
|
||
specbind (elt, Qnil);
|
||
else if (! NILP (Fcdr (Fcdr (elt))))
|
||
signal_error ("`let' bindings can have only one value-form", elt);
|
||
else
|
||
{
|
||
val = Feval (Fcar (Fcdr (elt)));
|
||
specbind (Fcar (elt), val);
|
||
}
|
||
varlist = Fcdr (varlist);
|
||
}
|
||
UNGCPRO;
|
||
val = Fprogn (Fcdr (args));
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
DEFUN ("let", Flet, Slet, 1, UNEVALLED, 0,
|
||
doc: /* Bind variables according to VARLIST then eval BODY.
|
||
The value of the last form in BODY is returned.
|
||
Each element of VARLIST is a symbol (which is bound to nil)
|
||
or a list (SYMBOL VALUEFORM) (which binds SYMBOL to the value of VALUEFORM).
|
||
All the VALUEFORMs are evalled before any symbols are bound.
|
||
usage: (let VARLIST BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object *temps, tem;
|
||
register Lisp_Object elt, varlist;
|
||
int count = SPECPDL_INDEX ();
|
||
register int argnum;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
varlist = Fcar (args);
|
||
|
||
/* Make space to hold the values to give the bound variables */
|
||
elt = Flength (varlist);
|
||
temps = (Lisp_Object *) alloca (XFASTINT (elt) * sizeof (Lisp_Object));
|
||
|
||
/* Compute the values and store them in `temps' */
|
||
|
||
GCPRO2 (args, *temps);
|
||
gcpro2.nvars = 0;
|
||
|
||
for (argnum = 0; !NILP (varlist); varlist = Fcdr (varlist))
|
||
{
|
||
QUIT;
|
||
elt = Fcar (varlist);
|
||
if (SYMBOLP (elt))
|
||
temps [argnum++] = Qnil;
|
||
else if (! NILP (Fcdr (Fcdr (elt))))
|
||
signal_error ("`let' bindings can have only one value-form", elt);
|
||
else
|
||
temps [argnum++] = Feval (Fcar (Fcdr (elt)));
|
||
gcpro2.nvars = argnum;
|
||
}
|
||
UNGCPRO;
|
||
|
||
varlist = Fcar (args);
|
||
for (argnum = 0; !NILP (varlist); varlist = Fcdr (varlist))
|
||
{
|
||
elt = Fcar (varlist);
|
||
tem = temps[argnum++];
|
||
if (SYMBOLP (elt))
|
||
specbind (elt, tem);
|
||
else
|
||
specbind (Fcar (elt), tem);
|
||
}
|
||
|
||
elt = Fprogn (Fcdr (args));
|
||
return unbind_to (count, elt);
|
||
}
|
||
|
||
DEFUN ("while", Fwhile, Swhile, 1, UNEVALLED, 0,
|
||
doc: /* If TEST yields non-nil, eval BODY... and repeat.
|
||
The order of execution is thus TEST, BODY, TEST, BODY and so on
|
||
until TEST returns nil.
|
||
usage: (while TEST BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object test, body;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
GCPRO2 (test, body);
|
||
|
||
test = Fcar (args);
|
||
body = Fcdr (args);
|
||
while (!NILP (Feval (test)))
|
||
{
|
||
QUIT;
|
||
Fprogn (body);
|
||
}
|
||
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("macroexpand", Fmacroexpand, Smacroexpand, 1, 2, 0,
|
||
doc: /* Return result of expanding macros at top level of FORM.
|
||
If FORM is not a macro call, it is returned unchanged.
|
||
Otherwise, the macro is expanded and the expansion is considered
|
||
in place of FORM. When a non-macro-call results, it is returned.
|
||
|
||
The second optional arg ENVIRONMENT specifies an environment of macro
|
||
definitions to shadow the loaded ones for use in file byte-compilation. */)
|
||
(form, environment)
|
||
Lisp_Object form;
|
||
Lisp_Object environment;
|
||
{
|
||
/* With cleanups from Hallvard Furuseth. */
|
||
register Lisp_Object expander, sym, def, tem;
|
||
|
||
while (1)
|
||
{
|
||
/* Come back here each time we expand a macro call,
|
||
in case it expands into another macro call. */
|
||
if (!CONSP (form))
|
||
break;
|
||
/* Set SYM, give DEF and TEM right values in case SYM is not a symbol. */
|
||
def = sym = XCAR (form);
|
||
tem = Qnil;
|
||
/* Trace symbols aliases to other symbols
|
||
until we get a symbol that is not an alias. */
|
||
while (SYMBOLP (def))
|
||
{
|
||
QUIT;
|
||
sym = def;
|
||
tem = Fassq (sym, environment);
|
||
if (NILP (tem))
|
||
{
|
||
def = XSYMBOL (sym)->function;
|
||
if (!EQ (def, Qunbound))
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
/* Right now TEM is the result from SYM in ENVIRONMENT,
|
||
and if TEM is nil then DEF is SYM's function definition. */
|
||
if (NILP (tem))
|
||
{
|
||
/* SYM is not mentioned in ENVIRONMENT.
|
||
Look at its function definition. */
|
||
if (EQ (def, Qunbound) || !CONSP (def))
|
||
/* Not defined or definition not suitable */
|
||
break;
|
||
if (EQ (XCAR (def), Qautoload))
|
||
{
|
||
/* Autoloading function: will it be a macro when loaded? */
|
||
tem = Fnth (make_number (4), def);
|
||
if (EQ (tem, Qt) || EQ (tem, Qmacro))
|
||
/* Yes, load it and try again. */
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (form);
|
||
do_autoload (def, sym);
|
||
UNGCPRO;
|
||
continue;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
else if (!EQ (XCAR (def), Qmacro))
|
||
break;
|
||
else expander = XCDR (def);
|
||
}
|
||
else
|
||
{
|
||
expander = XCDR (tem);
|
||
if (NILP (expander))
|
||
break;
|
||
}
|
||
form = apply1 (expander, XCDR (form));
|
||
}
|
||
return form;
|
||
}
|
||
|
||
DEFUN ("catch", Fcatch, Scatch, 1, UNEVALLED, 0,
|
||
doc: /* Eval BODY allowing nonlocal exits using `throw'.
|
||
TAG is evalled to get the tag to use; it must not be nil.
|
||
|
||
Then the BODY is executed.
|
||
Within BODY, a call to `throw' with the same TAG exits BODY and this `catch'.
|
||
If no throw happens, `catch' returns the value of the last BODY form.
|
||
If a throw happens, it specifies the value to return from `catch'.
|
||
usage: (catch TAG BODY...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object tag;
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (args);
|
||
tag = Feval (Fcar (args));
|
||
UNGCPRO;
|
||
return internal_catch (tag, Fprogn, Fcdr (args));
|
||
}
|
||
|
||
/* Set up a catch, then call C function FUNC on argument ARG.
|
||
FUNC should return a Lisp_Object.
|
||
This is how catches are done from within C code. */
|
||
|
||
Lisp_Object
|
||
internal_catch (tag, func, arg)
|
||
Lisp_Object tag;
|
||
Lisp_Object (*func) ();
|
||
Lisp_Object arg;
|
||
{
|
||
/* This structure is made part of the chain `catchlist'. */
|
||
struct catchtag c;
|
||
|
||
/* Fill in the components of c, and put it on the list. */
|
||
c.next = catchlist;
|
||
c.tag = tag;
|
||
c.val = Qnil;
|
||
c.backlist = backtrace_list;
|
||
c.handlerlist = handlerlist;
|
||
c.lisp_eval_depth = lisp_eval_depth;
|
||
c.pdlcount = SPECPDL_INDEX ();
|
||
c.poll_suppress_count = poll_suppress_count;
|
||
c.interrupt_input_blocked = interrupt_input_blocked;
|
||
c.gcpro = gcprolist;
|
||
c.byte_stack = byte_stack_list;
|
||
catchlist = &c;
|
||
|
||
/* Call FUNC. */
|
||
if (! _setjmp (c.jmp))
|
||
c.val = (*func) (arg);
|
||
|
||
/* Throw works by a longjmp that comes right here. */
|
||
catchlist = c.next;
|
||
return c.val;
|
||
}
|
||
|
||
/* Unwind the specbind, catch, and handler stacks back to CATCH, and
|
||
jump to that CATCH, returning VALUE as the value of that catch.
|
||
|
||
This is the guts Fthrow and Fsignal; they differ only in the way
|
||
they choose the catch tag to throw to. A catch tag for a
|
||
condition-case form has a TAG of Qnil.
|
||
|
||
Before each catch is discarded, unbind all special bindings and
|
||
execute all unwind-protect clauses made above that catch. Unwind
|
||
the handler stack as we go, so that the proper handlers are in
|
||
effect for each unwind-protect clause we run. At the end, restore
|
||
some static info saved in CATCH, and longjmp to the location
|
||
specified in the
|
||
|
||
This is used for correct unwinding in Fthrow and Fsignal. */
|
||
|
||
static void
|
||
unwind_to_catch (catch, value)
|
||
struct catchtag *catch;
|
||
Lisp_Object value;
|
||
{
|
||
register int last_time;
|
||
|
||
/* Save the value in the tag. */
|
||
catch->val = value;
|
||
|
||
/* Restore certain special C variables. */
|
||
set_poll_suppress_count (catch->poll_suppress_count);
|
||
UNBLOCK_INPUT_TO (catch->interrupt_input_blocked);
|
||
handling_signal = 0;
|
||
immediate_quit = 0;
|
||
|
||
do
|
||
{
|
||
last_time = catchlist == catch;
|
||
|
||
/* Unwind the specpdl stack, and then restore the proper set of
|
||
handlers. */
|
||
unbind_to (catchlist->pdlcount, Qnil);
|
||
handlerlist = catchlist->handlerlist;
|
||
catchlist = catchlist->next;
|
||
}
|
||
while (! last_time);
|
||
|
||
#if HAVE_X_WINDOWS
|
||
/* If x_catch_errors was done, turn it off now.
|
||
(First we give unbind_to a chance to do that.) */
|
||
x_fully_uncatch_errors ();
|
||
#endif
|
||
|
||
byte_stack_list = catch->byte_stack;
|
||
gcprolist = catch->gcpro;
|
||
#ifdef DEBUG_GCPRO
|
||
if (gcprolist != 0)
|
||
gcpro_level = gcprolist->level + 1;
|
||
else
|
||
gcpro_level = 0;
|
||
#endif
|
||
backtrace_list = catch->backlist;
|
||
lisp_eval_depth = catch->lisp_eval_depth;
|
||
|
||
_longjmp (catch->jmp, 1);
|
||
}
|
||
|
||
DEFUN ("throw", Fthrow, Sthrow, 2, 2, 0,
|
||
doc: /* Throw to the catch for TAG and return VALUE from it.
|
||
Both TAG and VALUE are evalled. */)
|
||
(tag, value)
|
||
register Lisp_Object tag, value;
|
||
{
|
||
register struct catchtag *c;
|
||
|
||
if (!NILP (tag))
|
||
for (c = catchlist; c; c = c->next)
|
||
{
|
||
if (EQ (c->tag, tag))
|
||
unwind_to_catch (c, value);
|
||
}
|
||
xsignal2 (Qno_catch, tag, value);
|
||
}
|
||
|
||
|
||
DEFUN ("unwind-protect", Funwind_protect, Sunwind_protect, 1, UNEVALLED, 0,
|
||
doc: /* Do BODYFORM, protecting with UNWINDFORMS.
|
||
If BODYFORM completes normally, its value is returned
|
||
after executing the UNWINDFORMS.
|
||
If BODYFORM exits nonlocally, the UNWINDFORMS are executed anyway.
|
||
usage: (unwind-protect BODYFORM UNWINDFORMS...) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
Lisp_Object val;
|
||
int count = SPECPDL_INDEX ();
|
||
|
||
record_unwind_protect (Fprogn, Fcdr (args));
|
||
val = Feval (Fcar (args));
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
/* Chain of condition handlers currently in effect.
|
||
The elements of this chain are contained in the stack frames
|
||
of Fcondition_case and internal_condition_case.
|
||
When an error is signaled (by calling Fsignal, below),
|
||
this chain is searched for an element that applies. */
|
||
|
||
struct handler *handlerlist;
|
||
|
||
DEFUN ("condition-case", Fcondition_case, Scondition_case, 2, UNEVALLED, 0,
|
||
doc: /* Regain control when an error is signaled.
|
||
Executes BODYFORM and returns its value if no error happens.
|
||
Each element of HANDLERS looks like (CONDITION-NAME BODY...)
|
||
where the BODY is made of Lisp expressions.
|
||
|
||
A handler is applicable to an error
|
||
if CONDITION-NAME is one of the error's condition names.
|
||
If an error happens, the first applicable handler is run.
|
||
|
||
The car of a handler may be a list of condition names
|
||
instead of a single condition name.
|
||
|
||
When a handler handles an error,
|
||
control returns to the condition-case and the handler BODY... is executed
|
||
with VAR bound to (SIGNALED-CONDITIONS . SIGNAL-DATA).
|
||
VAR may be nil; then you do not get access to the signal information.
|
||
|
||
The value of the last BODY form is returned from the condition-case.
|
||
See also the function `signal' for more info.
|
||
usage: (condition-case VAR BODYFORM &rest HANDLERS) */)
|
||
(args)
|
||
Lisp_Object args;
|
||
{
|
||
register Lisp_Object bodyform, handlers;
|
||
volatile Lisp_Object var;
|
||
|
||
var = Fcar (args);
|
||
bodyform = Fcar (Fcdr (args));
|
||
handlers = Fcdr (Fcdr (args));
|
||
|
||
return internal_lisp_condition_case (var, bodyform, handlers);
|
||
}
|
||
|
||
/* Like Fcondition_case, but the args are separate
|
||
rather than passed in a list. Used by Fbyte_code. */
|
||
|
||
Lisp_Object
|
||
internal_lisp_condition_case (var, bodyform, handlers)
|
||
volatile Lisp_Object var;
|
||
Lisp_Object bodyform, handlers;
|
||
{
|
||
Lisp_Object val;
|
||
struct catchtag c;
|
||
struct handler h;
|
||
|
||
CHECK_SYMBOL (var);
|
||
|
||
for (val = handlers; CONSP (val); val = XCDR (val))
|
||
{
|
||
Lisp_Object tem;
|
||
tem = XCAR (val);
|
||
if (! (NILP (tem)
|
||
|| (CONSP (tem)
|
||
&& (SYMBOLP (XCAR (tem))
|
||
|| CONSP (XCAR (tem))))))
|
||
error ("Invalid condition handler", tem);
|
||
}
|
||
|
||
c.tag = Qnil;
|
||
c.val = Qnil;
|
||
c.backlist = backtrace_list;
|
||
c.handlerlist = handlerlist;
|
||
c.lisp_eval_depth = lisp_eval_depth;
|
||
c.pdlcount = SPECPDL_INDEX ();
|
||
c.poll_suppress_count = poll_suppress_count;
|
||
c.interrupt_input_blocked = interrupt_input_blocked;
|
||
c.gcpro = gcprolist;
|
||
c.byte_stack = byte_stack_list;
|
||
if (_setjmp (c.jmp))
|
||
{
|
||
if (!NILP (h.var))
|
||
specbind (h.var, c.val);
|
||
val = Fprogn (Fcdr (h.chosen_clause));
|
||
|
||
/* Note that this just undoes the binding of h.var; whoever
|
||
longjumped to us unwound the stack to c.pdlcount before
|
||
throwing. */
|
||
unbind_to (c.pdlcount, Qnil);
|
||
return val;
|
||
}
|
||
c.next = catchlist;
|
||
catchlist = &c;
|
||
|
||
h.var = var;
|
||
h.handler = handlers;
|
||
h.next = handlerlist;
|
||
h.tag = &c;
|
||
handlerlist = &h;
|
||
|
||
val = Feval (bodyform);
|
||
catchlist = c.next;
|
||
handlerlist = h.next;
|
||
return val;
|
||
}
|
||
|
||
/* Call the function BFUN with no arguments, catching errors within it
|
||
according to HANDLERS. If there is an error, call HFUN with
|
||
one argument which is the data that describes the error:
|
||
(SIGNALNAME . DATA)
|
||
|
||
HANDLERS can be a list of conditions to catch.
|
||
If HANDLERS is Qt, catch all errors.
|
||
If HANDLERS is Qerror, catch all errors
|
||
but allow the debugger to run if that is enabled. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case (bfun, handlers, hfun)
|
||
Lisp_Object (*bfun) ();
|
||
Lisp_Object handlers;
|
||
Lisp_Object (*hfun) ();
|
||
{
|
||
Lisp_Object val;
|
||
struct catchtag c;
|
||
struct handler h;
|
||
|
||
/* Since Fsignal will close off all calls to x_catch_errors,
|
||
we will get the wrong results if some are not closed now. */
|
||
#if HAVE_X_WINDOWS
|
||
if (x_catching_errors ())
|
||
abort ();
|
||
#endif
|
||
|
||
c.tag = Qnil;
|
||
c.val = Qnil;
|
||
c.backlist = backtrace_list;
|
||
c.handlerlist = handlerlist;
|
||
c.lisp_eval_depth = lisp_eval_depth;
|
||
c.pdlcount = SPECPDL_INDEX ();
|
||
c.poll_suppress_count = poll_suppress_count;
|
||
c.interrupt_input_blocked = interrupt_input_blocked;
|
||
c.gcpro = gcprolist;
|
||
c.byte_stack = byte_stack_list;
|
||
if (_setjmp (c.jmp))
|
||
{
|
||
return (*hfun) (c.val);
|
||
}
|
||
c.next = catchlist;
|
||
catchlist = &c;
|
||
h.handler = handlers;
|
||
h.var = Qnil;
|
||
h.next = handlerlist;
|
||
h.tag = &c;
|
||
handlerlist = &h;
|
||
|
||
val = (*bfun) ();
|
||
catchlist = c.next;
|
||
handlerlist = h.next;
|
||
return val;
|
||
}
|
||
|
||
/* Like internal_condition_case but call BFUN with ARG as its argument. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case_1 (bfun, arg, handlers, hfun)
|
||
Lisp_Object (*bfun) ();
|
||
Lisp_Object arg;
|
||
Lisp_Object handlers;
|
||
Lisp_Object (*hfun) ();
|
||
{
|
||
Lisp_Object val;
|
||
struct catchtag c;
|
||
struct handler h;
|
||
|
||
/* Since Fsignal will close off all calls to x_catch_errors,
|
||
we will get the wrong results if some are not closed now. */
|
||
#if HAVE_X_WINDOWS
|
||
if (x_catching_errors ())
|
||
abort ();
|
||
#endif
|
||
|
||
c.tag = Qnil;
|
||
c.val = Qnil;
|
||
c.backlist = backtrace_list;
|
||
c.handlerlist = handlerlist;
|
||
c.lisp_eval_depth = lisp_eval_depth;
|
||
c.pdlcount = SPECPDL_INDEX ();
|
||
c.poll_suppress_count = poll_suppress_count;
|
||
c.interrupt_input_blocked = interrupt_input_blocked;
|
||
c.gcpro = gcprolist;
|
||
c.byte_stack = byte_stack_list;
|
||
if (_setjmp (c.jmp))
|
||
{
|
||
return (*hfun) (c.val);
|
||
}
|
||
c.next = catchlist;
|
||
catchlist = &c;
|
||
h.handler = handlers;
|
||
h.var = Qnil;
|
||
h.next = handlerlist;
|
||
h.tag = &c;
|
||
handlerlist = &h;
|
||
|
||
val = (*bfun) (arg);
|
||
catchlist = c.next;
|
||
handlerlist = h.next;
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Like internal_condition_case but call BFUN with NARGS as first,
|
||
and ARGS as second argument. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case_2 (bfun, nargs, args, handlers, hfun)
|
||
Lisp_Object (*bfun) ();
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
Lisp_Object handlers;
|
||
Lisp_Object (*hfun) ();
|
||
{
|
||
Lisp_Object val;
|
||
struct catchtag c;
|
||
struct handler h;
|
||
|
||
/* Since Fsignal will close off all calls to x_catch_errors,
|
||
we will get the wrong results if some are not closed now. */
|
||
#if HAVE_X_WINDOWS
|
||
if (x_catching_errors ())
|
||
abort ();
|
||
#endif
|
||
|
||
c.tag = Qnil;
|
||
c.val = Qnil;
|
||
c.backlist = backtrace_list;
|
||
c.handlerlist = handlerlist;
|
||
c.lisp_eval_depth = lisp_eval_depth;
|
||
c.pdlcount = SPECPDL_INDEX ();
|
||
c.poll_suppress_count = poll_suppress_count;
|
||
c.interrupt_input_blocked = interrupt_input_blocked;
|
||
c.gcpro = gcprolist;
|
||
c.byte_stack = byte_stack_list;
|
||
if (_setjmp (c.jmp))
|
||
{
|
||
return (*hfun) (c.val);
|
||
}
|
||
c.next = catchlist;
|
||
catchlist = &c;
|
||
h.handler = handlers;
|
||
h.var = Qnil;
|
||
h.next = handlerlist;
|
||
h.tag = &c;
|
||
handlerlist = &h;
|
||
|
||
val = (*bfun) (nargs, args);
|
||
catchlist = c.next;
|
||
handlerlist = h.next;
|
||
return val;
|
||
}
|
||
|
||
|
||
static Lisp_Object find_handler_clause P_ ((Lisp_Object, Lisp_Object,
|
||
Lisp_Object, Lisp_Object,
|
||
Lisp_Object *));
|
||
|
||
DEFUN ("signal", Fsignal, Ssignal, 2, 2, 0,
|
||
doc: /* Signal an error. Args are ERROR-SYMBOL and associated DATA.
|
||
This function does not return.
|
||
|
||
An error symbol is a symbol with an `error-conditions' property
|
||
that is a list of condition names.
|
||
A handler for any of those names will get to handle this signal.
|
||
The symbol `error' should normally be one of them.
|
||
|
||
DATA should be a list. Its elements are printed as part of the error message.
|
||
See Info anchor `(elisp)Definition of signal' for some details on how this
|
||
error message is constructed.
|
||
If the signal is handled, DATA is made available to the handler.
|
||
See also the function `condition-case'. */)
|
||
(error_symbol, data)
|
||
Lisp_Object error_symbol, data;
|
||
{
|
||
/* When memory is full, ERROR-SYMBOL is nil,
|
||
and DATA is (REAL-ERROR-SYMBOL . REAL-DATA).
|
||
That is a special case--don't do this in other situations. */
|
||
register struct handler *allhandlers = handlerlist;
|
||
Lisp_Object conditions;
|
||
extern int gc_in_progress;
|
||
extern int waiting_for_input;
|
||
Lisp_Object debugger_value;
|
||
Lisp_Object string;
|
||
Lisp_Object real_error_symbol;
|
||
struct backtrace *bp;
|
||
|
||
immediate_quit = handling_signal = 0;
|
||
abort_on_gc = 0;
|
||
if (gc_in_progress || waiting_for_input)
|
||
abort ();
|
||
|
||
if (NILP (error_symbol))
|
||
real_error_symbol = Fcar (data);
|
||
else
|
||
real_error_symbol = error_symbol;
|
||
|
||
#if 0 /* rms: I don't know why this was here,
|
||
but it is surely wrong for an error that is handled. */
|
||
#ifdef HAVE_X_WINDOWS
|
||
if (display_hourglass_p)
|
||
cancel_hourglass ();
|
||
#endif
|
||
#endif
|
||
|
||
/* This hook is used by edebug. */
|
||
if (! NILP (Vsignal_hook_function)
|
||
&& ! NILP (error_symbol))
|
||
{
|
||
/* Edebug takes care of restoring these variables when it exits. */
|
||
if (lisp_eval_depth + 20 > max_lisp_eval_depth)
|
||
max_lisp_eval_depth = lisp_eval_depth + 20;
|
||
|
||
if (SPECPDL_INDEX () + 40 > max_specpdl_size)
|
||
max_specpdl_size = SPECPDL_INDEX () + 40;
|
||
|
||
call2 (Vsignal_hook_function, error_symbol, data);
|
||
}
|
||
|
||
conditions = Fget (real_error_symbol, Qerror_conditions);
|
||
|
||
/* Remember from where signal was called. Skip over the frame for
|
||
`signal' itself. If a frame for `error' follows, skip that,
|
||
too. Don't do this when ERROR_SYMBOL is nil, because that
|
||
is a memory-full error. */
|
||
Vsignaling_function = Qnil;
|
||
if (backtrace_list && !NILP (error_symbol))
|
||
{
|
||
bp = backtrace_list->next;
|
||
if (bp && bp->function && EQ (*bp->function, Qerror))
|
||
bp = bp->next;
|
||
if (bp && bp->function)
|
||
Vsignaling_function = *bp->function;
|
||
}
|
||
|
||
for (; handlerlist; handlerlist = handlerlist->next)
|
||
{
|
||
register Lisp_Object clause;
|
||
|
||
clause = find_handler_clause (handlerlist->handler, conditions,
|
||
error_symbol, data, &debugger_value);
|
||
|
||
if (EQ (clause, Qlambda))
|
||
{
|
||
/* We can't return values to code which signaled an error, but we
|
||
can continue code which has signaled a quit. */
|
||
if (EQ (real_error_symbol, Qquit))
|
||
return Qnil;
|
||
else
|
||
error ("Cannot return from the debugger in an error");
|
||
}
|
||
|
||
if (!NILP (clause))
|
||
{
|
||
Lisp_Object unwind_data;
|
||
struct handler *h = handlerlist;
|
||
|
||
handlerlist = allhandlers;
|
||
|
||
if (NILP (error_symbol))
|
||
unwind_data = data;
|
||
else
|
||
unwind_data = Fcons (error_symbol, data);
|
||
h->chosen_clause = clause;
|
||
unwind_to_catch (h->tag, unwind_data);
|
||
}
|
||
}
|
||
|
||
handlerlist = allhandlers;
|
||
/* If no handler is present now, try to run the debugger,
|
||
and if that fails, throw to top level. */
|
||
find_handler_clause (Qerror, conditions, error_symbol, data, &debugger_value);
|
||
if (catchlist != 0)
|
||
Fthrow (Qtop_level, Qt);
|
||
|
||
if (! NILP (error_symbol))
|
||
data = Fcons (error_symbol, data);
|
||
|
||
string = Ferror_message_string (data);
|
||
fatal ("%s", SDATA (string), 0);
|
||
}
|
||
|
||
/* Internal version of Fsignal that never returns.
|
||
Used for anything but Qquit (which can return from Fsignal). */
|
||
|
||
void
|
||
xsignal (error_symbol, data)
|
||
Lisp_Object error_symbol, data;
|
||
{
|
||
Fsignal (error_symbol, data);
|
||
abort ();
|
||
}
|
||
|
||
/* Like xsignal, but takes 0, 1, 2, or 3 args instead of a list. */
|
||
|
||
void
|
||
xsignal0 (error_symbol)
|
||
Lisp_Object error_symbol;
|
||
{
|
||
xsignal (error_symbol, Qnil);
|
||
}
|
||
|
||
void
|
||
xsignal1 (error_symbol, arg)
|
||
Lisp_Object error_symbol, arg;
|
||
{
|
||
xsignal (error_symbol, list1 (arg));
|
||
}
|
||
|
||
void
|
||
xsignal2 (error_symbol, arg1, arg2)
|
||
Lisp_Object error_symbol, arg1, arg2;
|
||
{
|
||
xsignal (error_symbol, list2 (arg1, arg2));
|
||
}
|
||
|
||
void
|
||
xsignal3 (error_symbol, arg1, arg2, arg3)
|
||
Lisp_Object error_symbol, arg1, arg2, arg3;
|
||
{
|
||
xsignal (error_symbol, list3 (arg1, arg2, arg3));
|
||
}
|
||
|
||
/* Signal `error' with message S, and additional arg ARG.
|
||
If ARG is not a genuine list, make it a one-element list. */
|
||
|
||
void
|
||
signal_error (s, arg)
|
||
char *s;
|
||
Lisp_Object arg;
|
||
{
|
||
Lisp_Object tortoise, hare;
|
||
|
||
hare = tortoise = arg;
|
||
while (CONSP (hare))
|
||
{
|
||
hare = XCDR (hare);
|
||
if (!CONSP (hare))
|
||
break;
|
||
|
||
hare = XCDR (hare);
|
||
tortoise = XCDR (tortoise);
|
||
|
||
if (EQ (hare, tortoise))
|
||
break;
|
||
}
|
||
|
||
if (!NILP (hare))
|
||
arg = Fcons (arg, Qnil); /* Make it a list. */
|
||
|
||
xsignal (Qerror, Fcons (build_string (s), arg));
|
||
}
|
||
|
||
|
||
/* Return nonzero iff LIST is a non-nil atom or
|
||
a list containing one of CONDITIONS. */
|
||
|
||
static int
|
||
wants_debugger (list, conditions)
|
||
Lisp_Object list, conditions;
|
||
{
|
||
if (NILP (list))
|
||
return 0;
|
||
if (! CONSP (list))
|
||
return 1;
|
||
|
||
while (CONSP (conditions))
|
||
{
|
||
Lisp_Object this, tail;
|
||
this = XCAR (conditions);
|
||
for (tail = list; CONSP (tail); tail = XCDR (tail))
|
||
if (EQ (XCAR (tail), this))
|
||
return 1;
|
||
conditions = XCDR (conditions);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return 1 if an error with condition-symbols CONDITIONS,
|
||
and described by SIGNAL-DATA, should skip the debugger
|
||
according to debugger-ignored-errors. */
|
||
|
||
static int
|
||
skip_debugger (conditions, data)
|
||
Lisp_Object conditions, data;
|
||
{
|
||
Lisp_Object tail;
|
||
int first_string = 1;
|
||
Lisp_Object error_message;
|
||
|
||
error_message = Qnil;
|
||
for (tail = Vdebug_ignored_errors; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
if (STRINGP (XCAR (tail)))
|
||
{
|
||
if (first_string)
|
||
{
|
||
error_message = Ferror_message_string (data);
|
||
first_string = 0;
|
||
}
|
||
|
||
if (fast_string_match (XCAR (tail), error_message) >= 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object contail;
|
||
|
||
for (contail = conditions; CONSP (contail); contail = XCDR (contail))
|
||
if (EQ (XCAR (tail), XCAR (contail)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Value of Qlambda means we have called debugger and user has continued.
|
||
There are two ways to pass SIG and DATA:
|
||
= SIG is the error symbol, and DATA is the rest of the data.
|
||
= SIG is nil, and DATA is (SYMBOL . REST-OF-DATA).
|
||
This is for memory-full errors only.
|
||
|
||
Store value returned from debugger into *DEBUGGER_VALUE_PTR.
|
||
|
||
We need to increase max_specpdl_size temporarily around
|
||
anything we do that can push on the specpdl, so as not to get
|
||
a second error here in case we're handling specpdl overflow. */
|
||
|
||
static Lisp_Object
|
||
find_handler_clause (handlers, conditions, sig, data, debugger_value_ptr)
|
||
Lisp_Object handlers, conditions, sig, data;
|
||
Lisp_Object *debugger_value_ptr;
|
||
{
|
||
register Lisp_Object h;
|
||
register Lisp_Object tem;
|
||
|
||
if (EQ (handlers, Qt)) /* t is used by handlers for all conditions, set up by C code. */
|
||
return Qt;
|
||
/* error is used similarly, but means print an error message
|
||
and run the debugger if that is enabled. */
|
||
if (EQ (handlers, Qerror)
|
||
|| !NILP (Vdebug_on_signal)) /* This says call debugger even if
|
||
there is a handler. */
|
||
{
|
||
int debugger_called = 0;
|
||
Lisp_Object sig_symbol, combined_data;
|
||
/* This is set to 1 if we are handling a memory-full error,
|
||
because these must not run the debugger.
|
||
(There is no room in memory to do that!) */
|
||
int no_debugger = 0;
|
||
|
||
if (NILP (sig))
|
||
{
|
||
combined_data = data;
|
||
sig_symbol = Fcar (data);
|
||
no_debugger = 1;
|
||
}
|
||
else
|
||
{
|
||
combined_data = Fcons (sig, data);
|
||
sig_symbol = sig;
|
||
}
|
||
|
||
if (wants_debugger (Vstack_trace_on_error, conditions))
|
||
{
|
||
max_specpdl_size++;
|
||
#ifdef PROTOTYPES
|
||
internal_with_output_to_temp_buffer ("*Backtrace*",
|
||
(Lisp_Object (*) (Lisp_Object)) Fbacktrace,
|
||
Qnil);
|
||
#else
|
||
internal_with_output_to_temp_buffer ("*Backtrace*",
|
||
Fbacktrace, Qnil);
|
||
#endif
|
||
max_specpdl_size--;
|
||
}
|
||
if (! no_debugger
|
||
/* Don't try to run the debugger with interrupts blocked.
|
||
The editing loop would return anyway. */
|
||
&& ! INPUT_BLOCKED_P
|
||
&& (EQ (sig_symbol, Qquit)
|
||
? debug_on_quit
|
||
: wants_debugger (Vdebug_on_error, conditions))
|
||
&& ! skip_debugger (conditions, combined_data)
|
||
&& when_entered_debugger < num_nonmacro_input_events)
|
||
{
|
||
*debugger_value_ptr
|
||
= call_debugger (Fcons (Qerror,
|
||
Fcons (combined_data, Qnil)));
|
||
debugger_called = 1;
|
||
}
|
||
/* If there is no handler, return saying whether we ran the debugger. */
|
||
if (EQ (handlers, Qerror))
|
||
{
|
||
if (debugger_called)
|
||
return Qlambda;
|
||
return Qt;
|
||
}
|
||
}
|
||
for (h = handlers; CONSP (h); h = Fcdr (h))
|
||
{
|
||
Lisp_Object handler, condit;
|
||
|
||
handler = Fcar (h);
|
||
if (!CONSP (handler))
|
||
continue;
|
||
condit = Fcar (handler);
|
||
/* Handle a single condition name in handler HANDLER. */
|
||
if (SYMBOLP (condit))
|
||
{
|
||
tem = Fmemq (Fcar (handler), conditions);
|
||
if (!NILP (tem))
|
||
return handler;
|
||
}
|
||
/* Handle a list of condition names in handler HANDLER. */
|
||
else if (CONSP (condit))
|
||
{
|
||
while (CONSP (condit))
|
||
{
|
||
tem = Fmemq (Fcar (condit), conditions);
|
||
if (!NILP (tem))
|
||
return handler;
|
||
condit = XCDR (condit);
|
||
}
|
||
}
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
/* dump an error message; called like printf */
|
||
|
||
/* VARARGS 1 */
|
||
void
|
||
error (m, a1, a2, a3)
|
||
char *m;
|
||
char *a1, *a2, *a3;
|
||
{
|
||
char buf[200];
|
||
int size = 200;
|
||
int mlen;
|
||
char *buffer = buf;
|
||
char *args[3];
|
||
int allocated = 0;
|
||
Lisp_Object string;
|
||
|
||
args[0] = a1;
|
||
args[1] = a2;
|
||
args[2] = a3;
|
||
|
||
mlen = strlen (m);
|
||
|
||
while (1)
|
||
{
|
||
int used = doprnt (buffer, size, m, m + mlen, 3, args);
|
||
if (used < size)
|
||
break;
|
||
size *= 2;
|
||
if (allocated)
|
||
buffer = (char *) xrealloc (buffer, size);
|
||
else
|
||
{
|
||
buffer = (char *) xmalloc (size);
|
||
allocated = 1;
|
||
}
|
||
}
|
||
|
||
string = build_string (buffer);
|
||
if (allocated)
|
||
xfree (buffer);
|
||
|
||
xsignal1 (Qerror, string);
|
||
}
|
||
|
||
DEFUN ("commandp", Fcommandp, Scommandp, 1, 2, 0,
|
||
doc: /* Non-nil if FUNCTION makes provisions for interactive calling.
|
||
This means it contains a description for how to read arguments to give it.
|
||
The value is nil for an invalid function or a symbol with no function
|
||
definition.
|
||
|
||
Interactively callable functions include strings and vectors (treated
|
||
as keyboard macros), lambda-expressions that contain a top-level call
|
||
to `interactive', autoload definitions made by `autoload' with non-nil
|
||
fourth argument, and some of the built-in functions of Lisp.
|
||
|
||
Also, a symbol satisfies `commandp' if its function definition does so.
|
||
|
||
If the optional argument FOR-CALL-INTERACTIVELY is non-nil,
|
||
then strings and vectors are not accepted. */)
|
||
(function, for_call_interactively)
|
||
Lisp_Object function, for_call_interactively;
|
||
{
|
||
register Lisp_Object fun;
|
||
register Lisp_Object funcar;
|
||
|
||
fun = function;
|
||
|
||
fun = indirect_function (fun);
|
||
if (EQ (fun, Qunbound))
|
||
return Qnil;
|
||
|
||
/* Emacs primitives are interactive if their DEFUN specifies an
|
||
interactive spec. */
|
||
if (SUBRP (fun))
|
||
{
|
||
if (XSUBR (fun)->prompt)
|
||
return Qt;
|
||
else
|
||
return Qnil;
|
||
}
|
||
|
||
/* Bytecode objects are interactive if they are long enough to
|
||
have an element whose index is COMPILED_INTERACTIVE, which is
|
||
where the interactive spec is stored. */
|
||
else if (COMPILEDP (fun))
|
||
return ((ASIZE (fun) & PSEUDOVECTOR_SIZE_MASK) > COMPILED_INTERACTIVE
|
||
? Qt : Qnil);
|
||
|
||
/* Strings and vectors are keyboard macros. */
|
||
if (NILP (for_call_interactively) && (STRINGP (fun) || VECTORP (fun)))
|
||
return Qt;
|
||
|
||
/* Lists may represent commands. */
|
||
if (!CONSP (fun))
|
||
return Qnil;
|
||
funcar = XCAR (fun);
|
||
if (EQ (funcar, Qlambda))
|
||
return Fassq (Qinteractive, Fcdr (XCDR (fun)));
|
||
if (EQ (funcar, Qautoload))
|
||
return Fcar (Fcdr (Fcdr (XCDR (fun))));
|
||
else
|
||
return Qnil;
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
DEFUN ("autoload", Fautoload, Sautoload, 2, 5, 0,
|
||
doc: /* Define FUNCTION to autoload from FILE.
|
||
FUNCTION is a symbol; FILE is a file name string to pass to `load'.
|
||
Third arg DOCSTRING is documentation for the function.
|
||
Fourth arg INTERACTIVE if non-nil says function can be called interactively.
|
||
Fifth arg TYPE indicates the type of the object:
|
||
nil or omitted says FUNCTION is a function,
|
||
`keymap' says FUNCTION is really a keymap, and
|
||
`macro' or t says FUNCTION is really a macro.
|
||
Third through fifth args give info about the real definition.
|
||
They default to nil.
|
||
If FUNCTION is already defined other than as an autoload,
|
||
this does nothing and returns nil. */)
|
||
(function, file, docstring, interactive, type)
|
||
Lisp_Object function, file, docstring, interactive, type;
|
||
{
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[4];
|
||
#endif
|
||
|
||
CHECK_SYMBOL (function);
|
||
CHECK_STRING (file);
|
||
|
||
/* If function is defined and not as an autoload, don't override */
|
||
if (!EQ (XSYMBOL (function)->function, Qunbound)
|
||
&& !(CONSP (XSYMBOL (function)->function)
|
||
&& EQ (XCAR (XSYMBOL (function)->function), Qautoload)))
|
||
return Qnil;
|
||
|
||
if (NILP (Vpurify_flag))
|
||
/* Only add entries after dumping, because the ones before are
|
||
not useful and else we get loads of them from the loaddefs.el. */
|
||
LOADHIST_ATTACH (Fcons (Qautoload, function));
|
||
|
||
#ifdef NO_ARG_ARRAY
|
||
args[0] = file;
|
||
args[1] = docstring;
|
||
args[2] = interactive;
|
||
args[3] = type;
|
||
|
||
return Ffset (function, Fcons (Qautoload, Flist (4, &args[0])));
|
||
#else /* NO_ARG_ARRAY */
|
||
return Ffset (function, Fcons (Qautoload, Flist (4, &file)));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
Lisp_Object
|
||
un_autoload (oldqueue)
|
||
Lisp_Object oldqueue;
|
||
{
|
||
register Lisp_Object queue, first, second;
|
||
|
||
/* Queue to unwind is current value of Vautoload_queue.
|
||
oldqueue is the shadowed value to leave in Vautoload_queue. */
|
||
queue = Vautoload_queue;
|
||
Vautoload_queue = oldqueue;
|
||
while (CONSP (queue))
|
||
{
|
||
first = XCAR (queue);
|
||
second = Fcdr (first);
|
||
first = Fcar (first);
|
||
if (EQ (first, make_number (0)))
|
||
Vfeatures = second;
|
||
else
|
||
Ffset (first, second);
|
||
queue = XCDR (queue);
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
/* Load an autoloaded function.
|
||
FUNNAME is the symbol which is the function's name.
|
||
FUNDEF is the autoload definition (a list). */
|
||
|
||
void
|
||
do_autoload (fundef, funname)
|
||
Lisp_Object fundef, funname;
|
||
{
|
||
int count = SPECPDL_INDEX ();
|
||
Lisp_Object fun, queue, first, second;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
/* This is to make sure that loadup.el gives a clear picture
|
||
of what files are preloaded and when. */
|
||
if (! NILP (Vpurify_flag))
|
||
error ("Attempt to autoload %s while preparing to dump",
|
||
SDATA (SYMBOL_NAME (funname)));
|
||
|
||
fun = funname;
|
||
CHECK_SYMBOL (funname);
|
||
GCPRO3 (fun, funname, fundef);
|
||
|
||
/* Preserve the match data. */
|
||
record_unwind_save_match_data ();
|
||
|
||
/* Value saved here is to be restored into Vautoload_queue. */
|
||
record_unwind_protect (un_autoload, Vautoload_queue);
|
||
Vautoload_queue = Qt;
|
||
Fload (Fcar (Fcdr (fundef)), Qnil, noninteractive ? Qt : Qnil, Qnil, Qt);
|
||
|
||
/* Save the old autoloads, in case we ever do an unload. */
|
||
queue = Vautoload_queue;
|
||
while (CONSP (queue))
|
||
{
|
||
first = XCAR (queue);
|
||
second = Fcdr (first);
|
||
first = Fcar (first);
|
||
|
||
if (SYMBOLP (first) && CONSP (second) && EQ (XCAR (second), Qautoload))
|
||
Fput (first, Qautoload, (XCDR (second)));
|
||
|
||
queue = XCDR (queue);
|
||
}
|
||
|
||
/* Once loading finishes, don't undo it. */
|
||
Vautoload_queue = Qt;
|
||
unbind_to (count, Qnil);
|
||
|
||
fun = Findirect_function (fun, Qnil);
|
||
|
||
if (!NILP (Fequal (fun, fundef)))
|
||
error ("Autoloading failed to define function %s",
|
||
SDATA (SYMBOL_NAME (funname)));
|
||
UNGCPRO;
|
||
}
|
||
|
||
|
||
DEFUN ("eval", Feval, Seval, 1, 1, 0,
|
||
doc: /* Evaluate FORM and return its value. */)
|
||
(form)
|
||
Lisp_Object form;
|
||
{
|
||
Lisp_Object fun, val, original_fun, original_args;
|
||
Lisp_Object funcar;
|
||
struct backtrace backtrace;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
if (handling_signal)
|
||
abort ();
|
||
|
||
if (SYMBOLP (form))
|
||
return Fsymbol_value (form);
|
||
if (!CONSP (form))
|
||
return form;
|
||
|
||
QUIT;
|
||
if ((consing_since_gc > gc_cons_threshold
|
||
&& consing_since_gc > gc_relative_threshold)
|
||
||
|
||
(!NILP (Vmemory_full) && consing_since_gc > memory_full_cons_threshold))
|
||
{
|
||
GCPRO1 (form);
|
||
Fgarbage_collect ();
|
||
UNGCPRO;
|
||
}
|
||
|
||
if (++lisp_eval_depth > max_lisp_eval_depth)
|
||
{
|
||
if (max_lisp_eval_depth < 100)
|
||
max_lisp_eval_depth = 100;
|
||
if (lisp_eval_depth > max_lisp_eval_depth)
|
||
error ("Lisp nesting exceeds `max-lisp-eval-depth'");
|
||
}
|
||
|
||
original_fun = Fcar (form);
|
||
original_args = Fcdr (form);
|
||
|
||
backtrace.next = backtrace_list;
|
||
backtrace_list = &backtrace;
|
||
backtrace.function = &original_fun; /* This also protects them from gc */
|
||
backtrace.args = &original_args;
|
||
backtrace.nargs = UNEVALLED;
|
||
backtrace.evalargs = 1;
|
||
backtrace.debug_on_exit = 0;
|
||
|
||
if (debug_on_next_call)
|
||
do_debug_on_call (Qt);
|
||
|
||
/* At this point, only original_fun and original_args
|
||
have values that will be used below */
|
||
retry:
|
||
|
||
/* Optimize for no indirection. */
|
||
fun = original_fun;
|
||
if (SYMBOLP (fun) && !EQ (fun, Qunbound)
|
||
&& (fun = XSYMBOL (fun)->function, SYMBOLP (fun)))
|
||
fun = indirect_function (fun);
|
||
|
||
if (SUBRP (fun))
|
||
{
|
||
Lisp_Object numargs;
|
||
Lisp_Object argvals[8];
|
||
Lisp_Object args_left;
|
||
register int i, maxargs;
|
||
|
||
args_left = original_args;
|
||
numargs = Flength (args_left);
|
||
|
||
CHECK_CONS_LIST ();
|
||
|
||
if (XINT (numargs) < XSUBR (fun)->min_args ||
|
||
(XSUBR (fun)->max_args >= 0 && XSUBR (fun)->max_args < XINT (numargs)))
|
||
xsignal2 (Qwrong_number_of_arguments, original_fun, numargs);
|
||
|
||
if (XSUBR (fun)->max_args == UNEVALLED)
|
||
{
|
||
backtrace.evalargs = 0;
|
||
val = (*XSUBR (fun)->function) (args_left);
|
||
goto done;
|
||
}
|
||
|
||
if (XSUBR (fun)->max_args == MANY)
|
||
{
|
||
/* Pass a vector of evaluated arguments */
|
||
Lisp_Object *vals;
|
||
register int argnum = 0;
|
||
|
||
vals = (Lisp_Object *) alloca (XINT (numargs) * sizeof (Lisp_Object));
|
||
|
||
GCPRO3 (args_left, fun, fun);
|
||
gcpro3.var = vals;
|
||
gcpro3.nvars = 0;
|
||
|
||
while (!NILP (args_left))
|
||
{
|
||
vals[argnum++] = Feval (Fcar (args_left));
|
||
args_left = Fcdr (args_left);
|
||
gcpro3.nvars = argnum;
|
||
}
|
||
|
||
backtrace.args = vals;
|
||
backtrace.nargs = XINT (numargs);
|
||
|
||
val = (*XSUBR (fun)->function) (XINT (numargs), vals);
|
||
UNGCPRO;
|
||
goto done;
|
||
}
|
||
|
||
GCPRO3 (args_left, fun, fun);
|
||
gcpro3.var = argvals;
|
||
gcpro3.nvars = 0;
|
||
|
||
maxargs = XSUBR (fun)->max_args;
|
||
for (i = 0; i < maxargs; args_left = Fcdr (args_left))
|
||
{
|
||
argvals[i] = Feval (Fcar (args_left));
|
||
gcpro3.nvars = ++i;
|
||
}
|
||
|
||
UNGCPRO;
|
||
|
||
backtrace.args = argvals;
|
||
backtrace.nargs = XINT (numargs);
|
||
|
||
switch (i)
|
||
{
|
||
case 0:
|
||
val = (*XSUBR (fun)->function) ();
|
||
goto done;
|
||
case 1:
|
||
val = (*XSUBR (fun)->function) (argvals[0]);
|
||
goto done;
|
||
case 2:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1]);
|
||
goto done;
|
||
case 3:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1],
|
||
argvals[2]);
|
||
goto done;
|
||
case 4:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1],
|
||
argvals[2], argvals[3]);
|
||
goto done;
|
||
case 5:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1], argvals[2],
|
||
argvals[3], argvals[4]);
|
||
goto done;
|
||
case 6:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1], argvals[2],
|
||
argvals[3], argvals[4], argvals[5]);
|
||
goto done;
|
||
case 7:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1], argvals[2],
|
||
argvals[3], argvals[4], argvals[5],
|
||
argvals[6]);
|
||
goto done;
|
||
|
||
case 8:
|
||
val = (*XSUBR (fun)->function) (argvals[0], argvals[1], argvals[2],
|
||
argvals[3], argvals[4], argvals[5],
|
||
argvals[6], argvals[7]);
|
||
goto done;
|
||
|
||
default:
|
||
/* Someone has created a subr that takes more arguments than
|
||
is supported by this code. We need to either rewrite the
|
||
subr to use a different argument protocol, or add more
|
||
cases to this switch. */
|
||
abort ();
|
||
}
|
||
}
|
||
if (COMPILEDP (fun))
|
||
val = apply_lambda (fun, original_args, 1);
|
||
else
|
||
{
|
||
if (EQ (fun, Qunbound))
|
||
xsignal1 (Qvoid_function, original_fun);
|
||
if (!CONSP (fun))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
funcar = XCAR (fun);
|
||
if (!SYMBOLP (funcar))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
if (EQ (funcar, Qautoload))
|
||
{
|
||
do_autoload (fun, original_fun);
|
||
goto retry;
|
||
}
|
||
if (EQ (funcar, Qmacro))
|
||
val = Feval (apply1 (Fcdr (fun), original_args));
|
||
else if (EQ (funcar, Qlambda))
|
||
val = apply_lambda (fun, original_args, 1);
|
||
else
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
}
|
||
done:
|
||
CHECK_CONS_LIST ();
|
||
|
||
lisp_eval_depth--;
|
||
if (backtrace.debug_on_exit)
|
||
val = call_debugger (Fcons (Qexit, Fcons (val, Qnil)));
|
||
backtrace_list = backtrace.next;
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("apply", Fapply, Sapply, 2, MANY, 0,
|
||
doc: /* Call FUNCTION with our remaining args, using our last arg as list of args.
|
||
Then return the value FUNCTION returns.
|
||
Thus, (apply '+ 1 2 '(3 4)) returns 10.
|
||
usage: (apply FUNCTION &rest ARGUMENTS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
register int i, numargs;
|
||
register Lisp_Object spread_arg;
|
||
register Lisp_Object *funcall_args;
|
||
Lisp_Object fun;
|
||
struct gcpro gcpro1;
|
||
|
||
fun = args [0];
|
||
funcall_args = 0;
|
||
spread_arg = args [nargs - 1];
|
||
CHECK_LIST (spread_arg);
|
||
|
||
numargs = XINT (Flength (spread_arg));
|
||
|
||
if (numargs == 0)
|
||
return Ffuncall (nargs - 1, args);
|
||
else if (numargs == 1)
|
||
{
|
||
args [nargs - 1] = XCAR (spread_arg);
|
||
return Ffuncall (nargs, args);
|
||
}
|
||
|
||
numargs += nargs - 2;
|
||
|
||
/* Optimize for no indirection. */
|
||
if (SYMBOLP (fun) && !EQ (fun, Qunbound)
|
||
&& (fun = XSYMBOL (fun)->function, SYMBOLP (fun)))
|
||
fun = indirect_function (fun);
|
||
if (EQ (fun, Qunbound))
|
||
{
|
||
/* Let funcall get the error */
|
||
fun = args[0];
|
||
goto funcall;
|
||
}
|
||
|
||
if (SUBRP (fun))
|
||
{
|
||
if (numargs < XSUBR (fun)->min_args
|
||
|| (XSUBR (fun)->max_args >= 0 && XSUBR (fun)->max_args < numargs))
|
||
goto funcall; /* Let funcall get the error */
|
||
else if (XSUBR (fun)->max_args > numargs)
|
||
{
|
||
/* Avoid making funcall cons up a yet another new vector of arguments
|
||
by explicitly supplying nil's for optional values */
|
||
funcall_args = (Lisp_Object *) alloca ((1 + XSUBR (fun)->max_args)
|
||
* sizeof (Lisp_Object));
|
||
for (i = numargs; i < XSUBR (fun)->max_args;)
|
||
funcall_args[++i] = Qnil;
|
||
GCPRO1 (*funcall_args);
|
||
gcpro1.nvars = 1 + XSUBR (fun)->max_args;
|
||
}
|
||
}
|
||
funcall:
|
||
/* We add 1 to numargs because funcall_args includes the
|
||
function itself as well as its arguments. */
|
||
if (!funcall_args)
|
||
{
|
||
funcall_args = (Lisp_Object *) alloca ((1 + numargs)
|
||
* sizeof (Lisp_Object));
|
||
GCPRO1 (*funcall_args);
|
||
gcpro1.nvars = 1 + numargs;
|
||
}
|
||
|
||
bcopy (args, funcall_args, nargs * sizeof (Lisp_Object));
|
||
/* Spread the last arg we got. Its first element goes in
|
||
the slot that it used to occupy, hence this value of I. */
|
||
i = nargs - 1;
|
||
while (!NILP (spread_arg))
|
||
{
|
||
funcall_args [i++] = XCAR (spread_arg);
|
||
spread_arg = XCDR (spread_arg);
|
||
}
|
||
|
||
/* By convention, the caller needs to gcpro Ffuncall's args. */
|
||
RETURN_UNGCPRO (Ffuncall (gcpro1.nvars, funcall_args));
|
||
}
|
||
|
||
/* Run hook variables in various ways. */
|
||
|
||
enum run_hooks_condition {to_completion, until_success, until_failure};
|
||
static Lisp_Object run_hook_with_args P_ ((int, Lisp_Object *,
|
||
enum run_hooks_condition));
|
||
|
||
DEFUN ("run-hooks", Frun_hooks, Srun_hooks, 0, MANY, 0,
|
||
doc: /* Run each hook in HOOKS.
|
||
Each argument should be a symbol, a hook variable.
|
||
These symbols are processed in the order specified.
|
||
If a hook symbol has a non-nil value, that value may be a function
|
||
or a list of functions to be called to run the hook.
|
||
If the value is a function, it is called with no arguments.
|
||
If it is a list, the elements are called, in order, with no arguments.
|
||
|
||
Major modes should not use this function directly to run their mode
|
||
hook; they should use `run-mode-hooks' instead.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hooks &rest HOOKS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
Lisp_Object hook[1];
|
||
register int i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
hook[0] = args[i];
|
||
run_hook_with_args (1, hook, to_completion);
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("run-hook-with-args", Frun_hook_with_args,
|
||
Srun_hook_with_args, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. If HOOK has a non-nil
|
||
value, that value may be a function or a list of functions to be
|
||
called to run the hook. If the value is a function, it is called with
|
||
the given arguments and its return value is returned. If it is a list
|
||
of functions, those functions are called, in order,
|
||
with the given arguments ARGS.
|
||
It is best not to depend on the value returned by `run-hook-with-args',
|
||
as that may change.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args HOOK &rest ARGS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return run_hook_with_args (nargs, args, to_completion);
|
||
}
|
||
|
||
DEFUN ("run-hook-with-args-until-success", Frun_hook_with_args_until_success,
|
||
Srun_hook_with_args_until_success, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. If HOOK has a non-nil
|
||
value, that value may be a function or a list of functions to be
|
||
called to run the hook. If the value is a function, it is called with
|
||
the given arguments and its return value is returned.
|
||
If it is a list of functions, those functions are called, in order,
|
||
with the given arguments ARGS, until one of them
|
||
returns a non-nil value. Then we return that value.
|
||
However, if they all return nil, we return nil.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args-until-success HOOK &rest ARGS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return run_hook_with_args (nargs, args, until_success);
|
||
}
|
||
|
||
DEFUN ("run-hook-with-args-until-failure", Frun_hook_with_args_until_failure,
|
||
Srun_hook_with_args_until_failure, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. If HOOK has a non-nil
|
||
value, that value may be a function or a list of functions to be
|
||
called to run the hook. If the value is a function, it is called with
|
||
the given arguments and its return value is returned.
|
||
If it is a list of functions, those functions are called, in order,
|
||
with the given arguments ARGS, until one of them returns nil.
|
||
Then we return nil. However, if they all return non-nil, we return non-nil.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args-until-failure HOOK &rest ARGS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
return run_hook_with_args (nargs, args, until_failure);
|
||
}
|
||
|
||
/* ARGS[0] should be a hook symbol.
|
||
Call each of the functions in the hook value, passing each of them
|
||
as arguments all the rest of ARGS (all NARGS - 1 elements).
|
||
COND specifies a condition to test after each call
|
||
to decide whether to stop.
|
||
The caller (or its caller, etc) must gcpro all of ARGS,
|
||
except that it isn't necessary to gcpro ARGS[0]. */
|
||
|
||
static Lisp_Object
|
||
run_hook_with_args (nargs, args, cond)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
enum run_hooks_condition cond;
|
||
{
|
||
Lisp_Object sym, val, ret;
|
||
Lisp_Object globals;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
/* If we are dying or still initializing,
|
||
don't do anything--it would probably crash if we tried. */
|
||
if (NILP (Vrun_hooks))
|
||
return Qnil;
|
||
|
||
sym = args[0];
|
||
val = find_symbol_value (sym);
|
||
ret = (cond == until_failure ? Qt : Qnil);
|
||
|
||
if (EQ (val, Qunbound) || NILP (val))
|
||
return ret;
|
||
else if (!CONSP (val) || EQ (XCAR (val), Qlambda))
|
||
{
|
||
args[0] = val;
|
||
return Ffuncall (nargs, args);
|
||
}
|
||
else
|
||
{
|
||
globals = Qnil;
|
||
GCPRO3 (sym, val, globals);
|
||
|
||
for (;
|
||
CONSP (val) && ((cond == to_completion)
|
||
|| (cond == until_success ? NILP (ret)
|
||
: !NILP (ret)));
|
||
val = XCDR (val))
|
||
{
|
||
if (EQ (XCAR (val), Qt))
|
||
{
|
||
/* t indicates this hook has a local binding;
|
||
it means to run the global binding too. */
|
||
|
||
for (globals = Fdefault_value (sym);
|
||
CONSP (globals) && ((cond == to_completion)
|
||
|| (cond == until_success ? NILP (ret)
|
||
: !NILP (ret)));
|
||
globals = XCDR (globals))
|
||
{
|
||
args[0] = XCAR (globals);
|
||
/* In a global value, t should not occur. If it does, we
|
||
must ignore it to avoid an endless loop. */
|
||
if (!EQ (args[0], Qt))
|
||
ret = Ffuncall (nargs, args);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
args[0] = XCAR (val);
|
||
ret = Ffuncall (nargs, args);
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
/* Run a hook symbol ARGS[0], but use FUNLIST instead of the actual
|
||
present value of that symbol.
|
||
Call each element of FUNLIST,
|
||
passing each of them the rest of ARGS.
|
||
The caller (or its caller, etc) must gcpro all of ARGS,
|
||
except that it isn't necessary to gcpro ARGS[0]. */
|
||
|
||
Lisp_Object
|
||
run_hook_list_with_args (funlist, nargs, args)
|
||
Lisp_Object funlist;
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
Lisp_Object sym;
|
||
Lisp_Object val;
|
||
Lisp_Object globals;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
sym = args[0];
|
||
globals = Qnil;
|
||
GCPRO3 (sym, val, globals);
|
||
|
||
for (val = funlist; CONSP (val); val = XCDR (val))
|
||
{
|
||
if (EQ (XCAR (val), Qt))
|
||
{
|
||
/* t indicates this hook has a local binding;
|
||
it means to run the global binding too. */
|
||
|
||
for (globals = Fdefault_value (sym);
|
||
CONSP (globals);
|
||
globals = XCDR (globals))
|
||
{
|
||
args[0] = XCAR (globals);
|
||
/* In a global value, t should not occur. If it does, we
|
||
must ignore it to avoid an endless loop. */
|
||
if (!EQ (args[0], Qt))
|
||
Ffuncall (nargs, args);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
args[0] = XCAR (val);
|
||
Ffuncall (nargs, args);
|
||
}
|
||
}
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
/* Run the hook HOOK, giving each function the two args ARG1 and ARG2. */
|
||
|
||
void
|
||
run_hook_with_args_2 (hook, arg1, arg2)
|
||
Lisp_Object hook, arg1, arg2;
|
||
{
|
||
Lisp_Object temp[3];
|
||
temp[0] = hook;
|
||
temp[1] = arg1;
|
||
temp[2] = arg2;
|
||
|
||
Frun_hook_with_args (3, temp);
|
||
}
|
||
|
||
/* Apply fn to arg */
|
||
Lisp_Object
|
||
apply1 (fn, arg)
|
||
Lisp_Object fn, arg;
|
||
{
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (fn);
|
||
if (NILP (arg))
|
||
RETURN_UNGCPRO (Ffuncall (1, &fn));
|
||
gcpro1.nvars = 2;
|
||
#ifdef NO_ARG_ARRAY
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = fn;
|
||
args[1] = arg;
|
||
gcpro1.var = args;
|
||
RETURN_UNGCPRO (Fapply (2, args));
|
||
}
|
||
#else /* not NO_ARG_ARRAY */
|
||
RETURN_UNGCPRO (Fapply (2, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn on no arguments */
|
||
Lisp_Object
|
||
call0 (fn)
|
||
Lisp_Object fn;
|
||
{
|
||
struct gcpro gcpro1;
|
||
|
||
GCPRO1 (fn);
|
||
RETURN_UNGCPRO (Ffuncall (1, &fn));
|
||
}
|
||
|
||
/* Call function fn with 1 argument arg1 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call1 (fn, arg1)
|
||
Lisp_Object fn, arg1;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[2];
|
||
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 2;
|
||
RETURN_UNGCPRO (Ffuncall (2, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 2;
|
||
RETURN_UNGCPRO (Ffuncall (2, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn with 2 arguments arg1, arg2 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call2 (fn, arg1, arg2)
|
||
Lisp_Object fn, arg1, arg2;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[3];
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
args[2] = arg2;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 3;
|
||
RETURN_UNGCPRO (Ffuncall (3, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 3;
|
||
RETURN_UNGCPRO (Ffuncall (3, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn with 3 arguments arg1, arg2, arg3 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call3 (fn, arg1, arg2, arg3)
|
||
Lisp_Object fn, arg1, arg2, arg3;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[4];
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
args[2] = arg2;
|
||
args[3] = arg3;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 4;
|
||
RETURN_UNGCPRO (Ffuncall (4, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 4;
|
||
RETURN_UNGCPRO (Ffuncall (4, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn with 4 arguments arg1, arg2, arg3, arg4 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call4 (fn, arg1, arg2, arg3, arg4)
|
||
Lisp_Object fn, arg1, arg2, arg3, arg4;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[5];
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
args[2] = arg2;
|
||
args[3] = arg3;
|
||
args[4] = arg4;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 5;
|
||
RETURN_UNGCPRO (Ffuncall (5, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 5;
|
||
RETURN_UNGCPRO (Ffuncall (5, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn with 5 arguments arg1, arg2, arg3, arg4, arg5 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call5 (fn, arg1, arg2, arg3, arg4, arg5)
|
||
Lisp_Object fn, arg1, arg2, arg3, arg4, arg5;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[6];
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
args[2] = arg2;
|
||
args[3] = arg3;
|
||
args[4] = arg4;
|
||
args[5] = arg5;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 6;
|
||
RETURN_UNGCPRO (Ffuncall (6, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 6;
|
||
RETURN_UNGCPRO (Ffuncall (6, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* Call function fn with 6 arguments arg1, arg2, arg3, arg4, arg5, arg6 */
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
call6 (fn, arg1, arg2, arg3, arg4, arg5, arg6)
|
||
Lisp_Object fn, arg1, arg2, arg3, arg4, arg5, arg6;
|
||
{
|
||
struct gcpro gcpro1;
|
||
#ifdef NO_ARG_ARRAY
|
||
Lisp_Object args[7];
|
||
args[0] = fn;
|
||
args[1] = arg1;
|
||
args[2] = arg2;
|
||
args[3] = arg3;
|
||
args[4] = arg4;
|
||
args[5] = arg5;
|
||
args[6] = arg6;
|
||
GCPRO1 (args[0]);
|
||
gcpro1.nvars = 7;
|
||
RETURN_UNGCPRO (Ffuncall (7, args));
|
||
#else /* not NO_ARG_ARRAY */
|
||
GCPRO1 (fn);
|
||
gcpro1.nvars = 7;
|
||
RETURN_UNGCPRO (Ffuncall (7, &fn));
|
||
#endif /* not NO_ARG_ARRAY */
|
||
}
|
||
|
||
/* The caller should GCPRO all the elements of ARGS. */
|
||
|
||
DEFUN ("funcall", Ffuncall, Sfuncall, 1, MANY, 0,
|
||
doc: /* Call first argument as a function, passing remaining arguments to it.
|
||
Return the value that function returns.
|
||
Thus, (funcall 'cons 'x 'y) returns (x . y).
|
||
usage: (funcall FUNCTION &rest ARGUMENTS) */)
|
||
(nargs, args)
|
||
int nargs;
|
||
Lisp_Object *args;
|
||
{
|
||
Lisp_Object fun, original_fun;
|
||
Lisp_Object funcar;
|
||
int numargs = nargs - 1;
|
||
Lisp_Object lisp_numargs;
|
||
Lisp_Object val;
|
||
struct backtrace backtrace;
|
||
register Lisp_Object *internal_args;
|
||
register int i;
|
||
|
||
QUIT;
|
||
if ((consing_since_gc > gc_cons_threshold
|
||
&& consing_since_gc > gc_relative_threshold)
|
||
||
|
||
(!NILP (Vmemory_full) && consing_since_gc > memory_full_cons_threshold))
|
||
Fgarbage_collect ();
|
||
|
||
if (++lisp_eval_depth > max_lisp_eval_depth)
|
||
{
|
||
if (max_lisp_eval_depth < 100)
|
||
max_lisp_eval_depth = 100;
|
||
if (lisp_eval_depth > max_lisp_eval_depth)
|
||
error ("Lisp nesting exceeds `max-lisp-eval-depth'");
|
||
}
|
||
|
||
backtrace.next = backtrace_list;
|
||
backtrace_list = &backtrace;
|
||
backtrace.function = &args[0];
|
||
backtrace.args = &args[1];
|
||
backtrace.nargs = nargs - 1;
|
||
backtrace.evalargs = 0;
|
||
backtrace.debug_on_exit = 0;
|
||
|
||
if (debug_on_next_call)
|
||
do_debug_on_call (Qlambda);
|
||
|
||
CHECK_CONS_LIST ();
|
||
|
||
original_fun = args[0];
|
||
|
||
retry:
|
||
|
||
/* Optimize for no indirection. */
|
||
fun = original_fun;
|
||
if (SYMBOLP (fun) && !EQ (fun, Qunbound)
|
||
&& (fun = XSYMBOL (fun)->function, SYMBOLP (fun)))
|
||
fun = indirect_function (fun);
|
||
|
||
if (SUBRP (fun))
|
||
{
|
||
if (numargs < XSUBR (fun)->min_args
|
||
|| (XSUBR (fun)->max_args >= 0 && XSUBR (fun)->max_args < numargs))
|
||
{
|
||
XSETFASTINT (lisp_numargs, numargs);
|
||
xsignal2 (Qwrong_number_of_arguments, original_fun, lisp_numargs);
|
||
}
|
||
|
||
if (XSUBR (fun)->max_args == UNEVALLED)
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
|
||
if (XSUBR (fun)->max_args == MANY)
|
||
{
|
||
val = (*XSUBR (fun)->function) (numargs, args + 1);
|
||
goto done;
|
||
}
|
||
|
||
if (XSUBR (fun)->max_args > numargs)
|
||
{
|
||
internal_args = (Lisp_Object *) alloca (XSUBR (fun)->max_args * sizeof (Lisp_Object));
|
||
bcopy (args + 1, internal_args, numargs * sizeof (Lisp_Object));
|
||
for (i = numargs; i < XSUBR (fun)->max_args; i++)
|
||
internal_args[i] = Qnil;
|
||
}
|
||
else
|
||
internal_args = args + 1;
|
||
switch (XSUBR (fun)->max_args)
|
||
{
|
||
case 0:
|
||
val = (*XSUBR (fun)->function) ();
|
||
goto done;
|
||
case 1:
|
||
val = (*XSUBR (fun)->function) (internal_args[0]);
|
||
goto done;
|
||
case 2:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1]);
|
||
goto done;
|
||
case 3:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2]);
|
||
goto done;
|
||
case 4:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2], internal_args[3]);
|
||
goto done;
|
||
case 5:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2], internal_args[3],
|
||
internal_args[4]);
|
||
goto done;
|
||
case 6:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2], internal_args[3],
|
||
internal_args[4], internal_args[5]);
|
||
goto done;
|
||
case 7:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2], internal_args[3],
|
||
internal_args[4], internal_args[5],
|
||
internal_args[6]);
|
||
goto done;
|
||
|
||
case 8:
|
||
val = (*XSUBR (fun)->function) (internal_args[0], internal_args[1],
|
||
internal_args[2], internal_args[3],
|
||
internal_args[4], internal_args[5],
|
||
internal_args[6], internal_args[7]);
|
||
goto done;
|
||
|
||
default:
|
||
|
||
/* If a subr takes more than 8 arguments without using MANY
|
||
or UNEVALLED, we need to extend this function to support it.
|
||
Until this is done, there is no way to call the function. */
|
||
abort ();
|
||
}
|
||
}
|
||
if (COMPILEDP (fun))
|
||
val = funcall_lambda (fun, numargs, args + 1);
|
||
else
|
||
{
|
||
if (EQ (fun, Qunbound))
|
||
xsignal1 (Qvoid_function, original_fun);
|
||
if (!CONSP (fun))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
funcar = XCAR (fun);
|
||
if (!SYMBOLP (funcar))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
if (EQ (funcar, Qlambda))
|
||
val = funcall_lambda (fun, numargs, args + 1);
|
||
else if (EQ (funcar, Qautoload))
|
||
{
|
||
do_autoload (fun, original_fun);
|
||
CHECK_CONS_LIST ();
|
||
goto retry;
|
||
}
|
||
else
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
}
|
||
done:
|
||
CHECK_CONS_LIST ();
|
||
lisp_eval_depth--;
|
||
if (backtrace.debug_on_exit)
|
||
val = call_debugger (Fcons (Qexit, Fcons (val, Qnil)));
|
||
backtrace_list = backtrace.next;
|
||
return val;
|
||
}
|
||
|
||
Lisp_Object
|
||
apply_lambda (fun, args, eval_flag)
|
||
Lisp_Object fun, args;
|
||
int eval_flag;
|
||
{
|
||
Lisp_Object args_left;
|
||
Lisp_Object numargs;
|
||
register Lisp_Object *arg_vector;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
register int i;
|
||
register Lisp_Object tem;
|
||
|
||
numargs = Flength (args);
|
||
arg_vector = (Lisp_Object *) alloca (XINT (numargs) * sizeof (Lisp_Object));
|
||
args_left = args;
|
||
|
||
GCPRO3 (*arg_vector, args_left, fun);
|
||
gcpro1.nvars = 0;
|
||
|
||
for (i = 0; i < XINT (numargs);)
|
||
{
|
||
tem = Fcar (args_left), args_left = Fcdr (args_left);
|
||
if (eval_flag) tem = Feval (tem);
|
||
arg_vector[i++] = tem;
|
||
gcpro1.nvars = i;
|
||
}
|
||
|
||
UNGCPRO;
|
||
|
||
if (eval_flag)
|
||
{
|
||
backtrace_list->args = arg_vector;
|
||
backtrace_list->nargs = i;
|
||
}
|
||
backtrace_list->evalargs = 0;
|
||
tem = funcall_lambda (fun, XINT (numargs), arg_vector);
|
||
|
||
/* Do the debug-on-exit now, while arg_vector still exists. */
|
||
if (backtrace_list->debug_on_exit)
|
||
tem = call_debugger (Fcons (Qexit, Fcons (tem, Qnil)));
|
||
/* Don't do it again when we return to eval. */
|
||
backtrace_list->debug_on_exit = 0;
|
||
return tem;
|
||
}
|
||
|
||
/* Apply a Lisp function FUN to the NARGS evaluated arguments in ARG_VECTOR
|
||
and return the result of evaluation.
|
||
FUN must be either a lambda-expression or a compiled-code object. */
|
||
|
||
static Lisp_Object
|
||
funcall_lambda (fun, nargs, arg_vector)
|
||
Lisp_Object fun;
|
||
int nargs;
|
||
register Lisp_Object *arg_vector;
|
||
{
|
||
Lisp_Object val, syms_left, next;
|
||
int count = SPECPDL_INDEX ();
|
||
int i, optional, rest;
|
||
|
||
if (CONSP (fun))
|
||
{
|
||
syms_left = XCDR (fun);
|
||
if (CONSP (syms_left))
|
||
syms_left = XCAR (syms_left);
|
||
else
|
||
xsignal1 (Qinvalid_function, fun);
|
||
}
|
||
else if (COMPILEDP (fun))
|
||
syms_left = AREF (fun, COMPILED_ARGLIST);
|
||
else
|
||
abort ();
|
||
|
||
i = optional = rest = 0;
|
||
for (; CONSP (syms_left); syms_left = XCDR (syms_left))
|
||
{
|
||
QUIT;
|
||
|
||
next = XCAR (syms_left);
|
||
if (!SYMBOLP (next))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
|
||
if (EQ (next, Qand_rest))
|
||
rest = 1;
|
||
else if (EQ (next, Qand_optional))
|
||
optional = 1;
|
||
else if (rest)
|
||
{
|
||
specbind (next, Flist (nargs - i, &arg_vector[i]));
|
||
i = nargs;
|
||
}
|
||
else if (i < nargs)
|
||
specbind (next, arg_vector[i++]);
|
||
else if (!optional)
|
||
xsignal2 (Qwrong_number_of_arguments, fun, make_number (nargs));
|
||
else
|
||
specbind (next, Qnil);
|
||
}
|
||
|
||
if (!NILP (syms_left))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
else if (i < nargs)
|
||
xsignal2 (Qwrong_number_of_arguments, fun, make_number (nargs));
|
||
|
||
if (CONSP (fun))
|
||
val = Fprogn (XCDR (XCDR (fun)));
|
||
else
|
||
{
|
||
/* If we have not actually read the bytecode string
|
||
and constants vector yet, fetch them from the file. */
|
||
if (CONSP (AREF (fun, COMPILED_BYTECODE)))
|
||
Ffetch_bytecode (fun);
|
||
val = Fbyte_code (AREF (fun, COMPILED_BYTECODE),
|
||
AREF (fun, COMPILED_CONSTANTS),
|
||
AREF (fun, COMPILED_STACK_DEPTH));
|
||
}
|
||
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
DEFUN ("fetch-bytecode", Ffetch_bytecode, Sfetch_bytecode,
|
||
1, 1, 0,
|
||
doc: /* If byte-compiled OBJECT is lazy-loaded, fetch it now. */)
|
||
(object)
|
||
Lisp_Object object;
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
if (COMPILEDP (object) && CONSP (AREF (object, COMPILED_BYTECODE)))
|
||
{
|
||
tem = read_doc_string (AREF (object, COMPILED_BYTECODE));
|
||
if (!CONSP (tem))
|
||
{
|
||
tem = AREF (object, COMPILED_BYTECODE);
|
||
if (CONSP (tem) && STRINGP (XCAR (tem)))
|
||
error ("Invalid byte code in %s", SDATA (XCAR (tem)));
|
||
else
|
||
error ("Invalid byte code");
|
||
}
|
||
AREF (object, COMPILED_BYTECODE) = XCAR (tem);
|
||
AREF (object, COMPILED_CONSTANTS) = XCDR (tem);
|
||
}
|
||
return object;
|
||
}
|
||
|
||
void
|
||
grow_specpdl ()
|
||
{
|
||
register int count = SPECPDL_INDEX ();
|
||
if (specpdl_size >= max_specpdl_size)
|
||
{
|
||
if (max_specpdl_size < 400)
|
||
max_specpdl_size = 400;
|
||
if (specpdl_size >= max_specpdl_size)
|
||
signal_error ("Variable binding depth exceeds max-specpdl-size", Qnil);
|
||
}
|
||
specpdl_size *= 2;
|
||
if (specpdl_size > max_specpdl_size)
|
||
specpdl_size = max_specpdl_size;
|
||
specpdl = (struct specbinding *) xrealloc (specpdl, specpdl_size * sizeof (struct specbinding));
|
||
specpdl_ptr = specpdl + count;
|
||
}
|
||
|
||
void
|
||
specbind (symbol, value)
|
||
Lisp_Object symbol, value;
|
||
{
|
||
Lisp_Object ovalue;
|
||
Lisp_Object valcontents;
|
||
|
||
CHECK_SYMBOL (symbol);
|
||
if (specpdl_ptr == specpdl + specpdl_size)
|
||
grow_specpdl ();
|
||
|
||
/* The most common case is that of a non-constant symbol with a
|
||
trivial value. Make that as fast as we can. */
|
||
valcontents = SYMBOL_VALUE (symbol);
|
||
if (!MISCP (valcontents) && !SYMBOL_CONSTANT_P (symbol))
|
||
{
|
||
specpdl_ptr->symbol = symbol;
|
||
specpdl_ptr->old_value = valcontents;
|
||
specpdl_ptr->func = NULL;
|
||
++specpdl_ptr;
|
||
SET_SYMBOL_VALUE (symbol, value);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object valcontents;
|
||
|
||
ovalue = find_symbol_value (symbol);
|
||
specpdl_ptr->func = 0;
|
||
specpdl_ptr->old_value = ovalue;
|
||
|
||
valcontents = XSYMBOL (symbol)->value;
|
||
|
||
if (BUFFER_LOCAL_VALUEP (valcontents)
|
||
|| SOME_BUFFER_LOCAL_VALUEP (valcontents)
|
||
|| BUFFER_OBJFWDP (valcontents))
|
||
{
|
||
Lisp_Object where, current_buffer;
|
||
|
||
current_buffer = Fcurrent_buffer ();
|
||
|
||
/* For a local variable, record both the symbol and which
|
||
buffer's or frame's value we are saving. */
|
||
if (!NILP (Flocal_variable_p (symbol, Qnil)))
|
||
where = current_buffer;
|
||
else if (!BUFFER_OBJFWDP (valcontents)
|
||
&& XBUFFER_LOCAL_VALUE (valcontents)->found_for_frame)
|
||
where = XBUFFER_LOCAL_VALUE (valcontents)->frame;
|
||
else
|
||
where = Qnil;
|
||
|
||
/* We're not using the `unused' slot in the specbinding
|
||
structure because this would mean we have to do more
|
||
work for simple variables. */
|
||
specpdl_ptr->symbol = Fcons (symbol, Fcons (where, current_buffer));
|
||
|
||
/* If SYMBOL is a per-buffer variable which doesn't have a
|
||
buffer-local value here, make the `let' change the global
|
||
value by changing the value of SYMBOL in all buffers not
|
||
having their own value. This is consistent with what
|
||
happens with other buffer-local variables. */
|
||
if (NILP (where)
|
||
&& BUFFER_OBJFWDP (valcontents))
|
||
{
|
||
++specpdl_ptr;
|
||
Fset_default (symbol, value);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
specpdl_ptr->symbol = symbol;
|
||
|
||
specpdl_ptr++;
|
||
if (BUFFER_OBJFWDP (ovalue) || KBOARD_OBJFWDP (ovalue))
|
||
store_symval_forwarding (symbol, ovalue, value, NULL);
|
||
else
|
||
set_internal (symbol, value, 0, 1);
|
||
}
|
||
}
|
||
|
||
void
|
||
record_unwind_protect (function, arg)
|
||
Lisp_Object (*function) P_ ((Lisp_Object));
|
||
Lisp_Object arg;
|
||
{
|
||
eassert (!handling_signal);
|
||
|
||
if (specpdl_ptr == specpdl + specpdl_size)
|
||
grow_specpdl ();
|
||
specpdl_ptr->func = function;
|
||
specpdl_ptr->symbol = Qnil;
|
||
specpdl_ptr->old_value = arg;
|
||
specpdl_ptr++;
|
||
}
|
||
|
||
Lisp_Object
|
||
unbind_to (count, value)
|
||
int count;
|
||
Lisp_Object value;
|
||
{
|
||
Lisp_Object quitf = Vquit_flag;
|
||
struct gcpro gcpro1, gcpro2;
|
||
|
||
GCPRO2 (value, quitf);
|
||
Vquit_flag = Qnil;
|
||
|
||
while (specpdl_ptr != specpdl + count)
|
||
{
|
||
/* Copy the binding, and decrement specpdl_ptr, before we do
|
||
the work to unbind it. We decrement first
|
||
so that an error in unbinding won't try to unbind
|
||
the same entry again, and we copy the binding first
|
||
in case more bindings are made during some of the code we run. */
|
||
|
||
struct specbinding this_binding;
|
||
this_binding = *--specpdl_ptr;
|
||
|
||
if (this_binding.func != 0)
|
||
(*this_binding.func) (this_binding.old_value);
|
||
/* If the symbol is a list, it is really (SYMBOL WHERE
|
||
. CURRENT-BUFFER) where WHERE is either nil, a buffer, or a
|
||
frame. If WHERE is a buffer or frame, this indicates we
|
||
bound a variable that had a buffer-local or frame-local
|
||
binding. WHERE nil means that the variable had the default
|
||
value when it was bound. CURRENT-BUFFER is the buffer that
|
||
was current when the variable was bound. */
|
||
else if (CONSP (this_binding.symbol))
|
||
{
|
||
Lisp_Object symbol, where;
|
||
|
||
symbol = XCAR (this_binding.symbol);
|
||
where = XCAR (XCDR (this_binding.symbol));
|
||
|
||
if (NILP (where))
|
||
Fset_default (symbol, this_binding.old_value);
|
||
else if (BUFFERP (where))
|
||
set_internal (symbol, this_binding.old_value, XBUFFER (where), 1);
|
||
else
|
||
set_internal (symbol, this_binding.old_value, NULL, 1);
|
||
}
|
||
else
|
||
{
|
||
/* If variable has a trivial value (no forwarding), we can
|
||
just set it. No need to check for constant symbols here,
|
||
since that was already done by specbind. */
|
||
if (!MISCP (SYMBOL_VALUE (this_binding.symbol)))
|
||
SET_SYMBOL_VALUE (this_binding.symbol, this_binding.old_value);
|
||
else
|
||
set_internal (this_binding.symbol, this_binding.old_value, 0, 1);
|
||
}
|
||
}
|
||
|
||
if (NILP (Vquit_flag) && !NILP (quitf))
|
||
Vquit_flag = quitf;
|
||
|
||
UNGCPRO;
|
||
return value;
|
||
}
|
||
|
||
DEFUN ("backtrace-debug", Fbacktrace_debug, Sbacktrace_debug, 2, 2, 0,
|
||
doc: /* Set the debug-on-exit flag of eval frame LEVEL levels down to FLAG.
|
||
The debugger is entered when that frame exits, if the flag is non-nil. */)
|
||
(level, flag)
|
||
Lisp_Object level, flag;
|
||
{
|
||
register struct backtrace *backlist = backtrace_list;
|
||
register int i;
|
||
|
||
CHECK_NUMBER (level);
|
||
|
||
for (i = 0; backlist && i < XINT (level); i++)
|
||
{
|
||
backlist = backlist->next;
|
||
}
|
||
|
||
if (backlist)
|
||
backlist->debug_on_exit = !NILP (flag);
|
||
|
||
return flag;
|
||
}
|
||
|
||
DEFUN ("backtrace", Fbacktrace, Sbacktrace, 0, 0, "",
|
||
doc: /* Print a trace of Lisp function calls currently active.
|
||
Output stream used is value of `standard-output'. */)
|
||
()
|
||
{
|
||
register struct backtrace *backlist = backtrace_list;
|
||
register int i;
|
||
Lisp_Object tail;
|
||
Lisp_Object tem;
|
||
extern Lisp_Object Vprint_level;
|
||
struct gcpro gcpro1;
|
||
|
||
XSETFASTINT (Vprint_level, 3);
|
||
|
||
tail = Qnil;
|
||
GCPRO1 (tail);
|
||
|
||
while (backlist)
|
||
{
|
||
write_string (backlist->debug_on_exit ? "* " : " ", 2);
|
||
if (backlist->nargs == UNEVALLED)
|
||
{
|
||
Fprin1 (Fcons (*backlist->function, *backlist->args), Qnil);
|
||
write_string ("\n", -1);
|
||
}
|
||
else
|
||
{
|
||
tem = *backlist->function;
|
||
Fprin1 (tem, Qnil); /* This can QUIT */
|
||
write_string ("(", -1);
|
||
if (backlist->nargs == MANY)
|
||
{
|
||
for (tail = *backlist->args, i = 0;
|
||
!NILP (tail);
|
||
tail = Fcdr (tail), i++)
|
||
{
|
||
if (i) write_string (" ", -1);
|
||
Fprin1 (Fcar (tail), Qnil);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < backlist->nargs; i++)
|
||
{
|
||
if (i) write_string (" ", -1);
|
||
Fprin1 (backlist->args[i], Qnil);
|
||
}
|
||
}
|
||
write_string (")\n", -1);
|
||
}
|
||
backlist = backlist->next;
|
||
}
|
||
|
||
Vprint_level = Qnil;
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("backtrace-frame", Fbacktrace_frame, Sbacktrace_frame, 1, 1, NULL,
|
||
doc: /* Return the function and arguments NFRAMES up from current execution point.
|
||
If that frame has not evaluated the arguments yet (or is a special form),
|
||
the value is (nil FUNCTION ARG-FORMS...).
|
||
If that frame has evaluated its arguments and called its function already,
|
||
the value is (t FUNCTION ARG-VALUES...).
|
||
A &rest arg is represented as the tail of the list ARG-VALUES.
|
||
FUNCTION is whatever was supplied as car of evaluated list,
|
||
or a lambda expression for macro calls.
|
||
If NFRAMES is more than the number of frames, the value is nil. */)
|
||
(nframes)
|
||
Lisp_Object nframes;
|
||
{
|
||
register struct backtrace *backlist = backtrace_list;
|
||
register int i;
|
||
Lisp_Object tem;
|
||
|
||
CHECK_NATNUM (nframes);
|
||
|
||
/* Find the frame requested. */
|
||
for (i = 0; backlist && i < XFASTINT (nframes); i++)
|
||
backlist = backlist->next;
|
||
|
||
if (!backlist)
|
||
return Qnil;
|
||
if (backlist->nargs == UNEVALLED)
|
||
return Fcons (Qnil, Fcons (*backlist->function, *backlist->args));
|
||
else
|
||
{
|
||
if (backlist->nargs == MANY)
|
||
tem = *backlist->args;
|
||
else
|
||
tem = Flist (backlist->nargs, backlist->args);
|
||
|
||
return Fcons (Qt, Fcons (*backlist->function, tem));
|
||
}
|
||
}
|
||
|
||
|
||
void
|
||
mark_backtrace ()
|
||
{
|
||
register struct backtrace *backlist;
|
||
register int i;
|
||
|
||
for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
||
{
|
||
mark_object (*backlist->function);
|
||
|
||
if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
|
||
i = 0;
|
||
else
|
||
i = backlist->nargs - 1;
|
||
for (; i >= 0; i--)
|
||
mark_object (backlist->args[i]);
|
||
}
|
||
}
|
||
|
||
void
|
||
syms_of_eval ()
|
||
{
|
||
DEFVAR_INT ("max-specpdl-size", &max_specpdl_size,
|
||
doc: /* *Limit on number of Lisp variable bindings and `unwind-protect's.
|
||
If Lisp code tries to increase the total number past this amount,
|
||
an error is signaled.
|
||
You can safely use a value considerably larger than the default value,
|
||
if that proves inconveniently small. However, if you increase it too far,
|
||
Emacs could run out of memory trying to make the stack bigger. */);
|
||
|
||
DEFVAR_INT ("max-lisp-eval-depth", &max_lisp_eval_depth,
|
||
doc: /* *Limit on depth in `eval', `apply' and `funcall' before error.
|
||
|
||
This limit serves to catch infinite recursions for you before they cause
|
||
actual stack overflow in C, which would be fatal for Emacs.
|
||
You can safely make it considerably larger than its default value,
|
||
if that proves inconveniently small. However, if you increase it too far,
|
||
Emacs could overflow the real C stack, and crash. */);
|
||
|
||
DEFVAR_LISP ("quit-flag", &Vquit_flag,
|
||
doc: /* Non-nil causes `eval' to abort, unless `inhibit-quit' is non-nil.
|
||
If the value is t, that means do an ordinary quit.
|
||
If the value equals `throw-on-input', that means quit by throwing
|
||
to the tag specified in `throw-on-input'; it's for handling `while-no-input'.
|
||
Typing C-g sets `quit-flag' to t, regardless of `inhibit-quit',
|
||
but `inhibit-quit' non-nil prevents anything from taking notice of that. */);
|
||
Vquit_flag = Qnil;
|
||
|
||
DEFVAR_LISP ("inhibit-quit", &Vinhibit_quit,
|
||
doc: /* Non-nil inhibits C-g quitting from happening immediately.
|
||
Note that `quit-flag' will still be set by typing C-g,
|
||
so a quit will be signaled as soon as `inhibit-quit' is nil.
|
||
To prevent this happening, set `quit-flag' to nil
|
||
before making `inhibit-quit' nil. */);
|
||
Vinhibit_quit = Qnil;
|
||
|
||
Qinhibit_quit = intern ("inhibit-quit");
|
||
staticpro (&Qinhibit_quit);
|
||
|
||
Qautoload = intern ("autoload");
|
||
staticpro (&Qautoload);
|
||
|
||
Qdebug_on_error = intern ("debug-on-error");
|
||
staticpro (&Qdebug_on_error);
|
||
|
||
Qmacro = intern ("macro");
|
||
staticpro (&Qmacro);
|
||
|
||
Qdeclare = intern ("declare");
|
||
staticpro (&Qdeclare);
|
||
|
||
/* Note that the process handling also uses Qexit, but we don't want
|
||
to staticpro it twice, so we just do it here. */
|
||
Qexit = intern ("exit");
|
||
staticpro (&Qexit);
|
||
|
||
Qinteractive = intern ("interactive");
|
||
staticpro (&Qinteractive);
|
||
|
||
Qcommandp = intern ("commandp");
|
||
staticpro (&Qcommandp);
|
||
|
||
Qdefun = intern ("defun");
|
||
staticpro (&Qdefun);
|
||
|
||
Qand_rest = intern ("&rest");
|
||
staticpro (&Qand_rest);
|
||
|
||
Qand_optional = intern ("&optional");
|
||
staticpro (&Qand_optional);
|
||
|
||
DEFVAR_LISP ("stack-trace-on-error", &Vstack_trace_on_error,
|
||
doc: /* *Non-nil means errors display a backtrace buffer.
|
||
More precisely, this happens for any error that is handled
|
||
by the editor command loop.
|
||
If the value is a list, an error only means to display a backtrace
|
||
if one of its condition symbols appears in the list. */);
|
||
Vstack_trace_on_error = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-on-error", &Vdebug_on_error,
|
||
doc: /* *Non-nil means enter debugger if an error is signaled.
|
||
Does not apply to errors handled by `condition-case' or those
|
||
matched by `debug-ignored-errors'.
|
||
If the value is a list, an error only means to enter the debugger
|
||
if one of its condition symbols appears in the list.
|
||
When you evaluate an expression interactively, this variable
|
||
is temporarily non-nil if `eval-expression-debug-on-error' is non-nil.
|
||
See also variable `debug-on-quit'. */);
|
||
Vdebug_on_error = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-ignored-errors", &Vdebug_ignored_errors,
|
||
doc: /* *List of errors for which the debugger should not be called.
|
||
Each element may be a condition-name or a regexp that matches error messages.
|
||
If any element applies to a given error, that error skips the debugger
|
||
and just returns to top level.
|
||
This overrides the variable `debug-on-error'.
|
||
It does not apply to errors handled by `condition-case'. */);
|
||
Vdebug_ignored_errors = Qnil;
|
||
|
||
DEFVAR_BOOL ("debug-on-quit", &debug_on_quit,
|
||
doc: /* *Non-nil means enter debugger if quit is signaled (C-g, for example).
|
||
Does not apply if quit is handled by a `condition-case'. */);
|
||
debug_on_quit = 0;
|
||
|
||
DEFVAR_BOOL ("debug-on-next-call", &debug_on_next_call,
|
||
doc: /* Non-nil means enter debugger before next `eval', `apply' or `funcall'. */);
|
||
|
||
DEFVAR_BOOL ("debugger-may-continue", &debugger_may_continue,
|
||
doc: /* Non-nil means debugger may continue execution.
|
||
This is nil when the debugger is called under circumstances where it
|
||
might not be safe to continue. */);
|
||
debugger_may_continue = 1;
|
||
|
||
DEFVAR_LISP ("debugger", &Vdebugger,
|
||
doc: /* Function to call to invoke debugger.
|
||
If due to frame exit, args are `exit' and the value being returned;
|
||
this function's value will be returned instead of that.
|
||
If due to error, args are `error' and a list of the args to `signal'.
|
||
If due to `apply' or `funcall' entry, one arg, `lambda'.
|
||
If due to `eval' entry, one arg, t. */);
|
||
Vdebugger = Qnil;
|
||
|
||
DEFVAR_LISP ("signal-hook-function", &Vsignal_hook_function,
|
||
doc: /* If non-nil, this is a function for `signal' to call.
|
||
It receives the same arguments that `signal' was given.
|
||
The Edebug package uses this to regain control. */);
|
||
Vsignal_hook_function = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-on-signal", &Vdebug_on_signal,
|
||
doc: /* *Non-nil means call the debugger regardless of condition handlers.
|
||
Note that `debug-on-error', `debug-on-quit' and friends
|
||
still determine whether to handle the particular condition. */);
|
||
Vdebug_on_signal = Qnil;
|
||
|
||
DEFVAR_LISP ("macro-declaration-function", &Vmacro_declaration_function,
|
||
doc: /* Function to process declarations in a macro definition.
|
||
The function will be called with two args MACRO and DECL.
|
||
MACRO is the name of the macro being defined.
|
||
DECL is a list `(declare ...)' containing the declarations.
|
||
The value the function returns is not used. */);
|
||
Vmacro_declaration_function = Qnil;
|
||
|
||
Vrun_hooks = intern ("run-hooks");
|
||
staticpro (&Vrun_hooks);
|
||
|
||
staticpro (&Vautoload_queue);
|
||
Vautoload_queue = Qnil;
|
||
staticpro (&Vsignaling_function);
|
||
Vsignaling_function = Qnil;
|
||
|
||
defsubr (&Sor);
|
||
defsubr (&Sand);
|
||
defsubr (&Sif);
|
||
defsubr (&Scond);
|
||
defsubr (&Sprogn);
|
||
defsubr (&Sprog1);
|
||
defsubr (&Sprog2);
|
||
defsubr (&Ssetq);
|
||
defsubr (&Squote);
|
||
defsubr (&Sfunction);
|
||
defsubr (&Sdefun);
|
||
defsubr (&Sdefmacro);
|
||
defsubr (&Sdefvar);
|
||
defsubr (&Sdefvaralias);
|
||
defsubr (&Sdefconst);
|
||
defsubr (&Suser_variable_p);
|
||
defsubr (&Slet);
|
||
defsubr (&SletX);
|
||
defsubr (&Swhile);
|
||
defsubr (&Smacroexpand);
|
||
defsubr (&Scatch);
|
||
defsubr (&Sthrow);
|
||
defsubr (&Sunwind_protect);
|
||
defsubr (&Scondition_case);
|
||
defsubr (&Ssignal);
|
||
defsubr (&Sinteractive_p);
|
||
defsubr (&Scalled_interactively_p);
|
||
defsubr (&Scommandp);
|
||
defsubr (&Sautoload);
|
||
defsubr (&Seval);
|
||
defsubr (&Sapply);
|
||
defsubr (&Sfuncall);
|
||
defsubr (&Srun_hooks);
|
||
defsubr (&Srun_hook_with_args);
|
||
defsubr (&Srun_hook_with_args_until_success);
|
||
defsubr (&Srun_hook_with_args_until_failure);
|
||
defsubr (&Sfetch_bytecode);
|
||
defsubr (&Sbacktrace_debug);
|
||
defsubr (&Sbacktrace);
|
||
defsubr (&Sbacktrace_frame);
|
||
}
|
||
|
||
/* arch-tag: 014a07aa-33ab-4a8f-a3d2-ee8a4a9ff7fb
|
||
(do not change this comment) */
|