1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-11-23 07:19:15 +00:00
emacs/lisp/calculator.el
2002-02-03 13:45:59 +00:00

1693 lines
68 KiB
EmacsLisp

;;; calculator.el --- a [not so] simple calculator for Emacs
;; Copyright (C) 1998, 2000, 2001 by Free Software Foundation, Inc.
;; Author: Eli Barzilay <eli@barzilay.org>
;; Keywords: tools, convenience
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify it
;; under the terms of the GNU General Public License as published by the
;; Free Software Foundation; either version 2, or (at your option) any
;; later version.
;; GNU Emacs is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
;; MA 02111-1307, USA.
;;;=====================================================================
;;; Commentary:
;;
;; A calculator for Emacs.
;; Why should you reach for your mouse to get xcalc (calc.exe, gcalc or
;; whatever), when you have Emacs running already?
;;
;; If this is not part of your Emacs distribution, then simply bind
;; `calculator' to a key and make it an autoloaded function, e.g.:
;; (autoload 'calculator "calculator"
;; "Run the Emacs calculator." t)
;; (global-set-key [(control return)] 'calculator)
;;
;; Written by Eli Barzilay: Maze is Life! eli@barzilay.org
;; http://www.barzilay.org/
;;
;; For latest version, check
;; http://www.barzilay.org/misc/calculator.el
;;
;;; History:
;; I hate history.
(eval-and-compile
(if (fboundp 'defgroup) nil
(defmacro defgroup (&rest forms) nil)
(defmacro defcustom (s v d &rest r) (list 'defvar s v d))))
;;;=====================================================================
;;; Customization:
(defgroup calculator nil
"Simple Emacs calculator."
:prefix "calculator"
:version "21.1"
:group 'tools
:group 'convenience)
(defcustom calculator-electric-mode nil
"*Run `calculator' electrically, in the echo area.
Electric mode saves some place but changes the way you interact with the
calculator."
:type 'boolean
:group 'calculator)
(defcustom calculator-use-menu t
"*Make `calculator' create a menu.
Note that this requires easymenu. Must be set before loading."
:type 'boolean
:group 'calculator)
(defcustom calculator-bind-escape nil
"*If non-nil, set escape to exit the calculator."
:type 'boolean
:group 'calculator)
(defcustom calculator-unary-style 'postfix
"*Value is either 'prefix or 'postfix.
This determines the default behavior of unary operators."
:type '(choice (const prefix) (const postfix))
:group 'calculator)
(defcustom calculator-prompt "Calc=%s> "
"*The prompt used by the Emacs calculator.
It should contain a \"%s\" somewhere that will indicate the i/o radixes,
this string will be a two-character string as described in the
documentation for `calculator-mode'."
:type 'string
:group 'calculator)
(defcustom calculator-number-digits 3
"*The calculator's number of digits used for standard display.
Used by the `calculator-standard-display' function - it will use the
format string \"%.NC\" where this number is N and C is a character given
at runtime."
:type 'integer
:group 'calculator)
(defcustom calculator-remove-zeros t
"*Non-nil value means delete all redundant zero decimal digits.
If this value is not t, and not nil, redundant zeros are removed except
for one and if it is nil, nothing is removed.
Used by the `calculator-remove-zeros' function."
:type '(choice (const t) (const leave-decimal) (const nil))
:group 'calculator)
(defcustom calculator-displayer '(std ?n)
"*A displayer specification for numerical values.
This is the displayer used to show all numbers in an expression. Result
values will be displayed according to the first element of
`calculator-displayers'.
The displayer is a symbol, a string or an expression. A symbol should
be the name of a one-argument function, a string is used with a single
argument and an expression will be evaluated with the variable `num'
bound to whatever should be displayed. If it is a function symbol, it
should be able to handle special symbol arguments, currently 'left and
'right which will be sent by special keys to modify display parameters
associated with the displayer function (for example to change the number
of digits displayed).
An exception to the above is the case of the list (std C) where C is a
character, in this case the `calculator-standard-displayer' function
will be used with this character for a format string.")
(defcustom calculator-displayers
'(((std ?n) "Standard display, decimal point or scientific")
(calculator-eng-display "Eng display")
((std ?f) "Standard display, decimal point")
((std ?e) "Standard display, scientific")
("%S" "Emacs printer"))
"*A list of displayers.
Each element is a list of a displayer and a description string. The
first element is the one which is currently used, this is for the display
of result values not values in expressions. A displayer specification
is the same as the values that can be stored in `calculator-displayer'.
`calculator-rotate-displayer' rotates this list."
:type 'sexp
:group 'calculator)
(defcustom calculator-paste-decimals t
"*If non-nil, convert pasted integers so they have a decimal point.
This makes it possible to paste big integers since they will be read as
floats, otherwise the Emacs reader will fail on them."
:type 'boolean
:group 'calculator)
(defcustom calculator-copy-displayer nil
"*If non-nil, this is any value that can be used for
`calculator-displayer', to format a string before copying it with
`calculator-copy'. If nil, then `calculator-displayer's normal value is
used.")
(defcustom calculator-2s-complement nil
"*If non-nil, show negative numbers in 2s complement in radix modes.
Otherwise show as a negative number."
:type 'boolean
:group 'calculator)
(defcustom calculator-mode-hook nil
"*List of hook functions for `calculator-mode' to run."
:type 'hook
:group 'calculator)
(defcustom calculator-user-registers nil
"*An association list of user-defined register bindings.
Each element in this list is a list of a character and a number that
will be stored in that character's register.
For example, use this to define the golden ratio number:
(setq calculator-user-registers '((?g . 1.61803398875)))
before you load calculator."
:type '(repeat (cons character number))
:set '(lambda (_ val)
(and (boundp 'calculator-registers)
(setq calculator-registers
(append val calculator-registers)))
(setq calculator-user-registers val))
:group 'calculator)
(defcustom calculator-user-operators nil
"*A list of additional operators.
This is a list in the same format as specified in the documentation for
`calculator-operators', that you can use to bind additional calculator
operators. It is probably not a good idea to modify this value with
`customize' since it is too complex...
Examples:
* A very simple one, adding a postfix \"x-to-y\" conversion keys, using
t as a prefix key:
(setq calculator-user-operators
'((\"tf\" cl-to-fr (+ 32 (/ (* X 9) 5)) 1)
(\"tc\" fr-to-cl (/ (* (- X 32) 5) 9) 1)
(\"tp\" kg-to-lb (/ X 0.453592) 1)
(\"tk\" lb-to-kg (* X 0.453592) 1)
(\"tF\" mt-to-ft (/ X 0.3048) 1)
(\"tM\" ft-to-mt (* X 0.3048) 1)))
* Using a function-like form is very simple, X for an argument (Y the
second in case of a binary operator), TX is a truncated version of X
and F does a recursive call, Here is a [very inefficient] Fibonacci
number calculation:
(add-to-list 'calculator-user-operators
'(\"F\" fib (if (<= TX 1)
1
(+ (F (- TX 1)) (F (- TX 2)))) 0))
Note that this will be either postfix or prefix, according to
`calculator-unary-style'."
:type '(repeat (list string symbol sexp integer integer))
:group 'calculator)
;;;=====================================================================
;;; Code:
;;;---------------------------------------------------------------------
;;; Variables
(defvar calculator-initial-operators
'(;; "+"/"-" have keybindings of themselves, not calculator-ops
("=" = identity 1 -1)
(nobind "+" + + 2 4)
(nobind "-" - - 2 4)
(nobind "+" + + -1 9)
(nobind "-" - - -1 9)
("(" \( identity -1 -1)
(")" \) identity +1 10)
;; normal keys
("|" or (logior TX TY) 2 2)
("#" xor (logxor TX TY) 2 2)
("&" and (logand TX TY) 2 3)
("*" * * 2 5)
("/" / / 2 5)
("\\" div (/ TX TY) 2 5)
("%" rem (% TX TY) 2 5)
("L" log log 2 6)
("S" sin (sin DX) x 6)
("C" cos (cos DX) x 6)
("T" tan (tan DX) x 6)
("IS" asin (D (asin X)) x 6)
("IC" acos (D (acos X)) x 6)
("IT" atan (D (atan X)) x 6)
("Q" sqrt sqrt x 7)
("^" ^ expt 2 7)
("!" ! calculator-fact x 7)
(";" 1/ (/ 1 X) 1 7)
("_" - - 1 8)
("~" ~ (lognot TX) x 8)
(">" repR calculator-repR 1 8)
("<" repL calculator-repL 1 8)
("v" avg (/ (apply '+ L) (length L)) 0 8)
("l" tot (apply '+ L) 0 8)
)
"A list of initial operators.
This is a list in the same format as `calculator-operators'. Whenever
`calculator' starts, it looks at the value of this variable, and if it
is not empty, its contents is prepended to `calculator-operators' and
the appropriate key bindings are made.
This variable is then reset to nil. Don't use this if you want to add
user-defined operators, use `calculator-user-operators' instead.")
(defvar calculator-operators nil
"The calculator operators, each a list with:
1. The key that is bound to for this operation (usually a string);
2. The displayed symbol for this function;
3. The function symbol, or a form that uses the variables `X' and `Y',
(if it is a binary operator), `TX' and `TY' (truncated integer
versions), `DX' (converted to radians if degrees mode is on), `D'
(function for converting radians to degrees if deg mode is on), `L'
(list of saved values), `F' (function for recursive iteration calls)
and evaluates to the function value - these variables are capital;
4. The function's arity, optional, one of: 2 => binary, -1 => prefix
unary, +1 => postfix unary, 0 => a 0-arg operator func, non-number =>
postfix/prefix as determined by `calculator-unary-style' (the
default);
5. The function's precedence - should be in the range of 1 (lowest) to
9 (highest) (optional, defaults to 1);
It it possible have a unary prefix version of a binary operator if it
comes later in this list. If the list begins with the symbol 'nobind,
then no key binding will take place - this is only useful for predefined
keys.
Use `calculator-user-operators' to add operators to this list, see its
documentation for an example.")
(defvar calculator-stack nil
"Stack contents - operations and operands.")
(defvar calculator-curnum nil
"Current number being entered (as a string).")
(defvar calculator-stack-display nil
"Cons of the stack and its string representation.")
(defvar calculator-char-radix
'((?D . nil) (?B . bin) (?O . oct) (?H . hex) (?X . hex))
"A table to convert input characters to corresponding radix symbols.")
(defvar calculator-output-radix nil
"The mode for display, one of: nil (decimal), 'bin, 'oct or 'hex.")
(defvar calculator-input-radix nil
"The mode for input, one of: nil (decimal), 'bin, 'oct or 'hex.")
(defvar calculator-deg nil
"Non-nil if trig functions operate on degrees instead of radians.")
(defvar calculator-saved-list nil
"A list of saved values collected.")
(defvar calculator-saved-ptr 0
"The pointer to the current saved number.")
(defvar calculator-add-saved nil
"Bound to t when a value should be added to the saved-list.")
(defvar calculator-display-fragile nil
"When non-nil, we see something that the next digit should replace.")
(defvar calculator-buffer nil
"The current calculator buffer.")
(defvar calculator-eng-extra nil
"Internal value used by `calculator-eng-display'.")
(defvar calculator-eng-tmp-show nil
"Internal value used by `calculator-eng-display'.")
(defvar calculator-last-opXY nil
"The last binary operation and its arguments.
Used for repeating operations in calculator-repR/L.")
(defvar calculator-registers ; use user-bindings first
(append calculator-user-registers (list (cons ?e e) (cons ?p pi)))
"The association list of calculator register values.")
(defvar calculator-saved-global-map nil
"Saved global key map.")
(defvar calculator-restart-other-mode nil
"Used to hack restarting with the electric mode changed.")
;;;---------------------------------------------------------------------
;;; Key bindings
(defvar calculator-mode-map nil
"The calculator key map.")
(or calculator-mode-map
(let ((map (make-sparse-keymap)))
(suppress-keymap map t)
(define-key map "i" nil)
(define-key map "o" nil)
(let ((p
'((calculator-open-paren "[")
(calculator-close-paren "]")
(calculator-op-or-exp "+" "-" [kp-add] [kp-subtract])
(calculator-digit "0" "1" "2" "3" "4" "5" "6" "7" "8"
"9" "a" "b" "c" "d" "f"
[kp-0] [kp-1] [kp-2] [kp-3] [kp-4]
[kp-5] [kp-6] [kp-7] [kp-8] [kp-9])
(calculator-op [kp-divide] [kp-multiply])
(calculator-decimal "." [kp-decimal])
(calculator-exp "e")
(calculator-dec/deg-mode "D")
(calculator-set-register "s")
(calculator-get-register "g")
(calculator-radix-mode "H" "X" "O" "B")
(calculator-radix-input-mode "id" "ih" "ix" "io" "ib"
"iD" "iH" "iX" "iO" "iB")
(calculator-radix-output-mode "od" "oh" "ox" "oo" "ob"
"oD" "oH" "oX" "oO" "oB")
(calculator-rotate-displayer "'")
(calculator-rotate-displayer-back "\"")
(calculator-displayer-pref "{")
(calculator-displayer-next "}")
(calculator-saved-up [up] [?\C-p])
(calculator-saved-down [down] [?\C-n])
(calculator-quit "q" [?\C-g])
(calculator-enter [enter] [linefeed] [kp-enter]
[return] [?\r] [?\n])
(calculator-save-on-list " " [space])
(calculator-clear-saved [?\C-c] [(control delete)])
(calculator-save-and-quit [(control return)]
[(control kp-enter)])
(calculator-paste [insert] [(shift insert)]
[mouse-2])
(calculator-clear [delete] [?\C-?] [?\C-d])
(calculator-help [?h] [??] [f1] [help])
(calculator-copy [(control insert)])
(calculator-backspace [backspace])
)))
(while p
;; reverse the keys so first defs come last - makes the more
;; sensible bindings visible in the menu
(let ((func (car (car p))) (keys (reverse (cdr (car p)))))
(while keys
(define-key map (car keys) func)
(setq keys (cdr keys))))
(setq p (cdr p))))
(if calculator-bind-escape
(progn (define-key map [?\e] 'calculator-quit)
(define-key map [escape] 'calculator-quit))
(define-key map [?\e ?\e ?\e] 'calculator-quit))
;; make C-h work in text-mode
(or window-system (define-key map [?\C-h] 'calculator-backspace))
;; set up a menu
(if (and calculator-use-menu (not (boundp 'calculator-menu)))
(let ((radix-selectors
(mapcar (lambda (x)
`([,(nth 0 x)
(calculator-radix-mode ,(nth 2 x))
:style radio
:keys ,(nth 2 x)
:selected
(and
(eq calculator-input-radix ',(nth 1 x))
(eq calculator-output-radix ',(nth 1 x)))]
[,(concat (nth 0 x) " Input")
(calculator-radix-input-mode ,(nth 2 x))
:keys ,(concat "i" (downcase (nth 2 x)))
:style radio
:selected
(eq calculator-input-radix ',(nth 1 x))]
[,(concat (nth 0 x) " Output")
(calculator-radix-output-mode ,(nth 2 x))
:keys ,(concat "o" (downcase (nth 2 x)))
:style radio
:selected
(eq calculator-output-radix ',(nth 1 x))]))
'(("Decimal" nil "D")
("Binary" bin "B")
("Octal" oct "O")
("Hexadecimal" hex "H"))))
(op '(lambda (name key)
`[,name (calculator-op ,key) :keys ,key])))
(easy-menu-define
calculator-menu map "Calculator menu."
`("Calculator"
["Help"
(let ((last-command 'calculator-help)) (calculator-help))
:keys "?"]
"---"
["Copy" calculator-copy]
["Paste" calculator-paste]
"---"
["Electric mode"
(progn (calculator-quit)
(setq calculator-restart-other-mode t)
(run-with-timer 0.1 nil '(lambda () (message nil)))
;; the message from the menu will be visible,
;; couldn't make it go away...
(calculator))
:active (not calculator-electric-mode)]
["Normal mode"
(progn (setq calculator-restart-other-mode t)
(calculator-quit))
:active calculator-electric-mode]
"---"
("Functions"
,(funcall op "Repeat-right" ">")
,(funcall op "Repeat-left" "<")
"------General------"
,(funcall op "Reciprocal" ";")
,(funcall op "Log" "L")
,(funcall op "Square-root" "Q")
,(funcall op "Factorial" "!")
"------Trigonometric------"
,(funcall op "Sinus" "S")
,(funcall op "Cosine" "C")
,(funcall op "Tangent" "T")
,(funcall op "Inv-Sinus" "IS")
,(funcall op "Inv-Cosine" "IC")
,(funcall op "Inv-Tangent" "IT")
"------Bitwise------"
,(funcall op "Or" "|")
,(funcall op "Xor" "#")
,(funcall op "And" "&")
,(funcall op "Not" "~"))
("Saved List"
["Eval+Save" calculator-save-on-list]
["Prev number" calculator-saved-up]
["Next number" calculator-saved-down]
["Delete current" calculator-clear
:active (and calculator-display-fragile
calculator-saved-list
(= (car calculator-stack)
(nth calculator-saved-ptr
calculator-saved-list)))]
["Delete all" calculator-clear-saved]
"---"
,(funcall op "List-total" "l")
,(funcall op "List-average" "v"))
("Registers"
["Get register" calculator-get-register]
["Set register" calculator-set-register])
("Modes"
["Radians"
(progn
(and (or calculator-input-radix calculator-output-radix)
(calculator-radix-mode "D"))
(and calculator-deg (calculator-dec/deg-mode)))
:keys "D"
:style radio
:selected (not (or calculator-input-radix
calculator-output-radix
calculator-deg))]
["Degrees"
(progn
(and (or calculator-input-radix calculator-output-radix)
(calculator-radix-mode "D"))
(or calculator-deg (calculator-dec/deg-mode)))
:keys "D"
:style radio
:selected (and calculator-deg
(not (or calculator-input-radix
calculator-output-radix)))]
"---"
,@(mapcar 'car radix-selectors)
("Seperate I/O"
,@(mapcar (lambda (x) (nth 1 x)) radix-selectors)
"---"
,@(mapcar (lambda (x) (nth 2 x)) radix-selectors)))
("Decimal Dislpay"
,@(mapcar (lambda (d)
(vector (cadr d)
;; Note: inserts actual object here
`(calculator-rotate-displayer ',d)))
calculator-displayers)
"---"
["Change Prev Display" calculator-displayer-prev]
["Change Next Display" calculator-displayer-next])
"---"
["Copy+Quit" calculator-save-and-quit]
["Quit" calculator-quit]))))
(setq calculator-mode-map map)))
;;;---------------------------------------------------------------------
;;; Startup and mode stuff
(defun calculator-mode ()
;; this help is also used as the major help screen
"A [not so] simple calculator for Emacs.
This calculator is used in the same way as other popular calculators
like xcalc or calc.exe - but using an Emacs interface.
Expressions are entered using normal infix notation, parens are used as
normal. Unary functions are usually postfix, but some depends on the
value of `calculator-unary-style' (if the style for an operator below is
specified, then it is fixed, otherwise it depends on this variable).
`+' and `-' can be used as either binary operators or prefix unary
operators. Numbers can be entered with exponential notation using `e',
except when using a non-decimal radix mode for input (in this case `e'
will be the hexadecimal digit).
Here are the editing keys:
* `RET' `=' evaluate the current expression
* `C-insert' copy the whole current expression to the `kill-ring'
* `C-return' evaluate, save result the `kill-ring' and exit
* `insert' paste a number if the one was copied (normally)
* `delete' `C-d' clear last argument or whole expression (hit twice)
* `backspace' delete a digit or a previous expression element
* `h' `?' pop-up a quick reference help
* `ESC' `q' exit (`ESC' can be used if `calculator-bind-escape' is
non-nil, otherwise use three consecutive `ESC's)
These operators are pre-defined:
* `+' `-' `*' `/' the common binary operators
* `\\' `%' integer division and reminder
* `_' `;' postfix unary negation and reciprocal
* `^' `L' binary operators for x^y and log(x) in base y
* `Q' `!' unary square root and factorial
* `S' `C' `T' unary trigonometric operators - sin, cos and tan
* `|' `#' `&' `~' bitwise operators - or, xor, and, not
The trigonometric functions can be inverted if prefixed with an `I', see
below for the way to use degrees instead of the default radians.
Two special postfix unary operators are `>' and `<': whenever a binary
operator is performed, it is remembered along with its arguments; then
`>' (`<') will apply the same operator with the same right (left)
argument.
hex/oct/bin modes can be set for input and for display separately.
Another toggle-able mode is for using degrees instead of radians for
trigonometric functions.
The keys to switch modes are (`X' is shortcut for `H'):
* `D' switch to all-decimal mode, or toggle degrees/radians
* `B' `O' `H' `X' binary/octal/hexadecimal modes for input & display
* `i' `o' followed by one of `D' `B' `O' `H' `X' (case
insensitive) sets only the input or display radix mode
The prompt indicates the current modes:
* \"D=\": degrees mode;
* \"?=\": (? is B/O/H) this is the radix for both input and output;
* \"=?\": (? is B/O/H) the display radix (when input is decimal);
* \"??\": (? is D/B/O/H) 1st char for input radix, 2nd for display.
Also, the quote character can be used to switch display modes for
decimal numbers (double-quote rotates back), and the two brace
characters (\"{\" and \"}\" change display parameters that these
displayers use (if they handle such).
Values can be saved for future reference in either a list of saved
values, or in registers.
The list of saved values is useful for statistics operations on some
collected data. It is possible to navigate in this list, and if the
value shown is the current one on the list, an indication is displayed
as \"[N]\" if this is the last number and there are N numbers, or
\"[M/N]\" if the M-th value is shown.
* `SPC' evaluate the current value as usual, but also adds
the result to the list of saved values
* `l' `v' computes total / average of saved values
* `up' `C-p' browse to the previous value in the list
* `down' `C-n' browse to the next value in the list
* `delete' `C-d' remove current value from the list (if it is on it)
* `C-delete' `C-c' delete the whole list
Registers are variable-like place-holders for values:
* `s' followed by a character attach the current value to that character
* `g' followed by a character fetches the attached value
There are many variables that can be used to customize the calculator.
Some interesting customization variables are:
* `calculator-electric-mode' use only the echo-area electrically.
* `calculator-unary-style' set most unary ops to pre/postfix style.
* `calculator-user-registers' to define user-preset registers.
* `calculator-user-operators' to add user-defined operators.
See the documentation for these variables, and \"calculator.el\" for
more information.
\\{calculator-mode-map}"
(interactive)
(kill-all-local-variables)
(setq major-mode 'calculator-mode)
(setq mode-name "Calculator")
(use-local-map calculator-mode-map)
(run-hooks 'calculator-mode-hook))
(eval-when-compile (require 'electric) (require 'ehelp))
;;;###autoload
(defun calculator ()
"Run the Emacs calculator.
See the documentation for `calculator-mode' for more information."
(interactive)
(if calculator-restart-other-mode
(setq calculator-electric-mode (not calculator-electric-mode)))
(if calculator-initial-operators
(progn (calculator-add-operators calculator-initial-operators)
(setq calculator-initial-operators nil)
;; don't change this since it is a customization variable,
;; its set function will add any new operators
(calculator-add-operators calculator-user-operators)))
(if calculator-electric-mode
(save-window-excursion
(progn (require 'electric) (message nil)) ; hide load message
(let (old-g-map old-l-map (echo-keystrokes 0)
(garbage-collection-messages nil)) ; no gc msg when electric
;; strange behavior in FSF: doesn't always select correct
;; minibuffer. I have no idea how to fix this
(setq calculator-buffer (window-buffer (minibuffer-window)))
(select-window (minibuffer-window))
(calculator-reset)
(calculator-update-display)
(setq old-l-map (current-local-map))
(setq old-g-map (current-global-map))
(setq calculator-saved-global-map (current-global-map))
(use-local-map nil)
(use-global-map calculator-mode-map)
(unwind-protect
(catch 'calculator-done
(Electric-command-loop
'calculator-done
;; can't use 'noprompt, bug in electric.el
'(lambda () 'noprompt)
nil
(lambda (x y) (calculator-update-display))))
(and calculator-buffer
(catch 'calculator-done (calculator-quit)))
(use-local-map old-l-map)
(use-global-map old-g-map))))
(progn
(setq calculator-buffer (get-buffer-create "*calculator*"))
(cond
((not (get-buffer-window calculator-buffer))
(let ((split-window-keep-point nil)
(window-min-height 2))
;; maybe leave two lines for our window because of the normal
;; `raised' modeline in Emacs 21
(select-window
(split-window-vertically
(if (and (fboundp 'face-attr-construct)
(plist-get (face-attr-construct 'modeline) :box))
-3 -2)))
(switch-to-buffer calculator-buffer)))
((not (eq (current-buffer) calculator-buffer))
(select-window (get-buffer-window calculator-buffer))))
(calculator-mode)
(setq buffer-read-only t)
(calculator-reset)
(message "Hit `?' For a quick help screen.")))
(if (and calculator-restart-other-mode calculator-electric-mode)
(calculator)))
;;;---------------------------------------------------------------------
;;; Operators
(defun calculator-op-arity (op)
"Return OP's arity, 2, +1 or -1."
(let ((arity (or (nth 3 op) 'x)))
(if (numberp arity)
arity
(if (eq calculator-unary-style 'postfix) +1 -1))))
(defun calculator-op-prec (op)
"Return OP's precedence for reducing when inserting into the stack.
Defaults to 1."
(or (nth 4 op) 1))
(defun calculator-add-operators (more-ops)
"This function handles operator addition.
Adds MORE-OPS to `calculator-operator', called initially to handle
`calculator-initial-operators' and `calculator-user-operators'."
(let ((added-ops nil))
(while more-ops
(or (eq (car (car more-ops)) 'nobind)
(let ((i -1) (key (car (car more-ops))))
;; make sure the key is undefined, so it's easy to define
;; prefix keys
(while (< (setq i (1+ i)) (length key))
(or (keymapp
(lookup-key calculator-mode-map
(substring key 0 (1+ i))))
(progn
(define-key
calculator-mode-map (substring key 0 (1+ i)) nil)
(setq i (length key)))))
(define-key calculator-mode-map key 'calculator-op)))
(setq added-ops (cons (if (eq (car (car more-ops)) 'nobind)
(cdr (car more-ops))
(car more-ops))
added-ops))
(setq more-ops (cdr more-ops)))
;; added-ops come first, but in correct order
(setq calculator-operators
(append (nreverse added-ops) calculator-operators))))
;;;---------------------------------------------------------------------
;;; Display stuff
(defun calculator-reset ()
"Reset calculator variables."
(or calculator-restart-other-mode
(setq calculator-stack nil
calculator-curnum nil
calculator-stack-display nil
calculator-display-fragile nil))
(setq calculator-restart-other-mode nil)
(calculator-update-display))
(defun calculator-get-prompt ()
"Return a string to display.
The string is set not to exceed the screen width."
(let* ((calculator-prompt
(format calculator-prompt
(cond
((or calculator-output-radix calculator-input-radix)
(if (eq calculator-output-radix
calculator-input-radix)
(concat
(char-to-string
(car (rassq calculator-output-radix
calculator-char-radix)))
"=")
(concat
(if calculator-input-radix
(char-to-string
(car (rassq calculator-input-radix
calculator-char-radix)))
"=")
(char-to-string
(car (rassq calculator-output-radix
calculator-char-radix))))))
(calculator-deg "D=")
(t "=="))))
(prompt
(concat calculator-prompt
(cdr calculator-stack-display)
(cond (calculator-curnum
;; number being typed
(concat calculator-curnum "_"))
((and (= 1 (length calculator-stack))
calculator-display-fragile)
;; only the result is shown, next number will
;; restart
nil)
(t
;; waiting for a number or an operator
"?"))))
(trim (- (length prompt) (1- (window-width)))))
(if (<= trim 0)
prompt
(concat calculator-prompt
(substring prompt (+ trim (length calculator-prompt)))))))
(defun calculator-curnum-value ()
"Get the numeric value of the displayed number string as a float."
(if calculator-input-radix
(let ((radix
(cdr (assq calculator-input-radix
'((bin . 2) (oct . 8) (hex . 16)))))
(i -1) (value 0))
;; assume valid input (upcased & characters in range)
(while (< (setq i (1+ i)) (length calculator-curnum))
(setq value
(+ (let ((ch (aref calculator-curnum i)))
(- ch (if (<= ch ?9) ?0 (- ?A 10))))
(* radix value))))
value)
(car
(read-from-string
(cond
((equal "." calculator-curnum)
"0.0")
((string-match "[eE][+-]?$" calculator-curnum)
(concat calculator-curnum "0"))
((string-match "\\.[0-9]\\|[eE]" calculator-curnum)
calculator-curnum)
((string-match "\\." calculator-curnum)
;; do this because Emacs reads "23." as an integer
(concat calculator-curnum "0"))
((stringp calculator-curnum)
(concat calculator-curnum ".0"))
(t "0.0"))))))
(defun calculator-rotate-displayer (&optional new-disp)
"Switch to the next displayer on the `calculator-displayers' list.
Can be called with an optional argument NEW-DISP to force rotation to
that argument."
(interactive)
(setq calculator-displayers
(if (and new-disp (memq new-disp calculator-displayers))
(let ((tmp nil))
(while (not (eq (car calculator-displayers) new-disp))
(setq tmp (cons (car calculator-displayers) tmp))
(setq calculator-displayers (cdr calculator-displayers)))
(setq calculator-displayers
(nconc calculator-displayers (nreverse tmp))))
(nconc (cdr calculator-displayers)
(list (car calculator-displayers)))))
(message "Using %s." (cadr (car calculator-displayers)))
(if calculator-electric-mode
(progn (sit-for 1) (message nil)))
(calculator-enter))
(defun calculator-rotate-displayer-back ()
"Like `calculator-rotate-displayer', but rotates modes back."
(interactive)
(calculator-rotate-displayer (car (last calculator-displayers))))
(defun calculator-displayer-prev ()
"Send the current displayer function a 'left argument.
This is used to modify display arguments (if the current displayer
function supports this)."
(interactive)
(and (car calculator-displayers)
(let ((disp (caar calculator-displayers)))
(cond ((symbolp disp) (funcall disp 'left))
((and (consp disp) (eq 'std (car disp)))
(calculator-standard-displayer 'left (cadr disp)))))))
(defun calculator-displayer-next ()
"Send the current displayer function a 'right argument.
This is used to modify display arguments (if the current displayer
function supports this)."
(interactive)
(and (car calculator-displayers)
(let ((disp (caar calculator-displayers)))
(cond ((symbolp disp) (funcall disp 'right))
((and (consp disp) (eq 'std (car disp)))
(calculator-standard-displayer 'right (cadr disp)))))))
(defun calculator-remove-zeros (numstr)
"Get a number string NUMSTR and remove unnecessary zeroes.
the behavior of this function is controlled by
`calculator-remove-zeros'."
(cond ((and (eq calculator-remove-zeros t)
(string-match "\\.0+\\([eE][+-]?[0-9]*\\)?$" numstr))
;; remove all redundant zeros leaving an integer
(if (match-beginning 1)
(concat (substring numstr 0 (match-beginning 0))
(match-string 1 numstr))
(substring numstr 0 (match-beginning 0))))
((and calculator-remove-zeros
(string-match
"\\..\\([0-9]*[1-9]\\)?\\(0+\\)\\([eE][+-]?[0-9]*\\)?$"
numstr))
;; remove zeros, except for first after the "."
(if (match-beginning 3)
(concat (substring numstr 0 (match-beginning 2))
(match-string 3 numstr))
(substring numstr 0 (match-beginning 2))))
(t numstr)))
(defun calculator-standard-displayer (num char)
"Standard display function, used to display NUM.
Its behavior is determined by `calculator-number-digits' and the given
CHAR argument (both will be used to compose a format string). If the
char is \"n\" then this function will choose one between %f or %e, this
is a work around %g jumping to exponential notation too fast.
The special 'left and 'right symbols will make it change the current
number of digits displayed (`calculator-number-digits').
It will also remove redundant zeros from the result."
(if (symbolp num)
(cond ((eq num 'left)
(and (> calculator-number-digits 0)
(setq calculator-number-digits
(1- calculator-number-digits))
(calculator-enter)))
((eq num 'right)
(setq calculator-number-digits
(1+ calculator-number-digits))
(calculator-enter)))
(let ((str (if (zerop num)
"0"
(format
(concat "%."
(number-to-string calculator-number-digits)
(if (eq char ?n)
(let ((n (abs num)))
(if (or (< n 0.001) (> n 1e8)) "e" "f"))
(string char)))
num))))
(calculator-remove-zeros str))))
(defun calculator-eng-display (num)
"Display NUM in engineering notation.
The number of decimal digits used is controlled by
`calculator-number-digits', so to change it at runtime you have to use
the 'left or 'right when one of the standard modes is used."
(if (symbolp num)
(cond ((eq num 'left)
(setq calculator-eng-extra
(if calculator-eng-extra
(1+ calculator-eng-extra)
1))
(let ((calculator-eng-tmp-show t)) (calculator-enter)))
((eq num 'right)
(setq calculator-eng-extra
(if calculator-eng-extra
(1- calculator-eng-extra)
-1))
(let ((calculator-eng-tmp-show t)) (calculator-enter))))
(let ((exp 0))
(and (not (= 0 num))
(progn
(while (< (abs num) 1.0)
(setq num (* num 1000.0)) (setq exp (- exp 3)))
(while (> (abs num) 999.0)
(setq num (/ num 1000.0)) (setq exp (+ exp 3)))
(and calculator-eng-tmp-show
(not (= 0 calculator-eng-extra))
(let ((i calculator-eng-extra))
(while (> i 0)
(setq num (* num 1000.0)) (setq exp (- exp 3))
(setq i (1- i)))
(while (< i 0)
(setq num (/ num 1000.0)) (setq exp (+ exp 3))
(setq i (1+ i)))))))
(or calculator-eng-tmp-show (setq calculator-eng-extra nil))
(let ((str (format (concat "%." (number-to-string
calculator-number-digits)
"f")
num)))
(concat (let ((calculator-remove-zeros
;; make sure we don't leave integers
(and calculator-remove-zeros 'x)))
(calculator-remove-zeros str))
"e" (number-to-string exp))))))
(defun calculator-num-to-string (num)
"Convert NUM to a displayable string."
(cond
((and (numberp num) calculator-output-radix)
;; print with radix - for binary I convert the octal number
(let ((str (format (if (eq calculator-output-radix 'hex) "%x" "%o")
(calculator-truncate
(if calculator-2s-complement num (abs num))))))
(if (eq calculator-output-radix 'bin)
(let ((i -1) (s ""))
(while (< (setq i (1+ i)) (length str))
(setq s
(concat s
(cdr (assq (aref str i)
'((?0 . "000") (?1 . "001")
(?2 . "010") (?3 . "011")
(?4 . "100") (?5 . "101")
(?6 . "110") (?7 . "111")))))))
(string-match "^0*\\(.+\\)" s)
(setq str (match-string 1 s))))
(upcase
(if (and (not calculator-2s-complement) (< num 0))
(concat "-" str)
str))))
((and (numberp num) calculator-displayer)
(cond
((stringp calculator-displayer)
(format calculator-displayer num))
((symbolp calculator-displayer)
(funcall calculator-displayer num))
((and (consp calculator-displayer)
(eq 'std (car calculator-displayer)))
(calculator-standard-displayer num (cadr calculator-displayer)))
((listp calculator-displayer)
(eval calculator-displayer))
(t (prin1-to-string num t))))
;; operators are printed here
(t (prin1-to-string (nth 1 num) t))))
(defun calculator-update-display (&optional force)
"Update the display.
If optional argument FORCE is non-nil, don't use the cached string."
(set-buffer calculator-buffer)
;; update calculator-stack-display
(if (or force
(not (eq (car calculator-stack-display) calculator-stack)))
(setq calculator-stack-display
(cons calculator-stack
(if calculator-stack
(concat
(let ((calculator-displayer
(if (and calculator-displayers
(= 1 (length calculator-stack)))
;; customizable display for a single value
(caar calculator-displayers)
calculator-displayer)))
(mapconcat 'calculator-num-to-string
(reverse calculator-stack)
" "))
" "
(and calculator-display-fragile
calculator-saved-list
(= (car calculator-stack)
(nth calculator-saved-ptr
calculator-saved-list))
(if (= 0 calculator-saved-ptr)
(format "[%s]" (length calculator-saved-list))
(format "[%s/%s]"
(- (length calculator-saved-list)
calculator-saved-ptr)
(length calculator-saved-list)))))
""))))
(let ((inhibit-read-only t))
(erase-buffer)
(insert (calculator-get-prompt)))
(set-buffer-modified-p nil)
(if calculator-display-fragile
(goto-char (1+ (length calculator-prompt)))
(goto-char (1- (point)))))
;;;---------------------------------------------------------------------
;;; Stack computations
(defun calculator-reduce-stack (prec)
"Reduce the stack using top operator.
PREC is a precedence - reduce everything with higher precedence."
(while
(cond
((and (cdr (cdr calculator-stack)) ; have three values
(consp (nth 0 calculator-stack)) ; two operators & num
(numberp (nth 1 calculator-stack))
(consp (nth 2 calculator-stack))
(eq '\) (nth 1 (nth 0 calculator-stack)))
(eq '\( (nth 1 (nth 2 calculator-stack))))
;; reduce "... ( x )" --> "... x"
(setq calculator-stack
(cons (nth 1 calculator-stack)
(nthcdr 3 calculator-stack)))
;; another iteration
t)
((and (cdr (cdr calculator-stack)) ; have three values
(numberp (nth 0 calculator-stack)) ; two nums & operator
(consp (nth 1 calculator-stack))
(numberp (nth 2 calculator-stack))
(= 2 (calculator-op-arity ; binary operator
(nth 1 calculator-stack)))
(<= prec ; with higher prec.
(calculator-op-prec (nth 1 calculator-stack))))
;; reduce "... x op y" --> "... r", r is the result
(setq calculator-stack
(cons (calculator-funcall
(nth 2 (nth 1 calculator-stack))
(nth 2 calculator-stack)
(nth 0 calculator-stack))
(nthcdr 3 calculator-stack)))
;; another iteration
t)
((and (>= (length calculator-stack) 2) ; have two values
(numberp (nth 0 calculator-stack)) ; number & operator
(consp (nth 1 calculator-stack))
(= -1 (calculator-op-arity ; prefix-unary op
(nth 1 calculator-stack)))
(<= prec ; with higher prec.
(calculator-op-prec (nth 1 calculator-stack))))
;; reduce "... op x" --> "... r" for prefix op
(setq calculator-stack
(cons (calculator-funcall
(nth 2 (nth 1 calculator-stack))
(nth 0 calculator-stack))
(nthcdr 2 calculator-stack)))
;; another iteration
t)
((and (cdr calculator-stack) ; have two values
(consp (nth 0 calculator-stack)) ; operator & number
(numberp (nth 1 calculator-stack))
(= +1 (calculator-op-arity ; postfix-unary op
(nth 0 calculator-stack)))
(<= prec ; with higher prec.
(calculator-op-prec (nth 0 calculator-stack))))
;; reduce "... x op" --> "... r" for postfix op
(setq calculator-stack
(cons (calculator-funcall
(nth 2 (nth 0 calculator-stack))
(nth 1 calculator-stack))
(nthcdr 2 calculator-stack)))
;; another iteration
t)
((and calculator-stack ; have one value
(consp (nth 0 calculator-stack)) ; an operator
(= 0 (calculator-op-arity ; 0-ary op
(nth 0 calculator-stack))))
;; reduce "... op" --> "... r" for 0-ary op
(setq calculator-stack
(cons (calculator-funcall
(nth 2 (nth 0 calculator-stack)))
(nthcdr 1 calculator-stack)))
;; another iteration
t)
((and (cdr calculator-stack) ; have two values
(numberp (nth 0 calculator-stack)) ; both numbers
(numberp (nth 1 calculator-stack)))
;; get rid of redundant numbers:
;; reduce "... y x" --> "... x"
;; needed for 0-ary ops that puts more values
(setcdr calculator-stack (cdr (cdr calculator-stack))))
(t ;; no more iterations
nil))))
(defun calculator-funcall (f &optional X Y)
"If F is a symbol, evaluate (F X Y).
Otherwise, it should be a list, evaluate it with X, Y bound to the
arguments."
;; remember binary ops for calculator-repR/L
(if Y (setq calculator-last-opXY (list f X Y)))
(condition-case nil
;; there used to be code here that returns 0 if the result was
;; smaller than calculator-epsilon (1e-15). I don't think this is
;; necessary now.
(if (symbolp f)
(cond ((and X Y) (funcall f X Y))
(X (funcall f X))
(t (funcall f)))
;; f is an expression
(let* ((__f__ f) ; so we can get this value below...
(TX (calculator-truncate X))
(TY (and Y (calculator-truncate Y)))
(DX (if calculator-deg (/ (* X pi) 180) X))
(L calculator-saved-list)
(Fbound (fboundp 'F))
(Fsave (and Fbound (symbol-function 'F)))
(Dbound (fboundp 'D))
(Dsave (and Dbound (symbol-function 'D))))
;; a shortened version of flet
(fset 'F (function
(lambda (&optional x y)
(calculator-funcall __f__ x y))))
(fset 'D (function
(lambda (x)
(if calculator-deg (/ (* x 180) pi) x))))
(unwind-protect (eval f)
(if Fbound (fset 'F Fsave) (fmakunbound 'F))
(if Dbound (fset 'D Dsave) (fmakunbound 'D)))))
(error 0)))
(eval-when-compile ; silence the compiler
(or (fboundp 'event-key)
(defun event-key (&rest _) nil))
(or (fboundp 'key-press-event-p)
(defun key-press-event-p (&rest _) nil)))
;;;---------------------------------------------------------------------
;;; Input interaction
(defun calculator-last-input (&optional keys)
"Last char (or event or event sequence) that was read.
Optional string argument KEYS will force using it as the keys entered."
(let ((inp (or keys (this-command-keys))))
(if (or (stringp inp) (not (arrayp inp)))
inp
;; this translates kp-x to x and [tries to] create a string to
;; lookup operators
(let* ((i -1) (converted-str (make-string (length inp) ? )) k)
;; converts an array to a string the ops lookup with keypad
;; input
(while (< (setq i (1+ i)) (length inp))
(setq k (aref inp i))
;; if Emacs will someday have a event-key, then this would
;; probably be modified anyway
(and (fboundp 'event-key) (key-press-event-p k)
(event-key k) (setq k (event-key k)))
;; assume all symbols are translatable with an ascii-character
(and (symbolp k)
(setq k (or (get k 'ascii-character) ? )))
(aset converted-str i k))
converted-str))))
(defun calculator-clear-fragile (&optional op)
"Clear the fragile flag if it was set, then maybe reset all.
OP is the operator (if any) that caused this call."
(if (and calculator-display-fragile
(or (not op)
(= -1 (calculator-op-arity op))
(= 0 (calculator-op-arity op))))
;; reset if last calc finished, and now get a num or prefix or 0-ary
;; op
(calculator-reset))
(setq calculator-display-fragile nil))
(defun calculator-digit ()
"Enter a single digit."
(interactive)
(let ((inp (aref (calculator-last-input) 0)))
(if (and (or calculator-display-fragile
(not (numberp (car calculator-stack))))
(cond
((not calculator-input-radix) (<= inp ?9))
((eq calculator-input-radix 'bin) (<= inp ?1))
((eq calculator-input-radix 'oct) (<= inp ?7))
(t t)))
;; enter digit if starting a new computation or have an op on the
;; stack
(progn
(calculator-clear-fragile)
(let ((digit (upcase (char-to-string inp))))
(if (equal calculator-curnum "0")
(setq calculator-curnum nil))
(setq calculator-curnum
(concat (or calculator-curnum "") digit)))
(calculator-update-display)))))
(defun calculator-decimal ()
"Enter a decimal period."
(interactive)
(if (and (not calculator-input-radix)
(or calculator-display-fragile
(not (numberp (car calculator-stack))))
(not (and calculator-curnum
(string-match "[.eE]" calculator-curnum))))
;; enter the period on the same condition as a digit, only if no
;; period or exponent entered yet
(progn
(calculator-clear-fragile)
(setq calculator-curnum (concat (or calculator-curnum "0") "."))
(calculator-update-display))))
(defun calculator-exp ()
"Enter an `E' exponent character, or a digit in hex input mode."
(interactive)
(if calculator-input-radix
(calculator-digit)
(if (and (or calculator-display-fragile
(not (numberp (car calculator-stack))))
(not (and calculator-curnum
(string-match "[eE]" calculator-curnum))))
;; same condition as above, also no E so far
(progn
(calculator-clear-fragile)
(setq calculator-curnum (concat (or calculator-curnum "1") "e"))
(calculator-update-display)))))
(defun calculator-op (&optional keys)
"Enter an operator on the stack, doing all necessary reductions.
Optional string argument KEYS will force using it as the keys entered."
(interactive)
(catch 'op-error
(let* ((last-inp (calculator-last-input keys))
(op (assoc last-inp calculator-operators)))
(calculator-clear-fragile op)
(if (and calculator-curnum (/= (calculator-op-arity op) 0))
(setq calculator-stack
(cons (calculator-curnum-value) calculator-stack)))
(setq calculator-curnum nil)
(if (and (= 2 (calculator-op-arity op))
(not (and calculator-stack
(numberp (nth 0 calculator-stack)))))
;; we have a binary operator but no number - search for a prefix
;; version
(let ((rest-ops calculator-operators))
(while (not (equal last-inp (car (car rest-ops))))
(setq rest-ops (cdr rest-ops)))
(setq op (assoc last-inp (cdr rest-ops)))
(if (not (and op (= -1 (calculator-op-arity op))))
;;(error "Binary operator without a first operand")
(progn
(message "Binary operator without a first operand")
(if calculator-electric-mode
(progn (sit-for 1) (message nil)))
(throw 'op-error nil)))))
(calculator-reduce-stack
(cond ((eq (nth 1 op) '\() 10)
((eq (nth 1 op) '\)) 0)
(t (calculator-op-prec op))))
(if (or (and (= -1 (calculator-op-arity op))
(numberp (car calculator-stack)))
(and (/= (calculator-op-arity op) -1)
(/= (calculator-op-arity op) 0)
(not (numberp (car calculator-stack)))))
;;(error "Unterminated expression")
(progn
(message "Unterminated expression")
(if calculator-electric-mode
(progn (sit-for 1) (message nil)))
(throw 'op-error nil)))
(setq calculator-stack (cons op calculator-stack))
(calculator-reduce-stack (calculator-op-prec op))
(and (= (length calculator-stack) 1)
(numberp (nth 0 calculator-stack))
;; the display is fragile if it contains only one number
(setq calculator-display-fragile t)
;; add number to the saved-list
calculator-add-saved
(if (= 0 calculator-saved-ptr)
(setq calculator-saved-list
(cons (car calculator-stack) calculator-saved-list))
(let ((p (nthcdr (1- calculator-saved-ptr)
calculator-saved-list)))
(setcdr p (cons (car calculator-stack) (cdr p))))))
(calculator-update-display))))
(defun calculator-op-or-exp ()
"Either enter an operator or a digit.
Used with +/- for entering them as digits in numbers like 1e-3 (there is
no need for negative numbers since these are handled by unary
operators)."
(interactive)
(if (and (not calculator-display-fragile)
calculator-curnum
(string-match "[eE]$" calculator-curnum))
(calculator-digit)
(calculator-op)))
;;;---------------------------------------------------------------------
;;; Input/output modes (not display)
(defun calculator-dec/deg-mode ()
"Set decimal mode for display & input, if decimal, toggle deg mode."
(interactive)
(if calculator-curnum
(setq calculator-stack
(cons (calculator-curnum-value) calculator-stack)))
(setq calculator-curnum nil)
(if (or calculator-input-radix calculator-output-radix)
(progn (setq calculator-input-radix nil)
(setq calculator-output-radix nil))
;; already decimal - toggle degrees mode
(setq calculator-deg (not calculator-deg)))
(calculator-update-display t))
(defun calculator-radix-mode (&optional keys)
"Set input and display radix modes.
Optional string argument KEYS will force using it as the keys entered."
(interactive)
(calculator-radix-input-mode keys)
(calculator-radix-output-mode keys))
(defun calculator-radix-input-mode (&optional keys)
"Set input radix modes.
Optional string argument KEYS will force using it as the keys entered."
(interactive)
(if calculator-curnum
(setq calculator-stack
(cons (calculator-curnum-value) calculator-stack)))
(setq calculator-curnum nil)
(setq calculator-input-radix
(let ((inp (calculator-last-input keys)))
(cdr (assq (upcase (aref inp (1- (length inp))))
calculator-char-radix))))
(calculator-update-display))
(defun calculator-radix-output-mode (&optional keys)
"Set display radix modes.
Optional string argument KEYS will force using it as the keys entered."
(interactive)
(if calculator-curnum
(setq calculator-stack
(cons (calculator-curnum-value) calculator-stack)))
(setq calculator-curnum nil)
(setq calculator-output-radix
(let ((inp (calculator-last-input keys)))
(cdr (assq (upcase (aref inp (1- (length inp))))
calculator-char-radix))))
(calculator-update-display t))
;;;---------------------------------------------------------------------
;;; Saved values list
(defun calculator-save-on-list ()
"Evaluate current expression, put result on the saved values list."
(interactive)
(let ((calculator-add-saved t)) ; marks the result to be added
(calculator-enter)))
(defun calculator-clear-saved ()
"Clear the list of saved values in `calculator-saved-list'."
(interactive)
(setq calculator-saved-list nil)
(setq calculator-saved-ptr 0)
(calculator-update-display t))
(defun calculator-saved-move (n)
"Go N elements up the list of saved values."
(interactive)
(and calculator-saved-list
(or (null calculator-stack) calculator-display-fragile)
(progn
(setq calculator-saved-ptr
(max (min (+ n calculator-saved-ptr)
(length calculator-saved-list))
0))
(if (nth calculator-saved-ptr calculator-saved-list)
(setq calculator-stack
(list (nth calculator-saved-ptr calculator-saved-list))
calculator-display-fragile t)
(calculator-reset))
(calculator-update-display))))
(defun calculator-saved-up ()
"Go up the list of saved values."
(interactive)
(calculator-saved-move +1))
(defun calculator-saved-down ()
"Go down the list of saved values."
(interactive)
(calculator-saved-move -1))
;;;---------------------------------------------------------------------
;;; Misc functions
(defun calculator-open-paren ()
"Equivalents of `(' use this."
(interactive)
(calculator-op "("))
(defun calculator-close-paren ()
"Equivalents of `)' use this."
(interactive)
(calculator-op ")"))
(defun calculator-enter ()
"Evaluate current expression."
(interactive)
(calculator-op "="))
(defun calculator-backspace ()
"Backward delete a single digit or a stack element."
(interactive)
(if calculator-curnum
(setq calculator-curnum
(if (> (length calculator-curnum) 1)
(substring calculator-curnum
0 (1- (length calculator-curnum)))
nil))
(setq calculator-stack (cdr calculator-stack)))
(calculator-update-display))
(defun calculator-clear ()
"Clear current number."
(interactive)
(setq calculator-curnum nil)
(cond
;; if the current number is from the saved-list - remove it
((and calculator-display-fragile
calculator-saved-list
(= (car calculator-stack)
(nth calculator-saved-ptr calculator-saved-list)))
(if (= 0 calculator-saved-ptr)
(setq calculator-saved-list (cdr calculator-saved-list))
(let ((p (nthcdr (1- calculator-saved-ptr)
calculator-saved-list)))
(setcdr p (cdr (cdr p)))
(setq calculator-saved-ptr (1- calculator-saved-ptr))))
(if calculator-saved-list
(setq calculator-stack
(list (nth calculator-saved-ptr calculator-saved-list)))
(calculator-reset)))
;; reset if fragile or double clear
((or calculator-display-fragile (eq last-command this-command))
(calculator-reset)))
(calculator-update-display))
(defun calculator-copy ()
"Copy current number to the `kill-ring'."
(interactive)
(let ((calculator-displayer
(or calculator-copy-displayer calculator-displayer))
(calculator-displayers
(if calculator-copy-displayer nil calculator-displayers)))
(calculator-enter)
;; remove trailing spaces and and an index
(let ((s (cdr calculator-stack-display)))
(and s
(if (string-match "^\\([^ ]+\\) *\\(\\[[0-9/]+\\]\\)? *$" s)
(setq s (match-string 1 s)))
(kill-new s)))))
(defun calculator-set-register (reg)
"Set a register value for REG."
(interactive "cRegister to store into: ")
(let* ((as (assq reg calculator-registers))
(val (progn (calculator-enter) (car calculator-stack))))
(if as
(setcdr as val)
(setq calculator-registers
(cons (cons reg val) calculator-registers)))
(message (format "[%c] := %S" reg val))))
(defun calculator-put-value (val)
"Paste VAL as if entered.
Used by `calculator-paste' and `get-register'."
(if (and (numberp val)
;; (not calculator-curnum)
(or calculator-display-fragile
(not (numberp (car calculator-stack)))))
(progn
(calculator-clear-fragile)
(setq calculator-curnum (let ((calculator-displayer "%S"))
(calculator-num-to-string val)))
(calculator-update-display))))
(defun calculator-paste ()
"Paste a value from the `kill-ring'."
(interactive)
(calculator-put-value
(let ((str (current-kill 0)))
(and calculator-paste-decimals
(string-match "\\([0-9]+\\)\\(\\.[0-9]+\\)?\\(e[0-9]+\\)?"
str)
(or (match-string 1 str)
(match-string 2 str)
(match-string 3 str))
(setq str (concat (match-string 1 str)
(or (match-string 2 str) ".0")
(match-string 3 str))))
(condition-case nil (car (read-from-string str))
(error nil)))))
(defun calculator-get-register (reg)
"Get a value from a register REG."
(interactive "cRegister to get value from: ")
(calculator-put-value (cdr (assq reg calculator-registers))))
(defun calculator-help ()
;; this is used as the quick reference screen you get with `h'
"Quick reference:
* numbers/operators/parens/./e - enter expressions
+ - * / \\(div) %(rem) _(-X,postfix) ;(1/X,postfix) ^(exp) L(og)
Q(sqrt) !(fact) S(in) C(os) T(an) |(or) #(xor) &(and) ~(not)
* >/< repeats last binary operation with its 2nd (1st) arg as postfix op
* I inverses next trig function * '/\"/{} - display/display args
* D - switch to all-decimal, or toggle deg/rad mode
* B/O/H/X - binary/octal/hex mode for i/o (X is a shortcut for H)
* i/o - prefix for d/b/o/x - set only input/output modes
* enter/= - evaluate current expr. * s/g - set/get a register
* space - evaluate & save on list * l/v - list total/average
* up/down/C-p/C-n - browse saved * C-delete - clear all saved
* C-insert - copy whole expr. * C-return - evaluate, copy, exit
* insert - paste a number * backspace- delete backwards
* delete - clear argument or list value or whole expression (twice)
* escape/q - exit."
(interactive)
(if (eq last-command 'calculator-help)
(let ((mode-name "Calculator")
(major-mode 'calculator-mode)
(g-map (current-global-map))
(win (selected-window)))
(require 'ehelp)
(if calculator-electric-mode
(use-global-map calculator-saved-global-map))
(if (or (not calculator-electric-mode)
;; XEmacs has a problem with electric-describe-mode
(string-match "XEmacs" (emacs-version)))
(describe-mode)
(electric-describe-mode))
(if calculator-electric-mode
(use-global-map g-map))
(select-window win) ; these are for XEmacs (also below)
(message nil))
(let ((one (one-window-p t))
(win (selected-window))
(help-buf (get-buffer-create "*Help*")))
(save-window-excursion
(with-output-to-temp-buffer "*Help*"
(princ (documentation 'calculator-help)))
(if one
(shrink-window-if-larger-than-buffer
(get-buffer-window help-buf)))
(message
"`%s' again for more help, any other key continues normally."
(calculator-last-input))
(select-window win)
(sit-for 360))
(select-window win))))
(defun calculator-quit ()
"Quit calculator."
(interactive)
(set-buffer calculator-buffer)
(let ((inhibit-read-only t)) (erase-buffer))
(if (not calculator-electric-mode)
(progn
(condition-case nil
(while (get-buffer-window calculator-buffer)
(delete-window (get-buffer-window calculator-buffer)))
(error nil))
(kill-buffer calculator-buffer)))
(setq calculator-buffer nil)
(message "Calculator done.")
(if calculator-electric-mode (throw 'calculator-done nil)))
(defun calculator-save-and-quit ()
"Quit the calculator, saving the result on the `kill-ring'."
(interactive)
(calculator-enter)
(calculator-copy)
(calculator-quit))
(defun calculator-repR (x)
"Repeats the last binary operation with its second argument and X.
To use this, apply a binary operator (evaluate it), then call this."
(if calculator-last-opXY
;; avoid rebinding calculator-last-opXY
(let ((calculator-last-opXY calculator-last-opXY))
(calculator-funcall
(car calculator-last-opXY) x (nth 2 calculator-last-opXY)))
x))
(defun calculator-repL (x)
"Repeats the last binary operation with its first argument and X.
To use this, apply a binary operator (evaluate it), then call this."
(if calculator-last-opXY
;; avoid rebinding calculator-last-opXY
(let ((calculator-last-opXY calculator-last-opXY))
(calculator-funcall
(car calculator-last-opXY) (nth 1 calculator-last-opXY) x))
x))
(defun calculator-fact (x)
"Simple factorial of X."
(let ((r (if (<= x 10) 1 1.0)))
(while (> x 0)
(setq r (* r (truncate x)))
(setq x (1- x)))
r))
(defun calculator-truncate (n)
"Truncate N, return 0 in case of overflow."
(condition-case nil (truncate n) (error 0)))
(provide 'calculator)
;;; calculator.el ends here