1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-13 09:32:47 +00:00
emacs/lisp/emacs-lisp/radix-tree.el
Paul Eggert 365e01cc9f Update copyright year to 2020
Run "TZ=UTC0 admin/update-copyright $(git ls-files)".
2020-01-01 00:59:52 +00:00

251 lines
9.3 KiB
EmacsLisp

;;; radix-tree.el --- A simple library of radix trees -*- lexical-binding: t; -*-
;; Copyright (C) 2016-2020 Free Software Foundation, Inc.
;; Author: Stefan Monnier <monnier@iro.umontreal.ca>
;; Keywords:
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; There are many different options for how to represent radix trees
;; in Elisp. Here I chose a very simple one. A radix-tree can be either:
;; - a node, of the form ((PREFIX . PTREE) . RTREE) where PREFIX is a string
;; meaning that everything that starts with PREFIX is in PTREE,
;; and everything else in RTREE. It also has the property that
;; everything that starts with the first letter of PREFIX but not with
;; that whole PREFIX is not in RTREE (i.e. is not in the tree at all).
;; - anything else is taken as the value to associate with the empty string.
;; So every node is basically an (improper) alist where each mapping applies
;; to a different leading letter.
;;
;; The main downside of this representation is that the lookup operation
;; is slower because each level of the tree is an alist rather than some kind
;; of array, so every level's lookup is O(N) rather than O(1). We could easily
;; solve this by using char-tables instead of alists, but that would make every
;; level take up a lot more memory, and it would make the resulting
;; data structure harder to read (by a human) when printed out.
;;; Code:
(defun radix-tree--insert (tree key val i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil key i ni)))
(if (eq t cmp)
(let ((nptree (radix-tree--insert ptree key val ni)))
`((,prefix . ,nptree) . ,rtree))
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(let ((nrtree (radix-tree--insert rtree key val i)))
`((,prefix . ,ptree) . ,nrtree))
(let* ((nprefix (substring prefix 0 n))
(kprefix (substring key (+ i n)))
(pprefix (substring prefix n))
(ktree (if (equal kprefix "") val
`((,kprefix . ,val)))))
`((,nprefix
. ((,pprefix . ,ptree) . ,ktree))
. ,rtree)))))))
(_
(if (= (length key) i) val
(let ((prefix (substring key i)))
`((,prefix . ,val) . ,tree))))))
(defun radix-tree--remove (tree key i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil key i ni)))
(if (eq t cmp)
(pcase (radix-tree--remove ptree key ni)
('nil rtree)
(`((,pprefix . ,pptree))
`((,(concat prefix pprefix) . ,pptree) . ,rtree))
(nptree `((,prefix . ,nptree) . ,rtree)))
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(let ((nrtree (radix-tree--remove rtree key i)))
`((,prefix . ,ptree) . ,nrtree))
tree)))))
(_
(if (= (length key) i) nil tree))))
(defun radix-tree--lookup (tree string i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni)))
(if (eq t cmp)
(radix-tree--lookup ptree string ni)
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(radix-tree--lookup rtree string i)
(+ i n))))))
(val
(if (and val (equal (length string) i))
(if (integerp val) `(t . ,val) val)
i))))
;; (defun radix-tree--trim (tree string i)
;; (if (= i (length string))
;; tree
;; (pcase tree
;; (`((,prefix . ,ptree) . ,rtree)
;; (let* ((ni (+ i (length prefix)))
;; (cmp (compare-strings prefix nil nil string i ni))
;; ;; FIXME: We could compute nrtree more efficiently
;; ;; whenever cmp is not -1 or 1.
;; (nrtree (radix-tree--trim rtree string i)))
;; (if (eq t cmp)
;; (pcase (radix-tree--trim ptree string ni)
;; (`nil nrtree)
;; (`((,pprefix . ,pptree))
;; `((,(concat prefix pprefix) . ,pptree) . ,nrtree))
;; (nptree `((,prefix . ,nptree) . ,nrtree)))
;; (let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
;; (cond
;; ((equal (+ n i) (length string))
;; `((,prefix . ,ptree) . ,nrtree))
;; (t nrtree))))))
;; (val val))))
(defun radix-tree--prefixes (tree string i prefixes)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni))
;; FIXME: We could compute prefixes more efficiently
;; whenever cmp is not -1 or 1.
(prefixes (radix-tree--prefixes rtree string i prefixes)))
(if (eq t cmp)
(radix-tree--prefixes ptree string ni prefixes)
prefixes)))
(val
(if (null val)
prefixes
(cons (cons (substring string 0 i)
(if (eq (car-safe val) t) (cdr val) val))
prefixes)))))
(defun radix-tree--subtree (tree string i)
(if (equal (length string) i) tree
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni)))
(if (eq t cmp)
(radix-tree--subtree ptree string ni)
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(cond
((zerop n) (radix-tree--subtree rtree string i))
((equal (+ n i) (length string))
(let ((nprefix (substring prefix n)))
`((,nprefix . ,ptree))))
(t nil))))))
(_ nil))))
;;; Entry points
(defconst radix-tree-empty nil
"The empty radix-tree.")
(defun radix-tree-insert (tree key val)
"Insert a mapping from KEY to VAL in radix TREE."
(when (consp val) (setq val `(t . ,val)))
(if val (radix-tree--insert tree key val 0)
(radix-tree--remove tree key 0)))
(defun radix-tree-lookup (tree key)
"Return the value associated to KEY in radix TREE.
If not found, return nil."
(pcase (radix-tree--lookup tree key 0)
(`(t . ,val) val)
((pred numberp) nil)
(val val)))
(defun radix-tree-subtree (tree string)
"Return the subtree of TREE rooted at the prefix STRING."
(radix-tree--subtree tree string 0))
;; (defun radix-tree-trim (tree string)
;; "Return a TREE which only holds entries \"related\" to STRING.
;; \"Related\" is here defined as entries where there's a `string-prefix-p' relation
;; between STRING and the key."
;; (radix-tree-trim tree string 0))
(defun radix-tree-prefixes (tree string)
"Return an alist of all bindings in TREE for prefixes of STRING."
(radix-tree--prefixes tree string 0 nil))
(eval-and-compile
(pcase-defmacro radix-tree-leaf (vpat)
"Pattern which matches a radix-tree leaf.
The pattern VPAT is matched against the leaf's carried value."
;; FIXME: We'd like to use a negative pattern (not consp), but pcase
;; doesn't support it. Using `atom' works but generates sub-optimal code.
`(or `(t . ,,vpat) (and (pred atom) ,vpat))))
(defun radix-tree-iter-subtrees (tree fun)
"Apply FUN to every immediate subtree of radix TREE.
FUN is called with two arguments: PREFIX and SUBTREE.
You can test if SUBTREE is a leaf (and extract its value) with the
pcase pattern (radix-tree-leaf PAT)."
(while tree
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(funcall fun prefix ptree)
(setq tree rtree))
(_ (funcall fun "" tree)
(setq tree nil)))))
(defun radix-tree-iter-mappings (tree fun &optional prefix)
"Apply FUN to every mapping in TREE.
FUN is called with two arguments: KEY and VAL.
PREFIX is only used internally."
(radix-tree-iter-subtrees
tree
(lambda (p s)
(let ((nprefix (concat prefix p)))
(pcase s
((radix-tree-leaf v) (funcall fun nprefix v))
(_ (radix-tree-iter-mappings s fun nprefix)))))))
;; (defun radix-tree->alist (tree)
;; (let ((al nil))
;; (radix-tree-iter-mappings tree (lambda (p v) (push (cons p v) al)))
;; al))
(defun radix-tree-count (tree)
(let ((i 0))
(radix-tree-iter-mappings tree (lambda (_k _v) (setq i (1+ i))))
i))
(declare-function map-apply "map" (function map))
(defun radix-tree-from-map (map)
;; Aka (cl-defmethod map-into (map (type (eql radix-tree)))) ...)
(require 'map)
(let ((rt nil))
(map-apply (lambda (k v) (setq rt (radix-tree-insert rt k v))) map)
rt))
(provide 'radix-tree)
;;; radix-tree.el ends here