mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-11-24 07:20:37 +00:00
864 lines
35 KiB
Plaintext
864 lines
35 KiB
Plaintext
@c This is part of the Emacs manual.
|
|
@c Copyright (C) 1985,86,87,93,94,95,97,2000,2001 Free Software Foundation, Inc.
|
|
@c See file emacs.texi for copying conditions.
|
|
@node Building, Maintaining, Programs, Top
|
|
@chapter Compiling and Testing Programs
|
|
@cindex building programs
|
|
@cindex program building
|
|
@cindex running Lisp functions
|
|
|
|
The previous chapter discusses the Emacs commands that are useful for
|
|
making changes in programs. This chapter deals with commands that assist
|
|
in the larger process of developing and maintaining programs.
|
|
|
|
@menu
|
|
* Compilation:: Compiling programs in languages other
|
|
than Lisp (C, Pascal, etc.).
|
|
* Grep Searching:: Running grep as if it were a compiler.
|
|
* Compilation Mode:: The mode for visiting compiler errors.
|
|
* Compilation Shell:: Customizing your shell properly
|
|
for use in the compilation buffer.
|
|
* Debuggers:: Running symbolic debuggers for non-Lisp programs.
|
|
* Executing Lisp:: Various modes for editing Lisp programs,
|
|
with different facilities for running
|
|
the Lisp programs.
|
|
* Libraries: Lisp Libraries. Creating Lisp programs to run in Emacs.
|
|
* Interaction: Lisp Interaction. Executing Lisp in an Emacs buffer.
|
|
* Eval: Lisp Eval. Executing a single Lisp expression in Emacs.
|
|
* External Lisp:: Communicating through Emacs with a separate Lisp.
|
|
@end menu
|
|
|
|
@node Compilation
|
|
@section Running Compilations under Emacs
|
|
@cindex inferior process
|
|
@cindex make
|
|
@cindex compilation errors
|
|
@cindex error log
|
|
|
|
Emacs can run compilers for noninteractive languages such as C and
|
|
Fortran as inferior processes, feeding the error log into an Emacs buffer.
|
|
It can also parse the error messages and show you the source lines where
|
|
compilation errors occurred.
|
|
|
|
@table @kbd
|
|
@item M-x compile
|
|
Run a compiler asynchronously under Emacs, with error messages going to
|
|
the @samp{*compilation*} buffer.
|
|
@item M-x recompile
|
|
Invoke a compiler with the same command as in the last invocation of
|
|
@kbd{M-x compile}.
|
|
@item M-x grep
|
|
Run @code{grep} asynchronously under Emacs, with matching lines
|
|
listed in the buffer named @samp{*grep*}.
|
|
@item M-x grep-find
|
|
Run @code{grep} via @code{find}, with user-specified arguments, and
|
|
collect output in the buffer named @samp{*grep*}.
|
|
@item M-x kill-compilation
|
|
@itemx M-x kill-grep
|
|
Kill the running compilation or @code{grep} subprocess.
|
|
@end table
|
|
|
|
@findex compile
|
|
To run @code{make} or another compilation command, do @kbd{M-x
|
|
compile}. This command reads a shell command line using the minibuffer,
|
|
and then executes the command in an inferior shell, putting output in
|
|
the buffer named @samp{*compilation*}. The current buffer's default
|
|
directory is used as the working directory for the execution of the
|
|
command; normally, therefore, the compilation happens in this
|
|
directory.
|
|
|
|
@vindex compile-command
|
|
When the shell command line is read, the minibuffer appears containing
|
|
a default command line, which is the command you used the last time you
|
|
did @kbd{M-x compile}. If you type just @key{RET}, the same command
|
|
line is used again. For the first @kbd{M-x compile}, the default is
|
|
@samp{make -k}. The default compilation command comes from the variable
|
|
@code{compile-command}; if the appropriate compilation command for a
|
|
file is something other than @samp{make -k}, it can be useful for the
|
|
file to specify a local value for @code{compile-command} (@pxref{File
|
|
Variables}).
|
|
|
|
Starting a compilation displays the buffer @samp{*compilation*} in
|
|
another window but does not select it. The buffer's mode line tells you
|
|
whether compilation is finished, with the word @samp{run} or @samp{exit}
|
|
inside the parentheses. You do not have to keep this buffer visible;
|
|
compilation continues in any case. While a compilation is going on, the
|
|
string @samp{Compiling} appears in the mode lines of all windows. When
|
|
this string disappears, the compilation is finished.
|
|
|
|
If you want to watch the compilation transcript as it appears, switch
|
|
to the @samp{*compilation*} buffer and move point to the end of the
|
|
buffer. When point is at the end, new compilation output is inserted
|
|
above point, which remains at the end. If point is not at the end of
|
|
the buffer, it remains fixed while more compilation output is added at
|
|
the end of the buffer.
|
|
|
|
@cindex compilation buffer, keeping current position at the end
|
|
@vindex compilation-scroll-output
|
|
If you set the variable @code{compilation-scroll-output} to a
|
|
non-@code{nil} value, then the compilation buffer always scrolls to
|
|
follow output as it comes in.
|
|
|
|
@findex kill-compilation
|
|
To kill the compilation process, do @kbd{M-x kill-compilation}. When
|
|
the compiler process terminates, the mode line of the
|
|
@samp{*compilation*} buffer changes to say @samp{signal} instead of
|
|
@samp{run}. Starting a new compilation also kills any running
|
|
compilation, as only one can exist at any time. However, @kbd{M-x
|
|
compile} asks for confirmation before actually killing a compilation
|
|
that is running.
|
|
|
|
@findex recompile
|
|
To rerun the last compilation with the same command, type @kbd{M-x
|
|
recompile}. This automatically reuses the compilation command from the
|
|
last invocation of @kbd{M-x compile}.
|
|
|
|
@node Grep Searching
|
|
@section Searching with Grep under Emacs
|
|
|
|
@findex grep
|
|
Just as you can run a compiler from Emacs and then visit the lines
|
|
where there were compilation errors, you can also run @code{grep} and
|
|
then visit the lines on which matches were found. This works by
|
|
treating the matches reported by @code{grep} as if they were ``errors.''
|
|
|
|
To do this, type @kbd{M-x grep}, then enter a command line that
|
|
specifies how to run @code{grep}. Use the same arguments you would give
|
|
@code{grep} when running it normally: a @code{grep}-style regexp
|
|
(usually in single-quotes to quote the shell's special characters)
|
|
followed by file names, which may use wildcards. The output from
|
|
@code{grep} goes in the @samp{*grep*} buffer. You can find the
|
|
corresponding lines in the original files using @kbd{C-x `} and
|
|
@key{RET}, as with compilation errors.
|
|
|
|
If you specify a prefix argument for @kbd{M-x grep}, it figures out
|
|
the tag (@pxref{Tags}) around point, and puts that into the default
|
|
@code{grep} command.
|
|
|
|
@findex grep-find
|
|
The command @kbd{M-x grep-find} is similar to @kbd{M-x grep}, but it
|
|
supplies a different initial default for the command---one that runs
|
|
both @code{find} and @code{grep}, so as to search every file in a
|
|
directory tree. See also the @code{find-grep-dired} command,
|
|
in @ref{Dired and Find}.
|
|
|
|
@node Compilation Mode
|
|
@section Compilation Mode
|
|
|
|
@findex compile-goto-error
|
|
@cindex Compilation mode
|
|
@cindex mode, Compilation
|
|
The @samp{*compilation*} buffer uses a special major mode, Compilation
|
|
mode, whose main feature is to provide a convenient way to look at the
|
|
source line where the error happened.
|
|
|
|
If you set the variable @code{compilation-scroll-output} to a
|
|
non-@code{nil} value, then the compilation buffer always scrolls to
|
|
follow output as it comes in.
|
|
|
|
@table @kbd
|
|
@item C-x `
|
|
Visit the locus of the next compiler error message or @code{grep} match.
|
|
@item @key{RET}
|
|
Visit the locus of the error message that point is on.
|
|
This command is used in the compilation buffer.
|
|
@item Mouse-2
|
|
Visit the locus of the error message that you click on.
|
|
@end table
|
|
|
|
@kindex C-x `
|
|
@findex next-error
|
|
You can visit the source for any particular error message by moving
|
|
point in the @samp{*compilation*} buffer to that error message and
|
|
typing @key{RET} (@code{compile-goto-error}). Alternatively, you can
|
|
click @kbd{Mouse-2} on the error message; you need not switch to the
|
|
@samp{*compilation*} buffer first.
|
|
|
|
To parse the compiler error messages sequentially, type @kbd{C-x `}
|
|
(@code{next-error}). The character following the @kbd{C-x} is the
|
|
backquote or ``grave accent,'' not the single-quote. This command is
|
|
available in all buffers, not just in @samp{*compilation*}; it displays
|
|
the next error message at the top of one window and source location of
|
|
the error in another window.
|
|
|
|
The first time @kbd{C-x `} is used after the start of a compilation,
|
|
it moves to the first error's location. Subsequent uses of @kbd{C-x `}
|
|
advance down to subsequent errors. If you visit a specific error
|
|
message with @key{RET} or @kbd{Mouse-2}, subsequent @kbd{C-x `}
|
|
commands advance from there. When @kbd{C-x `} gets to the end of the
|
|
buffer and finds no more error messages to visit, it fails and signals
|
|
an Emacs error.
|
|
|
|
@kbd{C-u C-x `} starts scanning from the beginning of the compilation
|
|
buffer. This is one way to process the same set of errors again.
|
|
|
|
@vindex compilation-error-regexp-alist
|
|
@vindex grep-regexp-alist
|
|
To parse messages from the compiler, Compilation mode uses the
|
|
variable @code{compilation-error-regexp-alist} which lists various
|
|
formats of error messages and tells Emacs how to extract the source file
|
|
and the line number from the text of a message. If your compiler isn't
|
|
supported, you can tailor Compilation mode to it by adding elements to
|
|
that list. A similar variable @code{grep-regexp-alist} tells Emacs how
|
|
to parse output of a @code{grep} command.
|
|
|
|
Compilation mode also redefines the keys @key{SPC} and @key{DEL} to
|
|
scroll by screenfuls, and @kbd{M-n} and @kbd{M-p} to move to the next or
|
|
previous error message. You can also use @kbd{M-@{} and @kbd{M-@}} to
|
|
move up or down to an error message for a different source file.
|
|
|
|
The features of Compilation mode are also available in a minor mode
|
|
called Compilation Minor mode. This lets you parse error messages in
|
|
any buffer, not just a normal compilation output buffer. Type @kbd{M-x
|
|
compilation-minor-mode} to enable the minor mode. This defines the keys
|
|
@key{RET} and @kbd{Mouse-2}, as in the Compilation major mode.
|
|
|
|
Compilation minor mode works in any buffer, as long as the contents
|
|
are in a format that it understands. In an Rlogin buffer (@pxref{Remote
|
|
Host}), Compilation minor mode automatically accesses remote source
|
|
files by FTP (@pxref{File Names}).
|
|
|
|
@node Compilation Shell
|
|
@section Subshells for Compilation
|
|
|
|
Emacs uses a shell to run the compilation command, but specifies
|
|
the option for a noninteractive shell. This means, in particular, that
|
|
the shell should start with no prompt. If you find your usual shell
|
|
prompt making an unsightly appearance in the @samp{*compilation*}
|
|
buffer, it means you have made a mistake in your shell's init file by
|
|
setting the prompt unconditionally. (This init file's name may be
|
|
@file{.bashrc}, @file{.profile}, @file{.cshrc}, @file{.shrc}, or various
|
|
other things, depending on the shell you use.) The shell init file
|
|
should set the prompt only if there already is a prompt. In csh, here
|
|
is how to do it:
|
|
|
|
@example
|
|
if ($?prompt) set prompt = @dots{}
|
|
@end example
|
|
|
|
@noindent
|
|
And here's how to do it in bash:
|
|
|
|
@example
|
|
if [ "$@{PS1+set@}" = set ]
|
|
then PS1=@dots{}
|
|
fi
|
|
@end example
|
|
|
|
There may well be other things that your shell's init file
|
|
ought to do only for an interactive shell. You can use the same
|
|
method to conditionalize them.
|
|
|
|
The MS-DOS ``operating system'' does not support asynchronous
|
|
subprocesses; to work around this lack, @kbd{M-x compile} runs the
|
|
compilation command synchronously on MS-DOS. As a consequence, you must
|
|
wait until the command finishes before you can do anything else in
|
|
Emacs. @xref{MS-DOS}.
|
|
|
|
@node Debuggers
|
|
@section Running Debuggers Under Emacs
|
|
@cindex debuggers
|
|
@cindex GUD library
|
|
@cindex GDB
|
|
@cindex DBX
|
|
@cindex SDB
|
|
@cindex XDB
|
|
@cindex Perldb
|
|
@cindex JDB
|
|
@cindex PDB
|
|
|
|
@c Do you believe in GUD?
|
|
The GUD (Grand Unified Debugger) library provides an interface to
|
|
various symbolic debuggers from within Emacs. We recommend the debugger
|
|
GDB, which is free software, but you can also run DBX, SDB or XDB if you
|
|
have them. GUD can also serve as an interface to the Perl's debugging
|
|
mode, the Python debugger PDB, and to JDB, the Java Debugger.
|
|
@xref{Debugger,, The Lisp Debugger, elisp, the Emacs Lisp Reference Manual},
|
|
for information on debugging Emacs Lisp programs.
|
|
|
|
@menu
|
|
* Starting GUD:: How to start a debugger subprocess.
|
|
* Debugger Operation:: Connection between the debugger and source buffers.
|
|
* Commands of GUD:: Key bindings for common commands.
|
|
* GUD Customization:: Defining your own commands for GUD.
|
|
* GUD Tooltips:: Showing variable values by pointing with the mouse.
|
|
@end menu
|
|
|
|
@node Starting GUD
|
|
@subsection Starting GUD
|
|
|
|
There are several commands for starting a debugger, each corresponding
|
|
to a particular debugger program.
|
|
|
|
@table @kbd
|
|
@item M-x gdb @key{RET} @var{file} @key{RET}
|
|
@findex gdb
|
|
Run GDB as a subprocess of Emacs. This command creates a buffer
|
|
for input and output to GDB, and switches to it. If a GDB buffer
|
|
already exists, it just switches to that buffer.
|
|
|
|
@item M-x dbx @key{RET} @var{file} @key{RET}
|
|
@findex dbx
|
|
Similar, but run DBX instead of GDB.
|
|
|
|
@item M-x xdb @key{RET} @var{file} @key{RET}
|
|
@findex xdb
|
|
@vindex gud-xdb-directories
|
|
Similar, but run XDB instead of GDB. Use the variable
|
|
@code{gud-xdb-directories} to specify directories to search for source
|
|
files.
|
|
|
|
@item M-x sdb @key{RET} @var{file} @key{RET}
|
|
@findex sdb
|
|
Similar, but run SDB instead of GDB.
|
|
|
|
Some versions of SDB do not mention source file names in their
|
|
messages. When you use them, you need to have a valid tags table
|
|
(@pxref{Tags}) in order for GUD to find functions in the source code.
|
|
If you have not visited a tags table or the tags table doesn't list one
|
|
of the functions, you get a message saying @samp{The sdb support
|
|
requires a valid tags table to work}. If this happens, generate a valid
|
|
tags table in the working directory and try again.
|
|
|
|
@item M-x perldb @key{RET} @var{file} @key{RET}
|
|
@findex perldb
|
|
Run the Perl interpreter in debug mode to debug @var{file}, a Perl program.
|
|
|
|
@item M-x jdb @key{RET} @var{file} @key{RET}
|
|
@findex jdb
|
|
Run the Java debugger to debug @var{file}.
|
|
|
|
@item M-x pdb @key{RET} @var{file} @key{RET}
|
|
@findex pdb
|
|
Run the Python debugger to debug @var{file}.
|
|
@end table
|
|
|
|
Each of these commands takes one argument: a command line to invoke
|
|
the debugger. In the simplest case, specify just the name of the
|
|
executable file you want to debug. You may also use options that the
|
|
debugger supports. However, shell wildcards and variables are not
|
|
allowed. GUD assumes that the first argument not starting with a
|
|
@samp{-} is the executable file name.
|
|
|
|
Emacs can only run one debugger process at a time.
|
|
|
|
@node Debugger Operation
|
|
@subsection Debugger Operation
|
|
|
|
@cindex fringes, and current execution line in GUD
|
|
When you run a debugger with GUD, the debugger uses an Emacs buffer
|
|
for its ordinary input and output. This is called the GUD buffer. The
|
|
debugger displays the source files of the program by visiting them in
|
|
Emacs buffers. An arrow (@samp{=>}) in one of these buffers indicates
|
|
the current execution line.@footnote{Under a window system, the arrow
|
|
appears in the left fringe of the Emacs window.} Moving point in this
|
|
buffer does not move the arrow.
|
|
|
|
You can start editing these source files at any time in the buffers
|
|
that display them. The arrow is not part of the file's
|
|
text; it appears only on the screen. If you do modify a source file,
|
|
keep in mind that inserting or deleting lines will throw off the arrow's
|
|
positioning; GUD has no way of figuring out which line corresponded
|
|
before your changes to the line number in a debugger message. Also,
|
|
you'll typically have to recompile and restart the program for your
|
|
changes to be reflected in the debugger's tables.
|
|
|
|
If you wish, you can control your debugger process entirely through the
|
|
debugger buffer, which uses a variant of Shell mode. All the usual
|
|
commands for your debugger are available, and you can use the Shell mode
|
|
history commands to repeat them. @xref{Shell Mode}.
|
|
|
|
@node Commands of GUD
|
|
@subsection Commands of GUD
|
|
|
|
The GUD interaction buffer uses a variant of Shell mode, so the
|
|
commands of Shell mode are available (@pxref{Shell Mode}). GUD mode
|
|
also provides commands for setting and clearing breakpoints, for
|
|
selecting stack frames, and for stepping through the program. These
|
|
commands are available both in the GUD buffer and globally, but with
|
|
different key bindings.
|
|
|
|
The breakpoint commands are normally used in source file buffers,
|
|
because that is the easiest way to specify where to set or clear the
|
|
breakpoint. Here's the global command to set a breakpoint:
|
|
|
|
@table @kbd
|
|
@item C-x @key{SPC}
|
|
@kindex C-x SPC
|
|
Set a breakpoint on the source line that point is on.
|
|
@end table
|
|
|
|
@kindex C-x C-a @r{(GUD)}
|
|
Here are the other special commands provided by GUD. The keys
|
|
starting with @kbd{C-c} are available only in the GUD interaction
|
|
buffer. The key bindings that start with @kbd{C-x C-a} are available in
|
|
the GUD interaction buffer and also in source files.
|
|
|
|
@table @kbd
|
|
@item C-c C-l
|
|
@kindex C-c C-l @r{(GUD)}
|
|
@itemx C-x C-a C-l
|
|
@findex gud-refresh
|
|
Display in another window the last line referred to in the GUD
|
|
buffer (that is, the line indicated in the last location message).
|
|
This runs the command @code{gud-refresh}.
|
|
|
|
@item C-c C-s
|
|
@kindex C-c C-s @r{(GUD)}
|
|
@itemx C-x C-a C-s
|
|
@findex gud-step
|
|
Execute a single line of code (@code{gud-step}). If the line contains
|
|
a function call, execution stops after entering the called function.
|
|
|
|
@item C-c C-n
|
|
@kindex C-c C-n @r{(GUD)}
|
|
@itemx C-x C-a C-n
|
|
@findex gud-next
|
|
Execute a single line of code, stepping across entire function calls
|
|
at full speed (@code{gud-next}).
|
|
|
|
@item C-c C-i
|
|
@kindex C-c C-i @r{(GUD)}
|
|
@itemx C-x C-a C-i
|
|
@findex gud-stepi
|
|
Execute a single machine instruction (@code{gud-stepi}).
|
|
|
|
@need 3000
|
|
@item C-c C-r
|
|
@kindex C-c C-r @r{(GUD)}
|
|
@itemx C-x C-a C-r
|
|
@findex gud-cont
|
|
Continue execution without specifying any stopping point. The program
|
|
will run until it hits a breakpoint, terminates, or gets a signal that
|
|
the debugger is checking for (@code{gud-cont}).
|
|
|
|
@need 1000
|
|
@item C-c C-d
|
|
@kindex C-c C-d @r{(GUD)}
|
|
@itemx C-x C-a C-d
|
|
@findex gud-remove
|
|
Delete the breakpoint(s) on the current source line, if any
|
|
(@code{gud-remove}). If you use this command in the GUD interaction
|
|
buffer, it applies to the line where the program last stopped.
|
|
|
|
@item C-c C-t
|
|
@kindex C-c C-t @r{(GUD)}
|
|
@itemx C-x C-a C-t
|
|
@findex gud-tbreak
|
|
Set a temporary breakpoint on the current source line, if any.
|
|
If you use this command in the GUD interaction buffer,
|
|
it applies to the line where the program last stopped.
|
|
@end table
|
|
|
|
The above commands are common to all supported debuggers. If you are
|
|
using GDB or (some versions of) DBX, these additional commands are available:
|
|
|
|
@table @kbd
|
|
@item C-c <
|
|
@kindex C-c < @r{(GUD)}
|
|
@itemx C-x C-a <
|
|
@findex gud-up
|
|
Select the next enclosing stack frame (@code{gud-up}). This is
|
|
equivalent to the @samp{up} command.
|
|
|
|
@item C-c >
|
|
@kindex C-c > @r{(GUD)}
|
|
@itemx C-x C-a >
|
|
@findex gud-down
|
|
Select the next inner stack frame (@code{gud-down}). This is
|
|
equivalent to the @samp{down} command.
|
|
@end table
|
|
|
|
If you are using GDB, these additional key bindings are available:
|
|
|
|
@table @kbd
|
|
@item @key{TAB}
|
|
@kindex TAB @r{(GUD)}
|
|
@findex gud-gdb-complete-command
|
|
With GDB, complete a symbol name (@code{gud-gdb-complete-command}).
|
|
This key is available only in the GUD interaction buffer, and requires
|
|
GDB versions 4.13 and later.
|
|
|
|
@item C-c C-f
|
|
@kindex C-c C-f @r{(GUD)}
|
|
@itemx C-x C-a C-f
|
|
@findex gud-finish
|
|
Run the program until the selected stack frame returns (or until it
|
|
stops for some other reason).
|
|
|
|
@item C-c C-j
|
|
@kindex C-c C-j @r{(GUD)}
|
|
@itemx C-x C-a C-j
|
|
@findex gud-jump
|
|
Only useful in a source buffer, (@code{gud-jump}) relocates the next
|
|
instruction to the current line at point in a source buffer. If the
|
|
new execution line is in a different function from the previously one,
|
|
you will be prompted for confirmation since the results may be
|
|
bizarre. See the GDB manual entry regarding @code{jump} for details.
|
|
@end table
|
|
|
|
These commands interpret a numeric argument as a repeat count, when
|
|
that makes sense.
|
|
|
|
Because @key{TAB} serves as a completion command, you can't use it to
|
|
enter a tab as input to the program you are debugging with GDB.
|
|
Instead, type @kbd{C-q @key{TAB}} to enter a tab.
|
|
|
|
@node GUD Customization
|
|
@subsection GUD Customization
|
|
|
|
@vindex gdb-mode-hook
|
|
@vindex dbx-mode-hook
|
|
@vindex sdb-mode-hook
|
|
@vindex xdb-mode-hook
|
|
@vindex perldb-mode-hook
|
|
@vindex pdb-mode-hook
|
|
@vindex jdb-mode-hook
|
|
On startup, GUD runs one of the following hooks: @code{gdb-mode-hook},
|
|
if you are using GDB; @code{dbx-mode-hook}, if you are using DBX;
|
|
@code{sdb-mode-hook}, if you are using SDB; @code{xdb-mode-hook}, if you
|
|
are using XDB; @code{perldb-mode-hook}, for Perl debugging mode;
|
|
@code{pdb-mode-hook}, for PDB; @code{jdb-mode-hook}, for JDB. You can
|
|
use these hooks to define custom key bindings for the debugger
|
|
interaction buffer. @xref{Hooks}.
|
|
|
|
Here is a convenient way to define a command that sends a particular
|
|
command string to the debugger, and set up a key binding for it in the
|
|
debugger interaction buffer:
|
|
|
|
@findex gud-def
|
|
@example
|
|
(gud-def @var{function} @var{cmdstring} @var{binding} @var{docstring})
|
|
@end example
|
|
|
|
This defines a command named @var{function} which sends
|
|
@var{cmdstring} to the debugger process, and gives it the documentation
|
|
string @var{docstring}. You can then use the command @var{function} in any
|
|
buffer. If @var{binding} is non-@code{nil}, @code{gud-def} also binds
|
|
the command to @kbd{C-c @var{binding}} in the GUD buffer's mode and to
|
|
@kbd{C-x C-a @var{binding}} generally.
|
|
|
|
The command string @var{cmdstring} may contain certain
|
|
@samp{%}-sequences that stand for data to be filled in at the time
|
|
@var{function} is called:
|
|
|
|
@table @samp
|
|
@item %f
|
|
The name of the current source file. If the current buffer is the GUD
|
|
buffer, then the ``current source file'' is the file that the program
|
|
stopped in.
|
|
@c This said, ``the name of the file the program counter was in at the last breakpoint.''
|
|
@c But I suspect it is really the last stop file.
|
|
|
|
@item %l
|
|
The number of the current source line. If the current buffer is the GUD
|
|
buffer, then the ``current source line'' is the line that the program
|
|
stopped in.
|
|
|
|
@item %e
|
|
The text of the C lvalue or function-call expression at or adjacent to point.
|
|
|
|
@item %a
|
|
The text of the hexadecimal address at or adjacent to point.
|
|
|
|
@item %p
|
|
The numeric argument of the called function, as a decimal number. If
|
|
the command is used without a numeric argument, @samp{%p} stands for the
|
|
empty string.
|
|
|
|
If you don't use @samp{%p} in the command string, the command you define
|
|
ignores any numeric argument.
|
|
@end table
|
|
|
|
@node GUD Tooltips
|
|
@subsection GUD Tooltips
|
|
|
|
@cindex tooltips with GUD
|
|
The Tooltip facility (@pxref{Tooltips}) provides support for GUD@. If
|
|
GUD support is activated by customizing the @code{tooltip} group,
|
|
variable values can be displayed in tooltips by pointing at them with
|
|
the mouse in the GUD buffer or in source buffers with major modes in the
|
|
customizable list @code{tooltip-gud-modes}.
|
|
|
|
@node Executing Lisp
|
|
@section Executing Lisp Expressions
|
|
|
|
Emacs has several different major modes for Lisp and Scheme. They are
|
|
the same in terms of editing commands, but differ in the commands for
|
|
executing Lisp expressions. Each mode has its own purpose.
|
|
|
|
@table @asis
|
|
@item Emacs-Lisp mode
|
|
The mode for editing source files of programs to run in Emacs Lisp.
|
|
This mode defines @kbd{C-M-x} to evaluate the current defun.
|
|
@xref{Lisp Libraries}.
|
|
@item Lisp Interaction mode
|
|
The mode for an interactive session with Emacs Lisp. It defines
|
|
@kbd{C-j} to evaluate the sexp before point and insert its value in the
|
|
buffer. @xref{Lisp Interaction}.
|
|
@item Lisp mode
|
|
The mode for editing source files of programs that run in Lisps other
|
|
than Emacs Lisp. This mode defines @kbd{C-M-x} to send the current defun
|
|
to an inferior Lisp process. @xref{External Lisp}.
|
|
@item Inferior Lisp mode
|
|
The mode for an interactive session with an inferior Lisp process.
|
|
This mode combines the special features of Lisp mode and Shell mode
|
|
(@pxref{Shell Mode}).
|
|
@item Scheme mode
|
|
Like Lisp mode but for Scheme programs.
|
|
@item Inferior Scheme mode
|
|
The mode for an interactive session with an inferior Scheme process.
|
|
@end table
|
|
|
|
Most editing commands for working with Lisp programs are in fact
|
|
available globally. @xref{Programs}.
|
|
|
|
@node Lisp Libraries
|
|
@section Libraries of Lisp Code for Emacs
|
|
@cindex libraries
|
|
@cindex loading Lisp code
|
|
|
|
Lisp code for Emacs editing commands is stored in files whose names
|
|
conventionally end in @file{.el}. This ending tells Emacs to edit them in
|
|
Emacs-Lisp mode (@pxref{Executing Lisp}).
|
|
|
|
@findex load-file
|
|
To execute a file of Emacs Lisp code, use @kbd{M-x load-file}. This
|
|
command reads a file name using the minibuffer and then executes the
|
|
contents of that file as Lisp code. It is not necessary to visit the
|
|
file first; in any case, this command reads the file as found on disk,
|
|
not text in an Emacs buffer.
|
|
|
|
@findex load
|
|
@findex load-library
|
|
Once a file of Lisp code is installed in the Emacs Lisp library
|
|
directories, users can load it using @kbd{M-x load-library}. Programs can
|
|
load it by calling @code{load-library}, or with @code{load}, a more primitive
|
|
function that is similar but accepts some additional arguments.
|
|
|
|
@kbd{M-x load-library} differs from @kbd{M-x load-file} in that it
|
|
searches a sequence of directories and tries three file names in each
|
|
directory. Suppose your argument is @var{lib}; the three names are
|
|
@file{@var{lib}.elc}, @file{@var{lib}.el}, and lastly just
|
|
@file{@var{lib}}. If @file{@var{lib}.elc} exists, it is by convention
|
|
the result of compiling @file{@var{lib}.el}; it is better to load the
|
|
compiled file, since it will load and run faster.
|
|
|
|
If @code{load-library} finds that @file{@var{lib}.el} is newer than
|
|
@file{@var{lib}.elc} file, it issues a warning, because it's likely that
|
|
somebody made changes to the @file{.el} file and forgot to recompile
|
|
it.
|
|
|
|
Because the argument to @code{load-library} is usually not in itself
|
|
a valid file name, file name completion is not available. Indeed, when
|
|
using this command, you usually do not know exactly what file name
|
|
will be used.
|
|
|
|
@vindex load-path
|
|
The sequence of directories searched by @kbd{M-x load-library} is
|
|
specified by the variable @code{load-path}, a list of strings that are
|
|
directory names. The default value of the list contains the directory where
|
|
the Lisp code for Emacs itself is stored. If you have libraries of
|
|
your own, put them in a single directory and add that directory
|
|
to @code{load-path}. @code{nil} in this list stands for the current default
|
|
directory, but it is probably not a good idea to put @code{nil} in the
|
|
list. If you find yourself wishing that @code{nil} were in the list,
|
|
most likely what you really want to do is use @kbd{M-x load-file}
|
|
this once.
|
|
|
|
@cindex autoload
|
|
Often you do not have to give any command to load a library, because
|
|
the commands defined in the library are set up to @dfn{autoload} that
|
|
library. Trying to run any of those commands calls @code{load} to load
|
|
the library; this replaces the autoload definitions with the real ones
|
|
from the library.
|
|
|
|
@cindex byte code
|
|
Emacs Lisp code can be compiled into byte-code which loads faster,
|
|
takes up less space when loaded, and executes faster. @xref{Byte
|
|
Compilation,, Byte Compilation, elisp, the Emacs Lisp Reference Manual}.
|
|
By convention, the compiled code for a library goes in a separate file
|
|
whose name consists of the library source file with @samp{c} appended.
|
|
Thus, the compiled code for @file{foo.el} goes in @file{foo.elc}.
|
|
That's why @code{load-library} searches for @samp{.elc} files first.
|
|
|
|
@vindex load-dangerous-libraries
|
|
@cindex Lisp files byte-compiled by XEmacs
|
|
By default, Emacs refuses to load compiled Lisp files which were
|
|
compiled with XEmacs, a modified versions of Emacs---they can cause
|
|
Emacs to crash. Set the variable @code{load-dangerous-libraries} to
|
|
@code{t} if you want to try loading them.
|
|
|
|
@node Lisp Eval
|
|
@section Evaluating Emacs-Lisp Expressions
|
|
@cindex Emacs-Lisp mode
|
|
@cindex mode, Emacs-Lisp
|
|
|
|
@findex emacs-lisp-mode
|
|
Lisp programs intended to be run in Emacs should be edited in
|
|
Emacs-Lisp mode; this happens automatically for file names ending in
|
|
@file{.el}. By contrast, Lisp mode itself is used for editing Lisp
|
|
programs intended for other Lisp systems. To switch to Emacs-Lisp mode
|
|
explicitly, use the command @kbd{M-x emacs-lisp-mode}.
|
|
|
|
For testing of Lisp programs to run in Emacs, it is often useful to
|
|
evaluate part of the program as it is found in the Emacs buffer. For
|
|
example, after changing the text of a Lisp function definition,
|
|
evaluating the definition installs the change for future calls to the
|
|
function. Evaluation of Lisp expressions is also useful in any kind of
|
|
editing, for invoking noninteractive functions (functions that are
|
|
not commands).
|
|
|
|
@table @kbd
|
|
@item M-:
|
|
Read a single Lisp expression in the minibuffer, evaluate it, and print
|
|
the value in the echo area (@code{eval-expression}).
|
|
@item C-x C-e
|
|
Evaluate the Lisp expression before point, and print the value in the
|
|
echo area (@code{eval-last-sexp}).
|
|
@item C-M-x
|
|
Evaluate the defun containing or after point, and print the value in
|
|
the echo area (@code{eval-defun}).
|
|
@item M-x eval-region
|
|
Evaluate all the Lisp expressions in the region.
|
|
@item M-x eval-current-buffer
|
|
Evaluate all the Lisp expressions in the buffer.
|
|
@end table
|
|
|
|
@kindex M-:
|
|
@findex eval-expression
|
|
@kbd{M-:} (@code{eval-expression}) is the most basic command for evaluating
|
|
a Lisp expression interactively. It reads the expression using the
|
|
minibuffer, so you can execute any expression on a buffer regardless of
|
|
what the buffer contains. When the expression is evaluated, the current
|
|
buffer is once again the buffer that was current when @kbd{M-:} was
|
|
typed.
|
|
|
|
@kindex C-M-x @r{(Emacs-Lisp mode)}
|
|
@findex eval-defun
|
|
In Emacs-Lisp mode, the key @kbd{C-M-x} is bound to the command
|
|
@code{eval-defun}, which parses the defun containing or following point
|
|
as a Lisp expression and evaluates it. The value is printed in the echo
|
|
area. This command is convenient for installing in the Lisp environment
|
|
changes that you have just made in the text of a function definition.
|
|
|
|
@kbd{C-M-x} treats @code{defvar} expressions specially. Normally,
|
|
evaluating a @code{defvar} expression does nothing if the variable it
|
|
defines already has a value. But @kbd{C-M-x} unconditionally resets the
|
|
variable to the initial value specified in the @code{defvar} expression.
|
|
@code{defcustom} expressions are treated similarly.
|
|
This special feature is convenient for debugging Lisp programs.
|
|
|
|
@kindex C-x C-e
|
|
@findex eval-last-sexp
|
|
The command @kbd{C-x C-e} (@code{eval-last-sexp}) evaluates the Lisp
|
|
expression preceding point in the buffer, and displays the value in the
|
|
echo area. It is available in all major modes, not just Emacs-Lisp
|
|
mode. It does not treat @code{defvar} specially.
|
|
|
|
If @kbd{C-M-x}, @kbd{C-x C-e}, or @kbd{M-:} is given a numeric
|
|
argument, it inserts the value into the current buffer at point, rather
|
|
than displaying it in the echo area. The argument's value does not
|
|
matter.
|
|
|
|
@findex eval-region
|
|
@findex eval-current-buffer
|
|
The most general command for evaluating Lisp expressions from a buffer
|
|
is @code{eval-region}. @kbd{M-x eval-region} parses the text of the
|
|
region as one or more Lisp expressions, evaluating them one by one.
|
|
@kbd{M-x eval-current-buffer} is similar but evaluates the entire
|
|
buffer. This is a reasonable way to install the contents of a file of
|
|
Lisp code that you are ready to test. Later, as you find bugs and
|
|
change individual functions, use @kbd{C-M-x} on each function that you
|
|
change. This keeps the Lisp world in step with the source file.
|
|
|
|
@vindex eval-expression-print-level
|
|
@vindex eval-expression-print-length
|
|
@vindex eval-expression-debug-on-error
|
|
The customizable variables @code{eval-expression-print-level} and
|
|
@code{eval-expression-print-length} control the maximum depth and length
|
|
of lists to print in the result of the evaluation commands before
|
|
abbreviating them. @code{eval-expression-debug-on-error} controls
|
|
whether evaluation errors invoke the debugger when these commands are
|
|
used.
|
|
|
|
@node Lisp Interaction
|
|
@section Lisp Interaction Buffers
|
|
|
|
The buffer @samp{*scratch*} which is selected when Emacs starts up is
|
|
provided for evaluating Lisp expressions interactively inside Emacs.
|
|
|
|
The simplest way to use the @samp{*scratch*} buffer is to insert Lisp
|
|
expressions and type @kbd{C-j} after each expression. This command
|
|
reads the Lisp expression before point, evaluates it, and inserts the
|
|
value in printed representation before point. The result is a complete
|
|
typescript of the expressions you have evaluated and their values.
|
|
|
|
The @samp{*scratch*} buffer's major mode is Lisp Interaction mode, which
|
|
is the same as Emacs-Lisp mode except for the binding of @kbd{C-j}.
|
|
|
|
@findex lisp-interaction-mode
|
|
The rationale for this feature is that Emacs must have a buffer when
|
|
it starts up, but that buffer is not useful for editing files since a
|
|
new buffer is made for every file that you visit. The Lisp interpreter
|
|
typescript is the most useful thing I can think of for the initial
|
|
buffer to do. Type @kbd{M-x lisp-interaction-mode} to put the current
|
|
buffer in Lisp Interaction mode.
|
|
|
|
@findex ielm
|
|
An alternative way of evaluating Emacs Lisp expressions interactively
|
|
is to use Inferior Emacs-Lisp mode, which provides an interface rather
|
|
like Shell mode (@pxref{Shell Mode}) for evaluating Emacs Lisp
|
|
expressions. Type @kbd{M-x ielm} to create an @samp{*ielm*} buffer
|
|
which uses this mode.
|
|
|
|
@node External Lisp
|
|
@section Running an External Lisp
|
|
|
|
Emacs has facilities for running programs in other Lisp systems. You can
|
|
run a Lisp process as an inferior of Emacs, and pass expressions to it to
|
|
be evaluated. You can also pass changed function definitions directly from
|
|
the Emacs buffers in which you edit the Lisp programs to the inferior Lisp
|
|
process.
|
|
|
|
@findex run-lisp
|
|
@vindex inferior-lisp-program
|
|
@kindex C-x C-z
|
|
To run an inferior Lisp process, type @kbd{M-x run-lisp}. This runs
|
|
the program named @code{lisp}, the same program you would run by typing
|
|
@code{lisp} as a shell command, with both input and output going through
|
|
an Emacs buffer named @samp{*lisp*}. That is to say, any ``terminal
|
|
output'' from Lisp will go into the buffer, advancing point, and any
|
|
``terminal input'' for Lisp comes from text in the buffer. (You can
|
|
change the name of the Lisp executable file by setting the variable
|
|
@code{inferior-lisp-program}.)
|
|
|
|
To give input to Lisp, go to the end of the buffer and type the input,
|
|
terminated by @key{RET}. The @samp{*lisp*} buffer is in Inferior Lisp
|
|
mode, which combines the special characteristics of Lisp mode with most
|
|
of the features of Shell mode (@pxref{Shell Mode}). The definition of
|
|
@key{RET} to send a line to a subprocess is one of the features of Shell
|
|
mode.
|
|
|
|
@findex lisp-mode
|
|
For the source files of programs to run in external Lisps, use Lisp
|
|
mode. This mode can be selected with @kbd{M-x lisp-mode}, and is used
|
|
automatically for files whose names end in @file{.l}, @file{.lsp}, or
|
|
@file{.lisp}, as most Lisp systems usually expect.
|
|
|
|
@kindex C-M-x @r{(Lisp mode)}
|
|
@findex lisp-eval-defun
|
|
When you edit a function in a Lisp program you are running, the easiest
|
|
way to send the changed definition to the inferior Lisp process is the key
|
|
@kbd{C-M-x}. In Lisp mode, this runs the function @code{lisp-eval-defun},
|
|
which finds the defun around or following point and sends it as input to
|
|
the Lisp process. (Emacs can send input to any inferior process regardless
|
|
of what buffer is current.)
|
|
|
|
Contrast the meanings of @kbd{C-M-x} in Lisp mode (for editing programs
|
|
to be run in another Lisp system) and Emacs-Lisp mode (for editing Lisp
|
|
programs to be run in Emacs): in both modes it has the effect of installing
|
|
the function definition that point is in, but the way of doing so is
|
|
different according to where the relevant Lisp environment is found.
|
|
@xref{Executing Lisp}.
|