mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-11-27 07:37:33 +00:00
441 lines
16 KiB
EmacsLisp
441 lines
16 KiB
EmacsLisp
;;; cc-bytecomp.el --- compile time setup for proper compilation
|
||
|
||
;; Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
||
;; Free Software Foundation, Inc.
|
||
|
||
;; Author: Martin Stjernholm
|
||
;; Maintainer: bug-cc-mode@gnu.org
|
||
;; Created: 15-Jul-2000
|
||
;; Version: See cc-mode.el
|
||
;; Keywords: c languages oop
|
||
|
||
;; This file is part of GNU Emacs.
|
||
|
||
;; GNU Emacs is free software; you can redistribute it and/or modify
|
||
;; it under the terms of the GNU General Public License as published by
|
||
;; the Free Software Foundation; either version 2, or (at your option)
|
||
;; any later version.
|
||
|
||
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
;; GNU General Public License for more details.
|
||
|
||
;; You should have received a copy of the GNU General Public License
|
||
;; along with this program; see the file COPYING. If not, write to
|
||
;; the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
;; Boston, MA 02110-1301, USA.
|
||
|
||
;;; Commentary:
|
||
|
||
;; This file is used to ensure that the CC Mode files are correctly
|
||
;; compiled regardless the environment (e.g. if an older CC Mode with
|
||
;; outdated macros are loaded during compilation). It also provides
|
||
;; features to defeat the compiler warnings for selected symbols.
|
||
;;
|
||
;; There's really nothing CC Mode specific here; this functionality
|
||
;; ought to be provided by the byte compilers or some accompanying
|
||
;; library. To use it from some package "foo.el", begin by putting
|
||
;; the following blurb at the top of the file:
|
||
;;
|
||
;; (eval-when-compile
|
||
;; (let ((load-path
|
||
;; (if (and (boundp 'byte-compile-dest-file)
|
||
;; (stringp byte-compile-dest-file))
|
||
;; (cons (file-name-directory byte-compile-dest-file) load-path)
|
||
;; load-path)))
|
||
;; (load "cc-bytecomp" nil t))
|
||
;;
|
||
;; This (unfortunately rather clumsy) form will ensure that the
|
||
;; cc-bytecomp.el in the same directory as foo.el is loaded during
|
||
;; byte compilation of the latter.
|
||
;;
|
||
;; At the end of foo.el there should normally be a "(provide 'foo)".
|
||
;; Replace it with "(cc-provide 'foo)"; that is necessary to restore
|
||
;; the environment after the byte compilation. If you don't have a
|
||
;; `provide' at the end, you have to add the following as the very
|
||
;; last form in the file:
|
||
;;
|
||
;; (eval-when-compile (cc-bytecomp-restore-environment))
|
||
;;
|
||
;; Now everything is set to use the various functions and macros in
|
||
;; this package.
|
||
;;
|
||
;; If your package is split into several files, you should use
|
||
;; `cc-require', `cc-require-when-compile' or `cc-load' to load them.
|
||
;; That ensures that the files in the same directory always are
|
||
;; loaded, to avoid mixup with other versions of them that might exist
|
||
;; elsewhere in the load path.
|
||
;;
|
||
;; To suppress byte compiler warnings, use the macros
|
||
;; `cc-bytecomp-defun', `cc-bytecomp-defvar',
|
||
;; `cc-bytecomp-obsolete-fun', and `cc-bytecomp-obsolete-var'.
|
||
;;
|
||
;; This file is not used at all after the package has been byte
|
||
;; compiled. It is however necessary when running uncompiled.
|
||
|
||
|
||
;;; Code:
|
||
|
||
(defvar cc-bytecomp-unbound-variables nil)
|
||
(defvar cc-bytecomp-original-functions nil)
|
||
(defvar cc-bytecomp-original-properties nil)
|
||
(defvar cc-bytecomp-loaded-files nil)
|
||
(defvar cc-bytecomp-environment-set nil)
|
||
|
||
(defmacro cc-bytecomp-debug-msg (&rest args)
|
||
;;`(message ,@args)
|
||
)
|
||
|
||
(defun cc-bytecomp-setup-environment ()
|
||
;; Eval'ed during compilation to setup variables, functions etc
|
||
;; declared with `cc-bytecomp-defvar' et al.
|
||
(if (not load-in-progress)
|
||
;; Look at `load-in-progress' to tell whether we're called
|
||
;; directly in the file being compiled or just from some file
|
||
;; being loaded during compilation.
|
||
(let (p)
|
||
(if cc-bytecomp-environment-set
|
||
(error "Byte compilation environment already set - \
|
||
perhaps a `cc-bytecomp-restore-environment' is forgotten somewhere"))
|
||
(setq p cc-bytecomp-unbound-variables)
|
||
(while p
|
||
(if (not (boundp (car p)))
|
||
(progn
|
||
(eval `(defvar ,(car p)))
|
||
(set (car p) (intern (concat "cc-bytecomp-ignore-var:"
|
||
(symbol-name (car p)))))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-setup-environment: Covered variable %s"
|
||
(car p))))
|
||
(setq p (cdr p)))
|
||
(setq p cc-bytecomp-original-functions)
|
||
(while p
|
||
(let ((fun (car (car p)))
|
||
(temp-macro (car (cdr (car p)))))
|
||
(if (not (fboundp fun))
|
||
(if temp-macro
|
||
(progn
|
||
(eval `(defmacro ,fun ,@temp-macro))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-setup-environment: Bound macro %s" fun))
|
||
(fset fun (intern (concat "cc-bytecomp-ignore-fun:"
|
||
(symbol-name fun))))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-setup-environment: Covered function %s" fun))))
|
||
(setq p (cdr p)))
|
||
(setq p cc-bytecomp-original-properties)
|
||
(while p
|
||
(let ((sym (car (car (car p))))
|
||
(prop (cdr (car (car p))))
|
||
(tempdef (car (cdr (car p)))))
|
||
(put sym prop tempdef)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-setup-environment: Bound property %s for %s to %s"
|
||
prop sym tempdef))
|
||
(setq p (cdr p)))
|
||
(setq cc-bytecomp-environment-set t)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-setup-environment: Done"))))
|
||
|
||
(defun cc-bytecomp-restore-environment ()
|
||
;; Eval'ed during compilation to restore variables, functions etc
|
||
;; declared with `cc-bytecomp-defvar' et al.
|
||
(if (not load-in-progress)
|
||
(let (p)
|
||
(setq p cc-bytecomp-unbound-variables)
|
||
(while p
|
||
(let ((var (car p)))
|
||
(if (boundp var)
|
||
(if (eq (intern (concat "cc-bytecomp-ignore-var:"
|
||
(symbol-name var)))
|
||
(symbol-value var))
|
||
(progn
|
||
(makunbound var)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Unbound variable %s"
|
||
var))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Not restoring variable %s"
|
||
var))))
|
||
(setq p (cdr p)))
|
||
(setq p cc-bytecomp-original-functions)
|
||
(while p
|
||
(let ((fun (car (car p)))
|
||
(temp-macro (car (cdr (car p))))
|
||
(def (car (cdr (cdr (car p))))))
|
||
(if (fboundp fun)
|
||
(if (eq (or temp-macro
|
||
(intern (concat "cc-bytecomp-ignore-fun:"
|
||
(symbol-name fun))))
|
||
(symbol-function fun))
|
||
(if (eq def 'unbound)
|
||
(progn
|
||
(fmakunbound fun)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Unbound function %s"
|
||
fun))
|
||
(fset fun def)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Restored function %s"
|
||
fun))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Not restoring function %s"
|
||
fun))))
|
||
(setq p (cdr p)))
|
||
(setq p cc-bytecomp-original-properties)
|
||
(while p
|
||
(let ((sym (car (car (car p))))
|
||
(prop (cdr (car (car p))))
|
||
(tempdef (car (cdr (car p))))
|
||
(origdef (cdr (cdr (car p)))))
|
||
(if (eq (get sym prop) tempdef)
|
||
(progn
|
||
(put sym prop origdef)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Restored property %s for %s to %s"
|
||
prop sym origdef))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Not restoring property %s for %s"
|
||
prop sym)))
|
||
(setq p (cdr p)))
|
||
(setq cc-bytecomp-environment-set nil)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-restore-environment: Done"))))
|
||
|
||
(eval
|
||
;; This eval is to avoid byte compilation of the function below.
|
||
;; There's some bug in XEmacs 21.4.6 that can cause it to dump core
|
||
;; here otherwise. My theory is that `cc-bytecomp-load' might be
|
||
;; redefined recursively during the `load' inside it, and if it in
|
||
;; that case is byte compiled then the byte interpreter gets
|
||
;; confused. I haven't succeeded in isolating the bug, though. /mast
|
||
|
||
'(defun cc-bytecomp-load (cc-part)
|
||
;; Eval'ed during compilation to load a CC Mode file from the source
|
||
;; directory (assuming it's the same as the compiled file
|
||
;; destination dir).
|
||
(if (and (boundp 'byte-compile-dest-file)
|
||
(stringp byte-compile-dest-file))
|
||
(progn
|
||
(cc-bytecomp-restore-environment)
|
||
(let ((load-path
|
||
(cons (file-name-directory byte-compile-dest-file)
|
||
load-path))
|
||
(cc-file (concat cc-part ".el")))
|
||
(if (member cc-file cc-bytecomp-loaded-files)
|
||
()
|
||
(setq cc-bytecomp-loaded-files
|
||
(cons cc-file cc-bytecomp-loaded-files))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-load: Loading %S" cc-file)
|
||
(load cc-file nil t t)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-load: Loaded %S" cc-file)))
|
||
(cc-bytecomp-setup-environment)
|
||
t))))
|
||
|
||
(defmacro cc-require (cc-part)
|
||
"Force loading of the corresponding .el file in the current directory
|
||
during compilation, but compile in a `require'. Don't use within
|
||
`eval-when-compile'.
|
||
|
||
Having cyclic cc-require's will result in infinite recursion. That's
|
||
somewhat intentional."
|
||
`(progn
|
||
(eval-when-compile (cc-bytecomp-load (symbol-name ,cc-part)))
|
||
(require ,cc-part)))
|
||
|
||
(defmacro cc-provide (feature)
|
||
"A replacement for the `provide' form that restores the environment
|
||
after the compilation. Don't use within `eval-when-compile'."
|
||
`(progn
|
||
(eval-when-compile (cc-bytecomp-restore-environment))
|
||
(provide ,feature)))
|
||
|
||
(defmacro cc-load (cc-part)
|
||
"Force loading of the corresponding .el file in the current directory
|
||
during compilation. Don't use outside `eval-when-compile' or
|
||
`eval-and-compile'.
|
||
|
||
Having cyclic cc-load's will result in infinite recursion. That's
|
||
somewhat intentional."
|
||
`(or (and (featurep 'cc-bytecomp)
|
||
(cc-bytecomp-load ,cc-part))
|
||
(load ,cc-part nil t nil)))
|
||
|
||
(defmacro cc-require-when-compile (cc-part)
|
||
"Force loading of the corresponding .el file in the current directory
|
||
during compilation, but do a compile time `require' otherwise. Don't
|
||
use within `eval-when-compile'."
|
||
`(eval-when-compile
|
||
(if (and (featurep 'cc-bytecomp)
|
||
(cc-bytecomp-is-compiling))
|
||
(if (or (not load-in-progress)
|
||
(not (featurep ,cc-part)))
|
||
(cc-bytecomp-load (symbol-name ,cc-part)))
|
||
(require ,cc-part))))
|
||
|
||
(defmacro cc-external-require (feature)
|
||
"Do a `require' of an external package.
|
||
This restores and sets up the compilation environment before and
|
||
afterwards. Don't use within `eval-when-compile'."
|
||
`(progn
|
||
(eval-when-compile (cc-bytecomp-restore-environment))
|
||
(require ,feature)
|
||
(eval-when-compile (cc-bytecomp-setup-environment))))
|
||
|
||
(defun cc-bytecomp-is-compiling ()
|
||
"Return non-nil if eval'ed during compilation. Don't use outside
|
||
`eval-when-compile'."
|
||
(and (boundp 'byte-compile-dest-file)
|
||
(stringp byte-compile-dest-file)))
|
||
|
||
(defmacro cc-bytecomp-defvar (var)
|
||
"Binds the symbol as a variable during compilation of the file,
|
||
to silence the byte compiler. Don't use within `eval-when-compile'."
|
||
`(eval-when-compile
|
||
(if (boundp ',var)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defvar: %s bound already as variable" ',var)
|
||
(if (not (memq ',var cc-bytecomp-unbound-variables))
|
||
(progn
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defvar: Saving %s (as unbound)" ',var)
|
||
(setq cc-bytecomp-unbound-variables
|
||
(cons ',var cc-bytecomp-unbound-variables))))
|
||
(if (and (cc-bytecomp-is-compiling)
|
||
(not load-in-progress))
|
||
(progn
|
||
(defvar ,var)
|
||
(set ',var (intern (concat "cc-bytecomp-ignore-var:"
|
||
(symbol-name ',var))))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defvar: Covered variable %s" ',var))))))
|
||
|
||
(defmacro cc-bytecomp-defun (fun)
|
||
"Bind the symbol as a function during compilation of the file,
|
||
to silence the byte compiler. Don't use within `eval-when-compile'.
|
||
|
||
If the symbol already is bound as a function, it will keep that
|
||
definition. That means that this macro will not shut up warnings
|
||
about incorrect number of arguments. It's dangerous to try to replace
|
||
existing functions since the byte compiler might need the definition
|
||
at compile time, e.g. for macros and inline functions."
|
||
`(eval-when-compile
|
||
(if (fboundp ',fun)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defun: %s bound already as function" ',fun)
|
||
(if (not (assq ',fun cc-bytecomp-original-functions))
|
||
(progn
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defun: Saving %s (as unbound)" ',fun)
|
||
(setq cc-bytecomp-original-functions
|
||
(cons (list ',fun nil 'unbound)
|
||
cc-bytecomp-original-functions))))
|
||
(if (and (cc-bytecomp-is-compiling)
|
||
(not load-in-progress))
|
||
(progn
|
||
(fset ',fun (intern (concat "cc-bytecomp-ignore-fun:"
|
||
(symbol-name ',fun))))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defun: Covered function %s" ',fun))))))
|
||
|
||
(put 'cc-bytecomp-defmacro 'lisp-indent-function 'defun)
|
||
(defmacro cc-bytecomp-defmacro (fun &rest temp-macro)
|
||
"Bind the symbol as a macro during compilation (and evaluation) of the
|
||
file. Don't use outside `eval-when-compile'."
|
||
`(let ((orig-fun (assq ',fun cc-bytecomp-original-functions)))
|
||
(if (not orig-fun)
|
||
(setq orig-fun
|
||
(list ',fun
|
||
nil
|
||
(if (fboundp ',fun)
|
||
(progn
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defmacro: Saving %s" ',fun)
|
||
(symbol-function ',fun))
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defmacro: Saving %s as unbound" ',fun)
|
||
'unbound))
|
||
cc-bytecomp-original-functions
|
||
(cons orig-fun cc-bytecomp-original-functions)))
|
||
(defmacro ,fun ,@temp-macro)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-defmacro: Bound macro %s" ',fun)
|
||
(setcar (cdr orig-fun) (symbol-function ',fun))))
|
||
|
||
(defmacro cc-bytecomp-put (symbol propname value)
|
||
"Set a property on a symbol during compilation (and evaluation) of
|
||
the file. Don't use outside `eval-when-compile'."
|
||
`(eval-when-compile
|
||
(if (not (assoc (cons ,symbol ,propname) cc-bytecomp-original-properties))
|
||
(progn
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-put: Saving property %s for %s with value %s"
|
||
,propname ,symbol (get ,symbol ,propname))
|
||
(setq cc-bytecomp-original-properties
|
||
(cons (cons (cons ,symbol ,propname)
|
||
(cons ,value (get ,symbol ,propname)))
|
||
cc-bytecomp-original-properties))))
|
||
(put ,symbol ,propname ,value)
|
||
(cc-bytecomp-debug-msg
|
||
"cc-bytecomp-put: Bound property %s for %s to %s"
|
||
,propname ,symbol ,value)))
|
||
|
||
(defmacro cc-bytecomp-obsolete-var (symbol)
|
||
"Suppress warnings that the given symbol is an obsolete variable.
|
||
Don't use within `eval-when-compile'."
|
||
`(eval-when-compile
|
||
(if (get ',symbol 'byte-obsolete-variable)
|
||
(cc-bytecomp-put ',symbol 'byte-obsolete-variable nil)
|
||
;; This avoids a superfluous compiler warning
|
||
;; about calling `get' for effect.
|
||
t)))
|
||
|
||
(defun cc-bytecomp-ignore-obsolete (form)
|
||
;; Wraps a call to `byte-compile-obsolete' that suppresses the warning.
|
||
(let ((byte-compile-warnings
|
||
(delq 'obsolete (append byte-compile-warnings nil))))
|
||
(byte-compile-obsolete form)))
|
||
|
||
(defmacro cc-bytecomp-obsolete-fun (symbol)
|
||
"Suppress warnings that the given symbol is an obsolete function.
|
||
Don't use within `eval-when-compile'."
|
||
`(eval-when-compile
|
||
(if (eq (get ',symbol 'byte-compile) 'byte-compile-obsolete)
|
||
(cc-bytecomp-put ',symbol 'byte-compile
|
||
'cc-bytecomp-ignore-obsolete)
|
||
;; This avoids a superfluous compiler warning
|
||
;; about calling `get' for effect.
|
||
t)))
|
||
|
||
(defmacro cc-bytecomp-boundp (symbol)
|
||
"Return non-nil if the given symbol is bound as a variable outside
|
||
the compilation. This is the same as using `boundp' but additionally
|
||
exclude any variables that have been bound during compilation with
|
||
`cc-bytecomp-defvar'."
|
||
(if (and (cc-bytecomp-is-compiling)
|
||
(memq (car (cdr symbol)) cc-bytecomp-unbound-variables))
|
||
nil
|
||
`(boundp ,symbol)))
|
||
|
||
(defmacro cc-bytecomp-fboundp (symbol)
|
||
"Return non-nil if the given symbol is bound as a function outside
|
||
the compilation. This is the same as using `fboundp' but additionally
|
||
exclude any functions that have been bound during compilation with
|
||
`cc-bytecomp-defun'."
|
||
(let (fun-elem)
|
||
(if (and (cc-bytecomp-is-compiling)
|
||
(setq fun-elem (assq (car (cdr symbol))
|
||
cc-bytecomp-original-functions))
|
||
(eq (elt fun-elem 2) 'unbound))
|
||
nil
|
||
`(fboundp ,symbol))))
|
||
|
||
|
||
(provide 'cc-bytecomp)
|
||
|
||
;;; arch-tag: 2d71b3ad-57b0-4b13-abd3-ab836e08f975
|
||
;;; cc-bytecomp.el ends here
|