mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2025-01-24 19:03:29 +00:00
b4d3bc10dc
* lisp/apropos.el (apropos-variable): * lisp/files-x.el (read-file-local-variable): * lisp/simple.el (set-variable): * lisp/woman.el (woman-mini-help): * lisp/emacs-lisp/byte-opt.el (side-effect-free-fns): Callers changed. * lisp/custom.el (custom-variable-p): Return nil for non-symbol arguments instead of signaling an error. (user-variable-p): Obsolete alias for custom-variable-p. * lisp/erc/erc.el (erc-cmd-SET): Call custom-variable-p instead of user-variable-p. * src/callint.c (Finteractive, Fcall_interactively): * src/minibuf.c (Fread_variable): Callers changed. * src/eval.c (Fuser_variable_p, user_variable_p_eh) (lisp_indirect_variable): Functions deleted. (Fdefvar): Caller changed. * doc/lispref/commands.texi (Interactive Codes): * doc/lispref/help.texi (Accessing Documentation): * doc/lispref/minibuf.texi (High-Level Completion): Callers changed. * doc/lispref/customize.texi (Variable Definitions): Remove user-variable-p.
2136 lines
80 KiB
EmacsLisp
2136 lines
80 KiB
EmacsLisp
;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler -*- lexical-binding: t -*-
|
||
|
||
;; Copyright (C) 1991, 1994, 2000-2012 Free Software Foundation, Inc.
|
||
|
||
;; Author: Jamie Zawinski <jwz@lucid.com>
|
||
;; Hallvard Furuseth <hbf@ulrik.uio.no>
|
||
;; Maintainer: FSF
|
||
;; Keywords: internal
|
||
;; Package: emacs
|
||
|
||
;; This file is part of GNU Emacs.
|
||
|
||
;; GNU Emacs is free software: you can redistribute it and/or modify
|
||
;; it under the terms of the GNU General Public License as published by
|
||
;; the Free Software Foundation, either version 3 of the License, or
|
||
;; (at your option) any later version.
|
||
|
||
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
;; GNU General Public License for more details.
|
||
|
||
;; You should have received a copy of the GNU General Public License
|
||
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
;;; Commentary:
|
||
|
||
;; ========================================================================
|
||
;; "No matter how hard you try, you can't make a racehorse out of a pig.
|
||
;; You can, however, make a faster pig."
|
||
;;
|
||
;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
|
||
;; makes it be a VW Bug with fuel injection and a turbocharger... You're
|
||
;; still not going to make it go faster than 70 mph, but it might be easier
|
||
;; to get it there.
|
||
;;
|
||
|
||
;; TO DO:
|
||
;;
|
||
;; (apply (lambda (x &rest y) ...) 1 (foo))
|
||
;;
|
||
;; maintain a list of functions known not to access any global variables
|
||
;; (actually, give them a 'dynamically-safe property) and then
|
||
;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
|
||
;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
|
||
;; by recursing on this, we might be able to eliminate the entire let.
|
||
;; However certain variables should never have their bindings optimized
|
||
;; away, because they affect everything.
|
||
;; (put 'debug-on-error 'binding-is-magic t)
|
||
;; (put 'debug-on-abort 'binding-is-magic t)
|
||
;; (put 'debug-on-next-call 'binding-is-magic t)
|
||
;; (put 'inhibit-quit 'binding-is-magic t)
|
||
;; (put 'quit-flag 'binding-is-magic t)
|
||
;; (put 't 'binding-is-magic t)
|
||
;; (put 'nil 'binding-is-magic t)
|
||
;; possibly also
|
||
;; (put 'gc-cons-threshold 'binding-is-magic t)
|
||
;; (put 'track-mouse 'binding-is-magic t)
|
||
;; others?
|
||
;;
|
||
;; Simple defsubsts often produce forms like
|
||
;; (let ((v1 (f1)) (v2 (f2)) ...)
|
||
;; (FN v1 v2 ...))
|
||
;; It would be nice if we could optimize this to
|
||
;; (FN (f1) (f2) ...)
|
||
;; but we can't unless FN is dynamically-safe (it might be dynamically
|
||
;; referring to the bindings that the lambda arglist established.)
|
||
;; One of the uncountable lossages introduced by dynamic scope...
|
||
;;
|
||
;; Maybe there should be a control-structure that says "turn on
|
||
;; fast-and-loose type-assumptive optimizations here." Then when
|
||
;; we see a form like (car foo) we can from then on assume that
|
||
;; the variable foo is of type cons, and optimize based on that.
|
||
;; But, this won't win much because of (you guessed it) dynamic
|
||
;; scope. Anything down the stack could change the value.
|
||
;; (Another reason it doesn't work is that it is perfectly valid
|
||
;; to call car with a null argument.) A better approach might
|
||
;; be to allow type-specification of the form
|
||
;; (put 'foo 'arg-types '(float (list integer) dynamic))
|
||
;; (put 'foo 'result-type 'bool)
|
||
;; It should be possible to have these types checked to a certain
|
||
;; degree.
|
||
;;
|
||
;; collapse common subexpressions
|
||
;;
|
||
;; It would be nice if redundant sequences could be factored out as well,
|
||
;; when they are known to have no side-effects:
|
||
;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
|
||
;; but beware of traps like
|
||
;; (cons (list x y) (list x y))
|
||
;;
|
||
;; Tail-recursion elimination is not really possible in Emacs Lisp.
|
||
;; Tail-recursion elimination is almost always impossible when all variables
|
||
;; have dynamic scope, but given that the "return" byteop requires the
|
||
;; binding stack to be empty (rather than emptying it itself), there can be
|
||
;; no truly tail-recursive Emacs Lisp functions that take any arguments or
|
||
;; make any bindings.
|
||
;;
|
||
;; Here is an example of an Emacs Lisp function which could safely be
|
||
;; byte-compiled tail-recursively:
|
||
;;
|
||
;; (defun tail-map (fn list)
|
||
;; (cond (list
|
||
;; (funcall fn (car list))
|
||
;; (tail-map fn (cdr list)))))
|
||
;;
|
||
;; However, if there was even a single let-binding around the COND,
|
||
;; it could not be byte-compiled, because there would be an "unbind"
|
||
;; byte-op between the final "call" and "return." Adding a
|
||
;; Bunbind_all byteop would fix this.
|
||
;;
|
||
;; (defun foo (x y z) ... (foo a b c))
|
||
;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
|
||
;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
|
||
;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
|
||
;;
|
||
;; this also can be considered tail recursion:
|
||
;;
|
||
;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
|
||
;; could generalize this by doing the optimization
|
||
;; (goto X) ... X: (return) --> (return)
|
||
;;
|
||
;; But this doesn't solve all of the problems: although by doing tail-
|
||
;; recursion elimination in this way, the call-stack does not grow, the
|
||
;; binding-stack would grow with each recursive step, and would eventually
|
||
;; overflow. I don't believe there is any way around this without lexical
|
||
;; scope.
|
||
;;
|
||
;; Wouldn't it be nice if Emacs Lisp had lexical scope.
|
||
;;
|
||
;; Idea: the form (lexical-scope) in a file means that the file may be
|
||
;; compiled lexically. This proclamation is file-local. Then, within
|
||
;; that file, "let" would establish lexical bindings, and "let-dynamic"
|
||
;; would do things the old way. (Or we could use CL "declare" forms.)
|
||
;; We'd have to notice defvars and defconsts, since those variables should
|
||
;; always be dynamic, and attempting to do a lexical binding of them
|
||
;; should simply do a dynamic binding instead.
|
||
;; But! We need to know about variables that were not necessarily defvared
|
||
;; in the file being compiled (doing a boundp check isn't good enough.)
|
||
;; Fdefvar() would have to be modified to add something to the plist.
|
||
;;
|
||
;; A major disadvantage of this scheme is that the interpreter and compiler
|
||
;; would have different semantics for files compiled with (dynamic-scope).
|
||
;; Since this would be a file-local optimization, there would be no way to
|
||
;; modify the interpreter to obey this (unless the loader was hacked
|
||
;; in some grody way, but that's a really bad idea.)
|
||
|
||
;; Other things to consider:
|
||
|
||
;; ;; Associative math should recognize subcalls to identical function:
|
||
;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
|
||
;; ;; This should generate the same as (1+ x) and (1- x)
|
||
|
||
;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
|
||
;; ;; An awful lot of functions always return a non-nil value. If they're
|
||
;; ;; error free also they may act as true-constants.
|
||
|
||
;; (disassemble (lambda (x) (and (point) (foo))))
|
||
;; ;; When
|
||
;; ;; - all but one arguments to a function are constant
|
||
;; ;; - the non-constant argument is an if-expression (cond-expression?)
|
||
;; ;; then the outer function can be distributed. If the guarding
|
||
;; ;; condition is side-effect-free [assignment-free] then the other
|
||
;; ;; arguments may be any expressions. Since, however, the code size
|
||
;; ;; can increase this way they should be "simple". Compare:
|
||
|
||
;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
|
||
;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
|
||
|
||
;; ;; (car (cons A B)) -> (prog1 A B)
|
||
;; (disassemble (lambda (x) (car (cons (foo) 42))))
|
||
|
||
;; ;; (cdr (cons A B)) -> (progn A B)
|
||
;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
|
||
|
||
;; ;; (car (list A B ...)) -> (prog1 A B ...)
|
||
;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
|
||
|
||
;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
|
||
;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
|
||
|
||
|
||
;;; Code:
|
||
|
||
(require 'bytecomp)
|
||
(eval-when-compile (require 'cl))
|
||
|
||
(defun byte-compile-log-lap-1 (format &rest args)
|
||
;; Newer byte codes for stack-ref make the slot 0 non-nil again.
|
||
;; But the "old disassembler" is *really* ancient by now.
|
||
;; (if (aref byte-code-vector 0)
|
||
;; (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
|
||
(byte-compile-log-1
|
||
(apply 'format format
|
||
(let (c a)
|
||
(mapcar (lambda (arg)
|
||
(if (not (consp arg))
|
||
(if (and (symbolp arg)
|
||
(string-match "^byte-" (symbol-name arg)))
|
||
(intern (substring (symbol-name arg) 5))
|
||
arg)
|
||
(if (integerp (setq c (car arg)))
|
||
(error "non-symbolic byte-op %s" c))
|
||
(if (eq c 'TAG)
|
||
(setq c arg)
|
||
(setq a (cond ((memq c byte-goto-ops)
|
||
(car (cdr (cdr arg))))
|
||
((memq c byte-constref-ops)
|
||
(car (cdr arg)))
|
||
(t (cdr arg))))
|
||
(setq c (symbol-name c))
|
||
(if (string-match "^byte-." c)
|
||
(setq c (intern (substring c 5)))))
|
||
(if (eq c 'constant) (setq c 'const))
|
||
(if (and (eq (cdr arg) 0)
|
||
(not (memq c '(unbind call const))))
|
||
c
|
||
(format "(%s %s)" c a))))
|
||
args)))))
|
||
|
||
(defmacro byte-compile-log-lap (format-string &rest args)
|
||
`(and (memq byte-optimize-log '(t byte))
|
||
(byte-compile-log-lap-1 ,format-string ,@args)))
|
||
|
||
|
||
;;; byte-compile optimizers to support inlining
|
||
|
||
(put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
|
||
|
||
(defun byte-optimize-inline-handler (form)
|
||
"byte-optimize-handler for the `inline' special-form."
|
||
(cons 'progn
|
||
(mapcar
|
||
(lambda (sexp)
|
||
(let ((f (car-safe sexp)))
|
||
(if (and (symbolp f)
|
||
(or (cdr (assq f byte-compile-function-environment))
|
||
(not (or (not (fboundp f))
|
||
(cdr (assq f byte-compile-macro-environment))
|
||
(and (consp (setq f (symbol-function f)))
|
||
(eq (car f) 'macro))
|
||
(subrp f)))))
|
||
(byte-compile-inline-expand sexp)
|
||
sexp)))
|
||
(cdr form))))
|
||
|
||
(defun byte-compile-inline-expand (form)
|
||
(let* ((name (car form))
|
||
(localfn (cdr (assq name byte-compile-function-environment)))
|
||
(fn (or localfn (and (fboundp name) (symbol-function name)))))
|
||
(when (and (consp fn) (eq (car fn) 'autoload))
|
||
(load (nth 1 fn))
|
||
(setq fn (or (and (fboundp name) (symbol-function name))
|
||
(cdr (assq name byte-compile-function-environment)))))
|
||
(pcase fn
|
||
(`nil
|
||
(byte-compile-warn "attempt to inline `%s' before it was defined"
|
||
name)
|
||
form)
|
||
(`(autoload . ,_)
|
||
(error "File `%s' didn't define `%s'" (nth 1 fn) name))
|
||
((and (pred symbolp) (guard (not (eq fn t)))) ;A function alias.
|
||
(byte-compile-inline-expand (cons fn (cdr form))))
|
||
((pred byte-code-function-p)
|
||
;; (message "Inlining byte-code for %S!" name)
|
||
;; The byte-code will be really inlined in byte-compile-unfold-bcf.
|
||
`(,fn ,@(cdr form)))
|
||
((or (and `(lambda ,args . ,body) (let env nil))
|
||
`(closure ,env ,args . ,body))
|
||
(if (not (or (eq fn localfn) ;From the same file => same mode.
|
||
(eq (not lexical-binding) (not env)))) ;Same mode.
|
||
;; While byte-compile-unfold-bcf can inline dynbind byte-code into
|
||
;; letbind byte-code (or any other combination for that matter), we
|
||
;; can only inline dynbind source into dynbind source or letbind
|
||
;; source into letbind source.
|
||
;; FIXME: we could of course byte-compile the inlined function
|
||
;; first, and then inline its byte-code.
|
||
form
|
||
(let ((renv ()))
|
||
;; Turn the function's closed vars (if any) into local let bindings.
|
||
(dolist (binding env)
|
||
(cond
|
||
((consp binding)
|
||
;; We check shadowing by the args, so that the `let' can be
|
||
;; moved within the lambda, which can then be unfolded.
|
||
;; FIXME: Some of those bindings might be unused in `body'.
|
||
(unless (memq (car binding) args) ;Shadowed.
|
||
(push `(,(car binding) ',(cdr binding)) renv)))
|
||
((eq binding t))
|
||
(t (push `(defvar ,binding) body))))
|
||
(let ((newfn (byte-compile-preprocess
|
||
(if (null renv)
|
||
`(lambda ,args ,@body)
|
||
`(lambda ,args (let ,(nreverse renv) ,@body))))))
|
||
(if (eq (car-safe newfn) 'function)
|
||
(byte-compile-unfold-lambda `(,(cadr newfn) ,@(cdr form)))
|
||
(byte-compile-log-warning
|
||
(format "Inlining closure %S failed" name))
|
||
form)))))
|
||
|
||
(t ;; Give up on inlining.
|
||
form))))
|
||
|
||
;; ((lambda ...) ...)
|
||
(defun byte-compile-unfold-lambda (form &optional name)
|
||
;; In lexical-binding mode, let and functions don't bind vars in the same way
|
||
;; (let obey special-variable-p, but functions don't). But luckily, this
|
||
;; doesn't matter here, because function's behavior is underspecified so it
|
||
;; can safely be turned into a `let', even though the reverse is not true.
|
||
(or name (setq name "anonymous lambda"))
|
||
(let ((lambda (car form))
|
||
(values (cdr form)))
|
||
(let ((arglist (nth 1 lambda))
|
||
(body (cdr (cdr lambda)))
|
||
optionalp restp
|
||
bindings)
|
||
(if (and (stringp (car body)) (cdr body))
|
||
(setq body (cdr body)))
|
||
(if (and (consp (car body)) (eq 'interactive (car (car body))))
|
||
(setq body (cdr body)))
|
||
;; FIXME: The checks below do not belong in an optimization phase.
|
||
(while arglist
|
||
(cond ((eq (car arglist) '&optional)
|
||
;; ok, I'll let this slide because funcall_lambda() does...
|
||
;; (if optionalp (error "multiple &optional keywords in %s" name))
|
||
(if restp (error "&optional found after &rest in %s" name))
|
||
(if (null (cdr arglist))
|
||
(error "nothing after &optional in %s" name))
|
||
(setq optionalp t))
|
||
((eq (car arglist) '&rest)
|
||
;; ...but it is by no stretch of the imagination a reasonable
|
||
;; thing that funcall_lambda() allows (&rest x y) and
|
||
;; (&rest x &optional y) in arglists.
|
||
(if (null (cdr arglist))
|
||
(error "nothing after &rest in %s" name))
|
||
(if (cdr (cdr arglist))
|
||
(error "multiple vars after &rest in %s" name))
|
||
(setq restp t))
|
||
(restp
|
||
(setq bindings (cons (list (car arglist)
|
||
(and values (cons 'list values)))
|
||
bindings)
|
||
values nil))
|
||
((and (not optionalp) (null values))
|
||
(byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
|
||
(setq arglist nil values 'too-few))
|
||
(t
|
||
(setq bindings (cons (list (car arglist) (car values))
|
||
bindings)
|
||
values (cdr values))))
|
||
(setq arglist (cdr arglist)))
|
||
(if values
|
||
(progn
|
||
(or (eq values 'too-few)
|
||
(byte-compile-warn
|
||
"attempt to open-code `%s' with too many arguments" name))
|
||
form)
|
||
|
||
;; The following leads to infinite recursion when loading a
|
||
;; file containing `(defsubst f () (f))', and then trying to
|
||
;; byte-compile that file.
|
||
;(setq body (mapcar 'byte-optimize-form body)))
|
||
|
||
(let ((newform
|
||
(if bindings
|
||
(cons 'let (cons (nreverse bindings) body))
|
||
(cons 'progn body))))
|
||
(byte-compile-log " %s\t==>\t%s" form newform)
|
||
newform)))))
|
||
|
||
|
||
;;; implementing source-level optimizers
|
||
|
||
(defun byte-optimize-form-code-walker (form for-effect)
|
||
;;
|
||
;; For normal function calls, We can just mapcar the optimizer the cdr. But
|
||
;; we need to have special knowledge of the syntax of the special forms
|
||
;; like let and defun (that's why they're special forms :-). (Actually,
|
||
;; the important aspect is that they are subrs that don't evaluate all of
|
||
;; their args.)
|
||
;;
|
||
(let ((fn (car-safe form))
|
||
tmp)
|
||
(cond ((not (consp form))
|
||
(if (not (and for-effect
|
||
(or byte-compile-delete-errors
|
||
(not (symbolp form))
|
||
(eq form t))))
|
||
form))
|
||
((eq fn 'quote)
|
||
(if (cdr (cdr form))
|
||
(byte-compile-warn "malformed quote form: `%s'"
|
||
(prin1-to-string form)))
|
||
;; map (quote nil) to nil to simplify optimizer logic.
|
||
;; map quoted constants to nil if for-effect (just because).
|
||
(and (nth 1 form)
|
||
(not for-effect)
|
||
form))
|
||
((eq 'lambda (car-safe fn))
|
||
(let ((newform (byte-compile-unfold-lambda form)))
|
||
(if (eq newform form)
|
||
;; Some error occurred, avoid infinite recursion
|
||
form
|
||
(byte-optimize-form-code-walker newform for-effect))))
|
||
((memq fn '(let let*))
|
||
;; recursively enter the optimizer for the bindings and body
|
||
;; of a let or let*. This for depth-firstness: forms that
|
||
;; are more deeply nested are optimized first.
|
||
(cons fn
|
||
(cons
|
||
(mapcar (lambda (binding)
|
||
(if (symbolp binding)
|
||
binding
|
||
(if (cdr (cdr binding))
|
||
(byte-compile-warn "malformed let binding: `%s'"
|
||
(prin1-to-string binding)))
|
||
(list (car binding)
|
||
(byte-optimize-form (nth 1 binding) nil))))
|
||
(nth 1 form))
|
||
(byte-optimize-body (cdr (cdr form)) for-effect))))
|
||
((eq fn 'cond)
|
||
(cons fn
|
||
(mapcar (lambda (clause)
|
||
(if (consp clause)
|
||
(cons
|
||
(byte-optimize-form (car clause) nil)
|
||
(byte-optimize-body (cdr clause) for-effect))
|
||
(byte-compile-warn "malformed cond form: `%s'"
|
||
(prin1-to-string clause))
|
||
clause))
|
||
(cdr form))))
|
||
((eq fn 'progn)
|
||
;; as an extra added bonus, this simplifies (progn <x>) --> <x>
|
||
(if (cdr (cdr form))
|
||
(progn
|
||
(setq tmp (byte-optimize-body (cdr form) for-effect))
|
||
(if (cdr tmp) (cons 'progn tmp) (car tmp)))
|
||
(byte-optimize-form (nth 1 form) for-effect)))
|
||
((eq fn 'prog1)
|
||
(if (cdr (cdr form))
|
||
(cons 'prog1
|
||
(cons (byte-optimize-form (nth 1 form) for-effect)
|
||
(byte-optimize-body (cdr (cdr form)) t)))
|
||
(byte-optimize-form (nth 1 form) for-effect)))
|
||
((eq fn 'prog2)
|
||
(cons 'prog2
|
||
(cons (byte-optimize-form (nth 1 form) t)
|
||
(cons (byte-optimize-form (nth 2 form) for-effect)
|
||
(byte-optimize-body (cdr (cdr (cdr form))) t)))))
|
||
|
||
((memq fn '(save-excursion save-restriction save-current-buffer))
|
||
;; those subrs which have an implicit progn; it's not quite good
|
||
;; enough to treat these like normal function calls.
|
||
;; This can turn (save-excursion ...) into (save-excursion) which
|
||
;; will be optimized away in the lap-optimize pass.
|
||
(cons fn (byte-optimize-body (cdr form) for-effect)))
|
||
|
||
((eq fn 'with-output-to-temp-buffer)
|
||
;; this is just like the above, except for the first argument.
|
||
(cons fn
|
||
(cons
|
||
(byte-optimize-form (nth 1 form) nil)
|
||
(byte-optimize-body (cdr (cdr form)) for-effect))))
|
||
|
||
((eq fn 'if)
|
||
(when (< (length form) 3)
|
||
(byte-compile-warn "too few arguments for `if'"))
|
||
(cons fn
|
||
(cons (byte-optimize-form (nth 1 form) nil)
|
||
(cons
|
||
(byte-optimize-form (nth 2 form) for-effect)
|
||
(byte-optimize-body (nthcdr 3 form) for-effect)))))
|
||
|
||
((memq fn '(and or)) ; Remember, and/or are control structures.
|
||
;; Take forms off the back until we can't any more.
|
||
;; In the future it could conceivably be a problem that the
|
||
;; subexpressions of these forms are optimized in the reverse
|
||
;; order, but it's ok for now.
|
||
(if for-effect
|
||
(let ((backwards (reverse (cdr form))))
|
||
(while (and backwards
|
||
(null (setcar backwards
|
||
(byte-optimize-form (car backwards)
|
||
for-effect))))
|
||
(setq backwards (cdr backwards)))
|
||
(if (and (cdr form) (null backwards))
|
||
(byte-compile-log
|
||
" all subforms of %s called for effect; deleted" form))
|
||
(and backwards
|
||
(cons fn (nreverse (mapcar 'byte-optimize-form
|
||
backwards)))))
|
||
(cons fn (mapcar 'byte-optimize-form (cdr form)))))
|
||
|
||
((eq fn 'interactive)
|
||
(byte-compile-warn "misplaced interactive spec: `%s'"
|
||
(prin1-to-string form))
|
||
nil)
|
||
|
||
((memq fn '(defun defmacro function condition-case))
|
||
;; These forms are compiled as constants or by breaking out
|
||
;; all the subexpressions and compiling them separately.
|
||
form)
|
||
|
||
((eq fn 'unwind-protect)
|
||
;; the "protected" part of an unwind-protect is compiled (and thus
|
||
;; optimized) as a top-level form, so don't do it here. But the
|
||
;; non-protected part has the same for-effect status as the
|
||
;; unwind-protect itself. (The protected part is always for effect,
|
||
;; but that isn't handled properly yet.)
|
||
(cons fn
|
||
(cons (byte-optimize-form (nth 1 form) for-effect)
|
||
(cdr (cdr form)))))
|
||
|
||
((eq fn 'catch)
|
||
;; the body of a catch is compiled (and thus optimized) as a
|
||
;; top-level form, so don't do it here. The tag is never
|
||
;; for-effect. The body should have the same for-effect status
|
||
;; as the catch form itself, but that isn't handled properly yet.
|
||
(cons fn
|
||
(cons (byte-optimize-form (nth 1 form) nil)
|
||
(cdr (cdr form)))))
|
||
|
||
((eq fn 'ignore)
|
||
;; Don't treat the args to `ignore' as being
|
||
;; computed for effect. We want to avoid the warnings
|
||
;; that might occur if they were treated that way.
|
||
;; However, don't actually bother calling `ignore'.
|
||
`(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
|
||
|
||
;; Needed as long as we run byte-optimize-form after cconv.
|
||
((eq fn 'internal-make-closure) form)
|
||
|
||
((byte-code-function-p fn)
|
||
(cons fn (mapcar #'byte-optimize-form (cdr form))))
|
||
|
||
((not (symbolp fn))
|
||
(byte-compile-warn "`%s' is a malformed function"
|
||
(prin1-to-string fn))
|
||
form)
|
||
|
||
((and for-effect (setq tmp (get fn 'side-effect-free))
|
||
(or byte-compile-delete-errors
|
||
(eq tmp 'error-free)
|
||
;; Detect the expansion of (pop foo).
|
||
;; There is no need to compile the call to `car' there.
|
||
(and (eq fn 'car)
|
||
(eq (car-safe (cadr form)) 'prog1)
|
||
(let ((var (cadr (cadr form)))
|
||
(last (nth 2 (cadr form))))
|
||
(and (symbolp var)
|
||
(null (nthcdr 3 (cadr form)))
|
||
(eq (car-safe last) 'setq)
|
||
(eq (cadr last) var)
|
||
(eq (car-safe (nth 2 last)) 'cdr)
|
||
(eq (cadr (nth 2 last)) var))))
|
||
(progn
|
||
(byte-compile-warn "value returned from %s is unused"
|
||
(prin1-to-string form))
|
||
nil)))
|
||
(byte-compile-log " %s called for effect; deleted" fn)
|
||
;; appending a nil here might not be necessary, but it can't hurt.
|
||
(byte-optimize-form
|
||
(cons 'progn (append (cdr form) '(nil))) t))
|
||
|
||
(t
|
||
;; Otherwise, no args can be considered to be for-effect,
|
||
;; even if the called function is for-effect, because we
|
||
;; don't know anything about that function.
|
||
(let ((args (mapcar #'byte-optimize-form (cdr form))))
|
||
(if (and (get fn 'pure)
|
||
(byte-optimize-all-constp args))
|
||
(list 'quote (apply fn (mapcar #'eval args)))
|
||
(cons fn args)))))))
|
||
|
||
(defun byte-optimize-all-constp (list)
|
||
"Non-nil if all elements of LIST satisfy `byte-compile-constp'."
|
||
(let ((constant t))
|
||
(while (and list constant)
|
||
(unless (byte-compile-constp (car list))
|
||
(setq constant nil))
|
||
(setq list (cdr list)))
|
||
constant))
|
||
|
||
(defun byte-optimize-form (form &optional for-effect)
|
||
"The source-level pass of the optimizer."
|
||
;;
|
||
;; First, optimize all sub-forms of this one.
|
||
(setq form (byte-optimize-form-code-walker form for-effect))
|
||
;;
|
||
;; after optimizing all subforms, optimize this form until it doesn't
|
||
;; optimize any further. This means that some forms will be passed through
|
||
;; the optimizer many times, but that's necessary to make the for-effect
|
||
;; processing do as much as possible.
|
||
;;
|
||
(let (opt new)
|
||
(if (and (consp form)
|
||
(symbolp (car form))
|
||
(or (and for-effect
|
||
;; we don't have any of these yet, but we might.
|
||
(setq opt (get (car form) 'byte-for-effect-optimizer)))
|
||
(setq opt (get (car form) 'byte-optimizer)))
|
||
(not (eq form (setq new (funcall opt form)))))
|
||
(progn
|
||
;; (if (equal form new) (error "bogus optimizer -- %s" opt))
|
||
(byte-compile-log " %s\t==>\t%s" form new)
|
||
(setq new (byte-optimize-form new for-effect))
|
||
new)
|
||
form)))
|
||
|
||
|
||
(defun byte-optimize-body (forms all-for-effect)
|
||
;; Optimize the cdr of a progn or implicit progn; all forms is a list of
|
||
;; forms, all but the last of which are optimized with the assumption that
|
||
;; they are being called for effect. the last is for-effect as well if
|
||
;; all-for-effect is true. returns a new list of forms.
|
||
(let ((rest forms)
|
||
(result nil)
|
||
fe new)
|
||
(while rest
|
||
(setq fe (or all-for-effect (cdr rest)))
|
||
(setq new (and (car rest) (byte-optimize-form (car rest) fe)))
|
||
(if (or new (not fe))
|
||
(setq result (cons new result)))
|
||
(setq rest (cdr rest)))
|
||
(nreverse result)))
|
||
|
||
|
||
;; some source-level optimizers
|
||
;;
|
||
;; when writing optimizers, be VERY careful that the optimizer returns
|
||
;; something not EQ to its argument if and ONLY if it has made a change.
|
||
;; This implies that you cannot simply destructively modify the list;
|
||
;; you must return something not EQ to it if you make an optimization.
|
||
;;
|
||
;; It is now safe to optimize code such that it introduces new bindings.
|
||
|
||
(defsubst byte-compile-trueconstp (form)
|
||
"Return non-nil if FORM always evaluates to a non-nil value."
|
||
(while (eq (car-safe form) 'progn)
|
||
(setq form (car (last (cdr form)))))
|
||
(cond ((consp form)
|
||
(case (car form)
|
||
(quote (cadr form))
|
||
;; Can't use recursion in a defsubst.
|
||
;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
|
||
))
|
||
((not (symbolp form)))
|
||
((eq form t))
|
||
((keywordp form))))
|
||
|
||
(defsubst byte-compile-nilconstp (form)
|
||
"Return non-nil if FORM always evaluates to a nil value."
|
||
(while (eq (car-safe form) 'progn)
|
||
(setq form (car (last (cdr form)))))
|
||
(cond ((consp form)
|
||
(case (car form)
|
||
(quote (null (cadr form)))
|
||
;; Can't use recursion in a defsubst.
|
||
;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
|
||
))
|
||
((not (symbolp form)) nil)
|
||
((null form))))
|
||
|
||
;; If the function is being called with constant numeric args,
|
||
;; evaluate as much as possible at compile-time. This optimizer
|
||
;; assumes that the function is associative, like + or *.
|
||
(defun byte-optimize-associative-math (form)
|
||
(let ((args nil)
|
||
(constants nil)
|
||
(rest (cdr form)))
|
||
(while rest
|
||
(if (numberp (car rest))
|
||
(setq constants (cons (car rest) constants))
|
||
(setq args (cons (car rest) args)))
|
||
(setq rest (cdr rest)))
|
||
(if (cdr constants)
|
||
(if args
|
||
(list (car form)
|
||
(apply (car form) constants)
|
||
(if (cdr args)
|
||
(cons (car form) (nreverse args))
|
||
(car args)))
|
||
(apply (car form) constants))
|
||
form)))
|
||
|
||
;; If the function is being called with constant numeric args,
|
||
;; evaluate as much as possible at compile-time. This optimizer
|
||
;; assumes that the function satisfies
|
||
;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
|
||
;; like - and /.
|
||
(defun byte-optimize-nonassociative-math (form)
|
||
(if (or (not (numberp (car (cdr form))))
|
||
(not (numberp (car (cdr (cdr form))))))
|
||
form
|
||
(let ((constant (car (cdr form)))
|
||
(rest (cdr (cdr form))))
|
||
(while (numberp (car rest))
|
||
(setq constant (funcall (car form) constant (car rest))
|
||
rest (cdr rest)))
|
||
(if rest
|
||
(cons (car form) (cons constant rest))
|
||
constant))))
|
||
|
||
;;(defun byte-optimize-associative-two-args-math (form)
|
||
;; (setq form (byte-optimize-associative-math form))
|
||
;; (if (consp form)
|
||
;; (byte-optimize-two-args-left form)
|
||
;; form))
|
||
|
||
;;(defun byte-optimize-nonassociative-two-args-math (form)
|
||
;; (setq form (byte-optimize-nonassociative-math form))
|
||
;; (if (consp form)
|
||
;; (byte-optimize-two-args-right form)
|
||
;; form))
|
||
|
||
(defun byte-optimize-approx-equal (x y)
|
||
(<= (* (abs (- x y)) 100) (abs (+ x y))))
|
||
|
||
;; Collect all the constants from FORM, after the STARTth arg,
|
||
;; and apply FUN to them to make one argument at the end.
|
||
;; For functions that can handle floats, that optimization
|
||
;; can be incorrect because reordering can cause an overflow
|
||
;; that would otherwise be avoided by encountering an arg that is a float.
|
||
;; We avoid this problem by (1) not moving float constants and
|
||
;; (2) not moving anything if it would cause an overflow.
|
||
(defun byte-optimize-delay-constants-math (form start fun)
|
||
;; Merge all FORM's constants from number START, call FUN on them
|
||
;; and put the result at the end.
|
||
(let ((rest (nthcdr (1- start) form))
|
||
(orig form)
|
||
;; t means we must check for overflow.
|
||
(overflow (memq fun '(+ *))))
|
||
(while (cdr (setq rest (cdr rest)))
|
||
(if (integerp (car rest))
|
||
(let (constants)
|
||
(setq form (copy-sequence form)
|
||
rest (nthcdr (1- start) form))
|
||
(while (setq rest (cdr rest))
|
||
(cond ((integerp (car rest))
|
||
(setq constants (cons (car rest) constants))
|
||
(setcar rest nil))))
|
||
;; If necessary, check now for overflow
|
||
;; that might be caused by reordering.
|
||
(if (and overflow
|
||
;; We have overflow if the result of doing the arithmetic
|
||
;; on floats is not even close to the result
|
||
;; of doing it on integers.
|
||
(not (byte-optimize-approx-equal
|
||
(apply fun (mapcar 'float constants))
|
||
(float (apply fun constants)))))
|
||
(setq form orig)
|
||
(setq form (nconc (delq nil form)
|
||
(list (apply fun (nreverse constants)))))))))
|
||
form))
|
||
|
||
(defsubst byte-compile-butlast (form)
|
||
(nreverse (cdr (reverse form))))
|
||
|
||
(defun byte-optimize-plus (form)
|
||
;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
|
||
;;(setq form (byte-optimize-delay-constants-math form 1 '+))
|
||
(if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
|
||
;; For (+ constants...), byte-optimize-predicate does the work.
|
||
(when (memq nil (mapcar 'numberp (cdr form)))
|
||
(cond
|
||
;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
|
||
((and (= (length form) 3)
|
||
(or (memq (nth 1 form) '(1 -1))
|
||
(memq (nth 2 form) '(1 -1))))
|
||
(let (integer other)
|
||
(if (memq (nth 1 form) '(1 -1))
|
||
(setq integer (nth 1 form) other (nth 2 form))
|
||
(setq integer (nth 2 form) other (nth 1 form)))
|
||
(setq form
|
||
(list (if (eq integer 1) '1+ '1-) other))))
|
||
;; Here, we could also do
|
||
;; (+ x y ... 1) --> (1+ (+ x y ...))
|
||
;; (+ x y ... -1) --> (1- (+ x y ...))
|
||
;; The resulting bytecode is smaller, but is it faster? -- cyd
|
||
))
|
||
(byte-optimize-predicate form))
|
||
|
||
(defun byte-optimize-minus (form)
|
||
;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
|
||
;;(setq form (byte-optimize-delay-constants-math form 2 '+))
|
||
;; Remove zeros.
|
||
(when (and (nthcdr 3 form)
|
||
(memq 0 (cddr form)))
|
||
(setq form (nconc (list (car form) (cadr form))
|
||
(delq 0 (copy-sequence (cddr form)))))
|
||
;; After the above, we must turn (- x) back into (- x 0)
|
||
(or (cddr form)
|
||
(setq form (nconc form (list 0)))))
|
||
;; For (- constants..), byte-optimize-predicate does the work.
|
||
(when (memq nil (mapcar 'numberp (cdr form)))
|
||
(cond
|
||
;; (- x 1) --> (1- x)
|
||
((equal (nthcdr 2 form) '(1))
|
||
(setq form (list '1- (nth 1 form))))
|
||
;; (- x -1) --> (1+ x)
|
||
((equal (nthcdr 2 form) '(-1))
|
||
(setq form (list '1+ (nth 1 form))))
|
||
;; (- 0 x) --> (- x)
|
||
((and (eq (nth 1 form) 0)
|
||
(= (length form) 3))
|
||
(setq form (list '- (nth 2 form))))
|
||
;; Here, we could also do
|
||
;; (- x y ... 1) --> (1- (- x y ...))
|
||
;; (- x y ... -1) --> (1+ (- x y ...))
|
||
;; The resulting bytecode is smaller, but is it faster? -- cyd
|
||
))
|
||
(byte-optimize-predicate form))
|
||
|
||
(defun byte-optimize-multiply (form)
|
||
(setq form (byte-optimize-delay-constants-math form 1 '*))
|
||
;; For (* constants..), byte-optimize-predicate does the work.
|
||
(when (memq nil (mapcar 'numberp (cdr form)))
|
||
;; After `byte-optimize-predicate', if there is a INTEGER constant
|
||
;; in FORM, it is in the last element.
|
||
(let ((last (car (reverse (cdr form)))))
|
||
(cond
|
||
;; Would handling (* ... 0) here cause floating point errors?
|
||
;; See bug#1334.
|
||
((eq 1 last) (setq form (byte-compile-butlast form)))
|
||
((eq -1 last)
|
||
(setq form (list '- (if (nthcdr 3 form)
|
||
(byte-compile-butlast form)
|
||
(nth 1 form))))))))
|
||
(byte-optimize-predicate form))
|
||
|
||
(defun byte-optimize-divide (form)
|
||
(setq form (byte-optimize-delay-constants-math form 2 '*))
|
||
;; After `byte-optimize-predicate', if there is a INTEGER constant
|
||
;; in FORM, it is in the last element.
|
||
(let ((last (car (reverse (cdr (cdr form))))))
|
||
(cond
|
||
;; Runtime error (leave it intact).
|
||
((or (null last)
|
||
(eq last 0)
|
||
(memql 0.0 (cddr form))))
|
||
;; No constants in expression
|
||
((not (numberp last)))
|
||
;; For (* constants..), byte-optimize-predicate does the work.
|
||
((null (memq nil (mapcar 'numberp (cdr form)))))
|
||
;; (/ x y.. 1) --> (/ x y..)
|
||
((and (eq last 1) (nthcdr 3 form))
|
||
(setq form (byte-compile-butlast form)))
|
||
;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
|
||
((eq last -1)
|
||
(setq form (list '- (if (nthcdr 3 form)
|
||
(byte-compile-butlast form)
|
||
(nth 1 form)))))))
|
||
(byte-optimize-predicate form))
|
||
|
||
(defun byte-optimize-logmumble (form)
|
||
(setq form (byte-optimize-delay-constants-math form 1 (car form)))
|
||
(byte-optimize-predicate
|
||
(cond ((memq 0 form)
|
||
(setq form (if (eq (car form) 'logand)
|
||
(cons 'progn (cdr form))
|
||
(delq 0 (copy-sequence form)))))
|
||
((and (eq (car-safe form) 'logior)
|
||
(memq -1 form))
|
||
(cons 'progn (cdr form)))
|
||
(form))))
|
||
|
||
|
||
(defun byte-optimize-binary-predicate (form)
|
||
(if (byte-compile-constp (nth 1 form))
|
||
(if (byte-compile-constp (nth 2 form))
|
||
(condition-case ()
|
||
(list 'quote (eval form))
|
||
(error form))
|
||
;; This can enable some lapcode optimizations.
|
||
(list (car form) (nth 2 form) (nth 1 form)))
|
||
form))
|
||
|
||
(defun byte-optimize-predicate (form)
|
||
(let ((ok t)
|
||
(rest (cdr form)))
|
||
(while (and rest ok)
|
||
(setq ok (byte-compile-constp (car rest))
|
||
rest (cdr rest)))
|
||
(if ok
|
||
(condition-case ()
|
||
(list 'quote (eval form))
|
||
(error form))
|
||
form)))
|
||
|
||
(defun byte-optimize-identity (form)
|
||
(if (and (cdr form) (null (cdr (cdr form))))
|
||
(nth 1 form)
|
||
(byte-compile-warn "identity called with %d arg%s, but requires 1"
|
||
(length (cdr form))
|
||
(if (= 1 (length (cdr form))) "" "s"))
|
||
form))
|
||
|
||
(put 'identity 'byte-optimizer 'byte-optimize-identity)
|
||
|
||
(put '+ 'byte-optimizer 'byte-optimize-plus)
|
||
(put '* 'byte-optimizer 'byte-optimize-multiply)
|
||
(put '- 'byte-optimizer 'byte-optimize-minus)
|
||
(put '/ 'byte-optimizer 'byte-optimize-divide)
|
||
(put 'max 'byte-optimizer 'byte-optimize-associative-math)
|
||
(put 'min 'byte-optimizer 'byte-optimize-associative-math)
|
||
|
||
(put '= 'byte-optimizer 'byte-optimize-binary-predicate)
|
||
(put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
|
||
(put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
|
||
(put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
|
||
(put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
|
||
|
||
(put '< 'byte-optimizer 'byte-optimize-predicate)
|
||
(put '> 'byte-optimizer 'byte-optimize-predicate)
|
||
(put '<= 'byte-optimizer 'byte-optimize-predicate)
|
||
(put '>= 'byte-optimizer 'byte-optimize-predicate)
|
||
(put '1+ 'byte-optimizer 'byte-optimize-predicate)
|
||
(put '1- 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'not 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'null 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'memq 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'consp 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'listp 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'stringp 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'string< 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
|
||
|
||
(put 'logand 'byte-optimizer 'byte-optimize-logmumble)
|
||
(put 'logior 'byte-optimizer 'byte-optimize-logmumble)
|
||
(put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
|
||
(put 'lognot 'byte-optimizer 'byte-optimize-predicate)
|
||
|
||
(put 'car 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'cdr 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
|
||
(put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
|
||
|
||
|
||
;; I'm not convinced that this is necessary. Doesn't the optimizer loop
|
||
;; take care of this? - Jamie
|
||
;; I think this may some times be necessary to reduce ie (quote 5) to 5,
|
||
;; so arithmetic optimizers recognize the numeric constant. - Hallvard
|
||
(put 'quote 'byte-optimizer 'byte-optimize-quote)
|
||
(defun byte-optimize-quote (form)
|
||
(if (or (consp (nth 1 form))
|
||
(and (symbolp (nth 1 form))
|
||
(not (byte-compile-const-symbol-p form))))
|
||
form
|
||
(nth 1 form)))
|
||
|
||
(defun byte-optimize-zerop (form)
|
||
(cond ((numberp (nth 1 form))
|
||
(eval form))
|
||
(byte-compile-delete-errors
|
||
(list '= (nth 1 form) 0))
|
||
(form)))
|
||
|
||
(put 'zerop 'byte-optimizer 'byte-optimize-zerop)
|
||
|
||
(defun byte-optimize-and (form)
|
||
;; Simplify if less than 2 args.
|
||
;; if there is a literal nil in the args to `and', throw it and following
|
||
;; forms away, and surround the `and' with (progn ... nil).
|
||
(cond ((null (cdr form)))
|
||
((memq nil form)
|
||
(list 'progn
|
||
(byte-optimize-and
|
||
(prog1 (setq form (copy-sequence form))
|
||
(while (nth 1 form)
|
||
(setq form (cdr form)))
|
||
(setcdr form nil)))
|
||
nil))
|
||
((null (cdr (cdr form)))
|
||
(nth 1 form))
|
||
((byte-optimize-predicate form))))
|
||
|
||
(defun byte-optimize-or (form)
|
||
;; Throw away nil's, and simplify if less than 2 args.
|
||
;; If there is a literal non-nil constant in the args to `or', throw away all
|
||
;; following forms.
|
||
(if (memq nil form)
|
||
(setq form (delq nil (copy-sequence form))))
|
||
(let ((rest form))
|
||
(while (cdr (setq rest (cdr rest)))
|
||
(if (byte-compile-trueconstp (car rest))
|
||
(setq form (copy-sequence form)
|
||
rest (setcdr (memq (car rest) form) nil))))
|
||
(if (cdr (cdr form))
|
||
(byte-optimize-predicate form)
|
||
(nth 1 form))))
|
||
|
||
(defun byte-optimize-cond (form)
|
||
;; if any clauses have a literal nil as their test, throw them away.
|
||
;; if any clause has a literal non-nil constant as its test, throw
|
||
;; away all following clauses.
|
||
(let (rest)
|
||
;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
|
||
(while (setq rest (assq nil (cdr form)))
|
||
(setq form (delq rest (copy-sequence form))))
|
||
(if (memq nil (cdr form))
|
||
(setq form (delq nil (copy-sequence form))))
|
||
(setq rest form)
|
||
(while (setq rest (cdr rest))
|
||
(cond ((byte-compile-trueconstp (car-safe (car rest)))
|
||
;; This branch will always be taken: kill the subsequent ones.
|
||
(cond ((eq rest (cdr form)) ;First branch of `cond'.
|
||
(setq form `(progn ,@(car rest))))
|
||
((cdr rest)
|
||
(setq form (copy-sequence form))
|
||
(setcdr (memq (car rest) form) nil)))
|
||
(setq rest nil))
|
||
((and (consp (car rest))
|
||
(byte-compile-nilconstp (caar rest)))
|
||
;; This branch will never be taken: kill its body.
|
||
(setcdr (car rest) nil)))))
|
||
;;
|
||
;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
|
||
(if (eq 'cond (car-safe form))
|
||
(let ((clauses (cdr form)))
|
||
(if (and (consp (car clauses))
|
||
(null (cdr (car clauses))))
|
||
(list 'or (car (car clauses))
|
||
(byte-optimize-cond
|
||
(cons (car form) (cdr (cdr form)))))
|
||
form))
|
||
form))
|
||
|
||
(defun byte-optimize-if (form)
|
||
;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
|
||
;; (if <true-constant> <then> <else...>) ==> <then>
|
||
;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
|
||
;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
|
||
;; (if <test> <then> nil) ==> (if <test> <then>)
|
||
(let ((clause (nth 1 form)))
|
||
(cond ((and (eq (car-safe clause) 'progn)
|
||
;; `clause' is a proper list.
|
||
(null (cdr (last clause))))
|
||
(if (null (cddr clause))
|
||
;; A trivial `progn'.
|
||
(byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
|
||
(nconc (butlast clause)
|
||
(list
|
||
(byte-optimize-if
|
||
`(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
|
||
((byte-compile-trueconstp clause)
|
||
`(progn ,clause ,(nth 2 form)))
|
||
((byte-compile-nilconstp clause)
|
||
`(progn ,clause ,@(nthcdr 3 form)))
|
||
((nth 2 form)
|
||
(if (equal '(nil) (nthcdr 3 form))
|
||
(list 'if clause (nth 2 form))
|
||
form))
|
||
((or (nth 3 form) (nthcdr 4 form))
|
||
(list 'if
|
||
;; Don't make a double negative;
|
||
;; instead, take away the one that is there.
|
||
(if (and (consp clause) (memq (car clause) '(not null))
|
||
(= (length clause) 2)) ; (not xxxx) or (not (xxxx))
|
||
(nth 1 clause)
|
||
(list 'not clause))
|
||
(if (nthcdr 4 form)
|
||
(cons 'progn (nthcdr 3 form))
|
||
(nth 3 form))))
|
||
(t
|
||
(list 'progn clause nil)))))
|
||
|
||
(defun byte-optimize-while (form)
|
||
(when (< (length form) 2)
|
||
(byte-compile-warn "too few arguments for `while'"))
|
||
(if (nth 1 form)
|
||
form))
|
||
|
||
(put 'and 'byte-optimizer 'byte-optimize-and)
|
||
(put 'or 'byte-optimizer 'byte-optimize-or)
|
||
(put 'cond 'byte-optimizer 'byte-optimize-cond)
|
||
(put 'if 'byte-optimizer 'byte-optimize-if)
|
||
(put 'while 'byte-optimizer 'byte-optimize-while)
|
||
|
||
;; byte-compile-negation-optimizer lives in bytecomp.el
|
||
(put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
|
||
(put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
|
||
(put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
|
||
|
||
|
||
(defun byte-optimize-funcall (form)
|
||
;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
|
||
;; (funcall foo ...) ==> (foo ...)
|
||
(let ((fn (nth 1 form)))
|
||
(if (memq (car-safe fn) '(quote function))
|
||
(cons (nth 1 fn) (cdr (cdr form)))
|
||
form)))
|
||
|
||
(defun byte-optimize-apply (form)
|
||
;; If the last arg is a literal constant, turn this into a funcall.
|
||
;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
|
||
(let ((fn (nth 1 form))
|
||
(last (nth (1- (length form)) form))) ; I think this really is fastest
|
||
(or (if (or (null last)
|
||
(eq (car-safe last) 'quote))
|
||
(if (listp (nth 1 last))
|
||
(let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
|
||
(nconc (list 'funcall fn) butlast
|
||
(mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
|
||
(byte-compile-warn
|
||
"last arg to apply can't be a literal atom: `%s'"
|
||
(prin1-to-string last))
|
||
nil))
|
||
form)))
|
||
|
||
(put 'funcall 'byte-optimizer 'byte-optimize-funcall)
|
||
(put 'apply 'byte-optimizer 'byte-optimize-apply)
|
||
|
||
|
||
(put 'let 'byte-optimizer 'byte-optimize-letX)
|
||
(put 'let* 'byte-optimizer 'byte-optimize-letX)
|
||
(defun byte-optimize-letX (form)
|
||
(cond ((null (nth 1 form))
|
||
;; No bindings
|
||
(cons 'progn (cdr (cdr form))))
|
||
((or (nth 2 form) (nthcdr 3 form))
|
||
form)
|
||
;; The body is nil
|
||
((eq (car form) 'let)
|
||
(append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
|
||
'(nil)))
|
||
(t
|
||
(let ((binds (reverse (nth 1 form))))
|
||
(list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
|
||
|
||
|
||
(put 'nth 'byte-optimizer 'byte-optimize-nth)
|
||
(defun byte-optimize-nth (form)
|
||
(if (= (safe-length form) 3)
|
||
(if (memq (nth 1 form) '(0 1))
|
||
(list 'car (if (zerop (nth 1 form))
|
||
(nth 2 form)
|
||
(list 'cdr (nth 2 form))))
|
||
(byte-optimize-predicate form))
|
||
form))
|
||
|
||
(put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
|
||
(defun byte-optimize-nthcdr (form)
|
||
(if (= (safe-length form) 3)
|
||
(if (memq (nth 1 form) '(0 1 2))
|
||
(let ((count (nth 1 form)))
|
||
(setq form (nth 2 form))
|
||
(while (>= (setq count (1- count)) 0)
|
||
(setq form (list 'cdr form)))
|
||
form)
|
||
(byte-optimize-predicate form))
|
||
form))
|
||
|
||
;; Fixme: delete-char -> delete-region (byte-coded)
|
||
;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
|
||
;; string-make-multibyte for constant args.
|
||
|
||
(put 'featurep 'byte-optimizer 'byte-optimize-featurep)
|
||
(defun byte-optimize-featurep (form)
|
||
;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
|
||
;; can safely optimize away this test.
|
||
(if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
|
||
nil
|
||
(if (member (cdr-safe form) '(((quote emacs))))
|
||
t
|
||
form)))
|
||
|
||
(put 'set 'byte-optimizer 'byte-optimize-set)
|
||
(defun byte-optimize-set (form)
|
||
(let ((var (car-safe (cdr-safe form))))
|
||
(cond
|
||
((and (eq (car-safe var) 'quote) (consp (cdr var)))
|
||
`(setq ,(cadr var) ,@(cddr form)))
|
||
((and (eq (car-safe var) 'make-local-variable)
|
||
(eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
|
||
(consp (cdr var)))
|
||
`(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
|
||
(t form))))
|
||
|
||
;; enumerating those functions which need not be called if the returned
|
||
;; value is not used. That is, something like
|
||
;; (progn (list (something-with-side-effects) (yow))
|
||
;; (foo))
|
||
;; may safely be turned into
|
||
;; (progn (progn (something-with-side-effects) (yow))
|
||
;; (foo))
|
||
;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
|
||
|
||
;; Some of these functions have the side effect of allocating memory
|
||
;; and it would be incorrect to replace two calls with one.
|
||
;; But we don't try to do those kinds of optimizations,
|
||
;; so it is safe to list such functions here.
|
||
;; Some of these functions return values that depend on environment
|
||
;; state, so that constant folding them would be wrong,
|
||
;; but we don't do constant folding based on this list.
|
||
|
||
;; However, at present the only optimization we normally do
|
||
;; is delete calls that need not occur, and we only do that
|
||
;; with the error-free functions.
|
||
|
||
;; I wonder if I missed any :-\)
|
||
(let ((side-effect-free-fns
|
||
'(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
|
||
assoc assq
|
||
boundp buffer-file-name buffer-local-variables buffer-modified-p
|
||
buffer-substring byte-code-function-p
|
||
capitalize car-less-than-car car cdr ceiling char-after char-before
|
||
char-equal char-to-string char-width
|
||
compare-strings concat coordinates-in-window-p
|
||
copy-alist copy-sequence copy-marker cos count-lines
|
||
decode-char
|
||
decode-time default-boundp default-value documentation downcase
|
||
elt encode-char exp expt encode-time error-message-string
|
||
fboundp fceiling featurep ffloor
|
||
file-directory-p file-exists-p file-locked-p file-name-absolute-p
|
||
file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
|
||
float float-time floor format format-time-string frame-visible-p
|
||
fround ftruncate
|
||
get gethash get-buffer get-buffer-window getenv get-file-buffer
|
||
hash-table-count
|
||
int-to-string intern-soft
|
||
keymap-parent
|
||
length local-variable-if-set-p local-variable-p log log10 logand
|
||
logb logior lognot logxor lsh langinfo
|
||
make-list make-string make-symbol
|
||
marker-buffer max member memq min mod multibyte-char-to-unibyte
|
||
next-window nth nthcdr number-to-string
|
||
parse-colon-path plist-get plist-member
|
||
prefix-numeric-value previous-window prin1-to-string propertize
|
||
degrees-to-radians
|
||
radians-to-degrees rassq rassoc read-from-string regexp-quote
|
||
region-beginning region-end reverse round
|
||
sin sqrt string string< string= string-equal string-lessp string-to-char
|
||
string-to-int string-to-number substring sxhash symbol-function
|
||
symbol-name symbol-plist symbol-value string-make-unibyte
|
||
string-make-multibyte string-as-multibyte string-as-unibyte
|
||
string-to-multibyte
|
||
tan truncate
|
||
unibyte-char-to-multibyte upcase user-full-name
|
||
user-login-name user-original-login-name custom-variable-p
|
||
vconcat
|
||
window-buffer window-dedicated-p window-edges window-height
|
||
window-hscroll window-minibuffer-p window-width
|
||
zerop))
|
||
(side-effect-and-error-free-fns
|
||
'(arrayp atom
|
||
bobp bolp bool-vector-p
|
||
buffer-end buffer-list buffer-size buffer-string bufferp
|
||
car-safe case-table-p cdr-safe char-or-string-p characterp
|
||
charsetp commandp cons consp
|
||
current-buffer current-global-map current-indentation
|
||
current-local-map current-minor-mode-maps current-time
|
||
current-time-string current-time-zone
|
||
eobp eolp eq equal eventp
|
||
floatp following-char framep
|
||
get-largest-window get-lru-window
|
||
hash-table-p
|
||
identity ignore integerp integer-or-marker-p interactive-p
|
||
invocation-directory invocation-name
|
||
keymapp
|
||
line-beginning-position line-end-position list listp
|
||
make-marker mark mark-marker markerp max-char
|
||
memory-limit minibuffer-window
|
||
mouse-movement-p
|
||
natnump nlistp not null number-or-marker-p numberp
|
||
one-window-p overlayp
|
||
point point-marker point-min point-max preceding-char primary-charset
|
||
processp
|
||
recent-keys recursion-depth
|
||
safe-length selected-frame selected-window sequencep
|
||
standard-case-table standard-syntax-table stringp subrp symbolp
|
||
syntax-table syntax-table-p
|
||
this-command-keys this-command-keys-vector this-single-command-keys
|
||
this-single-command-raw-keys
|
||
user-real-login-name user-real-uid user-uid
|
||
vector vectorp visible-frame-list
|
||
wholenump window-configuration-p window-live-p windowp)))
|
||
(while side-effect-free-fns
|
||
(put (car side-effect-free-fns) 'side-effect-free t)
|
||
(setq side-effect-free-fns (cdr side-effect-free-fns)))
|
||
(while side-effect-and-error-free-fns
|
||
(put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
|
||
(setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
|
||
nil)
|
||
|
||
|
||
;; pure functions are side-effect free functions whose values depend
|
||
;; only on their arguments. For these functions, calls with constant
|
||
;; arguments can be evaluated at compile time. This may shift run time
|
||
;; errors to compile time.
|
||
|
||
(let ((pure-fns
|
||
'(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
|
||
(while pure-fns
|
||
(put (car pure-fns) 'pure t)
|
||
(setq pure-fns (cdr pure-fns)))
|
||
nil)
|
||
|
||
(defconst byte-constref-ops
|
||
'(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
|
||
|
||
;; Used and set dynamically in byte-decompile-bytecode-1.
|
||
(defvar bytedecomp-op)
|
||
(defvar bytedecomp-ptr)
|
||
|
||
;; This function extracts the bitfields from variable-length opcodes.
|
||
;; Originally defined in disass.el (which no longer uses it.)
|
||
(defun disassemble-offset (bytes)
|
||
"Don't call this!"
|
||
;; Fetch and return the offset for the current opcode.
|
||
;; Return nil if this opcode has no offset.
|
||
(cond ((< bytedecomp-op byte-nth)
|
||
(let ((tem (logand bytedecomp-op 7)))
|
||
(setq bytedecomp-op (logand bytedecomp-op 248))
|
||
(cond ((eq tem 6)
|
||
;; Offset in next byte.
|
||
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
|
||
(aref bytes bytedecomp-ptr))
|
||
((eq tem 7)
|
||
;; Offset in next 2 bytes.
|
||
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
|
||
(+ (aref bytes bytedecomp-ptr)
|
||
(progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
|
||
(lsh (aref bytes bytedecomp-ptr) 8))))
|
||
(t tem)))) ;Offset was in opcode.
|
||
((>= bytedecomp-op byte-constant)
|
||
(prog1 (- bytedecomp-op byte-constant) ;Offset in opcode.
|
||
(setq bytedecomp-op byte-constant)))
|
||
((or (and (>= bytedecomp-op byte-constant2)
|
||
(<= bytedecomp-op byte-goto-if-not-nil-else-pop))
|
||
(= bytedecomp-op byte-stack-set2))
|
||
;; Offset in next 2 bytes.
|
||
(setq bytedecomp-ptr (1+ bytedecomp-ptr))
|
||
(+ (aref bytes bytedecomp-ptr)
|
||
(progn (setq bytedecomp-ptr (1+ bytedecomp-ptr))
|
||
(lsh (aref bytes bytedecomp-ptr) 8))))
|
||
((and (>= bytedecomp-op byte-listN)
|
||
(<= bytedecomp-op byte-discardN))
|
||
(setq bytedecomp-ptr (1+ bytedecomp-ptr)) ;Offset in next byte.
|
||
(aref bytes bytedecomp-ptr))))
|
||
|
||
(defvar byte-compile-tag-number)
|
||
|
||
;; This de-compiler is used for inline expansion of compiled functions,
|
||
;; and by the disassembler.
|
||
;;
|
||
;; This list contains numbers, which are pc values,
|
||
;; before each instruction.
|
||
(defun byte-decompile-bytecode (bytes constvec)
|
||
"Turn BYTECODE into lapcode, referring to CONSTVEC."
|
||
(let ((byte-compile-constants nil)
|
||
(byte-compile-variables nil)
|
||
(byte-compile-tag-number 0))
|
||
(byte-decompile-bytecode-1 bytes constvec)))
|
||
|
||
;; As byte-decompile-bytecode, but updates
|
||
;; byte-compile-{constants, variables, tag-number}.
|
||
;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
|
||
;; with `goto's destined for the end of the code.
|
||
;; That is for use by the compiler.
|
||
;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
|
||
;; In that case, we put a pc value into the list
|
||
;; before each insn (or its label).
|
||
(defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
|
||
(let ((length (length bytes))
|
||
(bytedecomp-ptr 0) optr tags bytedecomp-op offset
|
||
lap tmp)
|
||
(while (not (= bytedecomp-ptr length))
|
||
(or make-spliceable
|
||
(push bytedecomp-ptr lap))
|
||
(setq bytedecomp-op (aref bytes bytedecomp-ptr)
|
||
optr bytedecomp-ptr
|
||
;; This uses dynamic-scope magic.
|
||
offset (disassemble-offset bytes))
|
||
(let ((opcode (aref byte-code-vector bytedecomp-op)))
|
||
(assert opcode)
|
||
(setq bytedecomp-op opcode))
|
||
(cond ((memq bytedecomp-op byte-goto-ops)
|
||
;; It's a pc.
|
||
(setq offset
|
||
(cdr (or (assq offset tags)
|
||
(let ((new (cons offset (byte-compile-make-tag))))
|
||
(push new tags)
|
||
new)))))
|
||
((cond ((eq bytedecomp-op 'byte-constant2)
|
||
(setq bytedecomp-op 'byte-constant) t)
|
||
((memq bytedecomp-op byte-constref-ops)))
|
||
(setq tmp (if (>= offset (length constvec))
|
||
(list 'out-of-range offset)
|
||
(aref constvec offset))
|
||
offset (if (eq bytedecomp-op 'byte-constant)
|
||
(byte-compile-get-constant tmp)
|
||
(or (assq tmp byte-compile-variables)
|
||
(let ((new (list tmp)))
|
||
(push new byte-compile-variables)
|
||
new)))))
|
||
((eq bytedecomp-op 'byte-stack-set2)
|
||
(setq bytedecomp-op 'byte-stack-set))
|
||
((and (eq bytedecomp-op 'byte-discardN) (>= offset #x80))
|
||
;; The top bit of the operand for byte-discardN is a flag,
|
||
;; saying whether the top-of-stack is preserved. In
|
||
;; lapcode, we represent this by using a different opcode
|
||
;; (with the flag removed from the operand).
|
||
(setq bytedecomp-op 'byte-discardN-preserve-tos)
|
||
(setq offset (- offset #x80))))
|
||
;; lap = ( [ (pc . (op . arg)) ]* )
|
||
(push (cons optr (cons bytedecomp-op (or offset 0)))
|
||
lap)
|
||
(setq bytedecomp-ptr (1+ bytedecomp-ptr)))
|
||
(let ((rest lap))
|
||
(while rest
|
||
(cond ((numberp (car rest)))
|
||
((setq tmp (assq (car (car rest)) tags))
|
||
;; This addr is jumped to.
|
||
(setcdr rest (cons (cons nil (cdr tmp))
|
||
(cdr rest)))
|
||
(setq tags (delq tmp tags))
|
||
(setq rest (cdr rest))))
|
||
(setq rest (cdr rest))))
|
||
(if tags (error "optimizer error: missed tags %s" tags))
|
||
;; Remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
|
||
(mapcar (function (lambda (elt)
|
||
(if (numberp elt)
|
||
elt
|
||
(cdr elt))))
|
||
(nreverse lap))))
|
||
|
||
|
||
;;; peephole optimizer
|
||
|
||
(defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
|
||
|
||
(defconst byte-conditional-ops
|
||
'(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
|
||
byte-goto-if-not-nil-else-pop))
|
||
|
||
(defconst byte-after-unbind-ops
|
||
'(byte-constant byte-dup
|
||
byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
|
||
byte-eq byte-not
|
||
byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
|
||
byte-interactive-p)
|
||
;; How about other side-effect-free-ops? Is it safe to move an
|
||
;; error invocation (such as from nth) out of an unwind-protect?
|
||
;; No, it is not, because the unwind-protect forms can alter
|
||
;; the inside of the object to which nth would apply.
|
||
;; For the same reason, byte-equal was deleted from this list.
|
||
"Byte-codes that can be moved past an unbind.")
|
||
|
||
(defconst byte-compile-side-effect-and-error-free-ops
|
||
'(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
|
||
byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
|
||
byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
|
||
byte-point-min byte-following-char byte-preceding-char
|
||
byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
|
||
byte-current-buffer byte-stack-ref))
|
||
|
||
(defconst byte-compile-side-effect-free-ops
|
||
(nconc
|
||
'(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
|
||
byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
|
||
byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
|
||
byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
|
||
byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
|
||
byte-member byte-assq byte-quo byte-rem)
|
||
byte-compile-side-effect-and-error-free-ops))
|
||
|
||
;; This crock is because of the way DEFVAR_BOOL variables work.
|
||
;; Consider the code
|
||
;;
|
||
;; (defun foo (flag)
|
||
;; (let ((old-pop-ups pop-up-windows)
|
||
;; (pop-up-windows flag))
|
||
;; (cond ((not (eq pop-up-windows old-pop-ups))
|
||
;; (setq old-pop-ups pop-up-windows)
|
||
;; ...))))
|
||
;;
|
||
;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
|
||
;; something else. But if we optimize
|
||
;;
|
||
;; varref flag
|
||
;; varbind pop-up-windows
|
||
;; varref pop-up-windows
|
||
;; not
|
||
;; to
|
||
;; varref flag
|
||
;; dup
|
||
;; varbind pop-up-windows
|
||
;; not
|
||
;;
|
||
;; we break the program, because it will appear that pop-up-windows and
|
||
;; old-pop-ups are not EQ when really they are. So we have to know what
|
||
;; the BOOL variables are, and not perform this optimization on them.
|
||
|
||
;; The variable `byte-boolean-vars' is now primitive and updated
|
||
;; automatically by DEFVAR_BOOL.
|
||
|
||
(defun byte-optimize-lapcode (lap &optional _for-effect)
|
||
"Simple peephole optimizer. LAP is both modified and returned.
|
||
If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
|
||
(let (lap0
|
||
lap1
|
||
lap2
|
||
(keep-going 'first-time)
|
||
(add-depth 0)
|
||
rest tmp tmp2 tmp3
|
||
(side-effect-free (if byte-compile-delete-errors
|
||
byte-compile-side-effect-free-ops
|
||
byte-compile-side-effect-and-error-free-ops)))
|
||
(while keep-going
|
||
(or (eq keep-going 'first-time)
|
||
(byte-compile-log-lap " ---- next pass"))
|
||
(setq rest lap
|
||
keep-going nil)
|
||
(while rest
|
||
(setq lap0 (car rest)
|
||
lap1 (nth 1 rest)
|
||
lap2 (nth 2 rest))
|
||
|
||
;; You may notice that sequences like "dup varset discard" are
|
||
;; optimized but sequences like "dup varset TAG1: discard" are not.
|
||
;; You may be tempted to change this; resist that temptation.
|
||
(cond ;;
|
||
;; <side-effect-free> pop --> <deleted>
|
||
;; ...including:
|
||
;; const-X pop --> <deleted>
|
||
;; varref-X pop --> <deleted>
|
||
;; dup pop --> <deleted>
|
||
;;
|
||
((and (eq 'byte-discard (car lap1))
|
||
(memq (car lap0) side-effect-free))
|
||
(setq keep-going t)
|
||
(setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
|
||
(setq rest (cdr rest))
|
||
(cond ((= tmp 1)
|
||
(byte-compile-log-lap
|
||
" %s discard\t-->\t<deleted>" lap0)
|
||
(setq lap (delq lap0 (delq lap1 lap))))
|
||
((= tmp 0)
|
||
(byte-compile-log-lap
|
||
" %s discard\t-->\t<deleted> discard" lap0)
|
||
(setq lap (delq lap0 lap)))
|
||
((= tmp -1)
|
||
(byte-compile-log-lap
|
||
" %s discard\t-->\tdiscard discard" lap0)
|
||
(setcar lap0 'byte-discard)
|
||
(setcdr lap0 0))
|
||
((error "Optimizer error: too much on the stack"))))
|
||
;;
|
||
;; goto*-X X: --> X:
|
||
;;
|
||
((and (memq (car lap0) byte-goto-ops)
|
||
(eq (cdr lap0) lap1))
|
||
(cond ((eq (car lap0) 'byte-goto)
|
||
(setq lap (delq lap0 lap))
|
||
(setq tmp "<deleted>"))
|
||
((memq (car lap0) byte-goto-always-pop-ops)
|
||
(setcar lap0 (setq tmp 'byte-discard))
|
||
(setcdr lap0 0))
|
||
((error "Depth conflict at tag %d" (nth 2 lap0))))
|
||
(and (memq byte-optimize-log '(t byte))
|
||
(byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
|
||
(nth 1 lap1) (nth 1 lap1)
|
||
tmp (nth 1 lap1)))
|
||
(setq keep-going t))
|
||
;;
|
||
;; varset-X varref-X --> dup varset-X
|
||
;; varbind-X varref-X --> dup varbind-X
|
||
;; const/dup varset-X varref-X --> const/dup varset-X const/dup
|
||
;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
|
||
;; The latter two can enable other optimizations.
|
||
;;
|
||
;; For lexical variables, we could do the same
|
||
;; stack-set-X+1 stack-ref-X --> dup stack-set-X+2
|
||
;; but this is a very minor gain, since dup is stack-ref-0,
|
||
;; i.e. it's only better if X>5, and even then it comes
|
||
;; at the cost of an extra stack slot. Let's not bother.
|
||
((and (eq 'byte-varref (car lap2))
|
||
(eq (cdr lap1) (cdr lap2))
|
||
(memq (car lap1) '(byte-varset byte-varbind)))
|
||
(if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
|
||
(not (eq (car lap0) 'byte-constant)))
|
||
nil
|
||
(setq keep-going t)
|
||
(if (memq (car lap0) '(byte-constant byte-dup))
|
||
(progn
|
||
(setq tmp (if (or (not tmp)
|
||
(byte-compile-const-symbol-p
|
||
(car (cdr lap0))))
|
||
(cdr lap0)
|
||
(byte-compile-get-constant t)))
|
||
(byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
|
||
lap0 lap1 lap2 lap0 lap1
|
||
(cons (car lap0) tmp))
|
||
(setcar lap2 (car lap0))
|
||
(setcdr lap2 tmp))
|
||
(byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
|
||
(setcar lap2 (car lap1))
|
||
(setcar lap1 'byte-dup)
|
||
(setcdr lap1 0)
|
||
;; The stack depth gets locally increased, so we will
|
||
;; increase maxdepth in case depth = maxdepth here.
|
||
;; This can cause the third argument to byte-code to
|
||
;; be larger than necessary.
|
||
(setq add-depth 1))))
|
||
;;
|
||
;; dup varset-X discard --> varset-X
|
||
;; dup varbind-X discard --> varbind-X
|
||
;; dup stack-set-X discard --> stack-set-X-1
|
||
;; (the varbind variant can emerge from other optimizations)
|
||
;;
|
||
((and (eq 'byte-dup (car lap0))
|
||
(eq 'byte-discard (car lap2))
|
||
(memq (car lap1) '(byte-varset byte-varbind
|
||
byte-stack-set)))
|
||
(byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
|
||
(setq keep-going t
|
||
rest (cdr rest))
|
||
(if (eq 'byte-stack-set (car lap1)) (decf (cdr lap1)))
|
||
(setq lap (delq lap0 (delq lap2 lap))))
|
||
;;
|
||
;; not goto-X-if-nil --> goto-X-if-non-nil
|
||
;; not goto-X-if-non-nil --> goto-X-if-nil
|
||
;;
|
||
;; it is wrong to do the same thing for the -else-pop variants.
|
||
;;
|
||
((and (eq 'byte-not (car lap0))
|
||
(memq (car lap1) '(byte-goto-if-nil byte-goto-if-not-nil)))
|
||
(byte-compile-log-lap " not %s\t-->\t%s"
|
||
lap1
|
||
(cons
|
||
(if (eq (car lap1) 'byte-goto-if-nil)
|
||
'byte-goto-if-not-nil
|
||
'byte-goto-if-nil)
|
||
(cdr lap1)))
|
||
(setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
|
||
'byte-goto-if-not-nil
|
||
'byte-goto-if-nil))
|
||
(setq lap (delq lap0 lap))
|
||
(setq keep-going t))
|
||
;;
|
||
;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
|
||
;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
|
||
;;
|
||
;; it is wrong to do the same thing for the -else-pop variants.
|
||
;;
|
||
((and (memq (car lap0)
|
||
'(byte-goto-if-nil byte-goto-if-not-nil)) ; gotoX
|
||
(eq 'byte-goto (car lap1)) ; gotoY
|
||
(eq (cdr lap0) lap2)) ; TAG X
|
||
(let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
|
||
'byte-goto-if-not-nil 'byte-goto-if-nil)))
|
||
(byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
|
||
lap0 lap1 lap2
|
||
(cons inverse (cdr lap1)) lap2)
|
||
(setq lap (delq lap0 lap))
|
||
(setcar lap1 inverse)
|
||
(setq keep-going t)))
|
||
;;
|
||
;; const goto-if-* --> whatever
|
||
;;
|
||
((and (eq 'byte-constant (car lap0))
|
||
(memq (car lap1) byte-conditional-ops)
|
||
;; If the `byte-constant's cdr is not a cons cell, it has
|
||
;; to be an index into the constant pool); even though
|
||
;; it'll be a constant, that constant is not known yet
|
||
;; (it's typically a free variable of a closure, so will
|
||
;; only be known when the closure will be built at
|
||
;; run-time).
|
||
(consp (cdr lap0)))
|
||
(cond ((if (memq (car lap1) '(byte-goto-if-nil
|
||
byte-goto-if-nil-else-pop))
|
||
(car (cdr lap0))
|
||
(not (car (cdr lap0))))
|
||
(byte-compile-log-lap " %s %s\t-->\t<deleted>"
|
||
lap0 lap1)
|
||
(setq rest (cdr rest)
|
||
lap (delq lap0 (delq lap1 lap))))
|
||
(t
|
||
(byte-compile-log-lap " %s %s\t-->\t%s"
|
||
lap0 lap1
|
||
(cons 'byte-goto (cdr lap1)))
|
||
(when (memq (car lap1) byte-goto-always-pop-ops)
|
||
(setq lap (delq lap0 lap)))
|
||
(setcar lap1 'byte-goto)))
|
||
(setq keep-going t))
|
||
;;
|
||
;; varref-X varref-X --> varref-X dup
|
||
;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
|
||
;; stackref-X [dup ...] stackref-X+N --> stackref-X [dup ...] dup
|
||
;; We don't optimize the const-X variations on this here,
|
||
;; because that would inhibit some goto optimizations; we
|
||
;; optimize the const-X case after all other optimizations.
|
||
;;
|
||
((and (memq (car lap0) '(byte-varref byte-stack-ref))
|
||
(progn
|
||
(setq tmp (cdr rest))
|
||
(setq tmp2 0)
|
||
(while (eq (car (car tmp)) 'byte-dup)
|
||
(setq tmp2 (1+ tmp2))
|
||
(setq tmp (cdr tmp)))
|
||
t)
|
||
(eq (if (eq 'byte-stack-ref (car lap0))
|
||
(+ tmp2 1 (cdr lap0))
|
||
(cdr lap0))
|
||
(cdr (car tmp)))
|
||
(eq (car lap0) (car (car tmp))))
|
||
(if (memq byte-optimize-log '(t byte))
|
||
(let ((str ""))
|
||
(setq tmp2 (cdr rest))
|
||
(while (not (eq tmp tmp2))
|
||
(setq tmp2 (cdr tmp2)
|
||
str (concat str " dup")))
|
||
(byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
|
||
lap0 str lap0 lap0 str)))
|
||
(setq keep-going t)
|
||
(setcar (car tmp) 'byte-dup)
|
||
(setcdr (car tmp) 0)
|
||
(setq rest tmp))
|
||
;;
|
||
;; TAG1: TAG2: --> TAG1: <deleted>
|
||
;; (and other references to TAG2 are replaced with TAG1)
|
||
;;
|
||
((and (eq (car lap0) 'TAG)
|
||
(eq (car lap1) 'TAG))
|
||
(and (memq byte-optimize-log '(t byte))
|
||
(byte-compile-log " adjacent tags %d and %d merged"
|
||
(nth 1 lap1) (nth 1 lap0)))
|
||
(setq tmp3 lap)
|
||
(while (setq tmp2 (rassq lap0 tmp3))
|
||
(setcdr tmp2 lap1)
|
||
(setq tmp3 (cdr (memq tmp2 tmp3))))
|
||
(setq lap (delq lap0 lap)
|
||
keep-going t))
|
||
;;
|
||
;; unused-TAG: --> <deleted>
|
||
;;
|
||
((and (eq 'TAG (car lap0))
|
||
(not (rassq lap0 lap)))
|
||
(and (memq byte-optimize-log '(t byte))
|
||
(byte-compile-log " unused tag %d removed" (nth 1 lap0)))
|
||
(setq lap (delq lap0 lap)
|
||
keep-going t))
|
||
;;
|
||
;; goto ... --> goto <delete until TAG or end>
|
||
;; return ... --> return <delete until TAG or end>
|
||
;;
|
||
((and (memq (car lap0) '(byte-goto byte-return))
|
||
(not (memq (car lap1) '(TAG nil))))
|
||
(setq tmp rest)
|
||
(let ((i 0)
|
||
(opt-p (memq byte-optimize-log '(t lap)))
|
||
str deleted)
|
||
(while (and (setq tmp (cdr tmp))
|
||
(not (eq 'TAG (car (car tmp)))))
|
||
(if opt-p (setq deleted (cons (car tmp) deleted)
|
||
str (concat str " %s")
|
||
i (1+ i))))
|
||
(if opt-p
|
||
(let ((tagstr
|
||
(if (eq 'TAG (car (car tmp)))
|
||
(format "%d:" (car (cdr (car tmp))))
|
||
(or (car tmp) ""))))
|
||
(if (< i 6)
|
||
(apply 'byte-compile-log-lap-1
|
||
(concat " %s" str
|
||
" %s\t-->\t%s <deleted> %s")
|
||
lap0
|
||
(nconc (nreverse deleted)
|
||
(list tagstr lap0 tagstr)))
|
||
(byte-compile-log-lap
|
||
" %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
|
||
lap0 i (if (= i 1) "" "s")
|
||
tagstr lap0 tagstr))))
|
||
(rplacd rest tmp))
|
||
(setq keep-going t))
|
||
;;
|
||
;; <safe-op> unbind --> unbind <safe-op>
|
||
;; (this may enable other optimizations.)
|
||
;;
|
||
((and (eq 'byte-unbind (car lap1))
|
||
(memq (car lap0) byte-after-unbind-ops))
|
||
(byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
|
||
(setcar rest lap1)
|
||
(setcar (cdr rest) lap0)
|
||
(setq keep-going t))
|
||
;;
|
||
;; varbind-X unbind-N --> discard unbind-(N-1)
|
||
;; save-excursion unbind-N --> unbind-(N-1)
|
||
;; save-restriction unbind-N --> unbind-(N-1)
|
||
;;
|
||
((and (eq 'byte-unbind (car lap1))
|
||
(memq (car lap0) '(byte-varbind byte-save-excursion
|
||
byte-save-restriction))
|
||
(< 0 (cdr lap1)))
|
||
(if (zerop (setcdr lap1 (1- (cdr lap1))))
|
||
(delq lap1 rest))
|
||
(if (eq (car lap0) 'byte-varbind)
|
||
(setcar rest (cons 'byte-discard 0))
|
||
(setq lap (delq lap0 lap)))
|
||
(byte-compile-log-lap " %s %s\t-->\t%s %s"
|
||
lap0 (cons (car lap1) (1+ (cdr lap1)))
|
||
(if (eq (car lap0) 'byte-varbind)
|
||
(car rest)
|
||
(car (cdr rest)))
|
||
(if (and (/= 0 (cdr lap1))
|
||
(eq (car lap0) 'byte-varbind))
|
||
(car (cdr rest))
|
||
""))
|
||
(setq keep-going t))
|
||
;;
|
||
;; goto*-X ... X: goto-Y --> goto*-Y
|
||
;; goto-X ... X: return --> return
|
||
;;
|
||
((and (memq (car lap0) byte-goto-ops)
|
||
(memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
|
||
'(byte-goto byte-return)))
|
||
(cond ((and (not (eq tmp lap0))
|
||
(or (eq (car lap0) 'byte-goto)
|
||
(eq (car tmp) 'byte-goto)))
|
||
(byte-compile-log-lap " %s [%s]\t-->\t%s"
|
||
(car lap0) tmp tmp)
|
||
(if (eq (car tmp) 'byte-return)
|
||
(setcar lap0 'byte-return))
|
||
(setcdr lap0 (cdr tmp))
|
||
(setq keep-going t))))
|
||
;;
|
||
;; goto-*-else-pop X ... X: goto-if-* --> whatever
|
||
;; goto-*-else-pop X ... X: discard --> whatever
|
||
;;
|
||
((and (memq (car lap0) '(byte-goto-if-nil-else-pop
|
||
byte-goto-if-not-nil-else-pop))
|
||
(memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
|
||
(eval-when-compile
|
||
(cons 'byte-discard byte-conditional-ops)))
|
||
(not (eq lap0 (car tmp))))
|
||
(setq tmp2 (car tmp))
|
||
(setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
|
||
byte-goto-if-nil)
|
||
(byte-goto-if-not-nil-else-pop
|
||
byte-goto-if-not-nil))))
|
||
(if (memq (car tmp2) tmp3)
|
||
(progn (setcar lap0 (car tmp2))
|
||
(setcdr lap0 (cdr tmp2))
|
||
(byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
|
||
(car lap0) tmp2 lap0))
|
||
;; Get rid of the -else-pop's and jump one step further.
|
||
(or (eq 'TAG (car (nth 1 tmp)))
|
||
(setcdr tmp (cons (byte-compile-make-tag)
|
||
(cdr tmp))))
|
||
(byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
|
||
(car lap0) tmp2 (nth 1 tmp3))
|
||
(setcar lap0 (nth 1 tmp3))
|
||
(setcdr lap0 (nth 1 tmp)))
|
||
(setq keep-going t))
|
||
;;
|
||
;; const goto-X ... X: goto-if-* --> whatever
|
||
;; const goto-X ... X: discard --> whatever
|
||
;;
|
||
((and (eq (car lap0) 'byte-constant)
|
||
(eq (car lap1) 'byte-goto)
|
||
(memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
|
||
(eval-when-compile
|
||
(cons 'byte-discard byte-conditional-ops)))
|
||
(not (eq lap1 (car tmp))))
|
||
(setq tmp2 (car tmp))
|
||
(cond ((when (consp (cdr lap0))
|
||
(memq (car tmp2)
|
||
(if (null (car (cdr lap0)))
|
||
'(byte-goto-if-nil byte-goto-if-nil-else-pop)
|
||
'(byte-goto-if-not-nil
|
||
byte-goto-if-not-nil-else-pop))))
|
||
(byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
|
||
lap0 tmp2 lap0 tmp2)
|
||
(setcar lap1 (car tmp2))
|
||
(setcdr lap1 (cdr tmp2))
|
||
;; Let next step fix the (const,goto-if*) sequence.
|
||
(setq rest (cons nil rest))
|
||
(setq keep-going t))
|
||
((or (consp (cdr lap0))
|
||
(eq (car tmp2) 'byte-discard))
|
||
;; Jump one step further
|
||
(byte-compile-log-lap
|
||
" %s goto [%s]\t-->\t<deleted> goto <skip>"
|
||
lap0 tmp2)
|
||
(or (eq 'TAG (car (nth 1 tmp)))
|
||
(setcdr tmp (cons (byte-compile-make-tag)
|
||
(cdr tmp))))
|
||
(setcdr lap1 (car (cdr tmp)))
|
||
(setq lap (delq lap0 lap))
|
||
(setq keep-going t))))
|
||
;;
|
||
;; X: varref-Y ... varset-Y goto-X -->
|
||
;; X: varref-Y Z: ... dup varset-Y goto-Z
|
||
;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
|
||
;; (This is so usual for while loops that it is worth handling).
|
||
;;
|
||
;; Here again, we could do it for stack-ref/stack-set, but
|
||
;; that's replacing a stack-ref-Y with a stack-ref-0, which
|
||
;; is a very minor improvement (if any), at the cost of
|
||
;; more stack use and more byte-code. Let's not do it.
|
||
;;
|
||
((and (eq (car lap1) 'byte-varset)
|
||
(eq (car lap2) 'byte-goto)
|
||
(not (memq (cdr lap2) rest)) ;Backwards jump
|
||
(eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
|
||
'byte-varref)
|
||
(eq (cdr (car tmp)) (cdr lap1))
|
||
(not (memq (car (cdr lap1)) byte-boolean-vars)))
|
||
;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
|
||
(let ((newtag (byte-compile-make-tag)))
|
||
(byte-compile-log-lap
|
||
" %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
|
||
(nth 1 (cdr lap2)) (car tmp)
|
||
lap1 lap2
|
||
(nth 1 (cdr lap2)) (car tmp)
|
||
(nth 1 newtag) 'byte-dup lap1
|
||
(cons 'byte-goto newtag)
|
||
)
|
||
(setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
|
||
(setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
|
||
(setq add-depth 1)
|
||
(setq keep-going t))
|
||
;;
|
||
;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
|
||
;; (This can pull the loop test to the end of the loop)
|
||
;;
|
||
((and (eq (car lap0) 'byte-goto)
|
||
(eq (car lap1) 'TAG)
|
||
(eq lap1
|
||
(cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
|
||
(memq (car (car tmp))
|
||
'(byte-goto byte-goto-if-nil byte-goto-if-not-nil
|
||
byte-goto-if-nil-else-pop)))
|
||
;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
|
||
;; lap0 lap1 (cdr lap0) (car tmp))
|
||
(let ((newtag (byte-compile-make-tag)))
|
||
(byte-compile-log-lap
|
||
"%s %s: ... %s: %s\t-->\t%s ... %s:"
|
||
lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
|
||
(cons (cdr (assq (car (car tmp))
|
||
'((byte-goto-if-nil . byte-goto-if-not-nil)
|
||
(byte-goto-if-not-nil . byte-goto-if-nil)
|
||
(byte-goto-if-nil-else-pop .
|
||
byte-goto-if-not-nil-else-pop)
|
||
(byte-goto-if-not-nil-else-pop .
|
||
byte-goto-if-nil-else-pop))))
|
||
newtag)
|
||
|
||
(nth 1 newtag)
|
||
)
|
||
(setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
|
||
(if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
|
||
;; We can handle this case but not the -if-not-nil case,
|
||
;; because we won't know which non-nil constant to push.
|
||
(setcdr rest (cons (cons 'byte-constant
|
||
(byte-compile-get-constant nil))
|
||
(cdr rest))))
|
||
(setcar lap0 (nth 1 (memq (car (car tmp))
|
||
'(byte-goto-if-nil-else-pop
|
||
byte-goto-if-not-nil
|
||
byte-goto-if-nil
|
||
byte-goto-if-not-nil
|
||
byte-goto byte-goto))))
|
||
)
|
||
(setq keep-going t))
|
||
)
|
||
(setq rest (cdr rest)))
|
||
)
|
||
;; Cleanup stage:
|
||
;; Rebuild byte-compile-constants / byte-compile-variables.
|
||
;; Simple optimizations that would inhibit other optimizations if they
|
||
;; were done in the optimizing loop, and optimizations which there is no
|
||
;; need to do more than once.
|
||
(setq byte-compile-constants nil
|
||
byte-compile-variables nil)
|
||
(setq rest lap)
|
||
(byte-compile-log-lap " ---- final pass")
|
||
(while rest
|
||
(setq lap0 (car rest)
|
||
lap1 (nth 1 rest))
|
||
(if (memq (car lap0) byte-constref-ops)
|
||
(if (memq (car lap0) '(byte-constant byte-constant2))
|
||
(unless (memq (cdr lap0) byte-compile-constants)
|
||
(setq byte-compile-constants (cons (cdr lap0)
|
||
byte-compile-constants)))
|
||
(unless (memq (cdr lap0) byte-compile-variables)
|
||
(setq byte-compile-variables (cons (cdr lap0)
|
||
byte-compile-variables)))))
|
||
(cond (;;
|
||
;; const-C varset-X const-C --> const-C dup varset-X
|
||
;; const-C varbind-X const-C --> const-C dup varbind-X
|
||
;;
|
||
(and (eq (car lap0) 'byte-constant)
|
||
(eq (car (nth 2 rest)) 'byte-constant)
|
||
(eq (cdr lap0) (cdr (nth 2 rest)))
|
||
(memq (car lap1) '(byte-varbind byte-varset)))
|
||
(byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
|
||
lap0 lap1 lap0 lap0 lap1)
|
||
(setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
|
||
(setcar (cdr rest) (cons 'byte-dup 0))
|
||
(setq add-depth 1))
|
||
;;
|
||
;; const-X [dup/const-X ...] --> const-X [dup ...] dup
|
||
;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
|
||
;;
|
||
((memq (car lap0) '(byte-constant byte-varref))
|
||
(setq tmp rest
|
||
tmp2 nil)
|
||
(while (progn
|
||
(while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
|
||
(and (eq (cdr lap0) (cdr (car tmp)))
|
||
(eq (car lap0) (car (car tmp)))))
|
||
(setcar tmp (cons 'byte-dup 0))
|
||
(setq tmp2 t))
|
||
(if tmp2
|
||
(byte-compile-log-lap
|
||
" %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
|
||
;;
|
||
;; unbind-N unbind-M --> unbind-(N+M)
|
||
;;
|
||
((and (eq 'byte-unbind (car lap0))
|
||
(eq 'byte-unbind (car lap1)))
|
||
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
|
||
(cons 'byte-unbind
|
||
(+ (cdr lap0) (cdr lap1))))
|
||
(setq lap (delq lap0 lap))
|
||
(setcdr lap1 (+ (cdr lap1) (cdr lap0))))
|
||
|
||
;;
|
||
;; stack-set-M [discard/discardN ...] --> discardN-preserve-tos
|
||
;; stack-set-M [discard/discardN ...] --> discardN
|
||
;;
|
||
((and (eq (car lap0) 'byte-stack-set)
|
||
(memq (car lap1) '(byte-discard byte-discardN))
|
||
(progn
|
||
;; See if enough discard operations follow to expose or
|
||
;; destroy the value stored by the stack-set.
|
||
(setq tmp (cdr rest))
|
||
(setq tmp2 (1- (cdr lap0)))
|
||
(setq tmp3 0)
|
||
(while (memq (car (car tmp)) '(byte-discard byte-discardN))
|
||
(setq tmp3
|
||
(+ tmp3 (if (eq (car (car tmp)) 'byte-discard)
|
||
1
|
||
(cdr (car tmp)))))
|
||
(setq tmp (cdr tmp)))
|
||
(>= tmp3 tmp2)))
|
||
;; Do the optimization.
|
||
(setq lap (delq lap0 lap))
|
||
(setcar lap1
|
||
(if (= tmp2 tmp3)
|
||
;; The value stored is the new TOS, so pop one more
|
||
;; value (to get rid of the old value) using the
|
||
;; TOS-preserving discard operator.
|
||
'byte-discardN-preserve-tos
|
||
;; Otherwise, the value stored is lost, so just use a
|
||
;; normal discard.
|
||
'byte-discardN))
|
||
(setcdr lap1 (1+ tmp3))
|
||
(setcdr (cdr rest) tmp)
|
||
(byte-compile-log-lap " %s [discard/discardN]...\t-->\t%s"
|
||
lap0 lap1))
|
||
|
||
;;
|
||
;; discard/discardN/discardN-preserve-tos-X discard/discardN-Y -->
|
||
;; discardN-(X+Y)
|
||
;;
|
||
((and (memq (car lap0)
|
||
'(byte-discard byte-discardN
|
||
byte-discardN-preserve-tos))
|
||
(memq (car lap1) '(byte-discard byte-discardN)))
|
||
(setq lap (delq lap0 lap))
|
||
(byte-compile-log-lap
|
||
" %s %s\t-->\t(discardN %s)"
|
||
lap0 lap1
|
||
(+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
|
||
(if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
|
||
(setcdr lap1 (+ (if (eq (car lap0) 'byte-discard) 1 (cdr lap0))
|
||
(if (eq (car lap1) 'byte-discard) 1 (cdr lap1))))
|
||
(setcar lap1 'byte-discardN))
|
||
|
||
;;
|
||
;; discardN-preserve-tos-X discardN-preserve-tos-Y -->
|
||
;; discardN-preserve-tos-(X+Y)
|
||
;;
|
||
((and (eq (car lap0) 'byte-discardN-preserve-tos)
|
||
(eq (car lap1) 'byte-discardN-preserve-tos))
|
||
(setq lap (delq lap0 lap))
|
||
(setcdr lap1 (+ (cdr lap0) (cdr lap1)))
|
||
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 (car rest)))
|
||
|
||
;;
|
||
;; discardN-preserve-tos return --> return
|
||
;; dup return --> return
|
||
;; stack-set-N return --> return ; where N is TOS-1
|
||
;;
|
||
((and (eq (car lap1) 'byte-return)
|
||
(or (memq (car lap0) '(byte-discardN-preserve-tos byte-dup))
|
||
(and (eq (car lap0) 'byte-stack-set)
|
||
(= (cdr lap0) 1))))
|
||
;; The byte-code interpreter will pop the stack for us, so
|
||
;; we can just leave stuff on it.
|
||
(setq lap (delq lap0 lap))
|
||
(byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1 lap1))
|
||
)
|
||
(setq rest (cdr rest)))
|
||
(setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
|
||
lap)
|
||
|
||
(provide 'byte-opt)
|
||
|
||
|
||
;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
|
||
;; itself, compile some of its most used recursive functions (at load time).
|
||
;;
|
||
(eval-when-compile
|
||
(or (byte-code-function-p (symbol-function 'byte-optimize-form))
|
||
(assq 'byte-code (symbol-function 'byte-optimize-form))
|
||
(let ((byte-optimize nil)
|
||
(byte-compile-warnings nil))
|
||
(mapc (lambda (x)
|
||
(or noninteractive (message "compiling %s..." x))
|
||
(byte-compile x)
|
||
(or noninteractive (message "compiling %s...done" x)))
|
||
'(byte-optimize-form
|
||
byte-optimize-body
|
||
byte-optimize-predicate
|
||
byte-optimize-binary-predicate
|
||
;; Inserted some more than necessary, to speed it up.
|
||
byte-optimize-form-code-walker
|
||
byte-optimize-lapcode))))
|
||
nil)
|
||
|
||
;;; byte-opt.el ends here
|