1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-01-09 15:50:21 +00:00
emacs/lib/regex_internal.c
2022-04-08 17:33:16 -07:00

1712 lines
48 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Extended regular expression matching and search library.
Copyright (C) 2002-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
static void re_string_construct_common (const char *str, Idx len,
re_string_t *pstr,
RE_TRANSLATE_TYPE trans, bool icase,
const re_dfa_t *dfa);
static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
const re_node_set *nodes,
re_hashval_t hash);
static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
const re_node_set *nodes,
unsigned int context,
re_hashval_t hash);
static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr,
Idx new_buf_len);
static void build_wcs_buffer (re_string_t *pstr);
static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr);
static void build_upper_buffer (re_string_t *pstr);
static void re_string_translate_buffer (re_string_t *pstr);
static unsigned int re_string_context_at (const re_string_t *input, Idx idx,
int eflags) __attribute__ ((pure));
/* Functions for string operation. */
/* This function allocate the buffers. It is necessary to call
re_string_reconstruct before using the object. */
static reg_errcode_t
__attribute_warn_unused_result__
re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len,
RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
{
reg_errcode_t ret;
Idx init_buf_len;
/* Ensure at least one character fits into the buffers. */
if (init_len < dfa->mb_cur_max)
init_len = dfa->mb_cur_max;
init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
re_string_construct_common (str, len, pstr, trans, icase, dfa);
ret = re_string_realloc_buffers (pstr, init_buf_len);
if (__glibc_unlikely (ret != REG_NOERROR))
return ret;
pstr->word_char = dfa->word_char;
pstr->word_ops_used = dfa->word_ops_used;
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
pstr->valid_raw_len = pstr->valid_len;
return REG_NOERROR;
}
/* This function allocate the buffers, and initialize them. */
static reg_errcode_t
__attribute_warn_unused_result__
re_string_construct (re_string_t *pstr, const char *str, Idx len,
RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
{
reg_errcode_t ret;
memset (pstr, '\0', sizeof (re_string_t));
re_string_construct_common (str, len, pstr, trans, icase, dfa);
if (len > 0)
{
ret = re_string_realloc_buffers (pstr, len + 1);
if (__glibc_unlikely (ret != REG_NOERROR))
return ret;
}
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
if (icase)
{
if (dfa->mb_cur_max > 1)
{
while (1)
{
ret = build_wcs_upper_buffer (pstr);
if (__glibc_unlikely (ret != REG_NOERROR))
return ret;
if (pstr->valid_raw_len >= len)
break;
if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
break;
ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
if (__glibc_unlikely (ret != REG_NOERROR))
return ret;
}
}
else
build_upper_buffer (pstr);
}
else
{
if (dfa->mb_cur_max > 1)
build_wcs_buffer (pstr);
else
{
if (trans != NULL)
re_string_translate_buffer (pstr);
else
{
pstr->valid_len = pstr->bufs_len;
pstr->valid_raw_len = pstr->bufs_len;
}
}
}
return REG_NOERROR;
}
/* Helper functions for re_string_allocate, and re_string_construct. */
static reg_errcode_t
__attribute_warn_unused_result__
re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len)
{
if (pstr->mb_cur_max > 1)
{
wint_t *new_wcs;
/* Avoid overflow in realloc. */
const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx));
if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size)
< new_buf_len))
return REG_ESPACE;
new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len);
if (__glibc_unlikely (new_wcs == NULL))
return REG_ESPACE;
pstr->wcs = new_wcs;
if (pstr->offsets != NULL)
{
Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len);
if (__glibc_unlikely (new_offsets == NULL))
return REG_ESPACE;
pstr->offsets = new_offsets;
}
}
if (pstr->mbs_allocated)
{
unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
new_buf_len);
if (__glibc_unlikely (new_mbs == NULL))
return REG_ESPACE;
pstr->mbs = new_mbs;
}
pstr->bufs_len = new_buf_len;
return REG_NOERROR;
}
static void
re_string_construct_common (const char *str, Idx len, re_string_t *pstr,
RE_TRANSLATE_TYPE trans, bool icase,
const re_dfa_t *dfa)
{
pstr->raw_mbs = (const unsigned char *) str;
pstr->len = len;
pstr->raw_len = len;
pstr->trans = trans;
pstr->icase = icase;
pstr->mbs_allocated = (trans != NULL || icase);
pstr->mb_cur_max = dfa->mb_cur_max;
pstr->is_utf8 = dfa->is_utf8;
pstr->map_notascii = dfa->map_notascii;
pstr->stop = pstr->len;
pstr->raw_stop = pstr->stop;
}
/* Build wide character buffer PSTR->WCS.
If the byte sequence of the string are:
<mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
Then wide character buffer will be:
<wc1> , WEOF , <wc2> , WEOF , <wc3>
We use WEOF for padding, they indicate that the position isn't
a first byte of a multibyte character.
Note that this function assumes PSTR->VALID_LEN elements are already
built and starts from PSTR->VALID_LEN. */
static void
build_wcs_buffer (re_string_t *pstr)
{
#ifdef _LIBC
unsigned char buf[MB_LEN_MAX];
DEBUG_ASSERT (MB_LEN_MAX >= pstr->mb_cur_max);
#else
unsigned char buf[64];
#endif
mbstate_t prev_st;
Idx byte_idx, end_idx, remain_len;
size_t mbclen;
/* Build the buffers from pstr->valid_len to either pstr->len or
pstr->bufs_len. */
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
{
wchar_t wc;
const char *p;
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
/* Apply the translation if we need. */
if (__glibc_unlikely (pstr->trans != NULL))
{
int i, ch;
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
{
ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
}
p = (const char *) buf;
}
else
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
if (__glibc_unlikely (mbclen == (size_t) -1 || mbclen == 0
|| (mbclen == (size_t) -2
&& pstr->bufs_len >= pstr->len)))
{
/* We treat these cases as a singlebyte character. */
mbclen = 1;
wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
if (__glibc_unlikely (pstr->trans != NULL))
wc = pstr->trans[wc];
pstr->cur_state = prev_st;
}
else if (__glibc_unlikely (mbclen == (size_t) -2))
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
/* Write wide character and padding. */
pstr->wcs[byte_idx++] = wc;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = byte_idx;
}
/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
but for REG_ICASE. */
static reg_errcode_t
__attribute_warn_unused_result__
build_wcs_upper_buffer (re_string_t *pstr)
{
mbstate_t prev_st;
Idx src_idx, byte_idx, end_idx, remain_len;
size_t mbclen;
#ifdef _LIBC
char buf[MB_LEN_MAX];
DEBUG_ASSERT (pstr->mb_cur_max <= MB_LEN_MAX);
#else
char buf[64];
#endif
byte_idx = pstr->valid_len;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
/* The following optimization assumes that ASCII characters can be
mapped to wide characters with a simple cast. */
if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
{
while (byte_idx < end_idx)
{
wchar_t wc;
unsigned char ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
if (isascii (ch) && mbsinit (&pstr->cur_state))
{
/* The next step uses the assumption that wchar_t is encoded
ASCII-safe: all ASCII values can be converted like this. */
wchar_t wcu = __towupper (ch);
if (isascii (wcu))
{
pstr->mbs[byte_idx] = wcu;
pstr->wcs[byte_idx] = wcu;
byte_idx++;
continue;
}
}
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
mbclen = __mbrtowc (&wc,
((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
+ byte_idx), remain_len, &pstr->cur_state);
if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2))
{
wchar_t wcu = __towupper (wc);
if (wcu != wc)
{
size_t mbcdlen;
mbcdlen = __wcrtomb (buf, wcu, &prev_st);
if (__glibc_likely (mbclen == mbcdlen))
memcpy (pstr->mbs + byte_idx, buf, mbclen);
else
{
src_idx = byte_idx;
goto offsets_needed;
}
}
else
memcpy (pstr->mbs + byte_idx,
pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
pstr->wcs[byte_idx++] = wcu;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
else if (mbclen == (size_t) -1 || mbclen == 0
|| (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len))
{
/* It is an invalid character, an incomplete character
at the end of the string, or '\0'. Just use the byte. */
pstr->mbs[byte_idx] = ch;
/* And also cast it to wide char. */
pstr->wcs[byte_idx++] = (wchar_t) ch;
if (__glibc_unlikely (mbclen == (size_t) -1))
pstr->cur_state = prev_st;
}
else
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = byte_idx;
return REG_NOERROR;
}
else
for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
{
wchar_t wc;
const char *p;
offsets_needed:
remain_len = end_idx - byte_idx;
prev_st = pstr->cur_state;
if (__glibc_unlikely (pstr->trans != NULL))
{
int i, ch;
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
{
ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
buf[i] = pstr->trans[ch];
}
p = (const char *) buf;
}
else
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state);
if (__glibc_likely (0 < mbclen && mbclen < (size_t) -2))
{
wchar_t wcu = __towupper (wc);
if (wcu != wc)
{
size_t mbcdlen;
mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st);
if (__glibc_likely (mbclen == mbcdlen))
memcpy (pstr->mbs + byte_idx, buf, mbclen);
else if (mbcdlen != (size_t) -1)
{
size_t i;
if (byte_idx + mbcdlen > pstr->bufs_len)
{
pstr->cur_state = prev_st;
break;
}
if (pstr->offsets == NULL)
{
pstr->offsets = re_malloc (Idx, pstr->bufs_len);
if (pstr->offsets == NULL)
return REG_ESPACE;
}
if (!pstr->offsets_needed)
{
for (i = 0; i < (size_t) byte_idx; ++i)
pstr->offsets[i] = i;
pstr->offsets_needed = 1;
}
memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
pstr->wcs[byte_idx] = wcu;
pstr->offsets[byte_idx] = src_idx;
for (i = 1; i < mbcdlen; ++i)
{
pstr->offsets[byte_idx + i]
= src_idx + (i < mbclen ? i : mbclen - 1);
pstr->wcs[byte_idx + i] = WEOF;
}
pstr->len += mbcdlen - mbclen;
if (pstr->raw_stop > src_idx)
pstr->stop += mbcdlen - mbclen;
end_idx = (pstr->bufs_len > pstr->len)
? pstr->len : pstr->bufs_len;
byte_idx += mbcdlen;
src_idx += mbclen;
continue;
}
else
memcpy (pstr->mbs + byte_idx, p, mbclen);
}
else
memcpy (pstr->mbs + byte_idx, p, mbclen);
if (__glibc_unlikely (pstr->offsets_needed != 0))
{
size_t i;
for (i = 0; i < mbclen; ++i)
pstr->offsets[byte_idx + i] = src_idx + i;
}
src_idx += mbclen;
pstr->wcs[byte_idx++] = wcu;
/* Write paddings. */
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
pstr->wcs[byte_idx++] = WEOF;
}
else if (mbclen == (size_t) -1 || mbclen == 0
|| (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len))
{
/* It is an invalid character or '\0'. Just use the byte. */
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
if (__glibc_unlikely (pstr->trans != NULL))
ch = pstr->trans [ch];
pstr->mbs[byte_idx] = ch;
if (__glibc_unlikely (pstr->offsets_needed != 0))
pstr->offsets[byte_idx] = src_idx;
++src_idx;
/* And also cast it to wide char. */
pstr->wcs[byte_idx++] = (wchar_t) ch;
if (__glibc_unlikely (mbclen == (size_t) -1))
pstr->cur_state = prev_st;
}
else
{
/* The buffer doesn't have enough space, finish to build. */
pstr->cur_state = prev_st;
break;
}
}
pstr->valid_len = byte_idx;
pstr->valid_raw_len = src_idx;
return REG_NOERROR;
}
/* Skip characters until the index becomes greater than NEW_RAW_IDX.
Return the index. */
static Idx
re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc)
{
mbstate_t prev_st;
Idx rawbuf_idx;
size_t mbclen;
wint_t wc = WEOF;
/* Skip the characters which are not necessary to check. */
for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
rawbuf_idx < new_raw_idx;)
{
wchar_t wc2;
Idx remain_len = pstr->raw_len - rawbuf_idx;
prev_st = pstr->cur_state;
mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx,
remain_len, &pstr->cur_state);
if (__glibc_unlikely (mbclen == (size_t) -2 || mbclen == (size_t) -1
|| mbclen == 0))
{
/* We treat these cases as a single byte character. */
if (mbclen == 0 || remain_len == 0)
wc = L'\0';
else
wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx);
mbclen = 1;
pstr->cur_state = prev_st;
}
else
wc = wc2;
/* Then proceed the next character. */
rawbuf_idx += mbclen;
}
*last_wc = wc;
return rawbuf_idx;
}
/* Build the buffer PSTR->MBS, and apply the translation if we need.
This function is used in case of REG_ICASE. */
static void
build_upper_buffer (re_string_t *pstr)
{
Idx char_idx, end_idx;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
{
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
if (__glibc_unlikely (pstr->trans != NULL))
ch = pstr->trans[ch];
pstr->mbs[char_idx] = toupper (ch);
}
pstr->valid_len = char_idx;
pstr->valid_raw_len = char_idx;
}
/* Apply TRANS to the buffer in PSTR. */
static void
re_string_translate_buffer (re_string_t *pstr)
{
Idx buf_idx, end_idx;
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
{
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
pstr->mbs[buf_idx] = pstr->trans[ch];
}
pstr->valid_len = buf_idx;
pstr->valid_raw_len = buf_idx;
}
/* This function re-construct the buffers.
Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
convert to upper case in case of REG_ICASE, apply translation. */
static reg_errcode_t
__attribute_warn_unused_result__
re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags)
{
Idx offset;
if (__glibc_unlikely (pstr->raw_mbs_idx <= idx))
offset = idx - pstr->raw_mbs_idx;
else
{
/* Reset buffer. */
if (pstr->mb_cur_max > 1)
memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
pstr->len = pstr->raw_len;
pstr->stop = pstr->raw_stop;
pstr->valid_len = 0;
pstr->raw_mbs_idx = 0;
pstr->valid_raw_len = 0;
pstr->offsets_needed = 0;
pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
: CONTEXT_NEWLINE | CONTEXT_BEGBUF);
if (!pstr->mbs_allocated)
pstr->mbs = (unsigned char *) pstr->raw_mbs;
offset = idx;
}
if (__glibc_likely (offset != 0))
{
/* Should the already checked characters be kept? */
if (__glibc_likely (offset < pstr->valid_raw_len))
{
/* Yes, move them to the front of the buffer. */
if (__glibc_unlikely (pstr->offsets_needed))
{
Idx low = 0, high = pstr->valid_len, mid;
do
{
mid = (high + low) / 2;
if (pstr->offsets[mid] > offset)
high = mid;
else if (pstr->offsets[mid] < offset)
low = mid + 1;
else
break;
}
while (low < high);
if (pstr->offsets[mid] < offset)
++mid;
pstr->tip_context = re_string_context_at (pstr, mid - 1,
eflags);
/* This can be quite complicated, so handle specially
only the common and easy case where the character with
different length representation of lower and upper
case is present at or after offset. */
if (pstr->valid_len > offset
&& mid == offset && pstr->offsets[mid] == offset)
{
memmove (pstr->wcs, pstr->wcs + offset,
(pstr->valid_len - offset) * sizeof (wint_t));
memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset);
pstr->valid_len -= offset;
pstr->valid_raw_len -= offset;
for (low = 0; low < pstr->valid_len; low++)
pstr->offsets[low] = pstr->offsets[low + offset] - offset;
}
else
{
/* Otherwise, just find out how long the partial multibyte
character at offset is and fill it with WEOF/255. */
pstr->len = pstr->raw_len - idx + offset;
pstr->stop = pstr->raw_stop - idx + offset;
pstr->offsets_needed = 0;
while (mid > 0 && pstr->offsets[mid - 1] == offset)
--mid;
while (mid < pstr->valid_len)
if (pstr->wcs[mid] != WEOF)
break;
else
++mid;
if (mid == pstr->valid_len)
pstr->valid_len = 0;
else
{
pstr->valid_len = pstr->offsets[mid] - offset;
if (pstr->valid_len)
{
for (low = 0; low < pstr->valid_len; ++low)
pstr->wcs[low] = WEOF;
memset (pstr->mbs, 255, pstr->valid_len);
}
}
pstr->valid_raw_len = pstr->valid_len;
}
}
else
{
pstr->tip_context = re_string_context_at (pstr, offset - 1,
eflags);
if (pstr->mb_cur_max > 1)
memmove (pstr->wcs, pstr->wcs + offset,
(pstr->valid_len - offset) * sizeof (wint_t));
if (__glibc_unlikely (pstr->mbs_allocated))
memmove (pstr->mbs, pstr->mbs + offset,
pstr->valid_len - offset);
pstr->valid_len -= offset;
pstr->valid_raw_len -= offset;
DEBUG_ASSERT (pstr->valid_len > 0);
}
}
else
{
/* No, skip all characters until IDX. */
Idx prev_valid_len = pstr->valid_len;
if (__glibc_unlikely (pstr->offsets_needed))
{
pstr->len = pstr->raw_len - idx + offset;
pstr->stop = pstr->raw_stop - idx + offset;
pstr->offsets_needed = 0;
}
pstr->valid_len = 0;
if (pstr->mb_cur_max > 1)
{
Idx wcs_idx;
wint_t wc = WEOF;
if (pstr->is_utf8)
{
const unsigned char *raw, *p, *end;
/* Special case UTF-8. Multi-byte chars start with any
byte other than 0x80 - 0xbf. */
raw = pstr->raw_mbs + pstr->raw_mbs_idx;
end = raw + (offset - pstr->mb_cur_max);
if (end < pstr->raw_mbs)
end = pstr->raw_mbs;
p = raw + offset - 1;
#ifdef _LIBC
/* We know the wchar_t encoding is UCS4, so for the simple
case, ASCII characters, skip the conversion step. */
if (isascii (*p) && __glibc_likely (pstr->trans == NULL))
{
memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
/* pstr->valid_len = 0; */
wc = (wchar_t) *p;
}
else
#endif
for (; p >= end; --p)
if ((*p & 0xc0) != 0x80)
{
mbstate_t cur_state;
wchar_t wc2;
Idx mlen = raw + pstr->len - p;
unsigned char buf[6];
size_t mbclen;
const unsigned char *pp = p;
if (__glibc_unlikely (pstr->trans != NULL))
{
int i = mlen < 6 ? mlen : 6;
while (--i >= 0)
buf[i] = pstr->trans[p[i]];
pp = buf;
}
/* XXX Don't use mbrtowc, we know which conversion
to use (UTF-8 -> UCS4). */
memset (&cur_state, 0, sizeof (cur_state));
mbclen = __mbrtowc (&wc2, (const char *) pp, mlen,
&cur_state);
if (raw + offset - p <= mbclen
&& mbclen < (size_t) -2)
{
memset (&pstr->cur_state, '\0',
sizeof (mbstate_t));
pstr->valid_len = mbclen - (raw + offset - p);
wc = wc2;
}
break;
}
}
if (wc == WEOF)
pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
if (wc == WEOF)
pstr->tip_context
= re_string_context_at (pstr, prev_valid_len - 1, eflags);
else
pstr->tip_context = ((__glibc_unlikely (pstr->word_ops_used != 0)
&& IS_WIDE_WORD_CHAR (wc))
? CONTEXT_WORD
: ((IS_WIDE_NEWLINE (wc)
&& pstr->newline_anchor)
? CONTEXT_NEWLINE : 0));
if (__glibc_unlikely (pstr->valid_len))
{
for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
pstr->wcs[wcs_idx] = WEOF;
if (pstr->mbs_allocated)
memset (pstr->mbs, 255, pstr->valid_len);
}
pstr->valid_raw_len = pstr->valid_len;
}
else
{
int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
pstr->valid_raw_len = 0;
if (pstr->trans)
c = pstr->trans[c];
pstr->tip_context = (bitset_contain (pstr->word_char, c)
? CONTEXT_WORD
: ((IS_NEWLINE (c) && pstr->newline_anchor)
? CONTEXT_NEWLINE : 0));
}
}
if (!__glibc_unlikely (pstr->mbs_allocated))
pstr->mbs += offset;
}
pstr->raw_mbs_idx = idx;
pstr->len -= offset;
pstr->stop -= offset;
/* Then build the buffers. */
if (pstr->mb_cur_max > 1)
{
if (pstr->icase)
{
reg_errcode_t ret = build_wcs_upper_buffer (pstr);
if (__glibc_unlikely (ret != REG_NOERROR))
return ret;
}
else
build_wcs_buffer (pstr);
}
else
if (__glibc_unlikely (pstr->mbs_allocated))
{
if (pstr->icase)
build_upper_buffer (pstr);
else if (pstr->trans != NULL)
re_string_translate_buffer (pstr);
}
else
pstr->valid_len = pstr->len;
pstr->cur_idx = 0;
return REG_NOERROR;
}
static unsigned char
__attribute__ ((pure))
re_string_peek_byte_case (const re_string_t *pstr, Idx idx)
{
int ch;
Idx off;
/* Handle the common (easiest) cases first. */
if (__glibc_likely (!pstr->mbs_allocated))
return re_string_peek_byte (pstr, idx);
if (pstr->mb_cur_max > 1
&& ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
return re_string_peek_byte (pstr, idx);
off = pstr->cur_idx + idx;
if (pstr->offsets_needed)
off = pstr->offsets[off];
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
/* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
this function returns CAPITAL LETTER I instead of first byte of
DOTLESS SMALL LETTER I. The latter would confuse the parser,
since peek_byte_case doesn't advance cur_idx in any way. */
if (pstr->offsets_needed && !isascii (ch))
return re_string_peek_byte (pstr, idx);
return ch;
}
static unsigned char
re_string_fetch_byte_case (re_string_t *pstr)
{
if (__glibc_likely (!pstr->mbs_allocated))
return re_string_fetch_byte (pstr);
if (pstr->offsets_needed)
{
Idx off;
int ch;
/* For tr_TR.UTF-8 [[:islower:]] there is
[[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip
in that case the whole multi-byte character and return
the original letter. On the other side, with
[[: DOTLESS SMALL LETTER I return [[:I, as doing
anything else would complicate things too much. */
if (!re_string_first_byte (pstr, pstr->cur_idx))
return re_string_fetch_byte (pstr);
off = pstr->offsets[pstr->cur_idx];
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
if (! isascii (ch))
return re_string_fetch_byte (pstr);
re_string_skip_bytes (pstr,
re_string_char_size_at (pstr, pstr->cur_idx));
return ch;
}
return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
}
static void
re_string_destruct (re_string_t *pstr)
{
re_free (pstr->wcs);
re_free (pstr->offsets);
if (pstr->mbs_allocated)
re_free (pstr->mbs);
}
/* Return the context at IDX in INPUT. */
static unsigned int
re_string_context_at (const re_string_t *input, Idx idx, int eflags)
{
int c;
if (__glibc_unlikely (idx < 0))
/* In this case, we use the value stored in input->tip_context,
since we can't know the character in input->mbs[-1] here. */
return input->tip_context;
if (__glibc_unlikely (idx == input->len))
return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
: CONTEXT_NEWLINE | CONTEXT_ENDBUF);
if (input->mb_cur_max > 1)
{
wint_t wc;
Idx wc_idx = idx;
while(input->wcs[wc_idx] == WEOF)
{
DEBUG_ASSERT (wc_idx >= 0);
--wc_idx;
if (wc_idx < 0)
return input->tip_context;
}
wc = input->wcs[wc_idx];
if (__glibc_unlikely (input->word_ops_used != 0)
&& IS_WIDE_WORD_CHAR (wc))
return CONTEXT_WORD;
return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
? CONTEXT_NEWLINE : 0);
}
else
{
c = re_string_byte_at (input, idx);
if (bitset_contain (input->word_char, c))
return CONTEXT_WORD;
return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
}
}
/* Functions for set operation. */
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_alloc (re_node_set *set, Idx size)
{
set->alloc = size;
set->nelem = 0;
set->elems = re_malloc (Idx, size);
if (__glibc_unlikely (set->elems == NULL)
&& (MALLOC_0_IS_NONNULL || size != 0))
return REG_ESPACE;
return REG_NOERROR;
}
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_init_1 (re_node_set *set, Idx elem)
{
set->alloc = 1;
set->nelem = 1;
set->elems = re_malloc (Idx, 1);
if (__glibc_unlikely (set->elems == NULL))
{
set->alloc = set->nelem = 0;
return REG_ESPACE;
}
set->elems[0] = elem;
return REG_NOERROR;
}
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2)
{
set->alloc = 2;
set->elems = re_malloc (Idx, 2);
if (__glibc_unlikely (set->elems == NULL))
return REG_ESPACE;
if (elem1 == elem2)
{
set->nelem = 1;
set->elems[0] = elem1;
}
else
{
set->nelem = 2;
if (elem1 < elem2)
{
set->elems[0] = elem1;
set->elems[1] = elem2;
}
else
{
set->elems[0] = elem2;
set->elems[1] = elem1;
}
}
return REG_NOERROR;
}
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
{
dest->nelem = src->nelem;
if (src->nelem > 0)
{
dest->alloc = dest->nelem;
dest->elems = re_malloc (Idx, dest->alloc);
if (__glibc_unlikely (dest->elems == NULL))
{
dest->alloc = dest->nelem = 0;
return REG_ESPACE;
}
memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx));
}
else
re_node_set_init_empty (dest);
return REG_NOERROR;
}
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded.
Note: We assume dest->elems is NULL, when dest->alloc is 0. */
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
const re_node_set *src2)
{
Idx i1, i2, is, id, delta, sbase;
if (src1->nelem == 0 || src2->nelem == 0)
return REG_NOERROR;
/* We need dest->nelem + 2 * elems_in_intersection; this is a
conservative estimate. */
if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
{
Idx new_alloc = src1->nelem + src2->nelem + dest->alloc;
Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc);
if (__glibc_unlikely (new_elems == NULL))
return REG_ESPACE;
dest->elems = new_elems;
dest->alloc = new_alloc;
}
/* Find the items in the intersection of SRC1 and SRC2, and copy
into the top of DEST those that are not already in DEST itself. */
sbase = dest->nelem + src1->nelem + src2->nelem;
i1 = src1->nelem - 1;
i2 = src2->nelem - 1;
id = dest->nelem - 1;
for (;;)
{
if (src1->elems[i1] == src2->elems[i2])
{
/* Try to find the item in DEST. Maybe we could binary search? */
while (id >= 0 && dest->elems[id] > src1->elems[i1])
--id;
if (id < 0 || dest->elems[id] != src1->elems[i1])
dest->elems[--sbase] = src1->elems[i1];
if (--i1 < 0 || --i2 < 0)
break;
}
/* Lower the highest of the two items. */
else if (src1->elems[i1] < src2->elems[i2])
{
if (--i2 < 0)
break;
}
else
{
if (--i1 < 0)
break;
}
}
id = dest->nelem - 1;
is = dest->nelem + src1->nelem + src2->nelem - 1;
delta = is - sbase + 1;
/* Now copy. When DELTA becomes zero, the remaining
DEST elements are already in place; this is more or
less the same loop that is in re_node_set_merge. */
dest->nelem += delta;
if (delta > 0 && id >= 0)
for (;;)
{
if (dest->elems[is] > dest->elems[id])
{
/* Copy from the top. */
dest->elems[id + delta--] = dest->elems[is--];
if (delta == 0)
break;
}
else
{
/* Slide from the bottom. */
dest->elems[id + delta] = dest->elems[id];
if (--id < 0)
break;
}
}
/* Copy remaining SRC elements. */
memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx));
return REG_NOERROR;
}
/* Calculate the union set of the sets SRC1 and SRC2. And store it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
const re_node_set *src2)
{
Idx i1, i2, id;
if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
{
dest->alloc = src1->nelem + src2->nelem;
dest->elems = re_malloc (Idx, dest->alloc);
if (__glibc_unlikely (dest->elems == NULL))
return REG_ESPACE;
}
else
{
if (src1 != NULL && src1->nelem > 0)
return re_node_set_init_copy (dest, src1);
else if (src2 != NULL && src2->nelem > 0)
return re_node_set_init_copy (dest, src2);
else
re_node_set_init_empty (dest);
return REG_NOERROR;
}
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
{
if (src1->elems[i1] > src2->elems[i2])
{
dest->elems[id++] = src2->elems[i2++];
continue;
}
if (src1->elems[i1] == src2->elems[i2])
++i2;
dest->elems[id++] = src1->elems[i1++];
}
if (i1 < src1->nelem)
{
memcpy (dest->elems + id, src1->elems + i1,
(src1->nelem - i1) * sizeof (Idx));
id += src1->nelem - i1;
}
else if (i2 < src2->nelem)
{
memcpy (dest->elems + id, src2->elems + i2,
(src2->nelem - i2) * sizeof (Idx));
id += src2->nelem - i2;
}
dest->nelem = id;
return REG_NOERROR;
}
/* Calculate the union set of the sets DEST and SRC. And store it to
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
static reg_errcode_t
__attribute_warn_unused_result__
re_node_set_merge (re_node_set *dest, const re_node_set *src)
{
Idx is, id, sbase, delta;
if (src == NULL || src->nelem == 0)
return REG_NOERROR;
if (dest->alloc < 2 * src->nelem + dest->nelem)
{
Idx new_alloc = 2 * (src->nelem + dest->alloc);
Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc);
if (__glibc_unlikely (new_buffer == NULL))
return REG_ESPACE;
dest->elems = new_buffer;
dest->alloc = new_alloc;
}
if (__glibc_unlikely (dest->nelem == 0))
{
/* Although we already guaranteed above that dest->alloc != 0 and
therefore dest->elems != NULL, add a debug assertion to pacify
GCC 11.2.1's -fanalyzer. */
DEBUG_ASSERT (dest->elems);
dest->nelem = src->nelem;
memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx));
return REG_NOERROR;
}
/* Copy into the top of DEST the items of SRC that are not
found in DEST. Maybe we could binary search in DEST? */
for (sbase = dest->nelem + 2 * src->nelem,
is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; )
{
if (dest->elems[id] == src->elems[is])
is--, id--;
else if (dest->elems[id] < src->elems[is])
dest->elems[--sbase] = src->elems[is--];
else /* if (dest->elems[id] > src->elems[is]) */
--id;
}
if (is >= 0)
{
/* If DEST is exhausted, the remaining items of SRC must be unique. */
sbase -= is + 1;
memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx));
}
id = dest->nelem - 1;
is = dest->nelem + 2 * src->nelem - 1;
delta = is - sbase + 1;
if (delta == 0)
return REG_NOERROR;
/* Now copy. When DELTA becomes zero, the remaining
DEST elements are already in place. */
dest->nelem += delta;
for (;;)
{
if (dest->elems[is] > dest->elems[id])
{
/* Copy from the top. */
dest->elems[id + delta--] = dest->elems[is--];
if (delta == 0)
break;
}
else
{
/* Slide from the bottom. */
dest->elems[id + delta] = dest->elems[id];
if (--id < 0)
{
/* Copy remaining SRC elements. */
memcpy (dest->elems, dest->elems + sbase,
delta * sizeof (Idx));
break;
}
}
}
return REG_NOERROR;
}
/* Insert the new element ELEM to the re_node_set* SET.
SET should not already have ELEM.
Return true if successful. */
static bool
__attribute_warn_unused_result__
re_node_set_insert (re_node_set *set, Idx elem)
{
Idx idx;
/* In case the set is empty. */
if (set->alloc == 0)
return __glibc_likely (re_node_set_init_1 (set, elem) == REG_NOERROR);
if (__glibc_unlikely (set->nelem) == 0)
{
/* Although we already guaranteed above that set->alloc != 0 and
therefore set->elems != NULL, add a debug assertion to pacify
GCC 11.2 -fanalyzer. */
DEBUG_ASSERT (set->elems);
set->elems[0] = elem;
++set->nelem;
return true;
}
/* Realloc if we need. */
if (set->alloc == set->nelem)
{
Idx *new_elems;
set->alloc = set->alloc * 2;
new_elems = re_realloc (set->elems, Idx, set->alloc);
if (__glibc_unlikely (new_elems == NULL))
return false;
set->elems = new_elems;
}
/* Move the elements which follows the new element. Test the
first element separately to skip a check in the inner loop. */
if (elem < set->elems[0])
{
for (idx = set->nelem; idx > 0; idx--)
set->elems[idx] = set->elems[idx - 1];
}
else
{
for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
set->elems[idx] = set->elems[idx - 1];
DEBUG_ASSERT (set->elems[idx - 1] < elem);
}
/* Insert the new element. */
set->elems[idx] = elem;
++set->nelem;
return true;
}
/* Insert the new element ELEM to the re_node_set* SET.
SET should not already have any element greater than or equal to ELEM.
Return true if successful. */
static bool
__attribute_warn_unused_result__
re_node_set_insert_last (re_node_set *set, Idx elem)
{
/* Realloc if we need. */
if (set->alloc == set->nelem)
{
Idx *new_elems;
set->alloc = (set->alloc + 1) * 2;
new_elems = re_realloc (set->elems, Idx, set->alloc);
if (__glibc_unlikely (new_elems == NULL))
return false;
set->elems = new_elems;
}
/* Insert the new element. */
set->elems[set->nelem++] = elem;
return true;
}
/* Compare two node sets SET1 and SET2.
Return true if SET1 and SET2 are equivalent. */
static bool
__attribute__ ((pure))
re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
{
Idx i;
if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
return false;
for (i = set1->nelem ; --i >= 0 ; )
if (set1->elems[i] != set2->elems[i])
return false;
return true;
}
/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */
static Idx
__attribute__ ((pure))
re_node_set_contains (const re_node_set *set, Idx elem)
{
__re_size_t idx, right, mid;
if (set->nelem <= 0)
return 0;
/* Binary search the element. */
idx = 0;
right = set->nelem - 1;
while (idx < right)
{
mid = (idx + right) / 2;
if (set->elems[mid] < elem)
idx = mid + 1;
else
right = mid;
}
return set->elems[idx] == elem ? idx + 1 : 0;
}
static void
re_node_set_remove_at (re_node_set *set, Idx idx)
{
if (idx < 0 || idx >= set->nelem)
return;
--set->nelem;
for (; idx < set->nelem; idx++)
set->elems[idx] = set->elems[idx + 1];
}
/* Add the token TOKEN to dfa->nodes, and return the index of the token.
Or return -1 if an error occurred. */
static Idx
re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
{
if (__glibc_unlikely (dfa->nodes_len >= dfa->nodes_alloc))
{
size_t new_nodes_alloc = dfa->nodes_alloc * 2;
Idx *new_nexts, *new_indices;
re_node_set *new_edests, *new_eclosures;
re_token_t *new_nodes;
/* Avoid overflows in realloc. */
const size_t max_object_size = MAX (sizeof (re_token_t),
MAX (sizeof (re_node_set),
sizeof (Idx)));
if (__glibc_unlikely (MIN (IDX_MAX, SIZE_MAX / max_object_size)
< new_nodes_alloc))
return -1;
new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc);
if (__glibc_unlikely (new_nodes == NULL))
return -1;
dfa->nodes = new_nodes;
dfa->nodes_alloc = new_nodes_alloc;
new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc);
if (new_nexts != NULL)
dfa->nexts = new_nexts;
new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc);
if (new_indices != NULL)
dfa->org_indices = new_indices;
new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc);
if (new_edests != NULL)
dfa->edests = new_edests;
new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
if (new_eclosures != NULL)
dfa->eclosures = new_eclosures;
if (__glibc_unlikely (new_nexts == NULL || new_indices == NULL
|| new_edests == NULL || new_eclosures == NULL))
return -1;
}
dfa->nodes[dfa->nodes_len] = token;
dfa->nodes[dfa->nodes_len].constraint = 0;
dfa->nodes[dfa->nodes_len].accept_mb =
((token.type == OP_PERIOD && dfa->mb_cur_max > 1)
|| token.type == COMPLEX_BRACKET);
dfa->nexts[dfa->nodes_len] = -1;
re_node_set_init_empty (dfa->edests + dfa->nodes_len);
re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
return dfa->nodes_len++;
}
static re_hashval_t
calc_state_hash (const re_node_set *nodes, unsigned int context)
{
re_hashval_t hash = nodes->nelem + context;
Idx i;
for (i = 0 ; i < nodes->nelem ; i++)
hash += nodes->elems[i];
return hash;
}
/* Search for the state whose node_set is equivalent to NODES.
Return the pointer to the state, if we found it in the DFA.
Otherwise create the new one and return it. In case of an error
return NULL and set the error code in ERR.
Note: - We assume NULL as the invalid state, then it is possible that
return value is NULL and ERR is REG_NOERROR.
- We never return non-NULL value in case of any errors, it is for
optimization. */
static re_dfastate_t *
__attribute_warn_unused_result__
re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa,
const re_node_set *nodes)
{
re_hashval_t hash;
re_dfastate_t *new_state;
struct re_state_table_entry *spot;
Idx i;
#if defined GCC_LINT || defined lint
/* Suppress bogus uninitialized-variable warnings. */
*err = REG_NOERROR;
#endif
if (__glibc_unlikely (nodes->nelem == 0))
{
*err = REG_NOERROR;
return NULL;
}
hash = calc_state_hash (nodes, 0);
spot = dfa->state_table + (hash & dfa->state_hash_mask);
for (i = 0 ; i < spot->num ; i++)
{
re_dfastate_t *state = spot->array[i];
if (hash != state->hash)
continue;
if (re_node_set_compare (&state->nodes, nodes))
return state;
}
/* There are no appropriate state in the dfa, create the new one. */
new_state = create_ci_newstate (dfa, nodes, hash);
if (__glibc_unlikely (new_state == NULL))
*err = REG_ESPACE;
return new_state;
}
/* Search for the state whose node_set is equivalent to NODES and
whose context is equivalent to CONTEXT.
Return the pointer to the state, if we found it in the DFA.
Otherwise create the new one and return it. In case of an error
return NULL and set the error code in ERR.
Note: - We assume NULL as the invalid state, then it is possible that
return value is NULL and ERR is REG_NOERROR.
- We never return non-NULL value in case of any errors, it is for
optimization. */
static re_dfastate_t *
__attribute_warn_unused_result__
re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa,
const re_node_set *nodes, unsigned int context)
{
re_hashval_t hash;
re_dfastate_t *new_state;
struct re_state_table_entry *spot;
Idx i;
#if defined GCC_LINT || defined lint
/* Suppress bogus uninitialized-variable warnings. */
*err = REG_NOERROR;
#endif
if (nodes->nelem == 0)
{
*err = REG_NOERROR;
return NULL;
}
hash = calc_state_hash (nodes, context);
spot = dfa->state_table + (hash & dfa->state_hash_mask);
for (i = 0 ; i < spot->num ; i++)
{
re_dfastate_t *state = spot->array[i];
if (state->hash == hash
&& state->context == context
&& re_node_set_compare (state->entrance_nodes, nodes))
return state;
}
/* There are no appropriate state in 'dfa', create the new one. */
new_state = create_cd_newstate (dfa, nodes, context, hash);
if (__glibc_unlikely (new_state == NULL))
*err = REG_ESPACE;
return new_state;
}
/* Finish initialization of the new state NEWSTATE, and using its hash value
HASH put in the appropriate bucket of DFA's state table. Return value
indicates the error code if failed. */
static reg_errcode_t
__attribute_warn_unused_result__
register_state (const re_dfa_t *dfa, re_dfastate_t *newstate,
re_hashval_t hash)
{
struct re_state_table_entry *spot;
reg_errcode_t err;
Idx i;
newstate->hash = hash;
err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
if (__glibc_unlikely (err != REG_NOERROR))
return REG_ESPACE;
for (i = 0; i < newstate->nodes.nelem; i++)
{
Idx elem = newstate->nodes.elems[i];
if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
if (! re_node_set_insert_last (&newstate->non_eps_nodes, elem))
return REG_ESPACE;
}
spot = dfa->state_table + (hash & dfa->state_hash_mask);
if (__glibc_unlikely (spot->alloc <= spot->num))
{
Idx new_alloc = 2 * spot->num + 2;
re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *,
new_alloc);
if (__glibc_unlikely (new_array == NULL))
return REG_ESPACE;
spot->array = new_array;
spot->alloc = new_alloc;
}
spot->array[spot->num++] = newstate;
return REG_NOERROR;
}
static void
free_state (re_dfastate_t *state)
{
re_node_set_free (&state->non_eps_nodes);
re_node_set_free (&state->inveclosure);
if (state->entrance_nodes != &state->nodes)
{
re_node_set_free (state->entrance_nodes);
re_free (state->entrance_nodes);
}
re_node_set_free (&state->nodes);
re_free (state->word_trtable);
re_free (state->trtable);
re_free (state);
}
/* Create the new state which is independent of contexts.
Return the new state if succeeded, otherwise return NULL. */
static re_dfastate_t *
__attribute_warn_unused_result__
create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
re_hashval_t hash)
{
Idx i;
reg_errcode_t err;
re_dfastate_t *newstate;
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
if (__glibc_unlikely (newstate == NULL))
return NULL;
err = re_node_set_init_copy (&newstate->nodes, nodes);
if (__glibc_unlikely (err != REG_NOERROR))
{
re_free (newstate);
return NULL;
}
newstate->entrance_nodes = &newstate->nodes;
for (i = 0 ; i < nodes->nelem ; i++)
{
re_token_t *node = dfa->nodes + nodes->elems[i];
re_token_type_t type = node->type;
if (type == CHARACTER && !node->constraint)
continue;
newstate->accept_mb |= node->accept_mb;
/* If the state has the halt node, the state is a halt state. */
if (type == END_OF_RE)
newstate->halt = 1;
else if (type == OP_BACK_REF)
newstate->has_backref = 1;
else if (type == ANCHOR || node->constraint)
newstate->has_constraint = 1;
}
err = register_state (dfa, newstate, hash);
if (__glibc_unlikely (err != REG_NOERROR))
{
free_state (newstate);
newstate = NULL;
}
return newstate;
}
/* Create the new state which is depend on the context CONTEXT.
Return the new state if succeeded, otherwise return NULL. */
static re_dfastate_t *
__attribute_warn_unused_result__
create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
unsigned int context, re_hashval_t hash)
{
Idx i, nctx_nodes = 0;
reg_errcode_t err;
re_dfastate_t *newstate;
newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1);
if (__glibc_unlikely (newstate == NULL))
return NULL;
err = re_node_set_init_copy (&newstate->nodes, nodes);
if (__glibc_unlikely (err != REG_NOERROR))
{
re_free (newstate);
return NULL;
}
newstate->context = context;
newstate->entrance_nodes = &newstate->nodes;
for (i = 0 ; i < nodes->nelem ; i++)
{
re_token_t *node = dfa->nodes + nodes->elems[i];
re_token_type_t type = node->type;
unsigned int constraint = node->constraint;
if (type == CHARACTER && !constraint)
continue;
newstate->accept_mb |= node->accept_mb;
/* If the state has the halt node, the state is a halt state. */
if (type == END_OF_RE)
newstate->halt = 1;
else if (type == OP_BACK_REF)
newstate->has_backref = 1;
if (constraint)
{
if (newstate->entrance_nodes == &newstate->nodes)
{
re_node_set *entrance_nodes = re_malloc (re_node_set, 1);
if (__glibc_unlikely (entrance_nodes == NULL))
{
free_state (newstate);
return NULL;
}
newstate->entrance_nodes = entrance_nodes;
if (re_node_set_init_copy (newstate->entrance_nodes, nodes)
!= REG_NOERROR)
{
free_state (newstate);
return NULL;
}
nctx_nodes = 0;
newstate->has_constraint = 1;
}
if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
{
re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
++nctx_nodes;
}
}
}
err = register_state (dfa, newstate, hash);
if (__glibc_unlikely (err != REG_NOERROR))
{
free_state (newstate);
newstate = NULL;
}
return newstate;
}