mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-26 19:18:50 +00:00
5032 lines
136 KiB
C
5032 lines
136 KiB
C
/* Random utility Lisp functions.
|
||
|
||
Copyright (C) 1985-1987, 1993-1995, 1997-2014 Free Software Foundation,
|
||
Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <unistd.h>
|
||
#include <time.h>
|
||
|
||
#include <intprops.h>
|
||
|
||
#include "lisp.h"
|
||
#include "commands.h"
|
||
#include "character.h"
|
||
#include "coding.h"
|
||
#include "buffer.h"
|
||
#include "keyboard.h"
|
||
#include "keymap.h"
|
||
#include "intervals.h"
|
||
#include "frame.h"
|
||
#include "window.h"
|
||
#include "blockinput.h"
|
||
#if defined (HAVE_X_WINDOWS)
|
||
#include "xterm.h"
|
||
#endif
|
||
|
||
Lisp_Object Qstring_lessp;
|
||
static Lisp_Object Qprovide, Qrequire;
|
||
static Lisp_Object Qyes_or_no_p_history;
|
||
Lisp_Object Qcursor_in_echo_area;
|
||
static Lisp_Object Qwidget_type;
|
||
static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
|
||
|
||
static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
|
||
|
||
static bool internal_equal (Lisp_Object, Lisp_Object, int, bool, Lisp_Object);
|
||
|
||
DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
|
||
doc: /* Return the argument unchanged. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("random", Frandom, Srandom, 0, 1, 0,
|
||
doc: /* Return a pseudo-random number.
|
||
All integers representable in Lisp, i.e. between `most-negative-fixnum'
|
||
and `most-positive-fixnum', inclusive, are equally likely.
|
||
|
||
With positive integer LIMIT, return random number in interval [0,LIMIT).
|
||
With argument t, set the random number seed from the current time and pid.
|
||
With a string argument, set the seed based on the string's contents.
|
||
Other values of LIMIT are ignored.
|
||
|
||
See Info node `(elisp)Random Numbers' for more details. */)
|
||
(Lisp_Object limit)
|
||
{
|
||
EMACS_INT val;
|
||
|
||
if (EQ (limit, Qt))
|
||
init_random ();
|
||
else if (STRINGP (limit))
|
||
seed_random (SSDATA (limit), SBYTES (limit));
|
||
|
||
val = get_random ();
|
||
if (INTEGERP (limit) && 0 < XINT (limit))
|
||
while (true)
|
||
{
|
||
/* Return the remainder, except reject the rare case where
|
||
get_random returns a number so close to INTMASK that the
|
||
remainder isn't random. */
|
||
EMACS_INT remainder = val % XINT (limit);
|
||
if (val - remainder <= INTMASK - XINT (limit) + 1)
|
||
return make_number (remainder);
|
||
val = get_random ();
|
||
}
|
||
return make_number (val);
|
||
}
|
||
|
||
/* Heuristic on how many iterations of a tight loop can be safely done
|
||
before it's time to do a QUIT. This must be a power of 2. */
|
||
enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
|
||
|
||
/* Random data-structure functions. */
|
||
|
||
static void
|
||
CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
|
||
{
|
||
CHECK_TYPE (NILP (x), Qlistp, y);
|
||
}
|
||
|
||
DEFUN ("length", Flength, Slength, 1, 1, 0,
|
||
doc: /* Return the length of vector, list or string SEQUENCE.
|
||
A byte-code function object is also allowed.
|
||
If the string contains multibyte characters, this is not necessarily
|
||
the number of bytes in the string; it is the number of characters.
|
||
To get the number of bytes, use `string-bytes'. */)
|
||
(register Lisp_Object sequence)
|
||
{
|
||
register Lisp_Object val;
|
||
|
||
if (STRINGP (sequence))
|
||
XSETFASTINT (val, SCHARS (sequence));
|
||
else if (VECTORP (sequence))
|
||
XSETFASTINT (val, ASIZE (sequence));
|
||
else if (CHAR_TABLE_P (sequence))
|
||
XSETFASTINT (val, MAX_CHAR);
|
||
else if (BOOL_VECTOR_P (sequence))
|
||
XSETFASTINT (val, bool_vector_size (sequence));
|
||
else if (COMPILEDP (sequence))
|
||
XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
|
||
else if (CONSP (sequence))
|
||
{
|
||
EMACS_INT i = 0;
|
||
|
||
do
|
||
{
|
||
++i;
|
||
if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
|
||
{
|
||
if (MOST_POSITIVE_FIXNUM < i)
|
||
error ("List too long");
|
||
QUIT;
|
||
}
|
||
sequence = XCDR (sequence);
|
||
}
|
||
while (CONSP (sequence));
|
||
|
||
CHECK_LIST_END (sequence, sequence);
|
||
|
||
val = make_number (i);
|
||
}
|
||
else if (NILP (sequence))
|
||
XSETFASTINT (val, 0);
|
||
else
|
||
wrong_type_argument (Qsequencep, sequence);
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
|
||
doc: /* Return the length of a list, but avoid error or infinite loop.
|
||
This function never gets an error. If LIST is not really a list,
|
||
it returns 0. If LIST is circular, it returns a finite value
|
||
which is at least the number of distinct elements. */)
|
||
(Lisp_Object list)
|
||
{
|
||
Lisp_Object tail, halftail;
|
||
double hilen = 0;
|
||
uintmax_t lolen = 1;
|
||
|
||
if (! CONSP (list))
|
||
return make_number (0);
|
||
|
||
/* halftail is used to detect circular lists. */
|
||
for (tail = halftail = list; ; )
|
||
{
|
||
tail = XCDR (tail);
|
||
if (! CONSP (tail))
|
||
break;
|
||
if (EQ (tail, halftail))
|
||
break;
|
||
lolen++;
|
||
if ((lolen & 1) == 0)
|
||
{
|
||
halftail = XCDR (halftail);
|
||
if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
|
||
{
|
||
QUIT;
|
||
if (lolen == 0)
|
||
hilen += UINTMAX_MAX + 1.0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If the length does not fit into a fixnum, return a float.
|
||
On all known practical machines this returns an upper bound on
|
||
the true length. */
|
||
return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
|
||
}
|
||
|
||
DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
|
||
doc: /* Return the number of bytes in STRING.
|
||
If STRING is multibyte, this may be greater than the length of STRING. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
return make_number (SBYTES (string));
|
||
}
|
||
|
||
DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
|
||
doc: /* Return t if two strings have identical contents.
|
||
Case is significant, but text properties are ignored.
|
||
Symbols are also allowed; their print names are used instead. */)
|
||
(register Lisp_Object s1, Lisp_Object s2)
|
||
{
|
||
if (SYMBOLP (s1))
|
||
s1 = SYMBOL_NAME (s1);
|
||
if (SYMBOLP (s2))
|
||
s2 = SYMBOL_NAME (s2);
|
||
CHECK_STRING (s1);
|
||
CHECK_STRING (s2);
|
||
|
||
if (SCHARS (s1) != SCHARS (s2)
|
||
|| SBYTES (s1) != SBYTES (s2)
|
||
|| memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
|
||
return Qnil;
|
||
return Qt;
|
||
}
|
||
|
||
DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
|
||
doc: /* Compare the contents of two strings, converting to multibyte if needed.
|
||
The arguments START1, END1, START2, and END2, if non-nil, are
|
||
positions specifying which parts of STR1 or STR2 to compare. In
|
||
string STR1, compare the part between START1 (inclusive) and END1
|
||
\(exclusive). If START1 is nil, it defaults to 0, the beginning of
|
||
the string; if END1 is nil, it defaults to the length of the string.
|
||
Likewise, in string STR2, compare the part between START2 and END2.
|
||
|
||
The strings are compared by the numeric values of their characters.
|
||
For instance, STR1 is "less than" STR2 if its first differing
|
||
character has a smaller numeric value. If IGNORE-CASE is non-nil,
|
||
characters are converted to lower-case before comparing them. Unibyte
|
||
strings are converted to multibyte for comparison.
|
||
|
||
The value is t if the strings (or specified portions) match.
|
||
If string STR1 is less, the value is a negative number N;
|
||
- 1 - N is the number of characters that match at the beginning.
|
||
If string STR1 is greater, the value is a positive number N;
|
||
N - 1 is the number of characters that match at the beginning. */)
|
||
(Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
|
||
{
|
||
register ptrdiff_t end1_char, end2_char;
|
||
register ptrdiff_t i1, i1_byte, i2, i2_byte;
|
||
|
||
CHECK_STRING (str1);
|
||
CHECK_STRING (str2);
|
||
if (NILP (start1))
|
||
start1 = make_number (0);
|
||
if (NILP (start2))
|
||
start2 = make_number (0);
|
||
CHECK_NATNUM (start1);
|
||
CHECK_NATNUM (start2);
|
||
if (! NILP (end1))
|
||
CHECK_NATNUM (end1);
|
||
if (! NILP (end2))
|
||
CHECK_NATNUM (end2);
|
||
|
||
end1_char = SCHARS (str1);
|
||
if (! NILP (end1) && end1_char > XINT (end1))
|
||
end1_char = XINT (end1);
|
||
if (end1_char < XINT (start1))
|
||
args_out_of_range (str1, start1);
|
||
|
||
end2_char = SCHARS (str2);
|
||
if (! NILP (end2) && end2_char > XINT (end2))
|
||
end2_char = XINT (end2);
|
||
if (end2_char < XINT (start2))
|
||
args_out_of_range (str2, start2);
|
||
|
||
i1 = XINT (start1);
|
||
i2 = XINT (start2);
|
||
|
||
i1_byte = string_char_to_byte (str1, i1);
|
||
i2_byte = string_char_to_byte (str2, i2);
|
||
|
||
while (i1 < end1_char && i2 < end2_char)
|
||
{
|
||
/* When we find a mismatch, we must compare the
|
||
characters, not just the bytes. */
|
||
int c1, c2;
|
||
|
||
if (STRING_MULTIBYTE (str1))
|
||
FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
|
||
else
|
||
{
|
||
c1 = SREF (str1, i1++);
|
||
MAKE_CHAR_MULTIBYTE (c1);
|
||
}
|
||
|
||
if (STRING_MULTIBYTE (str2))
|
||
FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
|
||
else
|
||
{
|
||
c2 = SREF (str2, i2++);
|
||
MAKE_CHAR_MULTIBYTE (c2);
|
||
}
|
||
|
||
if (c1 == c2)
|
||
continue;
|
||
|
||
if (! NILP (ignore_case))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = Fupcase (make_number (c1));
|
||
c1 = XINT (tem);
|
||
tem = Fupcase (make_number (c2));
|
||
c2 = XINT (tem);
|
||
}
|
||
|
||
if (c1 == c2)
|
||
continue;
|
||
|
||
/* Note that I1 has already been incremented
|
||
past the character that we are comparing;
|
||
hence we don't add or subtract 1 here. */
|
||
if (c1 < c2)
|
||
return make_number (- i1 + XINT (start1));
|
||
else
|
||
return make_number (i1 - XINT (start1));
|
||
}
|
||
|
||
if (i1 < end1_char)
|
||
return make_number (i1 - XINT (start1) + 1);
|
||
if (i2 < end2_char)
|
||
return make_number (- i1 + XINT (start1) - 1);
|
||
|
||
return Qt;
|
||
}
|
||
|
||
DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
|
||
doc: /* Return t if first arg string is less than second in lexicographic order.
|
||
Case is significant.
|
||
Symbols are also allowed; their print names are used instead. */)
|
||
(register Lisp_Object s1, Lisp_Object s2)
|
||
{
|
||
register ptrdiff_t end;
|
||
register ptrdiff_t i1, i1_byte, i2, i2_byte;
|
||
|
||
if (SYMBOLP (s1))
|
||
s1 = SYMBOL_NAME (s1);
|
||
if (SYMBOLP (s2))
|
||
s2 = SYMBOL_NAME (s2);
|
||
CHECK_STRING (s1);
|
||
CHECK_STRING (s2);
|
||
|
||
i1 = i1_byte = i2 = i2_byte = 0;
|
||
|
||
end = SCHARS (s1);
|
||
if (end > SCHARS (s2))
|
||
end = SCHARS (s2);
|
||
|
||
while (i1 < end)
|
||
{
|
||
/* When we find a mismatch, we must compare the
|
||
characters, not just the bytes. */
|
||
int c1, c2;
|
||
|
||
FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
|
||
FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
|
||
|
||
if (c1 != c2)
|
||
return c1 < c2 ? Qt : Qnil;
|
||
}
|
||
return i1 < SCHARS (s2) ? Qt : Qnil;
|
||
}
|
||
|
||
static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
|
||
enum Lisp_Type target_type, bool last_special);
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
concat2 (Lisp_Object s1, Lisp_Object s2)
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
return concat (2, args, Lisp_String, 0);
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
||
{
|
||
Lisp_Object args[3];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
args[2] = s3;
|
||
return concat (3, args, Lisp_String, 0);
|
||
}
|
||
|
||
DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
|
||
doc: /* Concatenate all the arguments and make the result a list.
|
||
The result is a list whose elements are the elements of all the arguments.
|
||
Each argument may be a list, vector or string.
|
||
The last argument is not copied, just used as the tail of the new list.
|
||
usage: (append &rest SEQUENCES) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return concat (nargs, args, Lisp_Cons, 1);
|
||
}
|
||
|
||
DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
|
||
doc: /* Concatenate all the arguments and make the result a string.
|
||
The result is a string whose elements are the elements of all the arguments.
|
||
Each argument may be a string or a list or vector of characters (integers).
|
||
usage: (concat &rest SEQUENCES) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return concat (nargs, args, Lisp_String, 0);
|
||
}
|
||
|
||
DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
|
||
doc: /* Concatenate all the arguments and make the result a vector.
|
||
The result is a vector whose elements are the elements of all the arguments.
|
||
Each argument may be a list, vector or string.
|
||
usage: (vconcat &rest SEQUENCES) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return concat (nargs, args, Lisp_Vectorlike, 0);
|
||
}
|
||
|
||
|
||
DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
|
||
doc: /* Return a copy of a list, vector, string or char-table.
|
||
The elements of a list or vector are not copied; they are shared
|
||
with the original. */)
|
||
(Lisp_Object arg)
|
||
{
|
||
if (NILP (arg)) return arg;
|
||
|
||
if (CHAR_TABLE_P (arg))
|
||
{
|
||
return copy_char_table (arg);
|
||
}
|
||
|
||
if (BOOL_VECTOR_P (arg))
|
||
{
|
||
EMACS_INT nbits = bool_vector_size (arg);
|
||
ptrdiff_t nbytes = bool_vector_bytes (nbits);
|
||
Lisp_Object val = make_uninit_bool_vector (nbits);
|
||
memcpy (bool_vector_data (val), bool_vector_data (arg), nbytes);
|
||
return val;
|
||
}
|
||
|
||
if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
|
||
wrong_type_argument (Qsequencep, arg);
|
||
|
||
return concat (1, &arg, XTYPE (arg), 0);
|
||
}
|
||
|
||
/* This structure holds information of an argument of `concat' that is
|
||
a string and has text properties to be copied. */
|
||
struct textprop_rec
|
||
{
|
||
ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
|
||
ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
|
||
ptrdiff_t to; /* refer to VAL (the target string) */
|
||
};
|
||
|
||
static Lisp_Object
|
||
concat (ptrdiff_t nargs, Lisp_Object *args,
|
||
enum Lisp_Type target_type, bool last_special)
|
||
{
|
||
Lisp_Object val;
|
||
Lisp_Object tail;
|
||
Lisp_Object this;
|
||
ptrdiff_t toindex;
|
||
ptrdiff_t toindex_byte = 0;
|
||
EMACS_INT result_len;
|
||
EMACS_INT result_len_byte;
|
||
ptrdiff_t argnum;
|
||
Lisp_Object last_tail;
|
||
Lisp_Object prev;
|
||
bool some_multibyte;
|
||
/* When we make a multibyte string, we can't copy text properties
|
||
while concatenating each string because the length of resulting
|
||
string can't be decided until we finish the whole concatenation.
|
||
So, we record strings that have text properties to be copied
|
||
here, and copy the text properties after the concatenation. */
|
||
struct textprop_rec *textprops = NULL;
|
||
/* Number of elements in textprops. */
|
||
ptrdiff_t num_textprops = 0;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
tail = Qnil;
|
||
|
||
/* In append, the last arg isn't treated like the others */
|
||
if (last_special && nargs > 0)
|
||
{
|
||
nargs--;
|
||
last_tail = args[nargs];
|
||
}
|
||
else
|
||
last_tail = Qnil;
|
||
|
||
/* Check each argument. */
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
this = args[argnum];
|
||
if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
|
||
|| COMPILEDP (this) || BOOL_VECTOR_P (this)))
|
||
wrong_type_argument (Qsequencep, this);
|
||
}
|
||
|
||
/* Compute total length in chars of arguments in RESULT_LEN.
|
||
If desired output is a string, also compute length in bytes
|
||
in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
|
||
whether the result should be a multibyte string. */
|
||
result_len_byte = 0;
|
||
result_len = 0;
|
||
some_multibyte = 0;
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
EMACS_INT len;
|
||
this = args[argnum];
|
||
len = XFASTINT (Flength (this));
|
||
if (target_type == Lisp_String)
|
||
{
|
||
/* We must count the number of bytes needed in the string
|
||
as well as the number of characters. */
|
||
ptrdiff_t i;
|
||
Lisp_Object ch;
|
||
int c;
|
||
ptrdiff_t this_len_byte;
|
||
|
||
if (VECTORP (this) || COMPILEDP (this))
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
ch = AREF (this, i);
|
||
CHECK_CHARACTER (ch);
|
||
c = XFASTINT (ch);
|
||
this_len_byte = CHAR_BYTES (c);
|
||
if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
|
||
string_overflow ();
|
||
result_len_byte += this_len_byte;
|
||
if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
|
||
some_multibyte = 1;
|
||
}
|
||
else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
|
||
wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
|
||
else if (CONSP (this))
|
||
for (; CONSP (this); this = XCDR (this))
|
||
{
|
||
ch = XCAR (this);
|
||
CHECK_CHARACTER (ch);
|
||
c = XFASTINT (ch);
|
||
this_len_byte = CHAR_BYTES (c);
|
||
if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
|
||
string_overflow ();
|
||
result_len_byte += this_len_byte;
|
||
if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
|
||
some_multibyte = 1;
|
||
}
|
||
else if (STRINGP (this))
|
||
{
|
||
if (STRING_MULTIBYTE (this))
|
||
{
|
||
some_multibyte = 1;
|
||
this_len_byte = SBYTES (this);
|
||
}
|
||
else
|
||
this_len_byte = count_size_as_multibyte (SDATA (this),
|
||
SCHARS (this));
|
||
if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
|
||
string_overflow ();
|
||
result_len_byte += this_len_byte;
|
||
}
|
||
}
|
||
|
||
result_len += len;
|
||
if (MOST_POSITIVE_FIXNUM < result_len)
|
||
memory_full (SIZE_MAX);
|
||
}
|
||
|
||
if (! some_multibyte)
|
||
result_len_byte = result_len;
|
||
|
||
/* Create the output object. */
|
||
if (target_type == Lisp_Cons)
|
||
val = Fmake_list (make_number (result_len), Qnil);
|
||
else if (target_type == Lisp_Vectorlike)
|
||
val = Fmake_vector (make_number (result_len), Qnil);
|
||
else if (some_multibyte)
|
||
val = make_uninit_multibyte_string (result_len, result_len_byte);
|
||
else
|
||
val = make_uninit_string (result_len);
|
||
|
||
/* In `append', if all but last arg are nil, return last arg. */
|
||
if (target_type == Lisp_Cons && EQ (val, Qnil))
|
||
return last_tail;
|
||
|
||
/* Copy the contents of the args into the result. */
|
||
if (CONSP (val))
|
||
tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
|
||
else
|
||
toindex = 0, toindex_byte = 0;
|
||
|
||
prev = Qnil;
|
||
if (STRINGP (val))
|
||
SAFE_NALLOCA (textprops, 1, nargs);
|
||
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
Lisp_Object thislen;
|
||
ptrdiff_t thisleni = 0;
|
||
register ptrdiff_t thisindex = 0;
|
||
register ptrdiff_t thisindex_byte = 0;
|
||
|
||
this = args[argnum];
|
||
if (!CONSP (this))
|
||
thislen = Flength (this), thisleni = XINT (thislen);
|
||
|
||
/* Between strings of the same kind, copy fast. */
|
||
if (STRINGP (this) && STRINGP (val)
|
||
&& STRING_MULTIBYTE (this) == some_multibyte)
|
||
{
|
||
ptrdiff_t thislen_byte = SBYTES (this);
|
||
|
||
memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
|
||
if (string_intervals (this))
|
||
{
|
||
textprops[num_textprops].argnum = argnum;
|
||
textprops[num_textprops].from = 0;
|
||
textprops[num_textprops++].to = toindex;
|
||
}
|
||
toindex_byte += thislen_byte;
|
||
toindex += thisleni;
|
||
}
|
||
/* Copy a single-byte string to a multibyte string. */
|
||
else if (STRINGP (this) && STRINGP (val))
|
||
{
|
||
if (string_intervals (this))
|
||
{
|
||
textprops[num_textprops].argnum = argnum;
|
||
textprops[num_textprops].from = 0;
|
||
textprops[num_textprops++].to = toindex;
|
||
}
|
||
toindex_byte += copy_text (SDATA (this),
|
||
SDATA (val) + toindex_byte,
|
||
SCHARS (this), 0, 1);
|
||
toindex += thisleni;
|
||
}
|
||
else
|
||
/* Copy element by element. */
|
||
while (1)
|
||
{
|
||
register Lisp_Object elt;
|
||
|
||
/* Fetch next element of `this' arg into `elt', or break if
|
||
`this' is exhausted. */
|
||
if (NILP (this)) break;
|
||
if (CONSP (this))
|
||
elt = XCAR (this), this = XCDR (this);
|
||
else if (thisindex >= thisleni)
|
||
break;
|
||
else if (STRINGP (this))
|
||
{
|
||
int c;
|
||
if (STRING_MULTIBYTE (this))
|
||
FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
|
||
thisindex,
|
||
thisindex_byte);
|
||
else
|
||
{
|
||
c = SREF (this, thisindex); thisindex++;
|
||
if (some_multibyte && !ASCII_CHAR_P (c))
|
||
c = BYTE8_TO_CHAR (c);
|
||
}
|
||
XSETFASTINT (elt, c);
|
||
}
|
||
else if (BOOL_VECTOR_P (this))
|
||
{
|
||
elt = bool_vector_ref (this, thisindex);
|
||
thisindex++;
|
||
}
|
||
else
|
||
{
|
||
elt = AREF (this, thisindex);
|
||
thisindex++;
|
||
}
|
||
|
||
/* Store this element into the result. */
|
||
if (toindex < 0)
|
||
{
|
||
XSETCAR (tail, elt);
|
||
prev = tail;
|
||
tail = XCDR (tail);
|
||
}
|
||
else if (VECTORP (val))
|
||
{
|
||
ASET (val, toindex, elt);
|
||
toindex++;
|
||
}
|
||
else
|
||
{
|
||
int c;
|
||
CHECK_CHARACTER (elt);
|
||
c = XFASTINT (elt);
|
||
if (some_multibyte)
|
||
toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
|
||
else
|
||
SSET (val, toindex_byte++, c);
|
||
toindex++;
|
||
}
|
||
}
|
||
}
|
||
if (!NILP (prev))
|
||
XSETCDR (prev, last_tail);
|
||
|
||
if (num_textprops > 0)
|
||
{
|
||
Lisp_Object props;
|
||
ptrdiff_t last_to_end = -1;
|
||
|
||
for (argnum = 0; argnum < num_textprops; argnum++)
|
||
{
|
||
this = args[textprops[argnum].argnum];
|
||
props = text_property_list (this,
|
||
make_number (0),
|
||
make_number (SCHARS (this)),
|
||
Qnil);
|
||
/* If successive arguments have properties, be sure that the
|
||
value of `composition' property be the copy. */
|
||
if (last_to_end == textprops[argnum].to)
|
||
make_composition_value_copy (props);
|
||
add_text_properties_from_list (val, props,
|
||
make_number (textprops[argnum].to));
|
||
last_to_end = textprops[argnum].to + SCHARS (this);
|
||
}
|
||
}
|
||
|
||
SAFE_FREE ();
|
||
return val;
|
||
}
|
||
|
||
static Lisp_Object string_char_byte_cache_string;
|
||
static ptrdiff_t string_char_byte_cache_charpos;
|
||
static ptrdiff_t string_char_byte_cache_bytepos;
|
||
|
||
void
|
||
clear_string_char_byte_cache (void)
|
||
{
|
||
string_char_byte_cache_string = Qnil;
|
||
}
|
||
|
||
/* Return the byte index corresponding to CHAR_INDEX in STRING. */
|
||
|
||
ptrdiff_t
|
||
string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
|
||
{
|
||
ptrdiff_t i_byte;
|
||
ptrdiff_t best_below, best_below_byte;
|
||
ptrdiff_t best_above, best_above_byte;
|
||
|
||
best_below = best_below_byte = 0;
|
||
best_above = SCHARS (string);
|
||
best_above_byte = SBYTES (string);
|
||
if (best_above == best_above_byte)
|
||
return char_index;
|
||
|
||
if (EQ (string, string_char_byte_cache_string))
|
||
{
|
||
if (string_char_byte_cache_charpos < char_index)
|
||
{
|
||
best_below = string_char_byte_cache_charpos;
|
||
best_below_byte = string_char_byte_cache_bytepos;
|
||
}
|
||
else
|
||
{
|
||
best_above = string_char_byte_cache_charpos;
|
||
best_above_byte = string_char_byte_cache_bytepos;
|
||
}
|
||
}
|
||
|
||
if (char_index - best_below < best_above - char_index)
|
||
{
|
||
unsigned char *p = SDATA (string) + best_below_byte;
|
||
|
||
while (best_below < char_index)
|
||
{
|
||
p += BYTES_BY_CHAR_HEAD (*p);
|
||
best_below++;
|
||
}
|
||
i_byte = p - SDATA (string);
|
||
}
|
||
else
|
||
{
|
||
unsigned char *p = SDATA (string) + best_above_byte;
|
||
|
||
while (best_above > char_index)
|
||
{
|
||
p--;
|
||
while (!CHAR_HEAD_P (*p)) p--;
|
||
best_above--;
|
||
}
|
||
i_byte = p - SDATA (string);
|
||
}
|
||
|
||
string_char_byte_cache_bytepos = i_byte;
|
||
string_char_byte_cache_charpos = char_index;
|
||
string_char_byte_cache_string = string;
|
||
|
||
return i_byte;
|
||
}
|
||
|
||
/* Return the character index corresponding to BYTE_INDEX in STRING. */
|
||
|
||
ptrdiff_t
|
||
string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
|
||
{
|
||
ptrdiff_t i, i_byte;
|
||
ptrdiff_t best_below, best_below_byte;
|
||
ptrdiff_t best_above, best_above_byte;
|
||
|
||
best_below = best_below_byte = 0;
|
||
best_above = SCHARS (string);
|
||
best_above_byte = SBYTES (string);
|
||
if (best_above == best_above_byte)
|
||
return byte_index;
|
||
|
||
if (EQ (string, string_char_byte_cache_string))
|
||
{
|
||
if (string_char_byte_cache_bytepos < byte_index)
|
||
{
|
||
best_below = string_char_byte_cache_charpos;
|
||
best_below_byte = string_char_byte_cache_bytepos;
|
||
}
|
||
else
|
||
{
|
||
best_above = string_char_byte_cache_charpos;
|
||
best_above_byte = string_char_byte_cache_bytepos;
|
||
}
|
||
}
|
||
|
||
if (byte_index - best_below_byte < best_above_byte - byte_index)
|
||
{
|
||
unsigned char *p = SDATA (string) + best_below_byte;
|
||
unsigned char *pend = SDATA (string) + byte_index;
|
||
|
||
while (p < pend)
|
||
{
|
||
p += BYTES_BY_CHAR_HEAD (*p);
|
||
best_below++;
|
||
}
|
||
i = best_below;
|
||
i_byte = p - SDATA (string);
|
||
}
|
||
else
|
||
{
|
||
unsigned char *p = SDATA (string) + best_above_byte;
|
||
unsigned char *pbeg = SDATA (string) + byte_index;
|
||
|
||
while (p > pbeg)
|
||
{
|
||
p--;
|
||
while (!CHAR_HEAD_P (*p)) p--;
|
||
best_above--;
|
||
}
|
||
i = best_above;
|
||
i_byte = p - SDATA (string);
|
||
}
|
||
|
||
string_char_byte_cache_bytepos = i_byte;
|
||
string_char_byte_cache_charpos = i;
|
||
string_char_byte_cache_string = string;
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Convert STRING to a multibyte string. */
|
||
|
||
static Lisp_Object
|
||
string_make_multibyte (Lisp_Object string)
|
||
{
|
||
unsigned char *buf;
|
||
ptrdiff_t nbytes;
|
||
Lisp_Object ret;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
if (STRING_MULTIBYTE (string))
|
||
return string;
|
||
|
||
nbytes = count_size_as_multibyte (SDATA (string),
|
||
SCHARS (string));
|
||
/* If all the chars are ASCII, they won't need any more bytes
|
||
once converted. In that case, we can return STRING itself. */
|
||
if (nbytes == SBYTES (string))
|
||
return string;
|
||
|
||
buf = SAFE_ALLOCA (nbytes);
|
||
copy_text (SDATA (string), buf, SBYTES (string),
|
||
0, 1);
|
||
|
||
ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
|
||
SAFE_FREE ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Convert STRING (if unibyte) to a multibyte string without changing
|
||
the number of characters. Characters 0200 trough 0237 are
|
||
converted to eight-bit characters. */
|
||
|
||
Lisp_Object
|
||
string_to_multibyte (Lisp_Object string)
|
||
{
|
||
unsigned char *buf;
|
||
ptrdiff_t nbytes;
|
||
Lisp_Object ret;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
if (STRING_MULTIBYTE (string))
|
||
return string;
|
||
|
||
nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
|
||
/* If all the chars are ASCII, they won't need any more bytes once
|
||
converted. */
|
||
if (nbytes == SBYTES (string))
|
||
return make_multibyte_string (SSDATA (string), nbytes, nbytes);
|
||
|
||
buf = SAFE_ALLOCA (nbytes);
|
||
memcpy (buf, SDATA (string), SBYTES (string));
|
||
str_to_multibyte (buf, nbytes, SBYTES (string));
|
||
|
||
ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
|
||
SAFE_FREE ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* Convert STRING to a single-byte string. */
|
||
|
||
Lisp_Object
|
||
string_make_unibyte (Lisp_Object string)
|
||
{
|
||
ptrdiff_t nchars;
|
||
unsigned char *buf;
|
||
Lisp_Object ret;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
if (! STRING_MULTIBYTE (string))
|
||
return string;
|
||
|
||
nchars = SCHARS (string);
|
||
|
||
buf = SAFE_ALLOCA (nchars);
|
||
copy_text (SDATA (string), buf, SBYTES (string),
|
||
1, 0);
|
||
|
||
ret = make_unibyte_string ((char *) buf, nchars);
|
||
SAFE_FREE ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
|
||
1, 1, 0,
|
||
doc: /* Return the multibyte equivalent of STRING.
|
||
If STRING is unibyte and contains non-ASCII characters, the function
|
||
`unibyte-char-to-multibyte' is used to convert each unibyte character
|
||
to a multibyte character. In this case, the returned string is a
|
||
newly created string with no text properties. If STRING is multibyte
|
||
or entirely ASCII, it is returned unchanged. In particular, when
|
||
STRING is unibyte and entirely ASCII, the returned string is unibyte.
|
||
\(When the characters are all ASCII, Emacs primitives will treat the
|
||
string the same way whether it is unibyte or multibyte.) */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
return string_make_multibyte (string);
|
||
}
|
||
|
||
DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
|
||
1, 1, 0,
|
||
doc: /* Return the unibyte equivalent of STRING.
|
||
Multibyte character codes are converted to unibyte according to
|
||
`nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
|
||
If the lookup in the translation table fails, this function takes just
|
||
the low 8 bits of each character. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
return string_make_unibyte (string);
|
||
}
|
||
|
||
DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
|
||
1, 1, 0,
|
||
doc: /* Return a unibyte string with the same individual bytes as STRING.
|
||
If STRING is unibyte, the result is STRING itself.
|
||
Otherwise it is a newly created string, with no text properties.
|
||
If STRING is multibyte and contains a character of charset
|
||
`eight-bit', it is converted to the corresponding single byte. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
if (STRING_MULTIBYTE (string))
|
||
{
|
||
unsigned char *str = (unsigned char *) xlispstrdup (string);
|
||
ptrdiff_t bytes = str_as_unibyte (str, SBYTES (string));
|
||
|
||
string = make_unibyte_string ((char *) str, bytes);
|
||
xfree (str);
|
||
}
|
||
return string;
|
||
}
|
||
|
||
DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
|
||
1, 1, 0,
|
||
doc: /* Return a multibyte string with the same individual bytes as STRING.
|
||
If STRING is multibyte, the result is STRING itself.
|
||
Otherwise it is a newly created string, with no text properties.
|
||
|
||
If STRING is unibyte and contains an individual 8-bit byte (i.e. not
|
||
part of a correct utf-8 sequence), it is converted to the corresponding
|
||
multibyte character of charset `eight-bit'.
|
||
See also `string-to-multibyte'.
|
||
|
||
Beware, this often doesn't really do what you think it does.
|
||
It is similar to (decode-coding-string STRING 'utf-8-emacs).
|
||
If you're not sure, whether to use `string-as-multibyte' or
|
||
`string-to-multibyte', use `string-to-multibyte'. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
if (! STRING_MULTIBYTE (string))
|
||
{
|
||
Lisp_Object new_string;
|
||
ptrdiff_t nchars, nbytes;
|
||
|
||
parse_str_as_multibyte (SDATA (string),
|
||
SBYTES (string),
|
||
&nchars, &nbytes);
|
||
new_string = make_uninit_multibyte_string (nchars, nbytes);
|
||
memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
|
||
if (nbytes != SBYTES (string))
|
||
str_as_multibyte (SDATA (new_string), nbytes,
|
||
SBYTES (string), NULL);
|
||
string = new_string;
|
||
set_string_intervals (string, NULL);
|
||
}
|
||
return string;
|
||
}
|
||
|
||
DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
|
||
1, 1, 0,
|
||
doc: /* Return a multibyte string with the same individual chars as STRING.
|
||
If STRING is multibyte, the result is STRING itself.
|
||
Otherwise it is a newly created string, with no text properties.
|
||
|
||
If STRING is unibyte and contains an 8-bit byte, it is converted to
|
||
the corresponding multibyte character of charset `eight-bit'.
|
||
|
||
This differs from `string-as-multibyte' by converting each byte of a correct
|
||
utf-8 sequence to an eight-bit character, not just bytes that don't form a
|
||
correct sequence. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
return string_to_multibyte (string);
|
||
}
|
||
|
||
DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
|
||
1, 1, 0,
|
||
doc: /* Return a unibyte string with the same individual chars as STRING.
|
||
If STRING is unibyte, the result is STRING itself.
|
||
Otherwise it is a newly created string, with no text properties,
|
||
where each `eight-bit' character is converted to the corresponding byte.
|
||
If STRING contains a non-ASCII, non-`eight-bit' character,
|
||
an error is signaled. */)
|
||
(Lisp_Object string)
|
||
{
|
||
CHECK_STRING (string);
|
||
|
||
if (STRING_MULTIBYTE (string))
|
||
{
|
||
ptrdiff_t chars = SCHARS (string);
|
||
unsigned char *str = xmalloc (chars);
|
||
ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
|
||
|
||
if (converted < chars)
|
||
error ("Can't convert the %"pD"dth character to unibyte", converted);
|
||
string = make_unibyte_string ((char *) str, chars);
|
||
xfree (str);
|
||
}
|
||
return string;
|
||
}
|
||
|
||
|
||
DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
|
||
doc: /* Return a copy of ALIST.
|
||
This is an alist which represents the same mapping from objects to objects,
|
||
but does not share the alist structure with ALIST.
|
||
The objects mapped (cars and cdrs of elements of the alist)
|
||
are shared, however.
|
||
Elements of ALIST that are not conses are also shared. */)
|
||
(Lisp_Object alist)
|
||
{
|
||
register Lisp_Object tem;
|
||
|
||
CHECK_LIST (alist);
|
||
if (NILP (alist))
|
||
return alist;
|
||
alist = concat (1, &alist, Lisp_Cons, 0);
|
||
for (tem = alist; CONSP (tem); tem = XCDR (tem))
|
||
{
|
||
register Lisp_Object car;
|
||
car = XCAR (tem);
|
||
|
||
if (CONSP (car))
|
||
XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
|
||
}
|
||
return alist;
|
||
}
|
||
|
||
DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
|
||
doc: /* Return a new string whose contents are a substring of STRING.
|
||
The returned string consists of the characters between index FROM
|
||
\(inclusive) and index TO (exclusive) of STRING. FROM and TO are
|
||
zero-indexed: 0 means the first character of STRING. Negative values
|
||
are counted from the end of STRING. If TO is nil, the substring runs
|
||
to the end of STRING.
|
||
|
||
The STRING argument may also be a vector. In that case, the return
|
||
value is a new vector that contains the elements between index FROM
|
||
\(inclusive) and index TO (exclusive) of that vector argument. */)
|
||
(Lisp_Object string, register Lisp_Object from, Lisp_Object to)
|
||
{
|
||
Lisp_Object res;
|
||
ptrdiff_t size;
|
||
EMACS_INT from_char, to_char;
|
||
|
||
CHECK_VECTOR_OR_STRING (string);
|
||
CHECK_NUMBER (from);
|
||
|
||
if (STRINGP (string))
|
||
size = SCHARS (string);
|
||
else
|
||
size = ASIZE (string);
|
||
|
||
if (NILP (to))
|
||
to_char = size;
|
||
else
|
||
{
|
||
CHECK_NUMBER (to);
|
||
|
||
to_char = XINT (to);
|
||
if (to_char < 0)
|
||
to_char += size;
|
||
}
|
||
|
||
from_char = XINT (from);
|
||
if (from_char < 0)
|
||
from_char += size;
|
||
if (!(0 <= from_char && from_char <= to_char && to_char <= size))
|
||
args_out_of_range_3 (string, make_number (from_char),
|
||
make_number (to_char));
|
||
|
||
if (STRINGP (string))
|
||
{
|
||
ptrdiff_t to_byte =
|
||
(NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
|
||
ptrdiff_t from_byte = string_char_to_byte (string, from_char);
|
||
res = make_specified_string (SSDATA (string) + from_byte,
|
||
to_char - from_char, to_byte - from_byte,
|
||
STRING_MULTIBYTE (string));
|
||
copy_text_properties (make_number (from_char), make_number (to_char),
|
||
string, make_number (0), res, Qnil);
|
||
}
|
||
else
|
||
res = Fvector (to_char - from_char, aref_addr (string, from_char));
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
|
||
doc: /* Return a substring of STRING, without text properties.
|
||
It starts at index FROM and ends before TO.
|
||
TO may be nil or omitted; then the substring runs to the end of STRING.
|
||
If FROM is nil or omitted, the substring starts at the beginning of STRING.
|
||
If FROM or TO is negative, it counts from the end.
|
||
|
||
With one argument, just copy STRING without its properties. */)
|
||
(Lisp_Object string, register Lisp_Object from, Lisp_Object to)
|
||
{
|
||
ptrdiff_t size;
|
||
EMACS_INT from_char, to_char;
|
||
ptrdiff_t from_byte, to_byte;
|
||
|
||
CHECK_STRING (string);
|
||
|
||
size = SCHARS (string);
|
||
|
||
if (NILP (from))
|
||
from_char = 0;
|
||
else
|
||
{
|
||
CHECK_NUMBER (from);
|
||
from_char = XINT (from);
|
||
if (from_char < 0)
|
||
from_char += size;
|
||
}
|
||
|
||
if (NILP (to))
|
||
to_char = size;
|
||
else
|
||
{
|
||
CHECK_NUMBER (to);
|
||
to_char = XINT (to);
|
||
if (to_char < 0)
|
||
to_char += size;
|
||
}
|
||
|
||
if (!(0 <= from_char && from_char <= to_char && to_char <= size))
|
||
args_out_of_range_3 (string, make_number (from_char),
|
||
make_number (to_char));
|
||
|
||
from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
|
||
to_byte =
|
||
NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
|
||
return make_specified_string (SSDATA (string) + from_byte,
|
||
to_char - from_char, to_byte - from_byte,
|
||
STRING_MULTIBYTE (string));
|
||
}
|
||
|
||
/* Extract a substring of STRING, giving start and end positions
|
||
both in characters and in bytes. */
|
||
|
||
Lisp_Object
|
||
substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
|
||
ptrdiff_t to, ptrdiff_t to_byte)
|
||
{
|
||
Lisp_Object res;
|
||
ptrdiff_t size;
|
||
|
||
CHECK_VECTOR_OR_STRING (string);
|
||
|
||
size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
|
||
|
||
if (!(0 <= from && from <= to && to <= size))
|
||
args_out_of_range_3 (string, make_number (from), make_number (to));
|
||
|
||
if (STRINGP (string))
|
||
{
|
||
res = make_specified_string (SSDATA (string) + from_byte,
|
||
to - from, to_byte - from_byte,
|
||
STRING_MULTIBYTE (string));
|
||
copy_text_properties (make_number (from), make_number (to),
|
||
string, make_number (0), res, Qnil);
|
||
}
|
||
else
|
||
res = Fvector (to - from, aref_addr (string, from));
|
||
|
||
return res;
|
||
}
|
||
|
||
DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
|
||
doc: /* Take cdr N times on LIST, return the result. */)
|
||
(Lisp_Object n, Lisp_Object list)
|
||
{
|
||
EMACS_INT i, num;
|
||
CHECK_NUMBER (n);
|
||
num = XINT (n);
|
||
for (i = 0; i < num && !NILP (list); i++)
|
||
{
|
||
QUIT;
|
||
CHECK_LIST_CONS (list, list);
|
||
list = XCDR (list);
|
||
}
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("nth", Fnth, Snth, 2, 2, 0,
|
||
doc: /* Return the Nth element of LIST.
|
||
N counts from zero. If LIST is not that long, nil is returned. */)
|
||
(Lisp_Object n, Lisp_Object list)
|
||
{
|
||
return Fcar (Fnthcdr (n, list));
|
||
}
|
||
|
||
DEFUN ("elt", Felt, Selt, 2, 2, 0,
|
||
doc: /* Return element of SEQUENCE at index N. */)
|
||
(register Lisp_Object sequence, Lisp_Object n)
|
||
{
|
||
CHECK_NUMBER (n);
|
||
if (CONSP (sequence) || NILP (sequence))
|
||
return Fcar (Fnthcdr (n, sequence));
|
||
|
||
/* Faref signals a "not array" error, so check here. */
|
||
CHECK_ARRAY (sequence, Qsequencep);
|
||
return Faref (sequence, n);
|
||
}
|
||
|
||
DEFUN ("member", Fmember, Smember, 2, 2, 0,
|
||
doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
||
The value is actually the tail of LIST whose car is ELT. */)
|
||
(register Lisp_Object elt, Lisp_Object list)
|
||
{
|
||
register Lisp_Object tail;
|
||
for (tail = list; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_LIST_CONS (tail, list);
|
||
tem = XCAR (tail);
|
||
if (! NILP (Fequal (elt, tem)))
|
||
return tail;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
|
||
doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
||
The value is actually the tail of LIST whose car is ELT. */)
|
||
(register Lisp_Object elt, Lisp_Object list)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!CONSP (list) || EQ (XCAR (list), elt))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list) || EQ (XCAR (list), elt))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list) || EQ (XCAR (list), elt))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
QUIT;
|
||
}
|
||
|
||
CHECK_LIST (list);
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
|
||
doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
|
||
The value is actually the tail of LIST whose car is ELT. */)
|
||
(register Lisp_Object elt, Lisp_Object list)
|
||
{
|
||
register Lisp_Object tail;
|
||
|
||
if (!FLOATP (elt))
|
||
return Fmemq (elt, list);
|
||
|
||
for (tail = list; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_LIST_CONS (tail, list);
|
||
tem = XCAR (tail);
|
||
if (FLOATP (tem) && internal_equal (elt, tem, 0, 0, Qnil))
|
||
return tail;
|
||
QUIT;
|
||
}
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
|
||
doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
|
||
The value is actually the first element of LIST whose car is KEY.
|
||
Elements of LIST that are not conses are ignored. */)
|
||
(Lisp_Object key, Lisp_Object list)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCAR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCAR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCAR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
QUIT;
|
||
}
|
||
|
||
return CAR (list);
|
||
}
|
||
|
||
/* Like Fassq but never report an error and do not allow quits.
|
||
Use only on lists known never to be circular. */
|
||
|
||
Lisp_Object
|
||
assq_no_quit (Lisp_Object key, Lisp_Object list)
|
||
{
|
||
while (CONSP (list)
|
||
&& (!CONSP (XCAR (list))
|
||
|| !EQ (XCAR (XCAR (list)), key)))
|
||
list = XCDR (list);
|
||
|
||
return CAR_SAFE (list);
|
||
}
|
||
|
||
DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
|
||
doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
|
||
The value is actually the first element of LIST whose car equals KEY. */)
|
||
(Lisp_Object key, Lisp_Object list)
|
||
{
|
||
Lisp_Object car;
|
||
|
||
while (1)
|
||
{
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (car = XCAR (XCAR (list)),
|
||
EQ (car, key) || !NILP (Fequal (car, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (car = XCAR (XCAR (list)),
|
||
EQ (car, key) || !NILP (Fequal (car, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (car = XCAR (XCAR (list)),
|
||
EQ (car, key) || !NILP (Fequal (car, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
QUIT;
|
||
}
|
||
|
||
return CAR (list);
|
||
}
|
||
|
||
/* Like Fassoc but never report an error and do not allow quits.
|
||
Use only on lists known never to be circular. */
|
||
|
||
Lisp_Object
|
||
assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
||
{
|
||
while (CONSP (list)
|
||
&& (!CONSP (XCAR (list))
|
||
|| (!EQ (XCAR (XCAR (list)), key)
|
||
&& NILP (Fequal (XCAR (XCAR (list)), key)))))
|
||
list = XCDR (list);
|
||
|
||
return CONSP (list) ? XCAR (list) : Qnil;
|
||
}
|
||
|
||
DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
|
||
doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
||
The value is actually the first element of LIST whose cdr is KEY. */)
|
||
(register Lisp_Object key, Lisp_Object list)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCDR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCDR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& EQ (XCDR (XCAR (list)), key)))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
QUIT;
|
||
}
|
||
|
||
return CAR (list);
|
||
}
|
||
|
||
DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
|
||
doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
||
The value is actually the first element of LIST whose cdr equals KEY. */)
|
||
(Lisp_Object key, Lisp_Object list)
|
||
{
|
||
Lisp_Object cdr;
|
||
|
||
while (1)
|
||
{
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (cdr = XCDR (XCAR (list)),
|
||
EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (cdr = XCDR (XCAR (list)),
|
||
EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
if (!CONSP (list)
|
||
|| (CONSP (XCAR (list))
|
||
&& (cdr = XCDR (XCAR (list)),
|
||
EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
|
||
break;
|
||
|
||
list = XCDR (list);
|
||
QUIT;
|
||
}
|
||
|
||
return CAR (list);
|
||
}
|
||
|
||
DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
|
||
doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
|
||
More precisely, this function skips any members `eq' to ELT at the
|
||
front of LIST, then removes members `eq' to ELT from the remaining
|
||
sublist by modifying its list structure, then returns the resulting
|
||
list.
|
||
|
||
Write `(setq foo (delq element foo))' to be sure of correctly changing
|
||
the value of a list `foo'. */)
|
||
(register Lisp_Object elt, Lisp_Object list)
|
||
{
|
||
Lisp_Object tail, tortoise, prev = Qnil;
|
||
bool skip;
|
||
|
||
FOR_EACH_TAIL (tail, list, tortoise, skip)
|
||
{
|
||
Lisp_Object tem = XCAR (tail);
|
||
if (EQ (elt, tem))
|
||
{
|
||
if (NILP (prev))
|
||
list = XCDR (tail);
|
||
else
|
||
Fsetcdr (prev, XCDR (tail));
|
||
}
|
||
else
|
||
prev = tail;
|
||
}
|
||
return list;
|
||
}
|
||
|
||
DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
|
||
doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
|
||
SEQ must be a sequence (i.e. a list, a vector, or a string).
|
||
The return value is a sequence of the same type.
|
||
|
||
If SEQ is a list, this behaves like `delq', except that it compares
|
||
with `equal' instead of `eq'. In particular, it may remove elements
|
||
by altering the list structure.
|
||
|
||
If SEQ is not a list, deletion is never performed destructively;
|
||
instead this function creates and returns a new vector or string.
|
||
|
||
Write `(setq foo (delete element foo))' to be sure of correctly
|
||
changing the value of a sequence `foo'. */)
|
||
(Lisp_Object elt, Lisp_Object seq)
|
||
{
|
||
if (VECTORP (seq))
|
||
{
|
||
ptrdiff_t i, n;
|
||
|
||
for (i = n = 0; i < ASIZE (seq); ++i)
|
||
if (NILP (Fequal (AREF (seq, i), elt)))
|
||
++n;
|
||
|
||
if (n != ASIZE (seq))
|
||
{
|
||
struct Lisp_Vector *p = allocate_vector (n);
|
||
|
||
for (i = n = 0; i < ASIZE (seq); ++i)
|
||
if (NILP (Fequal (AREF (seq, i), elt)))
|
||
p->contents[n++] = AREF (seq, i);
|
||
|
||
XSETVECTOR (seq, p);
|
||
}
|
||
}
|
||
else if (STRINGP (seq))
|
||
{
|
||
ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
|
||
int c;
|
||
|
||
for (i = nchars = nbytes = ibyte = 0;
|
||
i < SCHARS (seq);
|
||
++i, ibyte += cbytes)
|
||
{
|
||
if (STRING_MULTIBYTE (seq))
|
||
{
|
||
c = STRING_CHAR (SDATA (seq) + ibyte);
|
||
cbytes = CHAR_BYTES (c);
|
||
}
|
||
else
|
||
{
|
||
c = SREF (seq, i);
|
||
cbytes = 1;
|
||
}
|
||
|
||
if (!INTEGERP (elt) || c != XINT (elt))
|
||
{
|
||
++nchars;
|
||
nbytes += cbytes;
|
||
}
|
||
}
|
||
|
||
if (nchars != SCHARS (seq))
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
tem = make_uninit_multibyte_string (nchars, nbytes);
|
||
if (!STRING_MULTIBYTE (seq))
|
||
STRING_SET_UNIBYTE (tem);
|
||
|
||
for (i = nchars = nbytes = ibyte = 0;
|
||
i < SCHARS (seq);
|
||
++i, ibyte += cbytes)
|
||
{
|
||
if (STRING_MULTIBYTE (seq))
|
||
{
|
||
c = STRING_CHAR (SDATA (seq) + ibyte);
|
||
cbytes = CHAR_BYTES (c);
|
||
}
|
||
else
|
||
{
|
||
c = SREF (seq, i);
|
||
cbytes = 1;
|
||
}
|
||
|
||
if (!INTEGERP (elt) || c != XINT (elt))
|
||
{
|
||
unsigned char *from = SDATA (seq) + ibyte;
|
||
unsigned char *to = SDATA (tem) + nbytes;
|
||
ptrdiff_t n;
|
||
|
||
++nchars;
|
||
nbytes += cbytes;
|
||
|
||
for (n = cbytes; n--; )
|
||
*to++ = *from++;
|
||
}
|
||
}
|
||
|
||
seq = tem;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object tail, prev;
|
||
|
||
for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
CHECK_LIST_CONS (tail, seq);
|
||
|
||
if (!NILP (Fequal (elt, XCAR (tail))))
|
||
{
|
||
if (NILP (prev))
|
||
seq = XCDR (tail);
|
||
else
|
||
Fsetcdr (prev, XCDR (tail));
|
||
}
|
||
else
|
||
prev = tail;
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
return seq;
|
||
}
|
||
|
||
DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
|
||
doc: /* Reverse LIST by modifying cdr pointers.
|
||
Return the reversed list. Expects a properly nil-terminated list. */)
|
||
(Lisp_Object list)
|
||
{
|
||
register Lisp_Object prev, tail, next;
|
||
|
||
if (NILP (list)) return list;
|
||
prev = Qnil;
|
||
tail = list;
|
||
while (!NILP (tail))
|
||
{
|
||
QUIT;
|
||
CHECK_LIST_CONS (tail, tail);
|
||
next = XCDR (tail);
|
||
Fsetcdr (tail, prev);
|
||
prev = tail;
|
||
tail = next;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
|
||
doc: /* Reverse LIST, copying. Return the reversed list.
|
||
See also the function `nreverse', which is used more often. */)
|
||
(Lisp_Object list)
|
||
{
|
||
Lisp_Object new;
|
||
|
||
for (new = Qnil; CONSP (list); list = XCDR (list))
|
||
{
|
||
QUIT;
|
||
new = Fcons (XCAR (list), new);
|
||
}
|
||
CHECK_LIST_END (list, list);
|
||
return new;
|
||
}
|
||
|
||
DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
|
||
doc: /* Sort LIST, stably, comparing elements using PREDICATE.
|
||
Returns the sorted list. LIST is modified by side effects.
|
||
PREDICATE is called with two elements of LIST, and should return non-nil
|
||
if the first element should sort before the second. */)
|
||
(Lisp_Object list, Lisp_Object predicate)
|
||
{
|
||
Lisp_Object front, back;
|
||
register Lisp_Object len, tem;
|
||
struct gcpro gcpro1, gcpro2;
|
||
EMACS_INT length;
|
||
|
||
front = list;
|
||
len = Flength (list);
|
||
length = XINT (len);
|
||
if (length < 2)
|
||
return list;
|
||
|
||
XSETINT (len, (length / 2) - 1);
|
||
tem = Fnthcdr (len, list);
|
||
back = Fcdr (tem);
|
||
Fsetcdr (tem, Qnil);
|
||
|
||
GCPRO2 (front, back);
|
||
front = Fsort (front, predicate);
|
||
back = Fsort (back, predicate);
|
||
UNGCPRO;
|
||
return merge (front, back, predicate);
|
||
}
|
||
|
||
Lisp_Object
|
||
merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
|
||
{
|
||
Lisp_Object value;
|
||
register Lisp_Object tail;
|
||
Lisp_Object tem;
|
||
register Lisp_Object l1, l2;
|
||
struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
||
|
||
l1 = org_l1;
|
||
l2 = org_l2;
|
||
tail = Qnil;
|
||
value = Qnil;
|
||
|
||
/* It is sufficient to protect org_l1 and org_l2.
|
||
When l1 and l2 are updated, we copy the new values
|
||
back into the org_ vars. */
|
||
GCPRO4 (org_l1, org_l2, pred, value);
|
||
|
||
while (1)
|
||
{
|
||
if (NILP (l1))
|
||
{
|
||
UNGCPRO;
|
||
if (NILP (tail))
|
||
return l2;
|
||
Fsetcdr (tail, l2);
|
||
return value;
|
||
}
|
||
if (NILP (l2))
|
||
{
|
||
UNGCPRO;
|
||
if (NILP (tail))
|
||
return l1;
|
||
Fsetcdr (tail, l1);
|
||
return value;
|
||
}
|
||
tem = call2 (pred, Fcar (l2), Fcar (l1));
|
||
if (NILP (tem))
|
||
{
|
||
tem = l1;
|
||
l1 = Fcdr (l1);
|
||
org_l1 = l1;
|
||
}
|
||
else
|
||
{
|
||
tem = l2;
|
||
l2 = Fcdr (l2);
|
||
org_l2 = l2;
|
||
}
|
||
if (NILP (tail))
|
||
value = tem;
|
||
else
|
||
Fsetcdr (tail, tem);
|
||
tail = tem;
|
||
}
|
||
}
|
||
|
||
|
||
/* This does not check for quits. That is safe since it must terminate. */
|
||
|
||
DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
|
||
doc: /* Extract a value from a property list.
|
||
PLIST is a property list, which is a list of the form
|
||
\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
||
corresponding to the given PROP, or nil if PROP is not one of the
|
||
properties on the list. This function never signals an error. */)
|
||
(Lisp_Object plist, Lisp_Object prop)
|
||
{
|
||
Lisp_Object tail, halftail;
|
||
|
||
/* halftail is used to detect circular lists. */
|
||
tail = halftail = plist;
|
||
while (CONSP (tail) && CONSP (XCDR (tail)))
|
||
{
|
||
if (EQ (prop, XCAR (tail)))
|
||
return XCAR (XCDR (tail));
|
||
|
||
tail = XCDR (XCDR (tail));
|
||
halftail = XCDR (halftail);
|
||
if (EQ (tail, halftail))
|
||
break;
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("get", Fget, Sget, 2, 2, 0,
|
||
doc: /* Return the value of SYMBOL's PROPNAME property.
|
||
This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
|
||
(Lisp_Object symbol, Lisp_Object propname)
|
||
{
|
||
CHECK_SYMBOL (symbol);
|
||
return Fplist_get (XSYMBOL (symbol)->plist, propname);
|
||
}
|
||
|
||
DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
|
||
doc: /* Change value in PLIST of PROP to VAL.
|
||
PLIST is a property list, which is a list of the form
|
||
\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
|
||
If PROP is already a property on the list, its value is set to VAL,
|
||
otherwise the new PROP VAL pair is added. The new plist is returned;
|
||
use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
||
The PLIST is modified by side effects. */)
|
||
(Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
|
||
{
|
||
register Lisp_Object tail, prev;
|
||
Lisp_Object newcell;
|
||
prev = Qnil;
|
||
for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
|
||
tail = XCDR (XCDR (tail)))
|
||
{
|
||
if (EQ (prop, XCAR (tail)))
|
||
{
|
||
Fsetcar (XCDR (tail), val);
|
||
return plist;
|
||
}
|
||
|
||
prev = tail;
|
||
QUIT;
|
||
}
|
||
newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
|
||
if (NILP (prev))
|
||
return newcell;
|
||
else
|
||
Fsetcdr (XCDR (prev), newcell);
|
||
return plist;
|
||
}
|
||
|
||
DEFUN ("put", Fput, Sput, 3, 3, 0,
|
||
doc: /* Store SYMBOL's PROPNAME property with value VALUE.
|
||
It can be retrieved with `(get SYMBOL PROPNAME)'. */)
|
||
(Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
|
||
{
|
||
CHECK_SYMBOL (symbol);
|
||
set_symbol_plist
|
||
(symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
|
||
return value;
|
||
}
|
||
|
||
DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
|
||
doc: /* Extract a value from a property list, comparing with `equal'.
|
||
PLIST is a property list, which is a list of the form
|
||
\(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
||
corresponding to the given PROP, or nil if PROP is not
|
||
one of the properties on the list. */)
|
||
(Lisp_Object plist, Lisp_Object prop)
|
||
{
|
||
Lisp_Object tail;
|
||
|
||
for (tail = plist;
|
||
CONSP (tail) && CONSP (XCDR (tail));
|
||
tail = XCDR (XCDR (tail)))
|
||
{
|
||
if (! NILP (Fequal (prop, XCAR (tail))))
|
||
return XCAR (XCDR (tail));
|
||
|
||
QUIT;
|
||
}
|
||
|
||
CHECK_LIST_END (tail, prop);
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
|
||
doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
|
||
PLIST is a property list, which is a list of the form
|
||
\(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
|
||
If PROP is already a property on the list, its value is set to VAL,
|
||
otherwise the new PROP VAL pair is added. The new plist is returned;
|
||
use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
|
||
The PLIST is modified by side effects. */)
|
||
(Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
|
||
{
|
||
register Lisp_Object tail, prev;
|
||
Lisp_Object newcell;
|
||
prev = Qnil;
|
||
for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
|
||
tail = XCDR (XCDR (tail)))
|
||
{
|
||
if (! NILP (Fequal (prop, XCAR (tail))))
|
||
{
|
||
Fsetcar (XCDR (tail), val);
|
||
return plist;
|
||
}
|
||
|
||
prev = tail;
|
||
QUIT;
|
||
}
|
||
newcell = list2 (prop, val);
|
||
if (NILP (prev))
|
||
return newcell;
|
||
else
|
||
Fsetcdr (XCDR (prev), newcell);
|
||
return plist;
|
||
}
|
||
|
||
DEFUN ("eql", Feql, Seql, 2, 2, 0,
|
||
doc: /* Return t if the two args are the same Lisp object.
|
||
Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
|
||
(Lisp_Object obj1, Lisp_Object obj2)
|
||
{
|
||
if (FLOATP (obj1))
|
||
return internal_equal (obj1, obj2, 0, 0, Qnil) ? Qt : Qnil;
|
||
else
|
||
return EQ (obj1, obj2) ? Qt : Qnil;
|
||
}
|
||
|
||
DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
|
||
doc: /* Return t if two Lisp objects have similar structure and contents.
|
||
They must have the same data type.
|
||
Conses are compared by comparing the cars and the cdrs.
|
||
Vectors and strings are compared element by element.
|
||
Numbers are compared by value, but integers cannot equal floats.
|
||
(Use `=' if you want integers and floats to be able to be equal.)
|
||
Symbols must match exactly. */)
|
||
(register Lisp_Object o1, Lisp_Object o2)
|
||
{
|
||
return internal_equal (o1, o2, 0, 0, Qnil) ? Qt : Qnil;
|
||
}
|
||
|
||
DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
|
||
doc: /* Return t if two Lisp objects have similar structure and contents.
|
||
This is like `equal' except that it compares the text properties
|
||
of strings. (`equal' ignores text properties.) */)
|
||
(register Lisp_Object o1, Lisp_Object o2)
|
||
{
|
||
return internal_equal (o1, o2, 0, 1, Qnil) ? Qt : Qnil;
|
||
}
|
||
|
||
/* DEPTH is current depth of recursion. Signal an error if it
|
||
gets too deep.
|
||
PROPS means compare string text properties too. */
|
||
|
||
static bool
|
||
internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props,
|
||
Lisp_Object ht)
|
||
{
|
||
if (depth > 10)
|
||
{
|
||
if (depth > 200)
|
||
error ("Stack overflow in equal");
|
||
if (NILP (ht))
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = QCtest;
|
||
args[1] = Qeq;
|
||
ht = Fmake_hash_table (2, args);
|
||
}
|
||
switch (XTYPE (o1))
|
||
{
|
||
case Lisp_Cons: case Lisp_Misc: case Lisp_Vectorlike:
|
||
{
|
||
struct Lisp_Hash_Table *h = XHASH_TABLE (ht);
|
||
EMACS_UINT hash;
|
||
ptrdiff_t i = hash_lookup (h, o1, &hash);
|
||
if (i >= 0)
|
||
{ /* `o1' was seen already. */
|
||
Lisp_Object o2s = HASH_VALUE (h, i);
|
||
if (!NILP (Fmemq (o2, o2s)))
|
||
return 1;
|
||
else
|
||
set_hash_value_slot (h, i, Fcons (o2, o2s));
|
||
}
|
||
else
|
||
hash_put (h, o1, Fcons (o2, Qnil), hash);
|
||
}
|
||
default: ;
|
||
}
|
||
}
|
||
|
||
tail_recurse:
|
||
QUIT;
|
||
if (EQ (o1, o2))
|
||
return 1;
|
||
if (XTYPE (o1) != XTYPE (o2))
|
||
return 0;
|
||
|
||
switch (XTYPE (o1))
|
||
{
|
||
case Lisp_Float:
|
||
{
|
||
double d1, d2;
|
||
|
||
d1 = extract_float (o1);
|
||
d2 = extract_float (o2);
|
||
/* If d is a NaN, then d != d. Two NaNs should be `equal' even
|
||
though they are not =. */
|
||
return d1 == d2 || (d1 != d1 && d2 != d2);
|
||
}
|
||
|
||
case Lisp_Cons:
|
||
if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props, ht))
|
||
return 0;
|
||
o1 = XCDR (o1);
|
||
o2 = XCDR (o2);
|
||
/* FIXME: This inf-loops in a circular list! */
|
||
goto tail_recurse;
|
||
|
||
case Lisp_Misc:
|
||
if (XMISCTYPE (o1) != XMISCTYPE (o2))
|
||
return 0;
|
||
if (OVERLAYP (o1))
|
||
{
|
||
if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
|
||
depth + 1, props, ht)
|
||
|| !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
|
||
depth + 1, props, ht))
|
||
return 0;
|
||
o1 = XOVERLAY (o1)->plist;
|
||
o2 = XOVERLAY (o2)->plist;
|
||
goto tail_recurse;
|
||
}
|
||
if (MARKERP (o1))
|
||
{
|
||
return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
|
||
&& (XMARKER (o1)->buffer == 0
|
||
|| XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
|
||
}
|
||
break;
|
||
|
||
case Lisp_Vectorlike:
|
||
{
|
||
register int i;
|
||
ptrdiff_t size = ASIZE (o1);
|
||
/* Pseudovectors have the type encoded in the size field, so this test
|
||
actually checks that the objects have the same type as well as the
|
||
same size. */
|
||
if (ASIZE (o2) != size)
|
||
return 0;
|
||
/* Boolvectors are compared much like strings. */
|
||
if (BOOL_VECTOR_P (o1))
|
||
{
|
||
EMACS_INT size = bool_vector_size (o1);
|
||
if (size != bool_vector_size (o2))
|
||
return 0;
|
||
if (memcmp (bool_vector_data (o1), bool_vector_data (o2),
|
||
bool_vector_bytes (size)))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
if (WINDOW_CONFIGURATIONP (o1))
|
||
return compare_window_configurations (o1, o2, 0);
|
||
|
||
/* Aside from them, only true vectors, char-tables, compiled
|
||
functions, and fonts (font-spec, font-entity, font-object)
|
||
are sensible to compare, so eliminate the others now. */
|
||
if (size & PSEUDOVECTOR_FLAG)
|
||
{
|
||
if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
|
||
< PVEC_COMPILED)
|
||
return 0;
|
||
size &= PSEUDOVECTOR_SIZE_MASK;
|
||
}
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
Lisp_Object v1, v2;
|
||
v1 = AREF (o1, i);
|
||
v2 = AREF (o2, i);
|
||
if (!internal_equal (v1, v2, depth + 1, props, ht))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
break;
|
||
|
||
case Lisp_String:
|
||
if (SCHARS (o1) != SCHARS (o2))
|
||
return 0;
|
||
if (SBYTES (o1) != SBYTES (o2))
|
||
return 0;
|
||
if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
|
||
return 0;
|
||
if (props && !compare_string_intervals (o1, o2))
|
||
return 0;
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
|
||
doc: /* Store each element of ARRAY with ITEM.
|
||
ARRAY is a vector, string, char-table, or bool-vector. */)
|
||
(Lisp_Object array, Lisp_Object item)
|
||
{
|
||
register ptrdiff_t size, idx;
|
||
|
||
if (VECTORP (array))
|
||
for (idx = 0, size = ASIZE (array); idx < size; idx++)
|
||
ASET (array, idx, item);
|
||
else if (CHAR_TABLE_P (array))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
|
||
set_char_table_contents (array, i, item);
|
||
set_char_table_defalt (array, item);
|
||
}
|
||
else if (STRINGP (array))
|
||
{
|
||
register unsigned char *p = SDATA (array);
|
||
int charval;
|
||
CHECK_CHARACTER (item);
|
||
charval = XFASTINT (item);
|
||
size = SCHARS (array);
|
||
if (STRING_MULTIBYTE (array))
|
||
{
|
||
unsigned char str[MAX_MULTIBYTE_LENGTH];
|
||
int len = CHAR_STRING (charval, str);
|
||
ptrdiff_t size_byte = SBYTES (array);
|
||
|
||
if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
|
||
|| SCHARS (array) * len != size_byte)
|
||
error ("Attempt to change byte length of a string");
|
||
for (idx = 0; idx < size_byte; idx++)
|
||
*p++ = str[idx % len];
|
||
}
|
||
else
|
||
for (idx = 0; idx < size; idx++)
|
||
p[idx] = charval;
|
||
}
|
||
else if (BOOL_VECTOR_P (array))
|
||
return bool_vector_fill (array, item);
|
||
else
|
||
wrong_type_argument (Qarrayp, array);
|
||
return array;
|
||
}
|
||
|
||
DEFUN ("clear-string", Fclear_string, Sclear_string,
|
||
1, 1, 0,
|
||
doc: /* Clear the contents of STRING.
|
||
This makes STRING unibyte and may change its length. */)
|
||
(Lisp_Object string)
|
||
{
|
||
ptrdiff_t len;
|
||
CHECK_STRING (string);
|
||
len = SBYTES (string);
|
||
memset (SDATA (string), 0, len);
|
||
STRING_SET_CHARS (string, len);
|
||
STRING_SET_UNIBYTE (string);
|
||
return Qnil;
|
||
}
|
||
|
||
/* ARGSUSED */
|
||
Lisp_Object
|
||
nconc2 (Lisp_Object s1, Lisp_Object s2)
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = s1;
|
||
args[1] = s2;
|
||
return Fnconc (2, args);
|
||
}
|
||
|
||
DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
|
||
doc: /* Concatenate any number of lists by altering them.
|
||
Only the last argument is not altered, and need not be a list.
|
||
usage: (nconc &rest LISTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t argnum;
|
||
register Lisp_Object tail, tem, val;
|
||
|
||
val = tail = Qnil;
|
||
|
||
for (argnum = 0; argnum < nargs; argnum++)
|
||
{
|
||
tem = args[argnum];
|
||
if (NILP (tem)) continue;
|
||
|
||
if (NILP (val))
|
||
val = tem;
|
||
|
||
if (argnum + 1 == nargs) break;
|
||
|
||
CHECK_LIST_CONS (tem, tem);
|
||
|
||
while (CONSP (tem))
|
||
{
|
||
tail = tem;
|
||
tem = XCDR (tail);
|
||
QUIT;
|
||
}
|
||
|
||
tem = args[argnum + 1];
|
||
Fsetcdr (tail, tem);
|
||
if (NILP (tem))
|
||
args[argnum + 1] = tail;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* This is the guts of all mapping functions.
|
||
Apply FN to each element of SEQ, one by one,
|
||
storing the results into elements of VALS, a C vector of Lisp_Objects.
|
||
LENI is the length of VALS, which should also be the length of SEQ. */
|
||
|
||
static void
|
||
mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
|
||
{
|
||
register Lisp_Object tail;
|
||
Lisp_Object dummy;
|
||
register EMACS_INT i;
|
||
struct gcpro gcpro1, gcpro2, gcpro3;
|
||
|
||
if (vals)
|
||
{
|
||
/* Don't let vals contain any garbage when GC happens. */
|
||
for (i = 0; i < leni; i++)
|
||
vals[i] = Qnil;
|
||
|
||
GCPRO3 (dummy, fn, seq);
|
||
gcpro1.var = vals;
|
||
gcpro1.nvars = leni;
|
||
}
|
||
else
|
||
GCPRO2 (fn, seq);
|
||
/* We need not explicitly protect `tail' because it is used only on lists, and
|
||
1) lists are not relocated and 2) the list is marked via `seq' so will not
|
||
be freed */
|
||
|
||
if (VECTORP (seq) || COMPILEDP (seq))
|
||
{
|
||
for (i = 0; i < leni; i++)
|
||
{
|
||
dummy = call1 (fn, AREF (seq, i));
|
||
if (vals)
|
||
vals[i] = dummy;
|
||
}
|
||
}
|
||
else if (BOOL_VECTOR_P (seq))
|
||
{
|
||
for (i = 0; i < leni; i++)
|
||
{
|
||
dummy = call1 (fn, bool_vector_ref (seq, i));
|
||
if (vals)
|
||
vals[i] = dummy;
|
||
}
|
||
}
|
||
else if (STRINGP (seq))
|
||
{
|
||
ptrdiff_t i_byte;
|
||
|
||
for (i = 0, i_byte = 0; i < leni;)
|
||
{
|
||
int c;
|
||
ptrdiff_t i_before = i;
|
||
|
||
FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
|
||
XSETFASTINT (dummy, c);
|
||
dummy = call1 (fn, dummy);
|
||
if (vals)
|
||
vals[i_before] = dummy;
|
||
}
|
||
}
|
||
else /* Must be a list, since Flength did not get an error */
|
||
{
|
||
tail = seq;
|
||
for (i = 0; i < leni && CONSP (tail); i++)
|
||
{
|
||
dummy = call1 (fn, XCAR (tail));
|
||
if (vals)
|
||
vals[i] = dummy;
|
||
tail = XCDR (tail);
|
||
}
|
||
}
|
||
|
||
UNGCPRO;
|
||
}
|
||
|
||
DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
|
||
doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
|
||
In between each pair of results, stick in SEPARATOR. Thus, " " as
|
||
SEPARATOR results in spaces between the values returned by FUNCTION.
|
||
SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
|
||
(Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
|
||
{
|
||
Lisp_Object len;
|
||
register EMACS_INT leni;
|
||
EMACS_INT nargs;
|
||
ptrdiff_t i;
|
||
register Lisp_Object *args;
|
||
struct gcpro gcpro1;
|
||
Lisp_Object ret;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
len = Flength (sequence);
|
||
if (CHAR_TABLE_P (sequence))
|
||
wrong_type_argument (Qlistp, sequence);
|
||
leni = XINT (len);
|
||
nargs = leni + leni - 1;
|
||
if (nargs < 0) return empty_unibyte_string;
|
||
|
||
SAFE_ALLOCA_LISP (args, nargs);
|
||
|
||
GCPRO1 (separator);
|
||
mapcar1 (leni, args, function, sequence);
|
||
UNGCPRO;
|
||
|
||
for (i = leni - 1; i > 0; i--)
|
||
args[i + i] = args[i];
|
||
|
||
for (i = 1; i < nargs; i += 2)
|
||
args[i] = separator;
|
||
|
||
ret = Fconcat (nargs, args);
|
||
SAFE_FREE ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
|
||
doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
|
||
The result is a list just as long as SEQUENCE.
|
||
SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
|
||
(Lisp_Object function, Lisp_Object sequence)
|
||
{
|
||
register Lisp_Object len;
|
||
register EMACS_INT leni;
|
||
register Lisp_Object *args;
|
||
Lisp_Object ret;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
len = Flength (sequence);
|
||
if (CHAR_TABLE_P (sequence))
|
||
wrong_type_argument (Qlistp, sequence);
|
||
leni = XFASTINT (len);
|
||
|
||
SAFE_ALLOCA_LISP (args, leni);
|
||
|
||
mapcar1 (leni, args, function, sequence);
|
||
|
||
ret = Flist (leni, args);
|
||
SAFE_FREE ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
|
||
doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
|
||
Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
|
||
SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
|
||
(Lisp_Object function, Lisp_Object sequence)
|
||
{
|
||
register EMACS_INT leni;
|
||
|
||
leni = XFASTINT (Flength (sequence));
|
||
if (CHAR_TABLE_P (sequence))
|
||
wrong_type_argument (Qlistp, sequence);
|
||
mapcar1 (leni, 0, function, sequence);
|
||
|
||
return sequence;
|
||
}
|
||
|
||
/* This is how C code calls `yes-or-no-p' and allows the user
|
||
to redefined it.
|
||
|
||
Anything that calls this function must protect from GC! */
|
||
|
||
Lisp_Object
|
||
do_yes_or_no_p (Lisp_Object prompt)
|
||
{
|
||
return call1 (intern ("yes-or-no-p"), prompt);
|
||
}
|
||
|
||
/* Anything that calls this function must protect from GC! */
|
||
|
||
DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
|
||
doc: /* Ask user a yes-or-no question.
|
||
Return t if answer is yes, and nil if the answer is no.
|
||
PROMPT is the string to display to ask the question. It should end in
|
||
a space; `yes-or-no-p' adds \"(yes or no) \" to it.
|
||
|
||
The user must confirm the answer with RET, and can edit it until it
|
||
has been confirmed.
|
||
|
||
If dialog boxes are supported, a dialog box will be used
|
||
if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
|
||
(Lisp_Object prompt)
|
||
{
|
||
register Lisp_Object ans;
|
||
Lisp_Object args[2];
|
||
struct gcpro gcpro1;
|
||
|
||
CHECK_STRING (prompt);
|
||
|
||
if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
|
||
&& use_dialog_box)
|
||
{
|
||
Lisp_Object pane, menu, obj;
|
||
redisplay_preserve_echo_area (4);
|
||
pane = list2 (Fcons (build_string ("Yes"), Qt),
|
||
Fcons (build_string ("No"), Qnil));
|
||
GCPRO1 (pane);
|
||
menu = Fcons (prompt, pane);
|
||
obj = Fx_popup_dialog (Qt, menu, Qnil);
|
||
UNGCPRO;
|
||
return obj;
|
||
}
|
||
|
||
args[0] = prompt;
|
||
args[1] = build_string ("(yes or no) ");
|
||
prompt = Fconcat (2, args);
|
||
|
||
GCPRO1 (prompt);
|
||
|
||
while (1)
|
||
{
|
||
ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
|
||
Qyes_or_no_p_history, Qnil,
|
||
Qnil));
|
||
if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
|
||
{
|
||
UNGCPRO;
|
||
return Qt;
|
||
}
|
||
if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
|
||
{
|
||
UNGCPRO;
|
||
return Qnil;
|
||
}
|
||
|
||
Fding (Qnil);
|
||
Fdiscard_input ();
|
||
message1 ("Please answer yes or no.");
|
||
Fsleep_for (make_number (2), Qnil);
|
||
}
|
||
}
|
||
|
||
DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
|
||
doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
|
||
|
||
Each of the three load averages is multiplied by 100, then converted
|
||
to integer.
|
||
|
||
When USE-FLOATS is non-nil, floats will be used instead of integers.
|
||
These floats are not multiplied by 100.
|
||
|
||
If the 5-minute or 15-minute load averages are not available, return a
|
||
shortened list, containing only those averages which are available.
|
||
|
||
An error is thrown if the load average can't be obtained. In some
|
||
cases making it work would require Emacs being installed setuid or
|
||
setgid so that it can read kernel information, and that usually isn't
|
||
advisable. */)
|
||
(Lisp_Object use_floats)
|
||
{
|
||
double load_ave[3];
|
||
int loads = getloadavg (load_ave, 3);
|
||
Lisp_Object ret = Qnil;
|
||
|
||
if (loads < 0)
|
||
error ("load-average not implemented for this operating system");
|
||
|
||
while (loads-- > 0)
|
||
{
|
||
Lisp_Object load = (NILP (use_floats)
|
||
? make_number (100.0 * load_ave[loads])
|
||
: make_float (load_ave[loads]));
|
||
ret = Fcons (load, ret);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static Lisp_Object Qsubfeatures;
|
||
|
||
DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
|
||
doc: /* Return t if FEATURE is present in this Emacs.
|
||
|
||
Use this to conditionalize execution of lisp code based on the
|
||
presence or absence of Emacs or environment extensions.
|
||
Use `provide' to declare that a feature is available. This function
|
||
looks at the value of the variable `features'. The optional argument
|
||
SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
|
||
(Lisp_Object feature, Lisp_Object subfeature)
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_SYMBOL (feature);
|
||
tem = Fmemq (feature, Vfeatures);
|
||
if (!NILP (tem) && !NILP (subfeature))
|
||
tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
|
||
return (NILP (tem)) ? Qnil : Qt;
|
||
}
|
||
|
||
static Lisp_Object Qfuncall;
|
||
|
||
DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
|
||
doc: /* Announce that FEATURE is a feature of the current Emacs.
|
||
The optional argument SUBFEATURES should be a list of symbols listing
|
||
particular subfeatures supported in this version of FEATURE. */)
|
||
(Lisp_Object feature, Lisp_Object subfeatures)
|
||
{
|
||
register Lisp_Object tem;
|
||
CHECK_SYMBOL (feature);
|
||
CHECK_LIST (subfeatures);
|
||
if (!NILP (Vautoload_queue))
|
||
Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
|
||
Vautoload_queue);
|
||
tem = Fmemq (feature, Vfeatures);
|
||
if (NILP (tem))
|
||
Vfeatures = Fcons (feature, Vfeatures);
|
||
if (!NILP (subfeatures))
|
||
Fput (feature, Qsubfeatures, subfeatures);
|
||
LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
||
|
||
/* Run any load-hooks for this file. */
|
||
tem = Fassq (feature, Vafter_load_alist);
|
||
if (CONSP (tem))
|
||
Fmapc (Qfuncall, XCDR (tem));
|
||
|
||
return feature;
|
||
}
|
||
|
||
/* `require' and its subroutines. */
|
||
|
||
/* List of features currently being require'd, innermost first. */
|
||
|
||
static Lisp_Object require_nesting_list;
|
||
|
||
static void
|
||
require_unwind (Lisp_Object old_value)
|
||
{
|
||
require_nesting_list = old_value;
|
||
}
|
||
|
||
DEFUN ("require", Frequire, Srequire, 1, 3, 0,
|
||
doc: /* If feature FEATURE is not loaded, load it from FILENAME.
|
||
If FEATURE is not a member of the list `features', then the feature
|
||
is not loaded; so load the file FILENAME.
|
||
If FILENAME is omitted, the printname of FEATURE is used as the file name,
|
||
and `load' will try to load this name appended with the suffix `.elc' or
|
||
`.el', in that order. The name without appended suffix will not be used.
|
||
See `get-load-suffixes' for the complete list of suffixes.
|
||
If the optional third argument NOERROR is non-nil,
|
||
then return nil if the file is not found instead of signaling an error.
|
||
Normally the return value is FEATURE.
|
||
The normal messages at start and end of loading FILENAME are suppressed. */)
|
||
(Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
|
||
{
|
||
Lisp_Object tem;
|
||
struct gcpro gcpro1, gcpro2;
|
||
bool from_file = load_in_progress;
|
||
|
||
CHECK_SYMBOL (feature);
|
||
|
||
/* Record the presence of `require' in this file
|
||
even if the feature specified is already loaded.
|
||
But not more than once in any file,
|
||
and not when we aren't loading or reading from a file. */
|
||
if (!from_file)
|
||
for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
|
||
if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
|
||
from_file = 1;
|
||
|
||
if (from_file)
|
||
{
|
||
tem = Fcons (Qrequire, feature);
|
||
if (NILP (Fmember (tem, Vcurrent_load_list)))
|
||
LOADHIST_ATTACH (tem);
|
||
}
|
||
tem = Fmemq (feature, Vfeatures);
|
||
|
||
if (NILP (tem))
|
||
{
|
||
ptrdiff_t count = SPECPDL_INDEX ();
|
||
int nesting = 0;
|
||
|
||
/* This is to make sure that loadup.el gives a clear picture
|
||
of what files are preloaded and when. */
|
||
if (! NILP (Vpurify_flag))
|
||
error ("(require %s) while preparing to dump",
|
||
SDATA (SYMBOL_NAME (feature)));
|
||
|
||
/* A certain amount of recursive `require' is legitimate,
|
||
but if we require the same feature recursively 3 times,
|
||
signal an error. */
|
||
tem = require_nesting_list;
|
||
while (! NILP (tem))
|
||
{
|
||
if (! NILP (Fequal (feature, XCAR (tem))))
|
||
nesting++;
|
||
tem = XCDR (tem);
|
||
}
|
||
if (nesting > 3)
|
||
error ("Recursive `require' for feature `%s'",
|
||
SDATA (SYMBOL_NAME (feature)));
|
||
|
||
/* Update the list for any nested `require's that occur. */
|
||
record_unwind_protect (require_unwind, require_nesting_list);
|
||
require_nesting_list = Fcons (feature, require_nesting_list);
|
||
|
||
/* Value saved here is to be restored into Vautoload_queue */
|
||
record_unwind_protect (un_autoload, Vautoload_queue);
|
||
Vautoload_queue = Qt;
|
||
|
||
/* Load the file. */
|
||
GCPRO2 (feature, filename);
|
||
tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
|
||
noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
|
||
UNGCPRO;
|
||
|
||
/* If load failed entirely, return nil. */
|
||
if (NILP (tem))
|
||
return unbind_to (count, Qnil);
|
||
|
||
tem = Fmemq (feature, Vfeatures);
|
||
if (NILP (tem))
|
||
error ("Required feature `%s' was not provided",
|
||
SDATA (SYMBOL_NAME (feature)));
|
||
|
||
/* Once loading finishes, don't undo it. */
|
||
Vautoload_queue = Qt;
|
||
feature = unbind_to (count, feature);
|
||
}
|
||
|
||
return feature;
|
||
}
|
||
|
||
/* Primitives for work of the "widget" library.
|
||
In an ideal world, this section would not have been necessary.
|
||
However, lisp function calls being as slow as they are, it turns
|
||
out that some functions in the widget library (wid-edit.el) are the
|
||
bottleneck of Widget operation. Here is their translation to C,
|
||
for the sole reason of efficiency. */
|
||
|
||
DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
|
||
doc: /* Return non-nil if PLIST has the property PROP.
|
||
PLIST is a property list, which is a list of the form
|
||
\(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
|
||
Unlike `plist-get', this allows you to distinguish between a missing
|
||
property and a property with the value nil.
|
||
The value is actually the tail of PLIST whose car is PROP. */)
|
||
(Lisp_Object plist, Lisp_Object prop)
|
||
{
|
||
while (CONSP (plist) && !EQ (XCAR (plist), prop))
|
||
{
|
||
QUIT;
|
||
plist = XCDR (plist);
|
||
plist = CDR (plist);
|
||
}
|
||
return plist;
|
||
}
|
||
|
||
DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
|
||
doc: /* In WIDGET, set PROPERTY to VALUE.
|
||
The value can later be retrieved with `widget-get'. */)
|
||
(Lisp_Object widget, Lisp_Object property, Lisp_Object value)
|
||
{
|
||
CHECK_CONS (widget);
|
||
XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
|
||
return value;
|
||
}
|
||
|
||
DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
|
||
doc: /* In WIDGET, get the value of PROPERTY.
|
||
The value could either be specified when the widget was created, or
|
||
later with `widget-put'. */)
|
||
(Lisp_Object widget, Lisp_Object property)
|
||
{
|
||
Lisp_Object tmp;
|
||
|
||
while (1)
|
||
{
|
||
if (NILP (widget))
|
||
return Qnil;
|
||
CHECK_CONS (widget);
|
||
tmp = Fplist_member (XCDR (widget), property);
|
||
if (CONSP (tmp))
|
||
{
|
||
tmp = XCDR (tmp);
|
||
return CAR (tmp);
|
||
}
|
||
tmp = XCAR (widget);
|
||
if (NILP (tmp))
|
||
return Qnil;
|
||
widget = Fget (tmp, Qwidget_type);
|
||
}
|
||
}
|
||
|
||
DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
|
||
doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
|
||
ARGS are passed as extra arguments to the function.
|
||
usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
/* This function can GC. */
|
||
Lisp_Object newargs[3];
|
||
struct gcpro gcpro1, gcpro2;
|
||
Lisp_Object result;
|
||
|
||
newargs[0] = Fwidget_get (args[0], args[1]);
|
||
newargs[1] = args[0];
|
||
newargs[2] = Flist (nargs - 2, args + 2);
|
||
GCPRO2 (newargs[0], newargs[2]);
|
||
result = Fapply (3, newargs);
|
||
UNGCPRO;
|
||
return result;
|
||
}
|
||
|
||
#ifdef HAVE_LANGINFO_CODESET
|
||
#include <langinfo.h>
|
||
#endif
|
||
|
||
DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
|
||
doc: /* Access locale data ITEM for the current C locale, if available.
|
||
ITEM should be one of the following:
|
||
|
||
`codeset', returning the character set as a string (locale item CODESET);
|
||
|
||
`days', returning a 7-element vector of day names (locale items DAY_n);
|
||
|
||
`months', returning a 12-element vector of month names (locale items MON_n);
|
||
|
||
`paper', returning a list (WIDTH HEIGHT) for the default paper size,
|
||
both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
|
||
|
||
If the system can't provide such information through a call to
|
||
`nl_langinfo', or if ITEM isn't from the list above, return nil.
|
||
|
||
See also Info node `(libc)Locales'.
|
||
|
||
The data read from the system are decoded using `locale-coding-system'. */)
|
||
(Lisp_Object item)
|
||
{
|
||
char *str = NULL;
|
||
#ifdef HAVE_LANGINFO_CODESET
|
||
Lisp_Object val;
|
||
if (EQ (item, Qcodeset))
|
||
{
|
||
str = nl_langinfo (CODESET);
|
||
return build_string (str);
|
||
}
|
||
#ifdef DAY_1
|
||
else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
|
||
{
|
||
Lisp_Object v = Fmake_vector (make_number (7), Qnil);
|
||
const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
|
||
int i;
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (v);
|
||
synchronize_system_time_locale ();
|
||
for (i = 0; i < 7; i++)
|
||
{
|
||
str = nl_langinfo (days[i]);
|
||
val = build_unibyte_string (str);
|
||
/* Fixme: Is this coding system necessarily right, even if
|
||
it is consistent with CODESET? If not, what to do? */
|
||
ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
|
||
0));
|
||
}
|
||
UNGCPRO;
|
||
return v;
|
||
}
|
||
#endif /* DAY_1 */
|
||
#ifdef MON_1
|
||
else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
|
||
{
|
||
Lisp_Object v = Fmake_vector (make_number (12), Qnil);
|
||
const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
|
||
MON_8, MON_9, MON_10, MON_11, MON_12};
|
||
int i;
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (v);
|
||
synchronize_system_time_locale ();
|
||
for (i = 0; i < 12; i++)
|
||
{
|
||
str = nl_langinfo (months[i]);
|
||
val = build_unibyte_string (str);
|
||
ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
|
||
0));
|
||
}
|
||
UNGCPRO;
|
||
return v;
|
||
}
|
||
#endif /* MON_1 */
|
||
/* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
|
||
but is in the locale files. This could be used by ps-print. */
|
||
#ifdef PAPER_WIDTH
|
||
else if (EQ (item, Qpaper))
|
||
return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
|
||
#endif /* PAPER_WIDTH */
|
||
#endif /* HAVE_LANGINFO_CODESET*/
|
||
return Qnil;
|
||
}
|
||
|
||
/* base64 encode/decode functions (RFC 2045).
|
||
Based on code from GNU recode. */
|
||
|
||
#define MIME_LINE_LENGTH 76
|
||
|
||
#define IS_ASCII(Character) \
|
||
((Character) < 128)
|
||
#define IS_BASE64(Character) \
|
||
(IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
|
||
#define IS_BASE64_IGNORABLE(Character) \
|
||
((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
|
||
|| (Character) == '\f' || (Character) == '\r')
|
||
|
||
/* Used by base64_decode_1 to retrieve a non-base64-ignorable
|
||
character or return retval if there are no characters left to
|
||
process. */
|
||
#define READ_QUADRUPLET_BYTE(retval) \
|
||
do \
|
||
{ \
|
||
if (i == length) \
|
||
{ \
|
||
if (nchars_return) \
|
||
*nchars_return = nchars; \
|
||
return (retval); \
|
||
} \
|
||
c = from[i++]; \
|
||
} \
|
||
while (IS_BASE64_IGNORABLE (c))
|
||
|
||
/* Table of characters coding the 64 values. */
|
||
static const char base64_value_to_char[64] =
|
||
{
|
||
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
|
||
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
|
||
'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
|
||
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
|
||
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
|
||
'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
|
||
'8', '9', '+', '/' /* 60-63 */
|
||
};
|
||
|
||
/* Table of base64 values for first 128 characters. */
|
||
static const short base64_char_to_value[128] =
|
||
{
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
||
-1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
||
54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
||
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
||
25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
||
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
||
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
||
49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
||
};
|
||
|
||
/* The following diagram shows the logical steps by which three octets
|
||
get transformed into four base64 characters.
|
||
|
||
.--------. .--------. .--------.
|
||
|aaaaaabb| |bbbbcccc| |ccdddddd|
|
||
`--------' `--------' `--------'
|
||
6 2 4 4 2 6
|
||
.--------+--------+--------+--------.
|
||
|00aaaaaa|00bbbbbb|00cccccc|00dddddd|
|
||
`--------+--------+--------+--------'
|
||
|
||
.--------+--------+--------+--------.
|
||
|AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
|
||
`--------+--------+--------+--------'
|
||
|
||
The octets are divided into 6 bit chunks, which are then encoded into
|
||
base64 characters. */
|
||
|
||
|
||
static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
|
||
static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
|
||
ptrdiff_t *);
|
||
|
||
DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
|
||
2, 3, "r",
|
||
doc: /* Base64-encode the region between BEG and END.
|
||
Return the length of the encoded text.
|
||
Optional third argument NO-LINE-BREAK means do not break long lines
|
||
into shorter lines. */)
|
||
(Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
|
||
{
|
||
char *encoded;
|
||
ptrdiff_t allength, length;
|
||
ptrdiff_t ibeg, iend, encoded_length;
|
||
ptrdiff_t old_pos = PT;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
validate_region (&beg, &end);
|
||
|
||
ibeg = CHAR_TO_BYTE (XFASTINT (beg));
|
||
iend = CHAR_TO_BYTE (XFASTINT (end));
|
||
move_gap_both (XFASTINT (beg), ibeg);
|
||
|
||
/* We need to allocate enough room for encoding the text.
|
||
We need 33 1/3% more space, plus a newline every 76
|
||
characters, and then we round up. */
|
||
length = iend - ibeg;
|
||
allength = length + length/3 + 1;
|
||
allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
||
|
||
encoded = SAFE_ALLOCA (allength);
|
||
encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
|
||
encoded, length, NILP (no_line_break),
|
||
!NILP (BVAR (current_buffer, enable_multibyte_characters)));
|
||
if (encoded_length > allength)
|
||
emacs_abort ();
|
||
|
||
if (encoded_length < 0)
|
||
{
|
||
/* The encoding wasn't possible. */
|
||
SAFE_FREE ();
|
||
error ("Multibyte character in data for base64 encoding");
|
||
}
|
||
|
||
/* Now we have encoded the region, so we insert the new contents
|
||
and delete the old. (Insert first in order to preserve markers.) */
|
||
SET_PT_BOTH (XFASTINT (beg), ibeg);
|
||
insert (encoded, encoded_length);
|
||
SAFE_FREE ();
|
||
del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
|
||
|
||
/* If point was outside of the region, restore it exactly; else just
|
||
move to the beginning of the region. */
|
||
if (old_pos >= XFASTINT (end))
|
||
old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
|
||
else if (old_pos > XFASTINT (beg))
|
||
old_pos = XFASTINT (beg);
|
||
SET_PT (old_pos);
|
||
|
||
/* We return the length of the encoded text. */
|
||
return make_number (encoded_length);
|
||
}
|
||
|
||
DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
|
||
1, 2, 0,
|
||
doc: /* Base64-encode STRING and return the result.
|
||
Optional second argument NO-LINE-BREAK means do not break long lines
|
||
into shorter lines. */)
|
||
(Lisp_Object string, Lisp_Object no_line_break)
|
||
{
|
||
ptrdiff_t allength, length, encoded_length;
|
||
char *encoded;
|
||
Lisp_Object encoded_string;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
CHECK_STRING (string);
|
||
|
||
/* We need to allocate enough room for encoding the text.
|
||
We need 33 1/3% more space, plus a newline every 76
|
||
characters, and then we round up. */
|
||
length = SBYTES (string);
|
||
allength = length + length/3 + 1;
|
||
allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
||
|
||
/* We need to allocate enough room for decoding the text. */
|
||
encoded = SAFE_ALLOCA (allength);
|
||
|
||
encoded_length = base64_encode_1 (SSDATA (string),
|
||
encoded, length, NILP (no_line_break),
|
||
STRING_MULTIBYTE (string));
|
||
if (encoded_length > allength)
|
||
emacs_abort ();
|
||
|
||
if (encoded_length < 0)
|
||
{
|
||
/* The encoding wasn't possible. */
|
||
SAFE_FREE ();
|
||
error ("Multibyte character in data for base64 encoding");
|
||
}
|
||
|
||
encoded_string = make_unibyte_string (encoded, encoded_length);
|
||
SAFE_FREE ();
|
||
|
||
return encoded_string;
|
||
}
|
||
|
||
static ptrdiff_t
|
||
base64_encode_1 (const char *from, char *to, ptrdiff_t length,
|
||
bool line_break, bool multibyte)
|
||
{
|
||
int counter = 0;
|
||
ptrdiff_t i = 0;
|
||
char *e = to;
|
||
int c;
|
||
unsigned int value;
|
||
int bytes;
|
||
|
||
while (i < length)
|
||
{
|
||
if (multibyte)
|
||
{
|
||
c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
|
||
if (CHAR_BYTE8_P (c))
|
||
c = CHAR_TO_BYTE8 (c);
|
||
else if (c >= 256)
|
||
return -1;
|
||
i += bytes;
|
||
}
|
||
else
|
||
c = from[i++];
|
||
|
||
/* Wrap line every 76 characters. */
|
||
|
||
if (line_break)
|
||
{
|
||
if (counter < MIME_LINE_LENGTH / 4)
|
||
counter++;
|
||
else
|
||
{
|
||
*e++ = '\n';
|
||
counter = 1;
|
||
}
|
||
}
|
||
|
||
/* Process first byte of a triplet. */
|
||
|
||
*e++ = base64_value_to_char[0x3f & c >> 2];
|
||
value = (0x03 & c) << 4;
|
||
|
||
/* Process second byte of a triplet. */
|
||
|
||
if (i == length)
|
||
{
|
||
*e++ = base64_value_to_char[value];
|
||
*e++ = '=';
|
||
*e++ = '=';
|
||
break;
|
||
}
|
||
|
||
if (multibyte)
|
||
{
|
||
c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
|
||
if (CHAR_BYTE8_P (c))
|
||
c = CHAR_TO_BYTE8 (c);
|
||
else if (c >= 256)
|
||
return -1;
|
||
i += bytes;
|
||
}
|
||
else
|
||
c = from[i++];
|
||
|
||
*e++ = base64_value_to_char[value | (0x0f & c >> 4)];
|
||
value = (0x0f & c) << 2;
|
||
|
||
/* Process third byte of a triplet. */
|
||
|
||
if (i == length)
|
||
{
|
||
*e++ = base64_value_to_char[value];
|
||
*e++ = '=';
|
||
break;
|
||
}
|
||
|
||
if (multibyte)
|
||
{
|
||
c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
|
||
if (CHAR_BYTE8_P (c))
|
||
c = CHAR_TO_BYTE8 (c);
|
||
else if (c >= 256)
|
||
return -1;
|
||
i += bytes;
|
||
}
|
||
else
|
||
c = from[i++];
|
||
|
||
*e++ = base64_value_to_char[value | (0x03 & c >> 6)];
|
||
*e++ = base64_value_to_char[0x3f & c];
|
||
}
|
||
|
||
return e - to;
|
||
}
|
||
|
||
|
||
DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
|
||
2, 2, "r",
|
||
doc: /* Base64-decode the region between BEG and END.
|
||
Return the length of the decoded text.
|
||
If the region can't be decoded, signal an error and don't modify the buffer. */)
|
||
(Lisp_Object beg, Lisp_Object end)
|
||
{
|
||
ptrdiff_t ibeg, iend, length, allength;
|
||
char *decoded;
|
||
ptrdiff_t old_pos = PT;
|
||
ptrdiff_t decoded_length;
|
||
ptrdiff_t inserted_chars;
|
||
bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
|
||
USE_SAFE_ALLOCA;
|
||
|
||
validate_region (&beg, &end);
|
||
|
||
ibeg = CHAR_TO_BYTE (XFASTINT (beg));
|
||
iend = CHAR_TO_BYTE (XFASTINT (end));
|
||
|
||
length = iend - ibeg;
|
||
|
||
/* We need to allocate enough room for decoding the text. If we are
|
||
working on a multibyte buffer, each decoded code may occupy at
|
||
most two bytes. */
|
||
allength = multibyte ? length * 2 : length;
|
||
decoded = SAFE_ALLOCA (allength);
|
||
|
||
move_gap_both (XFASTINT (beg), ibeg);
|
||
decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
|
||
decoded, length,
|
||
multibyte, &inserted_chars);
|
||
if (decoded_length > allength)
|
||
emacs_abort ();
|
||
|
||
if (decoded_length < 0)
|
||
{
|
||
/* The decoding wasn't possible. */
|
||
SAFE_FREE ();
|
||
error ("Invalid base64 data");
|
||
}
|
||
|
||
/* Now we have decoded the region, so we insert the new contents
|
||
and delete the old. (Insert first in order to preserve markers.) */
|
||
TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
|
||
insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
|
||
SAFE_FREE ();
|
||
|
||
/* Delete the original text. */
|
||
del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
|
||
iend + decoded_length, 1);
|
||
|
||
/* If point was outside of the region, restore it exactly; else just
|
||
move to the beginning of the region. */
|
||
if (old_pos >= XFASTINT (end))
|
||
old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
|
||
else if (old_pos > XFASTINT (beg))
|
||
old_pos = XFASTINT (beg);
|
||
SET_PT (old_pos > ZV ? ZV : old_pos);
|
||
|
||
return make_number (inserted_chars);
|
||
}
|
||
|
||
DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
|
||
1, 1, 0,
|
||
doc: /* Base64-decode STRING and return the result. */)
|
||
(Lisp_Object string)
|
||
{
|
||
char *decoded;
|
||
ptrdiff_t length, decoded_length;
|
||
Lisp_Object decoded_string;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
CHECK_STRING (string);
|
||
|
||
length = SBYTES (string);
|
||
/* We need to allocate enough room for decoding the text. */
|
||
decoded = SAFE_ALLOCA (length);
|
||
|
||
/* The decoded result should be unibyte. */
|
||
decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
|
||
0, NULL);
|
||
if (decoded_length > length)
|
||
emacs_abort ();
|
||
else if (decoded_length >= 0)
|
||
decoded_string = make_unibyte_string (decoded, decoded_length);
|
||
else
|
||
decoded_string = Qnil;
|
||
|
||
SAFE_FREE ();
|
||
if (!STRINGP (decoded_string))
|
||
error ("Invalid base64 data");
|
||
|
||
return decoded_string;
|
||
}
|
||
|
||
/* Base64-decode the data at FROM of LENGTH bytes into TO. If
|
||
MULTIBYTE, the decoded result should be in multibyte
|
||
form. If NCHARS_RETURN is not NULL, store the number of produced
|
||
characters in *NCHARS_RETURN. */
|
||
|
||
static ptrdiff_t
|
||
base64_decode_1 (const char *from, char *to, ptrdiff_t length,
|
||
bool multibyte, ptrdiff_t *nchars_return)
|
||
{
|
||
ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
|
||
char *e = to;
|
||
unsigned char c;
|
||
unsigned long value;
|
||
ptrdiff_t nchars = 0;
|
||
|
||
while (1)
|
||
{
|
||
/* Process first byte of a quadruplet. */
|
||
|
||
READ_QUADRUPLET_BYTE (e-to);
|
||
|
||
if (!IS_BASE64 (c))
|
||
return -1;
|
||
value = base64_char_to_value[c] << 18;
|
||
|
||
/* Process second byte of a quadruplet. */
|
||
|
||
READ_QUADRUPLET_BYTE (-1);
|
||
|
||
if (!IS_BASE64 (c))
|
||
return -1;
|
||
value |= base64_char_to_value[c] << 12;
|
||
|
||
c = (unsigned char) (value >> 16);
|
||
if (multibyte && c >= 128)
|
||
e += BYTE8_STRING (c, e);
|
||
else
|
||
*e++ = c;
|
||
nchars++;
|
||
|
||
/* Process third byte of a quadruplet. */
|
||
|
||
READ_QUADRUPLET_BYTE (-1);
|
||
|
||
if (c == '=')
|
||
{
|
||
READ_QUADRUPLET_BYTE (-1);
|
||
|
||
if (c != '=')
|
||
return -1;
|
||
continue;
|
||
}
|
||
|
||
if (!IS_BASE64 (c))
|
||
return -1;
|
||
value |= base64_char_to_value[c] << 6;
|
||
|
||
c = (unsigned char) (0xff & value >> 8);
|
||
if (multibyte && c >= 128)
|
||
e += BYTE8_STRING (c, e);
|
||
else
|
||
*e++ = c;
|
||
nchars++;
|
||
|
||
/* Process fourth byte of a quadruplet. */
|
||
|
||
READ_QUADRUPLET_BYTE (-1);
|
||
|
||
if (c == '=')
|
||
continue;
|
||
|
||
if (!IS_BASE64 (c))
|
||
return -1;
|
||
value |= base64_char_to_value[c];
|
||
|
||
c = (unsigned char) (0xff & value);
|
||
if (multibyte && c >= 128)
|
||
e += BYTE8_STRING (c, e);
|
||
else
|
||
*e++ = c;
|
||
nchars++;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
***** *****
|
||
***** Hash Tables *****
|
||
***** *****
|
||
***********************************************************************/
|
||
|
||
/* Implemented by gerd@gnu.org. This hash table implementation was
|
||
inspired by CMUCL hash tables. */
|
||
|
||
/* Ideas:
|
||
|
||
1. For small tables, association lists are probably faster than
|
||
hash tables because they have lower overhead.
|
||
|
||
For uses of hash tables where the O(1) behavior of table
|
||
operations is not a requirement, it might therefore be a good idea
|
||
not to hash. Instead, we could just do a linear search in the
|
||
key_and_value vector of the hash table. This could be done
|
||
if a `:linear-search t' argument is given to make-hash-table. */
|
||
|
||
|
||
/* The list of all weak hash tables. Don't staticpro this one. */
|
||
|
||
static struct Lisp_Hash_Table *weak_hash_tables;
|
||
|
||
/* Various symbols. */
|
||
|
||
static Lisp_Object Qhash_table_p;
|
||
static Lisp_Object Qkey, Qvalue, Qeql;
|
||
Lisp_Object Qeq, Qequal;
|
||
Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
|
||
static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
|
||
|
||
|
||
/***********************************************************************
|
||
Utilities
|
||
***********************************************************************/
|
||
|
||
static void
|
||
CHECK_HASH_TABLE (Lisp_Object x)
|
||
{
|
||
CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
|
||
}
|
||
|
||
static void
|
||
set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
|
||
{
|
||
h->key_and_value = key_and_value;
|
||
}
|
||
static void
|
||
set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
|
||
{
|
||
h->next = next;
|
||
}
|
||
static void
|
||
set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
|
||
{
|
||
gc_aset (h->next, idx, val);
|
||
}
|
||
static void
|
||
set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
|
||
{
|
||
h->hash = hash;
|
||
}
|
||
static void
|
||
set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
|
||
{
|
||
gc_aset (h->hash, idx, val);
|
||
}
|
||
static void
|
||
set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
|
||
{
|
||
h->index = index;
|
||
}
|
||
static void
|
||
set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
|
||
{
|
||
gc_aset (h->index, idx, val);
|
||
}
|
||
|
||
/* If OBJ is a Lisp hash table, return a pointer to its struct
|
||
Lisp_Hash_Table. Otherwise, signal an error. */
|
||
|
||
static struct Lisp_Hash_Table *
|
||
check_hash_table (Lisp_Object obj)
|
||
{
|
||
CHECK_HASH_TABLE (obj);
|
||
return XHASH_TABLE (obj);
|
||
}
|
||
|
||
|
||
/* Value is the next integer I >= N, N >= 0 which is "almost" a prime
|
||
number. A number is "almost" a prime number if it is not divisible
|
||
by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
|
||
|
||
EMACS_INT
|
||
next_almost_prime (EMACS_INT n)
|
||
{
|
||
verify (NEXT_ALMOST_PRIME_LIMIT == 11);
|
||
for (n |= 1; ; n += 2)
|
||
if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
|
||
return n;
|
||
}
|
||
|
||
|
||
/* Find KEY in ARGS which has size NARGS. Don't consider indices for
|
||
which USED[I] is non-zero. If found at index I in ARGS, set
|
||
USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
|
||
0. This function is used to extract a keyword/argument pair from
|
||
a DEFUN parameter list. */
|
||
|
||
static ptrdiff_t
|
||
get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
|
||
{
|
||
ptrdiff_t i;
|
||
|
||
for (i = 1; i < nargs; i++)
|
||
if (!used[i - 1] && EQ (args[i - 1], key))
|
||
{
|
||
used[i - 1] = 1;
|
||
used[i] = 1;
|
||
return i;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return a Lisp vector which has the same contents as VEC but has
|
||
at least INCR_MIN more entries, where INCR_MIN is positive.
|
||
If NITEMS_MAX is not -1, do not grow the vector to be any larger
|
||
than NITEMS_MAX. Entries in the resulting
|
||
vector that are not copied from VEC are set to nil. */
|
||
|
||
Lisp_Object
|
||
larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
|
||
{
|
||
struct Lisp_Vector *v;
|
||
ptrdiff_t i, incr, incr_max, old_size, new_size;
|
||
ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
|
||
ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
|
||
? nitems_max : C_language_max);
|
||
eassert (VECTORP (vec));
|
||
eassert (0 < incr_min && -1 <= nitems_max);
|
||
old_size = ASIZE (vec);
|
||
incr_max = n_max - old_size;
|
||
incr = max (incr_min, min (old_size >> 1, incr_max));
|
||
if (incr_max < incr)
|
||
memory_full (SIZE_MAX);
|
||
new_size = old_size + incr;
|
||
v = allocate_vector (new_size);
|
||
memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
|
||
for (i = old_size; i < new_size; ++i)
|
||
v->contents[i] = Qnil;
|
||
XSETVECTOR (vec, v);
|
||
return vec;
|
||
}
|
||
|
||
|
||
/***********************************************************************
|
||
Low-level Functions
|
||
***********************************************************************/
|
||
|
||
static struct hash_table_test hashtest_eq;
|
||
struct hash_table_test hashtest_eql, hashtest_equal;
|
||
|
||
/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
|
||
HASH2 in hash table H using `eql'. Value is true if KEY1 and
|
||
KEY2 are the same. */
|
||
|
||
static bool
|
||
cmpfn_eql (struct hash_table_test *ht,
|
||
Lisp_Object key1,
|
||
Lisp_Object key2)
|
||
{
|
||
return (FLOATP (key1)
|
||
&& FLOATP (key2)
|
||
&& XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
|
||
}
|
||
|
||
|
||
/* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
|
||
HASH2 in hash table H using `equal'. Value is true if KEY1 and
|
||
KEY2 are the same. */
|
||
|
||
static bool
|
||
cmpfn_equal (struct hash_table_test *ht,
|
||
Lisp_Object key1,
|
||
Lisp_Object key2)
|
||
{
|
||
return !NILP (Fequal (key1, key2));
|
||
}
|
||
|
||
|
||
/* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
|
||
HASH2 in hash table H using H->user_cmp_function. Value is true
|
||
if KEY1 and KEY2 are the same. */
|
||
|
||
static bool
|
||
cmpfn_user_defined (struct hash_table_test *ht,
|
||
Lisp_Object key1,
|
||
Lisp_Object key2)
|
||
{
|
||
Lisp_Object args[3];
|
||
|
||
args[0] = ht->user_cmp_function;
|
||
args[1] = key1;
|
||
args[2] = key2;
|
||
return !NILP (Ffuncall (3, args));
|
||
}
|
||
|
||
|
||
/* Value is a hash code for KEY for use in hash table H which uses
|
||
`eq' to compare keys. The hash code returned is guaranteed to fit
|
||
in a Lisp integer. */
|
||
|
||
static EMACS_UINT
|
||
hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
|
||
{
|
||
EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
|
||
return hash;
|
||
}
|
||
|
||
/* Value is a hash code for KEY for use in hash table H which uses
|
||
`eql' to compare keys. The hash code returned is guaranteed to fit
|
||
in a Lisp integer. */
|
||
|
||
static EMACS_UINT
|
||
hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
|
||
{
|
||
EMACS_UINT hash;
|
||
if (FLOATP (key))
|
||
hash = sxhash (key, 0);
|
||
else
|
||
hash = XHASH (key) ^ XTYPE (key);
|
||
return hash;
|
||
}
|
||
|
||
/* Value is a hash code for KEY for use in hash table H which uses
|
||
`equal' to compare keys. The hash code returned is guaranteed to fit
|
||
in a Lisp integer. */
|
||
|
||
static EMACS_UINT
|
||
hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
|
||
{
|
||
EMACS_UINT hash = sxhash (key, 0);
|
||
return hash;
|
||
}
|
||
|
||
/* Value is a hash code for KEY for use in hash table H which uses as
|
||
user-defined function to compare keys. The hash code returned is
|
||
guaranteed to fit in a Lisp integer. */
|
||
|
||
static EMACS_UINT
|
||
hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
|
||
{
|
||
Lisp_Object args[2], hash;
|
||
|
||
args[0] = ht->user_hash_function;
|
||
args[1] = key;
|
||
hash = Ffuncall (2, args);
|
||
return hashfn_eq (ht, hash);
|
||
}
|
||
|
||
/* An upper bound on the size of a hash table index. It must fit in
|
||
ptrdiff_t and be a valid Emacs fixnum. */
|
||
#define INDEX_SIZE_BOUND \
|
||
((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
|
||
|
||
/* Create and initialize a new hash table.
|
||
|
||
TEST specifies the test the hash table will use to compare keys.
|
||
It must be either one of the predefined tests `eq', `eql' or
|
||
`equal' or a symbol denoting a user-defined test named TEST with
|
||
test and hash functions USER_TEST and USER_HASH.
|
||
|
||
Give the table initial capacity SIZE, SIZE >= 0, an integer.
|
||
|
||
If REHASH_SIZE is an integer, it must be > 0, and this hash table's
|
||
new size when it becomes full is computed by adding REHASH_SIZE to
|
||
its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
|
||
table's new size is computed by multiplying its old size with
|
||
REHASH_SIZE.
|
||
|
||
REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
|
||
be resized when the ratio of (number of entries in the table) /
|
||
(table size) is >= REHASH_THRESHOLD.
|
||
|
||
WEAK specifies the weakness of the table. If non-nil, it must be
|
||
one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
|
||
|
||
Lisp_Object
|
||
make_hash_table (struct hash_table_test test,
|
||
Lisp_Object size, Lisp_Object rehash_size,
|
||
Lisp_Object rehash_threshold, Lisp_Object weak)
|
||
{
|
||
struct Lisp_Hash_Table *h;
|
||
Lisp_Object table;
|
||
EMACS_INT index_size, sz;
|
||
ptrdiff_t i;
|
||
double index_float;
|
||
|
||
/* Preconditions. */
|
||
eassert (SYMBOLP (test.name));
|
||
eassert (INTEGERP (size) && XINT (size) >= 0);
|
||
eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
|
||
|| (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
|
||
eassert (FLOATP (rehash_threshold)
|
||
&& 0 < XFLOAT_DATA (rehash_threshold)
|
||
&& XFLOAT_DATA (rehash_threshold) <= 1.0);
|
||
|
||
if (XFASTINT (size) == 0)
|
||
size = make_number (1);
|
||
|
||
sz = XFASTINT (size);
|
||
index_float = sz / XFLOAT_DATA (rehash_threshold);
|
||
index_size = (index_float < INDEX_SIZE_BOUND + 1
|
||
? next_almost_prime (index_float)
|
||
: INDEX_SIZE_BOUND + 1);
|
||
if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
|
||
error ("Hash table too large");
|
||
|
||
/* Allocate a table and initialize it. */
|
||
h = allocate_hash_table ();
|
||
|
||
/* Initialize hash table slots. */
|
||
h->test = test;
|
||
h->weak = weak;
|
||
h->rehash_threshold = rehash_threshold;
|
||
h->rehash_size = rehash_size;
|
||
h->count = 0;
|
||
h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
|
||
h->hash = Fmake_vector (size, Qnil);
|
||
h->next = Fmake_vector (size, Qnil);
|
||
h->index = Fmake_vector (make_number (index_size), Qnil);
|
||
|
||
/* Set up the free list. */
|
||
for (i = 0; i < sz - 1; ++i)
|
||
set_hash_next_slot (h, i, make_number (i + 1));
|
||
h->next_free = make_number (0);
|
||
|
||
XSET_HASH_TABLE (table, h);
|
||
eassert (HASH_TABLE_P (table));
|
||
eassert (XHASH_TABLE (table) == h);
|
||
|
||
/* Maybe add this hash table to the list of all weak hash tables. */
|
||
if (NILP (h->weak))
|
||
h->next_weak = NULL;
|
||
else
|
||
{
|
||
h->next_weak = weak_hash_tables;
|
||
weak_hash_tables = h;
|
||
}
|
||
|
||
return table;
|
||
}
|
||
|
||
|
||
/* Return a copy of hash table H1. Keys and values are not copied,
|
||
only the table itself is. */
|
||
|
||
static Lisp_Object
|
||
copy_hash_table (struct Lisp_Hash_Table *h1)
|
||
{
|
||
Lisp_Object table;
|
||
struct Lisp_Hash_Table *h2;
|
||
|
||
h2 = allocate_hash_table ();
|
||
*h2 = *h1;
|
||
h2->key_and_value = Fcopy_sequence (h1->key_and_value);
|
||
h2->hash = Fcopy_sequence (h1->hash);
|
||
h2->next = Fcopy_sequence (h1->next);
|
||
h2->index = Fcopy_sequence (h1->index);
|
||
XSET_HASH_TABLE (table, h2);
|
||
|
||
/* Maybe add this hash table to the list of all weak hash tables. */
|
||
if (!NILP (h2->weak))
|
||
{
|
||
h2->next_weak = weak_hash_tables;
|
||
weak_hash_tables = h2;
|
||
}
|
||
|
||
return table;
|
||
}
|
||
|
||
|
||
/* Resize hash table H if it's too full. If H cannot be resized
|
||
because it's already too large, throw an error. */
|
||
|
||
static void
|
||
maybe_resize_hash_table (struct Lisp_Hash_Table *h)
|
||
{
|
||
if (NILP (h->next_free))
|
||
{
|
||
ptrdiff_t old_size = HASH_TABLE_SIZE (h);
|
||
EMACS_INT new_size, index_size, nsize;
|
||
ptrdiff_t i;
|
||
double index_float;
|
||
|
||
if (INTEGERP (h->rehash_size))
|
||
new_size = old_size + XFASTINT (h->rehash_size);
|
||
else
|
||
{
|
||
double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
|
||
if (float_new_size < INDEX_SIZE_BOUND + 1)
|
||
{
|
||
new_size = float_new_size;
|
||
if (new_size <= old_size)
|
||
new_size = old_size + 1;
|
||
}
|
||
else
|
||
new_size = INDEX_SIZE_BOUND + 1;
|
||
}
|
||
index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
|
||
index_size = (index_float < INDEX_SIZE_BOUND + 1
|
||
? next_almost_prime (index_float)
|
||
: INDEX_SIZE_BOUND + 1);
|
||
nsize = max (index_size, 2 * new_size);
|
||
if (INDEX_SIZE_BOUND < nsize)
|
||
error ("Hash table too large to resize");
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (HASH_TABLE_P (Vpurify_flag)
|
||
&& XHASH_TABLE (Vpurify_flag) == h)
|
||
{
|
||
Lisp_Object args[2];
|
||
args[0] = build_string ("Growing hash table to: %d");
|
||
args[1] = make_number (new_size);
|
||
Fmessage (2, args);
|
||
}
|
||
#endif
|
||
|
||
set_hash_key_and_value (h, larger_vector (h->key_and_value,
|
||
2 * (new_size - old_size), -1));
|
||
set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
|
||
set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
|
||
set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
|
||
|
||
/* Update the free list. Do it so that new entries are added at
|
||
the end of the free list. This makes some operations like
|
||
maphash faster. */
|
||
for (i = old_size; i < new_size - 1; ++i)
|
||
set_hash_next_slot (h, i, make_number (i + 1));
|
||
|
||
if (!NILP (h->next_free))
|
||
{
|
||
Lisp_Object last, next;
|
||
|
||
last = h->next_free;
|
||
while (next = HASH_NEXT (h, XFASTINT (last)),
|
||
!NILP (next))
|
||
last = next;
|
||
|
||
set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
|
||
}
|
||
else
|
||
XSETFASTINT (h->next_free, old_size);
|
||
|
||
/* Rehash. */
|
||
for (i = 0; i < old_size; ++i)
|
||
if (!NILP (HASH_HASH (h, i)))
|
||
{
|
||
EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
|
||
ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
|
||
set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
|
||
set_hash_index_slot (h, start_of_bucket, make_number (i));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
|
||
the hash code of KEY. Value is the index of the entry in H
|
||
matching KEY, or -1 if not found. */
|
||
|
||
ptrdiff_t
|
||
hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
|
||
{
|
||
EMACS_UINT hash_code;
|
||
ptrdiff_t start_of_bucket;
|
||
Lisp_Object idx;
|
||
|
||
hash_code = h->test.hashfn (&h->test, key);
|
||
eassert ((hash_code & ~INTMASK) == 0);
|
||
if (hash)
|
||
*hash = hash_code;
|
||
|
||
start_of_bucket = hash_code % ASIZE (h->index);
|
||
idx = HASH_INDEX (h, start_of_bucket);
|
||
|
||
/* We need not gcpro idx since it's either an integer or nil. */
|
||
while (!NILP (idx))
|
||
{
|
||
ptrdiff_t i = XFASTINT (idx);
|
||
if (EQ (key, HASH_KEY (h, i))
|
||
|| (h->test.cmpfn
|
||
&& hash_code == XUINT (HASH_HASH (h, i))
|
||
&& h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
|
||
break;
|
||
idx = HASH_NEXT (h, i);
|
||
}
|
||
|
||
return NILP (idx) ? -1 : XFASTINT (idx);
|
||
}
|
||
|
||
|
||
/* Put an entry into hash table H that associates KEY with VALUE.
|
||
HASH is a previously computed hash code of KEY.
|
||
Value is the index of the entry in H matching KEY. */
|
||
|
||
ptrdiff_t
|
||
hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
|
||
EMACS_UINT hash)
|
||
{
|
||
ptrdiff_t start_of_bucket, i;
|
||
|
||
eassert ((hash & ~INTMASK) == 0);
|
||
|
||
/* Increment count after resizing because resizing may fail. */
|
||
maybe_resize_hash_table (h);
|
||
h->count++;
|
||
|
||
/* Store key/value in the key_and_value vector. */
|
||
i = XFASTINT (h->next_free);
|
||
h->next_free = HASH_NEXT (h, i);
|
||
set_hash_key_slot (h, i, key);
|
||
set_hash_value_slot (h, i, value);
|
||
|
||
/* Remember its hash code. */
|
||
set_hash_hash_slot (h, i, make_number (hash));
|
||
|
||
/* Add new entry to its collision chain. */
|
||
start_of_bucket = hash % ASIZE (h->index);
|
||
set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
|
||
set_hash_index_slot (h, start_of_bucket, make_number (i));
|
||
return i;
|
||
}
|
||
|
||
|
||
/* Remove the entry matching KEY from hash table H, if there is one. */
|
||
|
||
static void
|
||
hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
|
||
{
|
||
EMACS_UINT hash_code;
|
||
ptrdiff_t start_of_bucket;
|
||
Lisp_Object idx, prev;
|
||
|
||
hash_code = h->test.hashfn (&h->test, key);
|
||
eassert ((hash_code & ~INTMASK) == 0);
|
||
start_of_bucket = hash_code % ASIZE (h->index);
|
||
idx = HASH_INDEX (h, start_of_bucket);
|
||
prev = Qnil;
|
||
|
||
/* We need not gcpro idx, prev since they're either integers or nil. */
|
||
while (!NILP (idx))
|
||
{
|
||
ptrdiff_t i = XFASTINT (idx);
|
||
|
||
if (EQ (key, HASH_KEY (h, i))
|
||
|| (h->test.cmpfn
|
||
&& hash_code == XUINT (HASH_HASH (h, i))
|
||
&& h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
|
||
{
|
||
/* Take entry out of collision chain. */
|
||
if (NILP (prev))
|
||
set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
|
||
else
|
||
set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
|
||
|
||
/* Clear slots in key_and_value and add the slots to
|
||
the free list. */
|
||
set_hash_key_slot (h, i, Qnil);
|
||
set_hash_value_slot (h, i, Qnil);
|
||
set_hash_hash_slot (h, i, Qnil);
|
||
set_hash_next_slot (h, i, h->next_free);
|
||
h->next_free = make_number (i);
|
||
h->count--;
|
||
eassert (h->count >= 0);
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
prev = idx;
|
||
idx = HASH_NEXT (h, i);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Clear hash table H. */
|
||
|
||
static void
|
||
hash_clear (struct Lisp_Hash_Table *h)
|
||
{
|
||
if (h->count > 0)
|
||
{
|
||
ptrdiff_t i, size = HASH_TABLE_SIZE (h);
|
||
|
||
for (i = 0; i < size; ++i)
|
||
{
|
||
set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
|
||
set_hash_key_slot (h, i, Qnil);
|
||
set_hash_value_slot (h, i, Qnil);
|
||
set_hash_hash_slot (h, i, Qnil);
|
||
}
|
||
|
||
for (i = 0; i < ASIZE (h->index); ++i)
|
||
ASET (h->index, i, Qnil);
|
||
|
||
h->next_free = make_number (0);
|
||
h->count = 0;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/************************************************************************
|
||
Weak Hash Tables
|
||
************************************************************************/
|
||
|
||
/* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
|
||
entries from the table that don't survive the current GC.
|
||
!REMOVE_ENTRIES_P means mark entries that are in use. Value is
|
||
true if anything was marked. */
|
||
|
||
static bool
|
||
sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
|
||
{
|
||
ptrdiff_t bucket, n;
|
||
bool marked;
|
||
|
||
n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
|
||
marked = 0;
|
||
|
||
for (bucket = 0; bucket < n; ++bucket)
|
||
{
|
||
Lisp_Object idx, next, prev;
|
||
|
||
/* Follow collision chain, removing entries that
|
||
don't survive this garbage collection. */
|
||
prev = Qnil;
|
||
for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
|
||
{
|
||
ptrdiff_t i = XFASTINT (idx);
|
||
bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
|
||
bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
|
||
bool remove_p;
|
||
|
||
if (EQ (h->weak, Qkey))
|
||
remove_p = !key_known_to_survive_p;
|
||
else if (EQ (h->weak, Qvalue))
|
||
remove_p = !value_known_to_survive_p;
|
||
else if (EQ (h->weak, Qkey_or_value))
|
||
remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
|
||
else if (EQ (h->weak, Qkey_and_value))
|
||
remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
|
||
else
|
||
emacs_abort ();
|
||
|
||
next = HASH_NEXT (h, i);
|
||
|
||
if (remove_entries_p)
|
||
{
|
||
if (remove_p)
|
||
{
|
||
/* Take out of collision chain. */
|
||
if (NILP (prev))
|
||
set_hash_index_slot (h, bucket, next);
|
||
else
|
||
set_hash_next_slot (h, XFASTINT (prev), next);
|
||
|
||
/* Add to free list. */
|
||
set_hash_next_slot (h, i, h->next_free);
|
||
h->next_free = idx;
|
||
|
||
/* Clear key, value, and hash. */
|
||
set_hash_key_slot (h, i, Qnil);
|
||
set_hash_value_slot (h, i, Qnil);
|
||
set_hash_hash_slot (h, i, Qnil);
|
||
|
||
h->count--;
|
||
}
|
||
else
|
||
{
|
||
prev = idx;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!remove_p)
|
||
{
|
||
/* Make sure key and value survive. */
|
||
if (!key_known_to_survive_p)
|
||
{
|
||
mark_object (HASH_KEY (h, i));
|
||
marked = 1;
|
||
}
|
||
|
||
if (!value_known_to_survive_p)
|
||
{
|
||
mark_object (HASH_VALUE (h, i));
|
||
marked = 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return marked;
|
||
}
|
||
|
||
/* Remove elements from weak hash tables that don't survive the
|
||
current garbage collection. Remove weak tables that don't survive
|
||
from Vweak_hash_tables. Called from gc_sweep. */
|
||
|
||
void
|
||
sweep_weak_hash_tables (void)
|
||
{
|
||
struct Lisp_Hash_Table *h, *used, *next;
|
||
bool marked;
|
||
|
||
/* Mark all keys and values that are in use. Keep on marking until
|
||
there is no more change. This is necessary for cases like
|
||
value-weak table A containing an entry X -> Y, where Y is used in a
|
||
key-weak table B, Z -> Y. If B comes after A in the list of weak
|
||
tables, X -> Y might be removed from A, although when looking at B
|
||
one finds that it shouldn't. */
|
||
do
|
||
{
|
||
marked = 0;
|
||
for (h = weak_hash_tables; h; h = h->next_weak)
|
||
{
|
||
if (h->header.size & ARRAY_MARK_FLAG)
|
||
marked |= sweep_weak_table (h, 0);
|
||
}
|
||
}
|
||
while (marked);
|
||
|
||
/* Remove tables and entries that aren't used. */
|
||
for (h = weak_hash_tables, used = NULL; h; h = next)
|
||
{
|
||
next = h->next_weak;
|
||
|
||
if (h->header.size & ARRAY_MARK_FLAG)
|
||
{
|
||
/* TABLE is marked as used. Sweep its contents. */
|
||
if (h->count > 0)
|
||
sweep_weak_table (h, 1);
|
||
|
||
/* Add table to the list of used weak hash tables. */
|
||
h->next_weak = used;
|
||
used = h;
|
||
}
|
||
}
|
||
|
||
weak_hash_tables = used;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Hash Code Computation
|
||
***********************************************************************/
|
||
|
||
/* Maximum depth up to which to dive into Lisp structures. */
|
||
|
||
#define SXHASH_MAX_DEPTH 3
|
||
|
||
/* Maximum length up to which to take list and vector elements into
|
||
account. */
|
||
|
||
#define SXHASH_MAX_LEN 7
|
||
|
||
/* Return a hash for string PTR which has length LEN. The hash value
|
||
can be any EMACS_UINT value. */
|
||
|
||
EMACS_UINT
|
||
hash_string (char const *ptr, ptrdiff_t len)
|
||
{
|
||
char const *p = ptr;
|
||
char const *end = p + len;
|
||
unsigned char c;
|
||
EMACS_UINT hash = 0;
|
||
|
||
while (p != end)
|
||
{
|
||
c = *p++;
|
||
hash = sxhash_combine (hash, c);
|
||
}
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Return a hash for string PTR which has length LEN. The hash
|
||
code returned is guaranteed to fit in a Lisp integer. */
|
||
|
||
static EMACS_UINT
|
||
sxhash_string (char const *ptr, ptrdiff_t len)
|
||
{
|
||
EMACS_UINT hash = hash_string (ptr, len);
|
||
return SXHASH_REDUCE (hash);
|
||
}
|
||
|
||
/* Return a hash for the floating point value VAL. */
|
||
|
||
static EMACS_UINT
|
||
sxhash_float (double val)
|
||
{
|
||
EMACS_UINT hash = 0;
|
||
enum {
|
||
WORDS_PER_DOUBLE = (sizeof val / sizeof hash
|
||
+ (sizeof val % sizeof hash != 0))
|
||
};
|
||
union {
|
||
double val;
|
||
EMACS_UINT word[WORDS_PER_DOUBLE];
|
||
} u;
|
||
int i;
|
||
u.val = val;
|
||
memset (&u.val + 1, 0, sizeof u - sizeof u.val);
|
||
for (i = 0; i < WORDS_PER_DOUBLE; i++)
|
||
hash = sxhash_combine (hash, u.word[i]);
|
||
return SXHASH_REDUCE (hash);
|
||
}
|
||
|
||
/* Return a hash for list LIST. DEPTH is the current depth in the
|
||
list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
|
||
|
||
static EMACS_UINT
|
||
sxhash_list (Lisp_Object list, int depth)
|
||
{
|
||
EMACS_UINT hash = 0;
|
||
int i;
|
||
|
||
if (depth < SXHASH_MAX_DEPTH)
|
||
for (i = 0;
|
||
CONSP (list) && i < SXHASH_MAX_LEN;
|
||
list = XCDR (list), ++i)
|
||
{
|
||
EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
|
||
hash = sxhash_combine (hash, hash2);
|
||
}
|
||
|
||
if (!NILP (list))
|
||
{
|
||
EMACS_UINT hash2 = sxhash (list, depth + 1);
|
||
hash = sxhash_combine (hash, hash2);
|
||
}
|
||
|
||
return SXHASH_REDUCE (hash);
|
||
}
|
||
|
||
|
||
/* Return a hash for vector VECTOR. DEPTH is the current depth in
|
||
the Lisp structure. */
|
||
|
||
static EMACS_UINT
|
||
sxhash_vector (Lisp_Object vec, int depth)
|
||
{
|
||
EMACS_UINT hash = ASIZE (vec);
|
||
int i, n;
|
||
|
||
n = min (SXHASH_MAX_LEN, ASIZE (vec));
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
|
||
hash = sxhash_combine (hash, hash2);
|
||
}
|
||
|
||
return SXHASH_REDUCE (hash);
|
||
}
|
||
|
||
/* Return a hash for bool-vector VECTOR. */
|
||
|
||
static EMACS_UINT
|
||
sxhash_bool_vector (Lisp_Object vec)
|
||
{
|
||
EMACS_INT size = bool_vector_size (vec);
|
||
EMACS_UINT hash = size;
|
||
int i, n;
|
||
|
||
n = min (SXHASH_MAX_LEN, bool_vector_words (size));
|
||
for (i = 0; i < n; ++i)
|
||
hash = sxhash_combine (hash, bool_vector_data (vec)[i]);
|
||
|
||
return SXHASH_REDUCE (hash);
|
||
}
|
||
|
||
|
||
/* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
|
||
structure. Value is an unsigned integer clipped to INTMASK. */
|
||
|
||
EMACS_UINT
|
||
sxhash (Lisp_Object obj, int depth)
|
||
{
|
||
EMACS_UINT hash;
|
||
|
||
if (depth > SXHASH_MAX_DEPTH)
|
||
return 0;
|
||
|
||
switch (XTYPE (obj))
|
||
{
|
||
case_Lisp_Int:
|
||
hash = XUINT (obj);
|
||
break;
|
||
|
||
case Lisp_Misc:
|
||
hash = XHASH (obj);
|
||
break;
|
||
|
||
case Lisp_Symbol:
|
||
obj = SYMBOL_NAME (obj);
|
||
/* Fall through. */
|
||
|
||
case Lisp_String:
|
||
hash = sxhash_string (SSDATA (obj), SBYTES (obj));
|
||
break;
|
||
|
||
/* This can be everything from a vector to an overlay. */
|
||
case Lisp_Vectorlike:
|
||
if (VECTORP (obj))
|
||
/* According to the CL HyperSpec, two arrays are equal only if
|
||
they are `eq', except for strings and bit-vectors. In
|
||
Emacs, this works differently. We have to compare element
|
||
by element. */
|
||
hash = sxhash_vector (obj, depth);
|
||
else if (BOOL_VECTOR_P (obj))
|
||
hash = sxhash_bool_vector (obj);
|
||
else
|
||
/* Others are `equal' if they are `eq', so let's take their
|
||
address as hash. */
|
||
hash = XHASH (obj);
|
||
break;
|
||
|
||
case Lisp_Cons:
|
||
hash = sxhash_list (obj, depth);
|
||
break;
|
||
|
||
case Lisp_Float:
|
||
hash = sxhash_float (XFLOAT_DATA (obj));
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
|
||
return hash;
|
||
}
|
||
|
||
|
||
|
||
/***********************************************************************
|
||
Lisp Interface
|
||
***********************************************************************/
|
||
|
||
|
||
DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
|
||
doc: /* Compute a hash code for OBJ and return it as integer. */)
|
||
(Lisp_Object obj)
|
||
{
|
||
EMACS_UINT hash = sxhash (obj, 0);
|
||
return make_number (hash);
|
||
}
|
||
|
||
|
||
DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
|
||
doc: /* Create and return a new hash table.
|
||
|
||
Arguments are specified as keyword/argument pairs. The following
|
||
arguments are defined:
|
||
|
||
:test TEST -- TEST must be a symbol that specifies how to compare
|
||
keys. Default is `eql'. Predefined are the tests `eq', `eql', and
|
||
`equal'. User-supplied test and hash functions can be specified via
|
||
`define-hash-table-test'.
|
||
|
||
:size SIZE -- A hint as to how many elements will be put in the table.
|
||
Default is 65.
|
||
|
||
:rehash-size REHASH-SIZE - Indicates how to expand the table when it
|
||
fills up. If REHASH-SIZE is an integer, increase the size by that
|
||
amount. If it is a float, it must be > 1.0, and the new size is the
|
||
old size multiplied by that factor. Default is 1.5.
|
||
|
||
:rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
|
||
Resize the hash table when the ratio (number of entries / table size)
|
||
is greater than or equal to THRESHOLD. Default is 0.8.
|
||
|
||
:weakness WEAK -- WEAK must be one of nil, t, `key', `value',
|
||
`key-or-value', or `key-and-value'. If WEAK is not nil, the table
|
||
returned is a weak table. Key/value pairs are removed from a weak
|
||
hash table when there are no non-weak references pointing to their
|
||
key, value, one of key or value, or both key and value, depending on
|
||
WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
|
||
is nil.
|
||
|
||
usage: (make-hash-table &rest KEYWORD-ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
Lisp_Object test, size, rehash_size, rehash_threshold, weak;
|
||
struct hash_table_test testdesc;
|
||
char *used;
|
||
ptrdiff_t i;
|
||
|
||
/* The vector `used' is used to keep track of arguments that
|
||
have been consumed. */
|
||
used = alloca (nargs * sizeof *used);
|
||
memset (used, 0, nargs * sizeof *used);
|
||
|
||
/* See if there's a `:test TEST' among the arguments. */
|
||
i = get_key_arg (QCtest, nargs, args, used);
|
||
test = i ? args[i] : Qeql;
|
||
if (EQ (test, Qeq))
|
||
testdesc = hashtest_eq;
|
||
else if (EQ (test, Qeql))
|
||
testdesc = hashtest_eql;
|
||
else if (EQ (test, Qequal))
|
||
testdesc = hashtest_equal;
|
||
else
|
||
{
|
||
/* See if it is a user-defined test. */
|
||
Lisp_Object prop;
|
||
|
||
prop = Fget (test, Qhash_table_test);
|
||
if (!CONSP (prop) || !CONSP (XCDR (prop)))
|
||
signal_error ("Invalid hash table test", test);
|
||
testdesc.name = test;
|
||
testdesc.user_cmp_function = XCAR (prop);
|
||
testdesc.user_hash_function = XCAR (XCDR (prop));
|
||
testdesc.hashfn = hashfn_user_defined;
|
||
testdesc.cmpfn = cmpfn_user_defined;
|
||
}
|
||
|
||
/* See if there's a `:size SIZE' argument. */
|
||
i = get_key_arg (QCsize, nargs, args, used);
|
||
size = i ? args[i] : Qnil;
|
||
if (NILP (size))
|
||
size = make_number (DEFAULT_HASH_SIZE);
|
||
else if (!INTEGERP (size) || XINT (size) < 0)
|
||
signal_error ("Invalid hash table size", size);
|
||
|
||
/* Look for `:rehash-size SIZE'. */
|
||
i = get_key_arg (QCrehash_size, nargs, args, used);
|
||
rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
|
||
if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
|
||
|| (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
|
||
signal_error ("Invalid hash table rehash size", rehash_size);
|
||
|
||
/* Look for `:rehash-threshold THRESHOLD'. */
|
||
i = get_key_arg (QCrehash_threshold, nargs, args, used);
|
||
rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
|
||
if (! (FLOATP (rehash_threshold)
|
||
&& 0 < XFLOAT_DATA (rehash_threshold)
|
||
&& XFLOAT_DATA (rehash_threshold) <= 1))
|
||
signal_error ("Invalid hash table rehash threshold", rehash_threshold);
|
||
|
||
/* Look for `:weakness WEAK'. */
|
||
i = get_key_arg (QCweakness, nargs, args, used);
|
||
weak = i ? args[i] : Qnil;
|
||
if (EQ (weak, Qt))
|
||
weak = Qkey_and_value;
|
||
if (!NILP (weak)
|
||
&& !EQ (weak, Qkey)
|
||
&& !EQ (weak, Qvalue)
|
||
&& !EQ (weak, Qkey_or_value)
|
||
&& !EQ (weak, Qkey_and_value))
|
||
signal_error ("Invalid hash table weakness", weak);
|
||
|
||
/* Now, all args should have been used up, or there's a problem. */
|
||
for (i = 0; i < nargs; ++i)
|
||
if (!used[i])
|
||
signal_error ("Invalid argument list", args[i]);
|
||
|
||
return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
|
||
}
|
||
|
||
|
||
DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
|
||
doc: /* Return a copy of hash table TABLE. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return copy_hash_table (check_hash_table (table));
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
|
||
doc: /* Return the number of elements in TABLE. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return make_number (check_hash_table (table)->count);
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
|
||
Shash_table_rehash_size, 1, 1, 0,
|
||
doc: /* Return the current rehash size of TABLE. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return check_hash_table (table)->rehash_size;
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
|
||
Shash_table_rehash_threshold, 1, 1, 0,
|
||
doc: /* Return the current rehash threshold of TABLE. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return check_hash_table (table)->rehash_threshold;
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
|
||
doc: /* Return the size of TABLE.
|
||
The size can be used as an argument to `make-hash-table' to create
|
||
a hash table than can hold as many elements as TABLE holds
|
||
without need for resizing. */)
|
||
(Lisp_Object table)
|
||
{
|
||
struct Lisp_Hash_Table *h = check_hash_table (table);
|
||
return make_number (HASH_TABLE_SIZE (h));
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
|
||
doc: /* Return the test TABLE uses. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return check_hash_table (table)->test.name;
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
|
||
1, 1, 0,
|
||
doc: /* Return the weakness of TABLE. */)
|
||
(Lisp_Object table)
|
||
{
|
||
return check_hash_table (table)->weak;
|
||
}
|
||
|
||
|
||
DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
|
||
doc: /* Return t if OBJ is a Lisp hash table object. */)
|
||
(Lisp_Object obj)
|
||
{
|
||
return HASH_TABLE_P (obj) ? Qt : Qnil;
|
||
}
|
||
|
||
|
||
DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
|
||
doc: /* Clear hash table TABLE and return it. */)
|
||
(Lisp_Object table)
|
||
{
|
||
hash_clear (check_hash_table (table));
|
||
/* Be compatible with XEmacs. */
|
||
return table;
|
||
}
|
||
|
||
|
||
DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
|
||
doc: /* Look up KEY in TABLE and return its associated value.
|
||
If KEY is not found, return DFLT which defaults to nil. */)
|
||
(Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
|
||
{
|
||
struct Lisp_Hash_Table *h = check_hash_table (table);
|
||
ptrdiff_t i = hash_lookup (h, key, NULL);
|
||
return i >= 0 ? HASH_VALUE (h, i) : dflt;
|
||
}
|
||
|
||
|
||
DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
|
||
doc: /* Associate KEY with VALUE in hash table TABLE.
|
||
If KEY is already present in table, replace its current value with
|
||
VALUE. In any case, return VALUE. */)
|
||
(Lisp_Object key, Lisp_Object value, Lisp_Object table)
|
||
{
|
||
struct Lisp_Hash_Table *h = check_hash_table (table);
|
||
ptrdiff_t i;
|
||
EMACS_UINT hash;
|
||
|
||
i = hash_lookup (h, key, &hash);
|
||
if (i >= 0)
|
||
set_hash_value_slot (h, i, value);
|
||
else
|
||
hash_put (h, key, value, hash);
|
||
|
||
return value;
|
||
}
|
||
|
||
|
||
DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
|
||
doc: /* Remove KEY from TABLE. */)
|
||
(Lisp_Object key, Lisp_Object table)
|
||
{
|
||
struct Lisp_Hash_Table *h = check_hash_table (table);
|
||
hash_remove_from_table (h, key);
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
|
||
doc: /* Call FUNCTION for all entries in hash table TABLE.
|
||
FUNCTION is called with two arguments, KEY and VALUE.
|
||
`maphash' always returns nil. */)
|
||
(Lisp_Object function, Lisp_Object table)
|
||
{
|
||
struct Lisp_Hash_Table *h = check_hash_table (table);
|
||
Lisp_Object args[3];
|
||
ptrdiff_t i;
|
||
|
||
for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
|
||
if (!NILP (HASH_HASH (h, i)))
|
||
{
|
||
args[0] = function;
|
||
args[1] = HASH_KEY (h, i);
|
||
args[2] = HASH_VALUE (h, i);
|
||
Ffuncall (3, args);
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
|
||
Sdefine_hash_table_test, 3, 3, 0,
|
||
doc: /* Define a new hash table test with name NAME, a symbol.
|
||
|
||
In hash tables created with NAME specified as test, use TEST to
|
||
compare keys, and HASH for computing hash codes of keys.
|
||
|
||
TEST must be a function taking two arguments and returning non-nil if
|
||
both arguments are the same. HASH must be a function taking one
|
||
argument and returning an object that is the hash code of the argument.
|
||
It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
|
||
returns nil, then (funcall TEST x1 x2) also returns nil. */)
|
||
(Lisp_Object name, Lisp_Object test, Lisp_Object hash)
|
||
{
|
||
return Fput (name, Qhash_table_test, list2 (test, hash));
|
||
}
|
||
|
||
|
||
|
||
/************************************************************************
|
||
MD5, SHA-1, and SHA-2
|
||
************************************************************************/
|
||
|
||
#include "md5.h"
|
||
#include "sha1.h"
|
||
#include "sha256.h"
|
||
#include "sha512.h"
|
||
|
||
/* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
|
||
|
||
static Lisp_Object
|
||
secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
|
||
{
|
||
int i;
|
||
ptrdiff_t size;
|
||
EMACS_INT start_char = 0, end_char = 0;
|
||
ptrdiff_t start_byte, end_byte;
|
||
register EMACS_INT b, e;
|
||
register struct buffer *bp;
|
||
EMACS_INT temp;
|
||
int digest_size;
|
||
void *(*hash_func) (const char *, size_t, void *);
|
||
Lisp_Object digest;
|
||
|
||
CHECK_SYMBOL (algorithm);
|
||
|
||
if (STRINGP (object))
|
||
{
|
||
if (NILP (coding_system))
|
||
{
|
||
/* Decide the coding-system to encode the data with. */
|
||
|
||
if (STRING_MULTIBYTE (object))
|
||
/* use default, we can't guess correct value */
|
||
coding_system = preferred_coding_system ();
|
||
else
|
||
coding_system = Qraw_text;
|
||
}
|
||
|
||
if (NILP (Fcoding_system_p (coding_system)))
|
||
{
|
||
/* Invalid coding system. */
|
||
|
||
if (!NILP (noerror))
|
||
coding_system = Qraw_text;
|
||
else
|
||
xsignal1 (Qcoding_system_error, coding_system);
|
||
}
|
||
|
||
if (STRING_MULTIBYTE (object))
|
||
object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
|
||
|
||
size = SCHARS (object);
|
||
|
||
if (!NILP (start))
|
||
{
|
||
CHECK_NUMBER (start);
|
||
|
||
start_char = XINT (start);
|
||
|
||
if (start_char < 0)
|
||
start_char += size;
|
||
}
|
||
|
||
if (NILP (end))
|
||
end_char = size;
|
||
else
|
||
{
|
||
CHECK_NUMBER (end);
|
||
|
||
end_char = XINT (end);
|
||
|
||
if (end_char < 0)
|
||
end_char += size;
|
||
}
|
||
|
||
if (!(0 <= start_char && start_char <= end_char && end_char <= size))
|
||
args_out_of_range_3 (object, make_number (start_char),
|
||
make_number (end_char));
|
||
|
||
start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
|
||
end_byte =
|
||
NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
|
||
}
|
||
else
|
||
{
|
||
struct buffer *prev = current_buffer;
|
||
|
||
record_unwind_current_buffer ();
|
||
|
||
CHECK_BUFFER (object);
|
||
|
||
bp = XBUFFER (object);
|
||
set_buffer_internal (bp);
|
||
|
||
if (NILP (start))
|
||
b = BEGV;
|
||
else
|
||
{
|
||
CHECK_NUMBER_COERCE_MARKER (start);
|
||
b = XINT (start);
|
||
}
|
||
|
||
if (NILP (end))
|
||
e = ZV;
|
||
else
|
||
{
|
||
CHECK_NUMBER_COERCE_MARKER (end);
|
||
e = XINT (end);
|
||
}
|
||
|
||
if (b > e)
|
||
temp = b, b = e, e = temp;
|
||
|
||
if (!(BEGV <= b && e <= ZV))
|
||
args_out_of_range (start, end);
|
||
|
||
if (NILP (coding_system))
|
||
{
|
||
/* Decide the coding-system to encode the data with.
|
||
See fileio.c:Fwrite-region */
|
||
|
||
if (!NILP (Vcoding_system_for_write))
|
||
coding_system = Vcoding_system_for_write;
|
||
else
|
||
{
|
||
bool force_raw_text = 0;
|
||
|
||
coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
|
||
if (NILP (coding_system)
|
||
|| NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
|
||
{
|
||
coding_system = Qnil;
|
||
if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
|
||
force_raw_text = 1;
|
||
}
|
||
|
||
if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
|
||
{
|
||
/* Check file-coding-system-alist. */
|
||
Lisp_Object args[4], val;
|
||
|
||
args[0] = Qwrite_region; args[1] = start; args[2] = end;
|
||
args[3] = Fbuffer_file_name (object);
|
||
val = Ffind_operation_coding_system (4, args);
|
||
if (CONSP (val) && !NILP (XCDR (val)))
|
||
coding_system = XCDR (val);
|
||
}
|
||
|
||
if (NILP (coding_system)
|
||
&& !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
|
||
{
|
||
/* If we still have not decided a coding system, use the
|
||
default value of buffer-file-coding-system. */
|
||
coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
|
||
}
|
||
|
||
if (!force_raw_text
|
||
&& !NILP (Ffboundp (Vselect_safe_coding_system_function)))
|
||
/* Confirm that VAL can surely encode the current region. */
|
||
coding_system = call4 (Vselect_safe_coding_system_function,
|
||
make_number (b), make_number (e),
|
||
coding_system, Qnil);
|
||
|
||
if (force_raw_text)
|
||
coding_system = Qraw_text;
|
||
}
|
||
|
||
if (NILP (Fcoding_system_p (coding_system)))
|
||
{
|
||
/* Invalid coding system. */
|
||
|
||
if (!NILP (noerror))
|
||
coding_system = Qraw_text;
|
||
else
|
||
xsignal1 (Qcoding_system_error, coding_system);
|
||
}
|
||
}
|
||
|
||
object = make_buffer_string (b, e, 0);
|
||
set_buffer_internal (prev);
|
||
/* Discard the unwind protect for recovering the current
|
||
buffer. */
|
||
specpdl_ptr--;
|
||
|
||
if (STRING_MULTIBYTE (object))
|
||
object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
|
||
start_byte = 0;
|
||
end_byte = SBYTES (object);
|
||
}
|
||
|
||
if (EQ (algorithm, Qmd5))
|
||
{
|
||
digest_size = MD5_DIGEST_SIZE;
|
||
hash_func = md5_buffer;
|
||
}
|
||
else if (EQ (algorithm, Qsha1))
|
||
{
|
||
digest_size = SHA1_DIGEST_SIZE;
|
||
hash_func = sha1_buffer;
|
||
}
|
||
else if (EQ (algorithm, Qsha224))
|
||
{
|
||
digest_size = SHA224_DIGEST_SIZE;
|
||
hash_func = sha224_buffer;
|
||
}
|
||
else if (EQ (algorithm, Qsha256))
|
||
{
|
||
digest_size = SHA256_DIGEST_SIZE;
|
||
hash_func = sha256_buffer;
|
||
}
|
||
else if (EQ (algorithm, Qsha384))
|
||
{
|
||
digest_size = SHA384_DIGEST_SIZE;
|
||
hash_func = sha384_buffer;
|
||
}
|
||
else if (EQ (algorithm, Qsha512))
|
||
{
|
||
digest_size = SHA512_DIGEST_SIZE;
|
||
hash_func = sha512_buffer;
|
||
}
|
||
else
|
||
error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
|
||
|
||
/* allocate 2 x digest_size so that it can be re-used to hold the
|
||
hexified value */
|
||
digest = make_uninit_string (digest_size * 2);
|
||
|
||
hash_func (SSDATA (object) + start_byte,
|
||
end_byte - start_byte,
|
||
SSDATA (digest));
|
||
|
||
if (NILP (binary))
|
||
{
|
||
unsigned char *p = SDATA (digest);
|
||
for (i = digest_size - 1; i >= 0; i--)
|
||
{
|
||
static char const hexdigit[16] = "0123456789abcdef";
|
||
int p_i = p[i];
|
||
p[2 * i] = hexdigit[p_i >> 4];
|
||
p[2 * i + 1] = hexdigit[p_i & 0xf];
|
||
}
|
||
return digest;
|
||
}
|
||
else
|
||
return make_unibyte_string (SSDATA (digest), digest_size);
|
||
}
|
||
|
||
DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
|
||
doc: /* Return MD5 message digest of OBJECT, a buffer or string.
|
||
|
||
A message digest is a cryptographic checksum of a document, and the
|
||
algorithm to calculate it is defined in RFC 1321.
|
||
|
||
The two optional arguments START and END are character positions
|
||
specifying for which part of OBJECT the message digest should be
|
||
computed. If nil or omitted, the digest is computed for the whole
|
||
OBJECT.
|
||
|
||
The MD5 message digest is computed from the result of encoding the
|
||
text in a coding system, not directly from the internal Emacs form of
|
||
the text. The optional fourth argument CODING-SYSTEM specifies which
|
||
coding system to encode the text with. It should be the same coding
|
||
system that you used or will use when actually writing the text into a
|
||
file.
|
||
|
||
If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
|
||
OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
|
||
system would be chosen by default for writing this text into a file.
|
||
|
||
If OBJECT is a string, the most preferred coding system (see the
|
||
command `prefer-coding-system') is used.
|
||
|
||
If NOERROR is non-nil, silently assume the `raw-text' coding if the
|
||
guesswork fails. Normally, an error is signaled in such case. */)
|
||
(Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
|
||
{
|
||
return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
|
||
}
|
||
|
||
DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
|
||
doc: /* Return the secure hash of OBJECT, a buffer or string.
|
||
ALGORITHM is a symbol specifying the hash to use:
|
||
md5, sha1, sha224, sha256, sha384 or sha512.
|
||
|
||
The two optional arguments START and END are positions specifying for
|
||
which part of OBJECT to compute the hash. If nil or omitted, uses the
|
||
whole OBJECT.
|
||
|
||
If BINARY is non-nil, returns a string in binary form. */)
|
||
(Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
|
||
{
|
||
return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
|
||
}
|
||
|
||
void
|
||
syms_of_fns (void)
|
||
{
|
||
DEFSYM (Qmd5, "md5");
|
||
DEFSYM (Qsha1, "sha1");
|
||
DEFSYM (Qsha224, "sha224");
|
||
DEFSYM (Qsha256, "sha256");
|
||
DEFSYM (Qsha384, "sha384");
|
||
DEFSYM (Qsha512, "sha512");
|
||
|
||
/* Hash table stuff. */
|
||
DEFSYM (Qhash_table_p, "hash-table-p");
|
||
DEFSYM (Qeq, "eq");
|
||
DEFSYM (Qeql, "eql");
|
||
DEFSYM (Qequal, "equal");
|
||
DEFSYM (QCtest, ":test");
|
||
DEFSYM (QCsize, ":size");
|
||
DEFSYM (QCrehash_size, ":rehash-size");
|
||
DEFSYM (QCrehash_threshold, ":rehash-threshold");
|
||
DEFSYM (QCweakness, ":weakness");
|
||
DEFSYM (Qkey, "key");
|
||
DEFSYM (Qvalue, "value");
|
||
DEFSYM (Qhash_table_test, "hash-table-test");
|
||
DEFSYM (Qkey_or_value, "key-or-value");
|
||
DEFSYM (Qkey_and_value, "key-and-value");
|
||
|
||
defsubr (&Ssxhash);
|
||
defsubr (&Smake_hash_table);
|
||
defsubr (&Scopy_hash_table);
|
||
defsubr (&Shash_table_count);
|
||
defsubr (&Shash_table_rehash_size);
|
||
defsubr (&Shash_table_rehash_threshold);
|
||
defsubr (&Shash_table_size);
|
||
defsubr (&Shash_table_test);
|
||
defsubr (&Shash_table_weakness);
|
||
defsubr (&Shash_table_p);
|
||
defsubr (&Sclrhash);
|
||
defsubr (&Sgethash);
|
||
defsubr (&Sputhash);
|
||
defsubr (&Sremhash);
|
||
defsubr (&Smaphash);
|
||
defsubr (&Sdefine_hash_table_test);
|
||
|
||
DEFSYM (Qstring_lessp, "string-lessp");
|
||
DEFSYM (Qprovide, "provide");
|
||
DEFSYM (Qrequire, "require");
|
||
DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
|
||
DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
|
||
DEFSYM (Qwidget_type, "widget-type");
|
||
|
||
staticpro (&string_char_byte_cache_string);
|
||
string_char_byte_cache_string = Qnil;
|
||
|
||
require_nesting_list = Qnil;
|
||
staticpro (&require_nesting_list);
|
||
|
||
Fset (Qyes_or_no_p_history, Qnil);
|
||
|
||
DEFVAR_LISP ("features", Vfeatures,
|
||
doc: /* A list of symbols which are the features of the executing Emacs.
|
||
Used by `featurep' and `require', and altered by `provide'. */);
|
||
Vfeatures = list1 (intern_c_string ("emacs"));
|
||
DEFSYM (Qsubfeatures, "subfeatures");
|
||
DEFSYM (Qfuncall, "funcall");
|
||
|
||
#ifdef HAVE_LANGINFO_CODESET
|
||
DEFSYM (Qcodeset, "codeset");
|
||
DEFSYM (Qdays, "days");
|
||
DEFSYM (Qmonths, "months");
|
||
DEFSYM (Qpaper, "paper");
|
||
#endif /* HAVE_LANGINFO_CODESET */
|
||
|
||
DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
|
||
doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
|
||
This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
|
||
invoked by mouse clicks and mouse menu items.
|
||
|
||
On some platforms, file selection dialogs are also enabled if this is
|
||
non-nil. */);
|
||
use_dialog_box = 1;
|
||
|
||
DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
|
||
doc: /* Non-nil means mouse commands use a file dialog to ask for files.
|
||
This applies to commands from menus and tool bar buttons even when
|
||
they are initiated from the keyboard. If `use-dialog-box' is nil,
|
||
that disables the use of a file dialog, regardless of the value of
|
||
this variable. */);
|
||
use_file_dialog = 1;
|
||
|
||
defsubr (&Sidentity);
|
||
defsubr (&Srandom);
|
||
defsubr (&Slength);
|
||
defsubr (&Ssafe_length);
|
||
defsubr (&Sstring_bytes);
|
||
defsubr (&Sstring_equal);
|
||
defsubr (&Scompare_strings);
|
||
defsubr (&Sstring_lessp);
|
||
defsubr (&Sappend);
|
||
defsubr (&Sconcat);
|
||
defsubr (&Svconcat);
|
||
defsubr (&Scopy_sequence);
|
||
defsubr (&Sstring_make_multibyte);
|
||
defsubr (&Sstring_make_unibyte);
|
||
defsubr (&Sstring_as_multibyte);
|
||
defsubr (&Sstring_as_unibyte);
|
||
defsubr (&Sstring_to_multibyte);
|
||
defsubr (&Sstring_to_unibyte);
|
||
defsubr (&Scopy_alist);
|
||
defsubr (&Ssubstring);
|
||
defsubr (&Ssubstring_no_properties);
|
||
defsubr (&Snthcdr);
|
||
defsubr (&Snth);
|
||
defsubr (&Selt);
|
||
defsubr (&Smember);
|
||
defsubr (&Smemq);
|
||
defsubr (&Smemql);
|
||
defsubr (&Sassq);
|
||
defsubr (&Sassoc);
|
||
defsubr (&Srassq);
|
||
defsubr (&Srassoc);
|
||
defsubr (&Sdelq);
|
||
defsubr (&Sdelete);
|
||
defsubr (&Snreverse);
|
||
defsubr (&Sreverse);
|
||
defsubr (&Ssort);
|
||
defsubr (&Splist_get);
|
||
defsubr (&Sget);
|
||
defsubr (&Splist_put);
|
||
defsubr (&Sput);
|
||
defsubr (&Slax_plist_get);
|
||
defsubr (&Slax_plist_put);
|
||
defsubr (&Seql);
|
||
defsubr (&Sequal);
|
||
defsubr (&Sequal_including_properties);
|
||
defsubr (&Sfillarray);
|
||
defsubr (&Sclear_string);
|
||
defsubr (&Snconc);
|
||
defsubr (&Smapcar);
|
||
defsubr (&Smapc);
|
||
defsubr (&Smapconcat);
|
||
defsubr (&Syes_or_no_p);
|
||
defsubr (&Sload_average);
|
||
defsubr (&Sfeaturep);
|
||
defsubr (&Srequire);
|
||
defsubr (&Sprovide);
|
||
defsubr (&Splist_member);
|
||
defsubr (&Swidget_put);
|
||
defsubr (&Swidget_get);
|
||
defsubr (&Swidget_apply);
|
||
defsubr (&Sbase64_encode_region);
|
||
defsubr (&Sbase64_decode_region);
|
||
defsubr (&Sbase64_encode_string);
|
||
defsubr (&Sbase64_decode_string);
|
||
defsubr (&Smd5);
|
||
defsubr (&Ssecure_hash);
|
||
defsubr (&Slocale_info);
|
||
|
||
hashtest_eq.name = Qeq;
|
||
hashtest_eq.user_hash_function = Qnil;
|
||
hashtest_eq.user_cmp_function = Qnil;
|
||
hashtest_eq.cmpfn = 0;
|
||
hashtest_eq.hashfn = hashfn_eq;
|
||
|
||
hashtest_eql.name = Qeql;
|
||
hashtest_eql.user_hash_function = Qnil;
|
||
hashtest_eql.user_cmp_function = Qnil;
|
||
hashtest_eql.cmpfn = cmpfn_eql;
|
||
hashtest_eql.hashfn = hashfn_eql;
|
||
|
||
hashtest_equal.name = Qequal;
|
||
hashtest_equal.user_hash_function = Qnil;
|
||
hashtest_equal.user_cmp_function = Qnil;
|
||
hashtest_equal.cmpfn = cmpfn_equal;
|
||
hashtest_equal.hashfn = hashfn_equal;
|
||
}
|