1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-02-02 20:16:25 +00:00
emacs/test/automated/cl-lib.el

230 lines
9.0 KiB
EmacsLisp

;;; cl-lib.el --- tests for emacs-lisp/cl-lib.el
;; Copyright (C) 2013-2014 Free Software Foundation, Inc.
;; This file is part of GNU Emacs.
;; This program is free software: you can redistribute it and/or
;; modify it under the terms of the GNU General Public License as
;; published by the Free Software Foundation, either version 3 of the
;; License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see `http://www.gnu.org/licenses/'.
;;; Commentary:
;; Extracted from ert-tests.el, back when ert used to reimplement some
;; cl functions.
;;; Code:
(require 'cl-lib)
(require 'ert)
(ert-deftest cl-lib-test-remprop ()
(let ((x (cl-gensym)))
(should (equal (symbol-plist x) '()))
;; Remove nonexistent property on empty plist.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '()))
(put x 'a 1)
(should (equal (symbol-plist x) '(a 1)))
;; Remove nonexistent property on nonempty plist.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '(a 1)))
(put x 'b 2)
(put x 'c 3)
(put x 'd 4)
(should (equal (symbol-plist x) '(a 1 b 2 c 3 d 4)))
;; Remove property that is neither first nor last.
(cl-remprop x 'c)
(should (equal (symbol-plist x) '(a 1 b 2 d 4)))
;; Remove last property from a plist of length >1.
(cl-remprop x 'd)
(should (equal (symbol-plist x) '(a 1 b 2)))
;; Remove first property from a plist of length >1.
(cl-remprop x 'a)
(should (equal (symbol-plist x) '(b 2)))
;; Remove property when there is only one.
(cl-remprop x 'b)
(should (equal (symbol-plist x) '()))))
(ert-deftest cl-lib-test-remove-if-not ()
(let ((list (list 'a 'b 'c 'd))
(i 0))
(let ((result (cl-remove-if-not (lambda (x)
(should (eql x (nth i list)))
(cl-incf i)
(member i '(2 3)))
list)))
(should (equal i 4))
(should (equal result '(b c)))
(should (equal list '(a b c d)))))
(should (equal '()
(cl-remove-if-not (lambda (_x) (should nil)) '()))))
(ert-deftest cl-lib-test-remove ()
(let ((list (list 'a 'b 'c 'd))
(key-index 0)
(test-index 0))
(let ((result
(cl-remove 'foo list
:key (lambda (x)
(should (eql x (nth key-index list)))
(prog1
(list key-index x)
(cl-incf key-index)))
:test
(lambda (a b)
(should (eql a 'foo))
(should (equal b (list test-index
(nth test-index list))))
(cl-incf test-index)
(member test-index '(2 3))))))
(should (equal key-index 4))
(should (equal test-index 4))
(should (equal result '(a d)))
(should (equal list '(a b c d)))))
(let ((x (cons nil nil))
(y (cons nil nil)))
(should (equal (cl-remove x (list x y))
;; or (list x), since we use `equal' -- the
;; important thing is that only one element got
;; removed, this proves that the default test is
;; `eql', not `equal'
(list y)))))
(ert-deftest cl-lib-test-set-functions ()
(let ((c1 (cons nil nil))
(c2 (cons nil nil))
(sym (make-symbol "a")))
(let ((e '())
(a (list 'a 'b sym nil "" "x" c1 c2))
(b (list c1 'y 'b sym 'x)))
(should (equal (cl-set-difference e e) e))
(should (equal (cl-set-difference a e) a))
(should (equal (cl-set-difference e a) e))
(should (equal (cl-set-difference a a) e))
(should (equal (cl-set-difference b e) b))
(should (equal (cl-set-difference e b) e))
(should (equal (cl-set-difference b b) e))
;; Note: this test (and others) is sensitive to the order of the
;; result, which is not documented.
(should (equal (cl-set-difference a b) (list c2 "x" "" nil 'a)))
(should (equal (cl-set-difference b a) (list 'x 'y)))
;; We aren't testing whether this is really using `eq' rather than `eql'.
(should (equal (cl-set-difference e e :test 'eq) e))
(should (equal (cl-set-difference a e :test 'eq) a))
(should (equal (cl-set-difference e a :test 'eq) e))
(should (equal (cl-set-difference a a :test 'eq) e))
(should (equal (cl-set-difference b e :test 'eq) b))
(should (equal (cl-set-difference e b :test 'eq) e))
(should (equal (cl-set-difference b b :test 'eq) e))
(should (equal (cl-set-difference a b :test 'eq) (list c2 "x" "" nil 'a)))
(should (equal (cl-set-difference b a :test 'eq) (list 'x 'y)))
(should (equal (cl-union e e) e))
(should (equal (cl-union a e) a))
(should (equal (cl-union e a) a))
(should (equal (cl-union a a) a))
(should (equal (cl-union b e) b))
(should (equal (cl-union e b) b))
(should (equal (cl-union b b) b))
(should (equal (cl-union a b) (list 'x 'y 'a 'b sym nil "" "x" c1 c2)))
(should (equal (cl-union b a) (list 'x 'y 'a 'b sym nil "" "x" c1 c2)))
(should (equal (cl-intersection e e) e))
(should (equal (cl-intersection a e) e))
(should (equal (cl-intersection e a) e))
(should (equal (cl-intersection a a) a))
(should (equal (cl-intersection b e) e))
(should (equal (cl-intersection e b) e))
(should (equal (cl-intersection b b) b))
(should (equal (cl-intersection a b) (list sym 'b c1)))
(should (equal (cl-intersection b a) (list sym 'b c1))))))
(ert-deftest cl-lib-test-gensym ()
;; Since the expansion of `should' calls `cl-gensym' and thus has a
;; side-effect on `cl--gensym-counter', we have to make sure all
;; macros in our test body are expanded before we rebind
;; `cl--gensym-counter' and run the body. Otherwise, the test would
;; fail if run interpreted.
(let ((body (byte-compile
'(lambda ()
(should (equal (symbol-name (cl-gensym)) "G0"))
(should (equal (symbol-name (cl-gensym)) "G1"))
(should (equal (symbol-name (cl-gensym)) "G2"))
(should (equal (symbol-name (cl-gensym "foo")) "foo3"))
(should (equal (symbol-name (cl-gensym "bar")) "bar4"))
(should (equal cl--gensym-counter 5))))))
(let ((cl--gensym-counter 0))
(funcall body))))
(ert-deftest cl-lib-test-coerce-to-vector ()
(let* ((a (vector))
(b (vector 1 a 3))
(c (list))
(d (list b a)))
(should (eql (cl-coerce a 'vector) a))
(should (eql (cl-coerce b 'vector) b))
(should (equal (cl-coerce c 'vector) (vector)))
(should (equal (cl-coerce d 'vector) (vector b a)))))
(ert-deftest cl-lib-test-string-position ()
(should (eql (cl-position ?x "") nil))
(should (eql (cl-position ?a "abc") 0))
(should (eql (cl-position ?b "abc") 1))
(should (eql (cl-position ?c "abc") 2))
(should (eql (cl-position ?d "abc") nil))
(should (eql (cl-position ?A "abc") nil)))
(ert-deftest cl-lib-test-mismatch ()
(should (eql (cl-mismatch "" "") nil))
(should (eql (cl-mismatch "" "a") 0))
(should (eql (cl-mismatch "a" "a") nil))
(should (eql (cl-mismatch "ab" "a") 1))
(should (eql (cl-mismatch "Aa" "aA") 0))
(should (eql (cl-mismatch '(a b c) '(a b d)) 2)))
(ert-deftest cl-lib-test-loop ()
(should (eql (cl-loop with (a b c) = '(1 2 3) return (+ a b c)) 6)))
(ert-deftest cl-lib-keyword-names-versus-values ()
(should (equal
(funcall (cl-function (lambda (&key a b) (list a b)))
:b :a :a 42)
'(42 :a))))
(cl-defstruct mystruct (abc :readonly t) def)
(ert-deftest cl-lib-struct-accessors ()
(let ((x (make-mystruct :abc 1 :def 2)))
(should (eql (cl-struct-slot-value 'mystruct 'abc x) 1))
(should (eql (cl-struct-slot-value 'mystruct 'def x) 2))
(setf (cl-struct-slot-value 'mystruct 'def x) -1)
(should (eql (cl-struct-slot-value 'mystruct 'def x) -1))
(should (eql (cl-struct-slot-offset 'mystruct 'abc) 1))
(should-error (cl-struct-slot-offset 'mystruct 'marypoppins))
(should (equal (cl-struct-slot-info 'mystruct)
'((cl-tag-slot) (abc :readonly t) (def))))))
(ert-deftest cl-the ()
(should (eql (cl-the integer 42) 42))
(should-error (cl-the integer "abc"))
(let ((side-effect 0))
(should (= (cl-the integer (cl-incf side-effect)) 1))
(should (= side-effect 1))))
(ert-deftest cl-loop-destructuring-with ()
(should (equal (cl-loop with (a b c) = '(1 2 3) return (+ a b c)) 6)))
;;; cl-lib.el ends here