1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-01-06 11:55:48 +00:00
emacs/lisp/emacs-lisp/comp.el
2020-01-01 11:37:54 +01:00

1588 lines
62 KiB
EmacsLisp
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; comp.el --- compilation of Lisp code into native code -*- lexical-binding: t -*-
;; Author: Andrea Corallo <akrl@sdf.com>
;; Copyright (C) 2019 Free Software Foundation, Inc.
;; Keywords: lisp
;; Package: emacs
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; This code is an attempt to make the pig fly.
;; Or, to put it another way to make a Carrera out of a turbocharged VW Bug.
;;; Code:
(require 'bytecomp)
(require 'cl-lib)
(require 'cl-extra)
(require 'subr-x)
(defgroup comp nil
"Emacs Lisp native compiler."
:group 'lisp)
(defcustom comp-debug t
"Log compilation process."
:type 'boolean
:group 'comp)
(defconst native-compile-log-buffer "*Native-compile-Log*"
"Name of the native-compiler's log buffer.")
;; FIXME these has to be removed
(defvar comp-speed 2)
(defvar comp-verbose nil)
(defvar comp-pass nil
"Every pass has the right to bind what it likes here.")
(defconst comp-passes '(comp-spill-lap
comp-limplify
comp-ssa
comp-propagate
comp-call-optim
comp-propagate
comp-dead-code
comp-final)
"Passes to be executed in order.")
;; TODO hash here.
(defconst comp-known-ret-types '((cons . cons)
(1+ . number)
(1- . number)
(+ . number)
(- . number)
(* . number)
(/ . number)
(% . number)
;; Type hint
(comp-hint-fixnum . fixnum)
(comp-hint-cons . cons))
"Alist used for type propagation.")
(defconst comp-type-hints '(comp-hint-fixnum
comp-hint-cons)
"List of fake functions used to give compiler hints.")
(defconst comp-limple-sets '(set
setimm
set-par-to-local
set-args-to-local
set-rest-args-to-local)
"Limple set operators.")
(defconst comp-limple-assignments `(push-handler
,@comp-limple-sets)
"Limple operators that clobbers the first mvar argument.")
(defconst comp-limple-calls '(call
callref
direct-call
direct-callref)
"Limple operators use to call subrs.")
(defconst comp-mostly-pure-funcs
'(% * + - / /= 1+ 1- < <= = > >= cons list % concat logand logcount logior
lognot logxor regexp-opt regexp-quote string-to-char string-to-syntax
symbol-name)
"Functions on witch we do constant propagation."
;; Is it acceptable to move into the compile time functions that are
;; allocating memory? (these are technically not side effect free)
)
(eval-when-compile
(defconst comp-op-stack-info
(cl-loop with h = (make-hash-table)
for k across byte-code-vector
for v across byte-stack+-info
when k
do (puthash k v h)
finally return h)
"Hash table lap-op -> stack adjustment."))
(cl-defstruct comp-ctxt
"Lisp side of the compiler context."
(output nil :type 'string
:documentation "Target output filename for the compilation.")
(top-level-defvars nil :type list
:documentation "List of top level form to be exp.")
(exp-funcs () :type list
:documentation "Exported functions list.")
(funcs-h (make-hash-table) :type hash-table
:documentation "lisp-func-name -> comp-func.
This is to build the prev field.")
(data-relocs-l () :type list
:documentation "Constant objects used by functions.")
(data-relocs-idx (make-hash-table :test #'equal) :type hash-table
:documentation "Obj -> position into data-relocs.")
(func-relocs-l () :type list
:documentation "Native functions imported.")
(func-relocs-idx (make-hash-table :test #'equal) :type hash-table
:documentation "Obj -> position into func-relocs."))
(cl-defstruct comp-args-base
(min nil :type number
:documentation "Minimum number of arguments allowed."))
(cl-defstruct (comp-args (:include comp-args-base))
(max nil :type number
:documentation "Maximum number of arguments allowed.
To be used when ncall-conv is nil."))
(cl-defstruct (comp-nargs (:include comp-args-base))
"Describe args when the functin signature is of kind:
(ptrdiff_t nargs, Lisp_Object *args)."
(nonrest nil :type number
:documentation "Number of non rest arguments."))
(cl-defstruct (comp-block (:copier nil) (:constructor make--comp-block))
"A basic block."
(name nil :type symbol)
;; These two slots are used during limplification.
(sp nil
:documentation "When non nil indicates the sp value while entering
into it.")
(closed nil :type boolean
:documentation "If the block was already closed.")
(insns () :type list
:documentation "List of instructions.")
;; All the followings are for SSA and CGF analysis.
(in-edges () :type list
:documentation "List of incoming edges.")
(out-edges () :type list
:documentation "List of outcoming edges.")
(dom nil :type comp-block
:documentation "Immediate dominator.")
(df (make-hash-table) :type hash-table
:documentation "Dominance frontier set. Block-name -> block")
(post-num nil :type number
:documentation "Post order number.")
(final-frame nil :type vector
:documentation "This is a copy of the frame when leaving the block.
Is in use to help the SSA rename pass."))
(cl-defstruct (comp-edge (:copier nil) (:constructor make--comp-edge))
"An edge connecting two basic blocks."
(src nil :type comp-block)
(dst nil :type comp-block)
(number nil :type number
:documentation "The index number corresponding to this edge in the
edge vector."))
(defun comp-block-preds (basic-block)
"Given BASIC-BLOCK return the list of its predecessors."
(mapcar #'comp-edge-src (comp-block-in-edges basic-block)))
(defun comp-gen-counter ()
"Return a sequential number generator."
(let ((n -1))
(lambda ()
(cl-incf n))))
(cl-defstruct (comp-func (:copier nil))
"LIMPLE representation of a function."
(symbol-name nil
:documentation "Function symbol's name.")
(c-func-name nil :type string
:documentation "The function name in the native world.")
(byte-func nil
:documentation "Byte compiled version.")
(lap () :type list
:documentation "LAP assembly representation.")
(args nil :type comp-args-base)
(frame-size nil :type number)
(blocks (make-hash-table) :type hash-table
:documentation "Key is the basic block symbol value is a comp-block
structure.")
(lap-block (make-hash-table :test #'equal) :type hash-table
:documentation "LAP lable -> LIMPLE basic block name.")
(edges () :type list
:documentation "List of edges connecting basic blocks.")
(block-cnt-gen (funcall #'comp-gen-counter) :type function
:documentation "Generates block numbers.")
(edge-cnt-gen (funcall #'comp-gen-counter) :type function
:documentation "Generates edges numbers.")
(ssa-cnt-gen (funcall #'comp-gen-counter) :type function
:documentation "Counter to create ssa limple vars."))
(defun comp-func-reset-generators (func)
"Reset unique id generators for FUNC."
;; (setf (block-cnt-gen func) (comp-gen-counter))
(setf (comp-func-edge-cnt-gen func) (comp-gen-counter))
(setf (comp-func-ssa-cnt-gen func) (comp-gen-counter)))
(cl-defstruct (comp-mvar (:copier nil) (:constructor make--comp-mvar))
"A meta-variable being a slot in the meta-stack."
(slot nil :type fixnum
:documentation "Slot number.")
(id nil :type (or null number)
:documentation "SSA number.")
(const-vld nil :type boolean
:documentation "Valid signal for the following slot.")
(constant nil
:documentation "When const-vld non nil this is used for constant
propagation.")
(type nil
:documentation "When non nil is used for type propagation.")
(ref nil :type boolean
:documentation "When t this is used by reference."))
(defvar comp-ctxt) ;; FIXME (to be removed)
;; Special vars used by some passes
(defvar comp-block) ; Can probably be removed
(defvar comp-func)
(defun comp-set-op-p (op)
"Assignment predicate for OP."
(cl-find op comp-limple-sets))
(defun comp-assign-op-p (op)
"Assignment predicate for OP."
(cl-find op comp-limple-assignments))
(defun comp-limple-insn-call-p (insn)
"Limple INSN call predicate."
(when (member (car-safe insn) comp-limple-calls)
t))
(defun comp-type-hint-p (func)
"Type hint predicate for function name FUNC."
(member func comp-type-hints))
(defun comp-add-const-to-relocs (obj)
"Keep track of OBJ into the ctxt relocations.
The corresponding index is returned."
(let ((data-relocs-idx (comp-ctxt-data-relocs-idx comp-ctxt)))
(if-let ((idx (gethash obj data-relocs-idx)))
idx
(push obj (comp-ctxt-data-relocs-l comp-ctxt))
(puthash obj (hash-table-count data-relocs-idx) data-relocs-idx))))
(defun comp-add-subr-to-relocs (subr-name)
"Keep track of SUBR-NAME into the ctxt relocations.
The corresponding index is returned."
(let ((func-relocs-idx (comp-ctxt-func-relocs-idx comp-ctxt)))
(if-let ((idx (gethash subr-name func-relocs-idx)))
idx
(push subr-name (comp-ctxt-func-relocs-l comp-ctxt))
(puthash subr-name (hash-table-count func-relocs-idx) func-relocs-idx))))
(defmacro comp-within-log-buff (&rest body)
"Execute BODY while at the end the log-buffer.
BODY is evaluate only if `comp-debug' is non nil."
(declare (debug (form body))
(indent defun))
`(when comp-debug
(with-current-buffer (get-buffer-create native-compile-log-buffer)
(setq buffer-read-only t)
(let ((inhibit-read-only t))
(goto-char (point-max))
,@body))))
(defun comp-log (data)
"Log DATA."
(if (and noninteractive
comp-verbose)
(if (atom data)
(message "%s" data)
(mapc (lambda (x)
(message "%s"(prin1-to-string x)))
data))
(comp-within-log-buff
(if (and data (atom data))
(insert data)
(mapc (lambda (x)
(insert (prin1-to-string x) "\n"))
data)
(insert "\n")))))
(defun comp-log-func (func)
"Log function FUNC."
(comp-log (format "\n Function: %s" (comp-func-symbol-name func)))
(cl-loop for block-name being each hash-keys of (comp-func-blocks func)
using (hash-value bb)
do (progn
(comp-log (concat "<" (symbol-name block-name) ">\n"))
(comp-log (comp-block-insns bb)))))
(defun comp-log-edges (func)
"Log edges in FUNC."
(let ((edges (comp-func-edges func)))
(comp-log (format "\nEdges in function: %s\n" (comp-func-symbol-name func)))
(mapc (lambda (e)
(comp-log (format "n: %d src: %s dst: %s\n"
(comp-edge-number e)
(comp-block-name (comp-edge-src e))
(comp-block-name (comp-edge-dst e)))))
edges)))
;;; spill-lap pass specific code.
(defun comp-c-func-name (symbol prefix)
"Given SYMBOL return a name suitable for the native code.
Put PREFIX in front of it."
;; Unfortunatelly not all symbol names are valid as C function names...
;; Nassi's algorithm here:
(let* ((orig-name (symbol-name symbol))
(crypted (cl-loop with str = (make-string (* 2 (length orig-name)) 0)
for j from 0 by 2
for i across orig-name
for byte = (format "%x" i)
do (aset str j (aref byte 0))
do (aset str (1+ j) (aref byte 1))
finally return str))
(human-readable (replace-regexp-in-string
"-" "_" orig-name))
(human-readable (replace-regexp-in-string
(rx (not (any "0-9a-z_"))) "" human-readable)))
(concat prefix crypted "_" human-readable)))
(defun comp-decrypt-lambda-list (x)
"Decript lambda list X."
(unless (fixnump x)
(error "Can't native compile a non lexical scoped function"))
(let ((rest (not (= (logand x 128) 0)))
(mandatory (logand x 127))
(nonrest (ash x -8)))
(if (and (null rest)
(< nonrest 9)) ;; SUBR_MAX_ARGS
(make-comp-args :min mandatory
:max nonrest)
(make-comp-nargs :min mandatory
:nonrest nonrest))))
(defun comp-spill-lap-function (function-name)
"Byte compile FUNCTION-NAME spilling data from the byte compiler."
(let* ((f (symbol-function function-name))
(func (make-comp-func :symbol-name function-name
:func f
:c-func-name (comp-c-func-name
function-name
"F"))))
(when (byte-code-function-p f)
(error "Can't native compile an already bytecompiled function"))
(setf (comp-func-byte-func func)
(byte-compile (comp-func-symbol-name func)))
(let ((lap (cdr (assoc function-name (reverse byte-to-native-bytecode)))))
(cl-assert lap)
(comp-log lap)
(let ((lambda-list (aref (comp-func-byte-func func) 0)))
(setf (comp-func-args func)
(comp-decrypt-lambda-list lambda-list)))
(setf (comp-func-lap func) lap)
(setf (comp-func-frame-size func) (aref (comp-func-byte-func func) 3))
func)))
(defun comp-spill-lap-functions-file (filename)
"Byte compile FILENAME spilling data from the byte compiler."
(byte-compile-file filename)
(setf (comp-ctxt-top-level-defvars comp-ctxt)
(reverse (mapcar (lambda (x)
(cl-ecase (car x)
('defvar (cdr x))
('defconst (cdr x))))
byte-to-native-top-level-forms)))
;; Hacky! We need to reverse `byte-to-native-lap' to have the compiled top
;; level form that matters (ex exclude lambdas)...
(cl-loop with lap-funcs = byte-to-native-lap
for (name . bytecode) in byte-to-native-bytecode
for lap = (cdr (assoc name lap-funcs))
for lambda-list = (aref bytecode 0)
for func = (make-comp-func :symbol-name name
:byte-func bytecode
:c-func-name (comp-c-func-name
name
"F")
:args (comp-decrypt-lambda-list lambda-list)
:lap lap
:frame-size (aref bytecode 3))
do (progn
(comp-log (format "Function %s:\n" name))
(comp-log lap))
collect func))
(defun comp-spill-lap (input)
"Byte compile and spill the LAP rapresentation for INPUT.
If INPUT is a symbol this is the function-name to be compiled.
If INPUT is a string this is the file path to be compiled."
(let ((byte-native-compiling t)
(byte-to-native-lap ())
(byte-to-native-bytecode ())
(byte-to-native-top-level-forms ()))
(cl-typecase input
(symbol (list (comp-spill-lap-function input)))
(string (comp-spill-lap-functions-file input)))))
;;; Limplification pass specific code.
(defmacro comp-sp ()
"Current stack pointer."
'(comp-limplify-sp comp-pass))
(defmacro comp-with-sp (sp &rest body)
"Execute BODY setting the stack pointer to SP.
Restore the original value afterwards."
(declare (debug (form body))
(indent defun))
(let ((sym (gensym)))
`(let ((,sym (comp-sp)))
(setf (comp-sp) ,sp)
(progn ,@body)
(setf (comp-sp) ,sym))))
(defmacro comp-slot-n (n)
"Slot N into the meta-stack."
(declare (debug (form)))
`(aref (comp-limplify-frame comp-pass) ,n))
(defmacro comp-slot ()
"Current slot into the meta-stack pointed by sp."
'(comp-slot-n (comp-sp)))
(defmacro comp-slot+1 ()
"Slot into the meta-stack pointed by sp + 1."
'(comp-slot-n (1+ (comp-sp))))
(cl-defstruct (comp-limplify (:copier nil))
"Support structure used during function limplification."
(sp 0 :type fixnum
:documentation "Current stack pointer while walking LAP.")
(frame nil :type vector
:documentation "Meta-stack used to flat LAP.")
(block-name nil :type symbol
:documentation "Current basic block name."))
(cl-defun comp-block-maybe-add (&rest args &key name sp &allow-other-keys)
(let ((blocks (comp-func-blocks comp-func)))
(if-let ((bb (gethash name blocks)))
(if-let ((bb-sp (comp-block-sp bb)))
;; If was a sp was already registered sanity check it.
(cl-assert (or (null sp) (= sp bb-sp)))
;; Otherwise set it.
(setf (comp-block-sp bb) sp))
(puthash name (apply #'make--comp-block args) blocks))))
;; (defun comp-opt-call (inst)
;; "Optimize if possible a side-effect-free call in INST."
;; (cl-destructuring-bind (_ f &rest args) inst
;; (when (and (member f comp-mostly-pure-funcs)
;; (cl-every #'identity (mapcar #'comp-mvar-const-vld args)))
;; (apply f (mapcar #'comp-mvar-constant args)))))
(defun comp-call (func &rest args)
"Emit a call for function FUNC with ARGS."
(comp-add-subr-to-relocs func)
`(call ,func ,@args))
(defun comp-callref (func &rest args)
"Emit a call usign narg abi for FUNC with ARGS."
(comp-add-subr-to-relocs func)
`(callref ,func ,@(cl-loop with (nargs off) = args
repeat nargs
for sp from off
collect (comp-slot-n sp))))
(cl-defun make-comp-mvar (&key slot (constant nil const-vld) type)
(when const-vld
(comp-add-const-to-relocs constant))
(make--comp-mvar :slot slot :const-vld const-vld :constant constant
:type type))
(defun comp-new-frame (size &optional ssa)
"Return a clean frame of meta variables of size SIZE."
(cl-loop with v = (make-vector size nil)
for i below size
for mvar = (if ssa (make-comp-ssa-mvar :slot i)
(make-comp-mvar :slot i))
do (aset v i mvar)
finally (return v)))
(defun comp-emit (insn)
"Emit INSN into current basic block."
(cl-assert (not (comp-block-closed comp-block)))
(push insn (comp-block-insns comp-block)))
(defun comp-emit-set-call (call)
"Emit CALL assigning the result the the current slot frame.
If the callee function is known to have a return type propagate it."
(cl-assert call)
(comp-emit (list 'set (comp-slot) call)))
(defmacro comp-emit-set-call-subr (subr-name sp-delta)
"Emit a call for SUBR-NAME.
SP-DELTA is the stack adjustment."
(let ((subr (symbol-function subr-name))
(subr-str (symbol-name subr-name))
(nargs (1+ (- sp-delta))))
(cl-assert (subrp subr) nil
"%s not a subr" subr-str)
(let* ((arity (subr-arity subr))
(minarg (car arity))
(maxarg (cdr arity)))
(cl-assert (not (eq maxarg 'unevalled)) nil
"%s contains unevalled arg" subr-name)
(if (eq maxarg 'many)
;; callref case.
`(comp-emit-set-call (comp-callref ',subr-name ,nargs (comp-sp)))
;; Normal call.
(cl-assert (and (>= maxarg nargs) (<= minarg nargs))
(nargs maxarg minarg)
"Incoherent stack adjustment %d, maxarg %d minarg %d")
`(let* ((subr-name ',subr-name)
(slots (cl-loop for i from 0 below ,maxarg
collect (comp-slot-n (+ i (comp-sp))))))
(comp-emit-set-call (apply #'comp-call (cons subr-name slots))))))))
(defun comp-copy-slot (src-n &optional dst-n)
"Set slot number DST-N to slot number SRC-N as source.
If DST-N is specified use it otherwise assume it to be the current slot."
(comp-with-sp (if dst-n dst-n (comp-sp))
(let ((src-slot (comp-slot-n src-n)))
(cl-assert src-slot)
(comp-emit `(set ,(comp-slot) ,src-slot)))))
(defun comp-emit-annotation (str)
"Emit annotation STR."
(comp-emit `(comment ,str)))
(defun comp-emit-set-const (val)
"Set constant VAL to current slot."
(let ((rel-idx (comp-add-const-to-relocs val)))
(cl-assert (numberp rel-idx))
(comp-emit `(setimm ,(comp-slot) ,rel-idx ,val))))
(defun comp-mark-block-closed ()
"Mark current basic block as closed."
(setf (comp-block-closed (gethash (comp-limplify-block-name comp-pass)
(comp-func-blocks comp-func)))
t))
(defun comp-emit-jump (target)
"Emit an unconditional branch to block TARGET."
(comp-emit (list 'jump target))
(comp-mark-block-closed))
(defun comp-emit-block (block-name &optional entry-sp)
"Emit basic block BLOCK-NAME.
ENTRY-SP is the sp value when entering."
(let ((blocks (comp-func-blocks comp-func)))
;; In case does not exist register it into comp-func-blocks.
(comp-block-maybe-add :name block-name
:sp entry-sp)
;; If we are abandoning an non closed basic block close it with a fall
;; through.
(when (and (not (eq block-name 'entry))
(not (comp-block-closed
(gethash (comp-limplify-block-name comp-pass)
blocks))))
(comp-emit-jump block-name))
;; Set this a currently compiled block.
(setf comp-block (gethash block-name blocks))
;; If we are landing here from a previously recorded branch with known sp
;; adjust accordingly.
(when-let ((new-sp (comp-block-sp (gethash block-name blocks))))
(setf (comp-sp) new-sp))
(setf (comp-limplify-block-name comp-pass) block-name)))
(defun comp-emit-cond-jump (a b target-offset lap-label negated)
"Emit a conditional jump to LAP-LABEL when A and B satisfy EQ.
TARGET-OFFSET is the positive offset on the SP when branching to the target
block.
If NEGATED non nil negate the tested condition."
(let ((bb (comp-new-block-sym))) ;; Fall through block
(comp-block-maybe-add :name bb :sp (comp-sp))
(let ((target (comp-lap-to-limple-bb lap-label)))
(comp-emit (if negated
(list 'cond-jump a b target bb)
(list 'cond-jump a b bb target)))
(comp-block-maybe-add :name target :sp (+ target-offset (comp-sp)))
(comp-mark-block-closed))
(comp-emit-block bb (comp-sp))))
(defun comp-stack-adjust (n)
"Move sp by N."
(cl-incf (comp-sp) n))
(defun comp-limplify-listn (n)
"Limplify list N."
(comp-with-sp (+ (comp-sp) n -1)
(comp-emit-set-call (comp-call 'cons
(comp-slot)
(make-comp-mvar :constant nil))))
(cl-loop for sp from (+ (comp-sp) n -2) downto (comp-sp)
do (comp-with-sp sp
(comp-emit-set-call (comp-call 'cons
(comp-slot)
(comp-slot+1))))))
(defun comp-new-block-sym ()
"Return a unique symbol naming the next new basic block."
(intern (format "bb_%s" (funcall (comp-func-block-cnt-gen comp-func)))))
(defun comp-lap-to-limple-bb (n)
"Given the LAP label N return the limple basic block name."
(let ((hash (comp-func-lap-block comp-func)))
(if-let ((bb (gethash n hash)))
;; If was already created return it.
bb
(let ((name (comp-new-block-sym)))
(puthash n name hash)
name))))
(defun comp-emit-handler (guarded-label handler-type)
"Emit a non local exit handler for GUARDED-LABEL of type HANDLER-TYPE."
(let ((guarded-bb (comp-new-block-sym)))
(comp-block-maybe-add :name guarded-bb :sp (comp-sp))
(let ((handler-bb (comp-lap-to-limple-bb guarded-label)))
(comp-emit (list 'push-handler
(comp-slot+1)
(comp-slot+1)
handler-type
handler-bb
guarded-bb))
(comp-block-maybe-add :name handler-bb :sp (1+ (comp-sp)))
(comp-mark-block-closed)
(comp-emit-block guarded-bb (comp-sp)))))
(defun comp-emit-switch (var last-insn)
"Emit a limple for a lap jump table given VAR and LAST-INSN."
(pcase last-insn
(`(setimm ,_ ,_ ,const)
(cl-loop for test being each hash-keys of const
using (hash-value target-label)
for m-test = (make-comp-mvar :constant test)
do (comp-emit-cond-jump var m-test 0 target-label nil)))
(_ (error "Missing previous setimm while creating a switch"))))
(defmacro comp-op-case (&rest cases)
"Expand CASES into the corresponding pcase.
This is responsible for generating the proper stack adjustment when known and
the annotation emission."
(declare (debug (body))
(indent defun))
(cl-labels ((op-to-fun (x)
;; Given the LAP op strip "byte-" to have the subr name.
(intern (replace-regexp-in-string "byte-" "" x)))
(body-eff (body op-name sp-delta)
;; Given the original body BODY compute the effective one.
;; When BODY is auto guess function name form the LAP bytecode
;; name. Othewise expect lname fnname.
(pcase (car body)
('auto
(list `(comp-emit-set-call-subr
,(op-to-fun op-name)
,sp-delta)))
((pred symbolp)
(list `(comp-emit-set-call-subr
,(car body)
,sp-delta)))
(_ body))))
`(pcase op
,@(cl-loop for (op . body) in cases
for sp-delta = (gethash op comp-op-stack-info)
for op-name = (symbol-name op)
if body
collect `(',op
;; Log all LAP ops except the TAG one.
,(unless (eq op 'TAG)
`(comp-emit-annotation
,(concat "LAP op " op-name)))
;; Emit the stack adjustment if present.
,(when (and sp-delta (not (eq 0 sp-delta)))
`(comp-stack-adjust ,sp-delta))
,@(body-eff body op-name sp-delta))
else
collect `(',op (error ,(concat "Unsupported LAP op "
op-name))))
(_ (error "Unexpected LAP op %s" (symbol-name op))))))
(defun comp-limplify-lap-inst (insn)
"Limplify LAP instruction INSN pushng it in the proper basic block."
(let ((op (car insn))
(arg (if (consp (cdr insn))
(cadr insn)
(cdr insn))))
(comp-op-case
(TAG
(comp-emit-block (comp-lap-to-limple-bb arg)))
(byte-stack-ref
(comp-copy-slot (- (comp-sp) arg 1)))
(byte-varref
(comp-emit-set-call (comp-call 'symbol-value (make-comp-mvar
:constant arg))))
(byte-varset
(comp-emit (comp-call 'set_internal
(make-comp-mvar :constant arg)
(comp-slot+1))))
(byte-varbind ;; Verify
(comp-emit (comp-call 'specbind
(make-comp-mvar :constant arg)
(comp-slot+1))))
(byte-call
(comp-stack-adjust (- arg))
(comp-emit-set-call (comp-callref 'funcall (1+ arg) (comp-sp))))
(byte-unbind
(comp-emit (comp-call 'helper_unbind_n
(make-comp-mvar :constant arg))))
(byte-pophandler
(comp-emit '(pop-handler)))
(byte-pushconditioncase
(comp-emit-handler (cl-third insn) 'condition-case))
(byte-pushcatch
(comp-emit-handler (cl-third insn) 'catcher))
(byte-nth auto)
(byte-symbolp auto)
(byte-consp auto)
(byte-stringp auto)
(byte-listp auto)
(byte-eq auto)
(byte-memq auto)
(byte-not null)
(byte-car auto)
(byte-cdr auto)
(byte-cons auto)
(byte-list1
(comp-limplify-listn 1))
(byte-list2
(comp-limplify-listn 2))
(byte-list3
(comp-limplify-listn 3))
(byte-list4
(comp-limplify-listn 4))
(byte-length auto)
(byte-aref auto)
(byte-aset auto)
(byte-symbol-value auto)
(byte-symbol-function auto)
(byte-set auto)
(byte-fset auto)
(byte-get auto)
(byte-substring auto)
(byte-concat2
(comp-emit-set-call (comp-callref 'concat 2 (comp-sp))))
(byte-concat3
(comp-emit-set-call (comp-callref 'concat 3 (comp-sp))))
(byte-concat4
(comp-emit-set-call (comp-callref 'concat 4 (comp-sp))))
(byte-sub1 1-)
(byte-add1 1+)
(byte-eqlsign =)
(byte-gtr >)
(byte-lss <)
(byte-leq <=)
(byte-geq >=)
(byte-diff -)
(byte-negate
(comp-emit-set-call (comp-call 'negate (comp-slot))))
(byte-plus +)
(byte-max auto)
(byte-min auto)
(byte-mult *)
(byte-point auto)
(byte-goto-char auto)
(byte-insert auto)
(byte-point-max auto)
(byte-point-min auto)
(byte-char-after auto)
(byte-following-char auto)
(byte-preceding-char preceding-char)
(byte-current-column auto)
(byte-indent-to
(comp-emit-set-call (comp-call 'indent_to
(comp-slot)
(make-comp-mvar :constant nil))))
(byte-scan-buffer-OBSOLETE)
(byte-eolp auto)
(byte-eobp auto)
(byte-bolp auto)
(byte-bobp auto)
(byte-current-buffer auto)
(byte-set-buffer auto)
(byte-save-current-buffer
(comp-emit (comp-call 'record_unwind_current_buffer)))
(byte-set-mark-OBSOLETE)
(byte-interactive-p-OBSOLETE)
(byte-forward-char auto)
(byte-forward-word auto)
(byte-skip-chars-forward auto)
(byte-skip-chars-backward auto)
(byte-forward-line auto)
(byte-char-syntax auto)
(byte-buffer-substring auto)
(byte-delete-region auto)
(byte-narrow-to-region
(comp-emit-set-call (comp-call 'narrow_to_region
(comp-slot)
(comp-slot+1))))
(byte-widen
(comp-emit-set-call (comp-call 'widen)))
(byte-end-of-line auto)
(byte-constant2) ;; TODO
(byte-goto
(comp-emit-jump (comp-lap-to-limple-bb (cl-third insn))))
(byte-goto-if-nil
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0
(cl-third insn) nil))
(byte-goto-if-not-nil
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0
(cl-third insn) t))
(byte-goto-if-nil-else-pop
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1
(cl-third insn) nil))
(byte-goto-if-not-nil-else-pop
(comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1
(cl-third insn) t))
(byte-return
(comp-emit `(return ,(comp-slot+1)))
(comp-mark-block-closed))
(byte-discard 'pass)
(byte-dup
(comp-copy-slot (1- (comp-sp))))
(byte-save-excursion
(comp-emit (comp-call 'record_unwind_protect_excursion)))
(byte-save-window-excursion-OBSOLETE)
(byte-save-restriction
(comp-call 'helper-save-restriction))
(byte-catch) ;; Obsolete
(byte-unwind-protect
(comp-emit (comp-call 'helper_unwind_protect (comp-slot+1))))
(byte-condition-case) ;; Obsolete
(byte-temp-output-buffer-setup-OBSOLETE)
(byte-temp-output-buffer-show-OBSOLETE)
(byte-unbind-all) ;; Obsolete
(byte-set-marker auto)
(byte-match-beginning auto)
(byte-match-end auto)
(byte-upcase auto)
(byte-downcase auto)
(byte-string= string-equal)
(byte-string< string-lessp)
(byte-equal auto)
(byte-nthcdr auto)
(byte-elt auto)
(byte-member auto)
(byte-assq auto)
(byte-nreverse auto)
(byte-setcar auto)
(byte-setcdr auto)
(byte-car-safe auto)
(byte-cdr-safe auto)
(byte-nconc auto)
(byte-quo /)
(byte-rem %)
(byte-numberp auto)
(byte-integerp auto)
(byte-listN
(comp-stack-adjust (- 1 arg))
(comp-emit-set-call (comp-callref 'list arg (comp-sp))))
(byte-concatN
(comp-stack-adjust (- 1 arg))
(comp-emit-set-call (comp-callref 'concat arg (comp-sp))))
(byte-insertN
(comp-stack-adjust (- 1 arg))
(comp-emit-set-call (comp-callref 'insert arg (comp-sp))))
(byte-stack-set
(comp-with-sp (1+ (comp-sp)) ;; FIXME!!
(comp-copy-slot (comp-sp) (- (comp-sp) arg))))
(byte-stack-set2 (cl-assert nil)) ;; TODO
(byte-discardN
(comp-stack-adjust (- arg)))
(byte-switch
;; Assume to follow the emission of a setimm.
;; This is checked into comp-emit-switch.
(comp-emit-switch (comp-slot+1) (cl-second (comp-block-insns comp-block))))
(byte-constant
(comp-emit-set-const arg))
(byte-discardN-preserve-tos
(comp-stack-adjust (- arg))
(comp-copy-slot (+ arg (comp-sp)))))))
(defun comp-emit-narg-prologue (minarg nonrest)
"Emit the prologue for a narg function."
(cl-loop for i below minarg
do (progn
(comp-emit `(set-args-to-local ,(comp-slot-n i)))
(comp-emit '(inc-args))))
(cl-loop for i from minarg below nonrest
for bb = (intern (format "entry_%s" i))
for fallback = (intern (format "entry_fallback_%s" i))
do (progn
(comp-emit `(cond-jump-narg-leq ,i ,bb ,fallback))
(comp-mark-block-closed)
(comp-emit-block bb (comp-sp))
(comp-emit `(set-args-to-local ,(comp-slot-n i)))
(comp-emit '(inc-args)))
finally (comp-emit-jump 'entry_rest_args))
(cl-loop for i from minarg below nonrest
do (comp-with-sp i
(comp-emit-block (intern (format "entry_fallback_%s" i))
(comp-sp))
(comp-emit-set-const nil)))
(comp-emit-block 'entry_rest_args (comp-sp))
(comp-emit `(set-rest-args-to-local ,(comp-slot-n nonrest))))
(defun comp-limplify-finalize-function (func)
"Reverse insns into all basic blocks of FUNC."
(cl-loop for bb being the hash-value in (comp-func-blocks func)
do (setf (comp-block-insns bb)
(nreverse (comp-block-insns bb))))
(comp-log-func func)
func)
(defun comp-limplify-top-level ()
"Create a limple function doing the business for top level forms.
This will be called at runtime."
(let* ((func (make-comp-func :symbol-name 'top-level-run
:c-func-name "top_level_run"
:args (make-comp-args :min 0 :max 0)
:frame-size 0))
(comp-func func)
(comp-pass (make-comp-limplify
:sp -1
:frame (comp-new-frame 0)))
(comp-block ()))
(comp-emit-block 'entry (comp-sp))
(comp-emit-annotation "Top level")
(cl-loop for args in (comp-ctxt-top-level-defvars comp-ctxt)
do (comp-emit (comp-call 'defvar (make-comp-mvar :constant args))))
(comp-emit `(return ,(make-comp-mvar :constant nil)))
(comp-limplify-finalize-function func)))
(defun comp-limplify-function (func)
"Limplify a single function FUNC."
(let* ((frame-size (comp-func-frame-size func))
(comp-func func)
(comp-pass (make-comp-limplify
:sp -1
:frame (comp-new-frame frame-size)))
(args (comp-func-args func))
(args-min (comp-args-base-min args))
(comp-block ()))
;; Prologue
(comp-emit-block 'entry (comp-sp))
(comp-emit-annotation (concat "Lisp function: "
(symbol-name (comp-func-symbol-name func))))
(if (comp-args-p args)
(cl-loop for i below (comp-args-max args)
do (cl-incf (comp-sp))
do (comp-emit `(set-par-to-local ,(comp-slot) ,i)))
(let ((nonrest (comp-nargs-nonrest args)))
(comp-emit-narg-prologue args-min nonrest)
(cl-incf (comp-sp) (1+ nonrest))))
;; Body
(comp-emit-block (comp-new-block-sym) (comp-sp))
(mapc #'comp-limplify-lap-inst (comp-func-lap func))
(comp-limplify-finalize-function func)))
(defun comp-add-func-to-ctxt (func)
"Add FUNC to the current compiler contex."
(puthash (comp-func-symbol-name func)
func
(comp-ctxt-funcs-h comp-ctxt)))
(defun comp-limplify (lap-funcs)
"Compute the LIMPLE ir for LAP-FUNCS.
Top level forms for the current context are rendered too."
(mapc #'comp-add-func-to-ctxt
(cons (comp-limplify-top-level)
(mapcar #'comp-limplify-function lap-funcs))))
;;; SSA pass specific code.
;; After limplification no edges are present between basic blocks and an
;; implicit phi is present for every slot at the beginning of every basic block.
;; This pass is responsible for building all the edges and replace all m-vars
;; plus placing the needed phis.
;; Because the number of phis placed is (supposed) to be the minimum necessary
;; this form is called 'minimal SSA form'.
;; This pass should be run every time basic blocks or mvar are shuffled.
(cl-defun make-comp-ssa-mvar (&key slot (constant nil const-vld) type)
(make--comp-mvar :id (funcall (comp-func-ssa-cnt-gen comp-func))
:slot slot :const-vld const-vld :constant constant
:type type))
(defun comp-compute-edges ()
"Compute the basic block edges for the current function."
(cl-flet ((edge-add (&rest args)
(push
(apply #'make--comp-edge
:number (funcall (comp-func-edge-cnt-gen comp-func))
args)
(comp-func-edges comp-func))))
(cl-loop with blocks = (comp-func-blocks comp-func)
for bb being each hash-value of blocks
for last-insn = (car (last (comp-block-insns bb)))
for (op first second third forth fifth) = last-insn
do (cl-case op
(jump
(edge-add :src bb :dst (gethash first blocks)))
(cond-jump
(edge-add :src bb :dst (gethash third blocks))
(edge-add :src bb :dst (gethash forth blocks)))
(cond-jump-narg-leq
(edge-add :src bb :dst (gethash second blocks))
(edge-add :src bb :dst (gethash third blocks)))
(push-handler
(edge-add :src bb :dst (gethash forth blocks))
(edge-add :src bb :dst (gethash fifth blocks)))
(return)
(otherwise
(error "Block %s does not end with a branch in func %s"
bb (comp-func-symbol-name comp-func))))
finally (progn
(setf (comp-func-edges comp-func)
(nreverse (comp-func-edges comp-func)))
;; Update edge refs into blocks.
(cl-loop for edge in (comp-func-edges comp-func)
do (push edge
(comp-block-out-edges (comp-edge-src edge)))
do (push edge
(comp-block-in-edges (comp-edge-dst edge))))
(comp-log-edges comp-func)))))
(defun comp-collect-rev-post-order (basic-block)
"Walk BASIC-BLOCK childs and return their name in reversed post-oder."
(let ((visited (make-hash-table))
(acc ()))
(cl-labels ((collect-rec (bb)
(let ((name (comp-block-name bb)))
(unless (gethash name visited)
(puthash name t visited)
(cl-loop for e in (comp-block-out-edges bb)
for dst-block = (comp-edge-dst e)
do (collect-rec dst-block))
(push name acc)))))
(collect-rec basic-block)
acc)))
(defun comp-compute-dominator-tree ()
"Compute immediate dominators for each basic block in current function."
;; Originally based on: "A Simple, Fast Dominance Algorithm"
;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001).
(cl-flet ((intersect (b1 b2)
(let ((finger1 (comp-block-post-num b1))
(finger2 (comp-block-post-num b2)))
(while (not (= finger1 finger2))
(while (< finger1 finger2)
(setf b1 (comp-block-dom b1))
(setf finger1 (comp-block-post-num b1)))
(while (< finger2 finger1)
(setf b2 (comp-block-dom b2))
(setf finger2 (comp-block-post-num b2))))
b1))
(first-processed (l)
(if-let ((p (cl-find-if (lambda (p) (comp-block-dom p)) l)))
p
(error "Cant't find first preprocessed"))))
(when-let ((blocks (comp-func-blocks comp-func))
(entry (gethash 'entry blocks))
;; No point to go on if the only bb is 'entry'.
(bb1 (gethash 'bb_1 blocks)))
(cl-loop with rev-bb-list = (comp-collect-rev-post-order entry)
with changed = t
while changed
initially (progn
(comp-log "Computing dominator tree...\n")
(setf (comp-block-dom entry) entry)
;; Set the post order number.
(cl-loop for name in (reverse rev-bb-list)
for b = (gethash name blocks)
for i from 0
do (setf (comp-block-post-num b) i)))
do (cl-loop
for name in (cdr rev-bb-list)
for b = (gethash name blocks)
for preds = (comp-block-preds b)
for new-idom = (first-processed preds)
initially (setf changed nil)
do (cl-loop for p in (delq new-idom preds)
when (comp-block-dom p)
do (setf new-idom (intersect p new-idom)))
unless (eq (comp-block-dom b) new-idom)
do (progn
(setf (comp-block-dom b) new-idom)
(setf changed t)))))))
(defun comp-compute-dominator-frontiers ()
;; Originally based on: "A Simple, Fast Dominance Algorithm"
;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001).
(cl-loop with blocks = (comp-func-blocks comp-func)
for b-name being each hash-keys of blocks
using (hash-value b)
for preds = (comp-block-preds b)
when (>= (length preds) 2) ; All joins
do (cl-loop for p in preds
for runner = p
do (while (not (eq runner (comp-block-dom b)))
(puthash b-name b (comp-block-df runner))
(setf runner (comp-block-dom runner))))))
(defun comp-log-block-info ()
"Log basic blocks info for the current function."
(maphash (lambda (name bb)
(let ((dom (comp-block-dom bb))
(df (comp-block-df bb)))
(comp-log (format "block: %s idom: %s DF %s\n"
name
(when dom (comp-block-name dom))
(cl-loop for b being each hash-keys of df
collect b)))))
(comp-func-blocks comp-func)))
(defun comp-place-phis ()
"Place phi insns into the current function."
;; Originally based on: Static Single Assignment Book
;; Algorithm 3.1: Standard algorithm for inserting phi-functions
(cl-flet ((add-phi (slot-n bb)
;; Add a phi func for slot SLOT-N at the top of BB.
(push `(phi ,slot-n) (comp-block-insns bb)))
(slot-assigned-p (slot-n bb)
;; Return t if a SLOT-N was assigned within BB.
(cl-loop for insn in (comp-block-insns bb)
when (and (comp-assign-op-p (car insn))
(= slot-n (comp-mvar-slot (cadr insn))))
do (cl-return t))))
(cl-loop for i from 0 below (comp-func-frame-size comp-func)
;; List of blocks with a definition of mvar i
for defs-v = (cl-loop with blocks = (comp-func-blocks comp-func)
for b being each hash-value of blocks
when (slot-assigned-p i b)
collect b)
;; Set of basic blocks where phi is added.
for f = ()
;; Worklist, set of basic blocks that contain definitions of v.
for w = defs-v
do
(while w
(let ((x (pop w)))
(cl-loop for y being each hash-value of (comp-block-df x)
unless (cl-find y f)
do (progn
(add-phi i y)
(push y f)
;; Adding a phi implies mentioning the
;; corresponding slot so in case adjust w.
(unless (cl-find y defs-v)
(push y w)))))))))
(defun comp-dom-tree-walker (bb pre-lambda post-lambda)
"Dominator tree walker function starting from basic block BB.
PRE-LAMBDA and POST-LAMBDA are called in pre or post-order if non nil."
(when pre-lambda
(funcall pre-lambda bb))
(when-let ((out-edges (comp-block-out-edges bb)))
(cl-loop for ed in out-edges
for child = (comp-edge-dst ed)
when (eq bb (comp-block-dom child))
;; Current block is the immediate dominator then recur.
do (comp-dom-tree-walker child pre-lambda post-lambda)))
(when post-lambda
(funcall post-lambda bb)))
(cl-defstruct (comp-ssa (:copier nil))
"Support structure used while SSA renaming."
(frame (comp-new-frame (comp-func-frame-size comp-func) t) :type vector
:documentation "Vector of mvars."))
(defun comp-ssa-rename-insn (insn frame)
(dotimes (slot-n (comp-func-frame-size comp-func))
(cl-flet ((targetp (x)
;; Ret t if x is an mvar and target the correct slot number.
(and (comp-mvar-p x)
(eql slot-n (comp-mvar-slot x))))
(new-lvalue ()
;; If is an assignment make a new mvar and put it as l-value.
(let ((mvar (make-comp-ssa-mvar :slot slot-n)))
(setf (aref frame slot-n) mvar)
(setf (cadr insn) mvar))))
(pcase insn
(`(,(pred comp-assign-op-p) ,(pred targetp) . ,_)
(let ((mvar (aref frame slot-n)))
(setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn))))
(new-lvalue))
(`(phi ,n)
(when (equal n slot-n)
(new-lvalue)))
(_
(let ((mvar (aref frame slot-n)))
(setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn)))))))))
(defun comp-ssa-rename ()
"Entry point to rename SSA within the current function."
(comp-log "Renaming\n")
(let ((frame-size (comp-func-frame-size comp-func))
(visited (make-hash-table)))
(cl-labels ((ssa-rename-rec (bb in-frame)
(unless (gethash bb visited)
(puthash bb t visited)
(cl-loop for insn in (comp-block-insns bb)
do (comp-ssa-rename-insn insn in-frame))
(setf (comp-block-final-frame bb)
(copy-sequence in-frame))
(when-let ((out-edges (comp-block-out-edges bb)))
(cl-loop for ed in out-edges
for child = (comp-edge-dst ed)
;; Provide a copy of the same frame to all childs.
do (ssa-rename-rec child (copy-sequence in-frame)))))))
(ssa-rename-rec (gethash 'entry (comp-func-blocks comp-func))
(comp-new-frame frame-size t)))))
(defun comp-finalize-phis ()
"Fixup r-values into phis in all basic blocks."
(cl-flet ((finalize-phi (args b)
;; Concatenate into args all incoming mvars for this phi.
(setcdr args
(cl-loop with slot-n = (comp-mvar-slot (car args))
for e in (comp-block-in-edges b)
for b = (comp-edge-src e)
for in-frame = (comp-block-final-frame b)
collect (aref in-frame slot-n))) ))
(cl-loop for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop for (op . args) in (comp-block-insns b)
when (eq op 'phi)
do (finalize-phi args b)))))
(defun comp-ssa (_)
"Port FUNCS into mininal SSA form."
(maphash (lambda (_ f)
(let ((comp-func f))
;; TODO: if this is run more than once we should clean all CFG
;; data including phis here.
(comp-func-reset-generators comp-func)
(comp-compute-edges)
(comp-compute-dominator-tree)
(comp-compute-dominator-frontiers)
(comp-log-block-info)
(comp-place-phis)
(comp-ssa-rename)
(comp-finalize-phis)
(comp-log-func comp-func)))
(comp-ctxt-funcs-h comp-ctxt)))
;;; propagate pass specific code.
;; A very basic propagation pass follows.
(defun comp-basic-const-propagate ()
"Propagate simple constants for setimm operands.
This can run just once."
(cl-loop for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop for insn in (comp-block-insns b)
do (pcase insn
(`(setimm ,lval ,_ ,v)
(setf (comp-mvar-const-vld lval) t)
(setf (comp-mvar-constant lval) v)
(setf (comp-mvar-type lval) (type-of v)))))))
(defsubst comp-mvar-propagate (lval rval)
"Propagate into LVAL properties of RVAL."
(setf (comp-mvar-const-vld lval) (comp-mvar-const-vld rval))
(setf (comp-mvar-constant lval) (comp-mvar-constant rval))
(setf (comp-mvar-type lval) (comp-mvar-type rval)))
(defun comp-propagate-insn (insn)
(pcase insn
(`(set ,lval ,rval)
(pcase rval
(`(,(or 'call 'direct-call) ,f . ,_)
(setf (comp-mvar-type lval)
(cdr (assq f comp-known-ret-types))))
(`(,(or 'callref 'direct-callref) ,f . ,args)
(cl-loop for v in args
do (setf (comp-mvar-ref v) t))
(setf (comp-mvar-type lval)
(cdr (assq f comp-known-ret-types))))
(_
(comp-mvar-propagate lval rval))))
(`(phi ,lval . ,rest)
;; Const prop here.
(when (and (cl-every #'comp-mvar-const-vld rest)
(cl-reduce #'equal (mapcar #'comp-mvar-constant rest)))
(setf (comp-mvar-constant lval) (comp-mvar-constant (car rest))))
;; Type propagation.
;; FIXME: checking for type equality is not sufficient cause does not
;; account type hierarchy!!
(when (cl-reduce #'eq (mapcar #'comp-mvar-type rest))
(setf (comp-mvar-type lval) (comp-mvar-type (car rest))))
;; Reference propagation.
(setf (comp-mvar-ref lval) (cl-every #'comp-mvar-ref rest)))))
(defun comp-propagate* ()
"Propagate for set and phi operands."
(cl-loop for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop for insn in (comp-block-insns b)
do (comp-propagate-insn insn))))
(defun comp-propagate (_)
(maphash (lambda (_ f)
(let ((comp-func f))
(comp-basic-const-propagate)
;; FIXME: unbelievably dumb...
(cl-loop repeat 10
do (comp-propagate*))
(comp-log-func comp-func)))
(comp-ctxt-funcs-h comp-ctxt)))
;;; Call optimizer pass specific code.
;; This pass is responsible for the following optimizations:
;; - Call to subrs that are in defined in the C source and are passing through
;; funcall trampoline gets optimized into normal indirect calls.
;; This makes effectively this calls equivalent to all the subrs that got
;; dedicated byte-code ops.
;; Triggered at comp-speed >= 2.
;; - Recursive calls gets optimized into direct calls.
;; Triggered at comp-speed >= 2.
;; - Intra compilation unit procedure calls gets optimized into direct calls.
;; This can be a big win and even allow gcc to inline but does not make
;; function in the compilation unit re-definable safely without recompiling
;; the full compilation unit.
;; For this reason this is triggered only at comp-speed == 3.
(defun comp-call-optim-form-call (callee args self)
""
(cl-flet ((fill-args (args total)
;; Fill missing args to reach TOTAL
(append args (cl-loop repeat (- total (length args))
collect (make-comp-mvar :constant nil))))
(clean-args-ref (args)
;; Clean-up the ref slot in all args
(mapc (lambda (arg)
(setf (comp-mvar-ref arg) nil))
args)
args))
(when (symbolp callee) ; Do nothing if callee is a byte compiled func.
(let* ((f (symbol-function callee))
(subrp (subrp f))
(callee-in-unit (gethash callee
(comp-ctxt-funcs-h comp-ctxt))))
(cond
((and subrp (not (subr-native-elispp f)))
;; Trampoline removal.
(let* ((maxarg (cdr (subr-arity f)))
(call-type (if (if subrp
(not (numberp maxarg))
(comp-nargs-p callee-in-unit))
'callref
'call))
(args (if (eq call-type 'callref)
args
(fill-args args maxarg))))
(comp-add-subr-to-relocs callee)
`(,call-type ,callee ,@(clean-args-ref args))))
;; Intra compilation unit procedure call optimization.
;; Attention speed 3 triggers that for non self calls too!!
((or (eq callee self)
(and (>= comp-speed 3)
callee-in-unit))
(let* ((func-args (comp-func-args callee-in-unit))
(nargs (comp-nargs-p func-args))
(call-type (if nargs 'direct-callref 'direct-call))
(args (if (eq call-type 'direct-callref)
args
(fill-args args (comp-args-max func-args)))))
`(,call-type ,callee ,@(clean-args-ref args))))
((comp-type-hint-p callee)
`(call ,callee ,@args)))))))
(defun comp-call-optim-func ()
"Perform trampoline call optimization for the current function."
(cl-loop
with self = (comp-func-symbol-name comp-func)
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
do (pcase insn
(`(set ,lval (callref funcall ,f . ,rest))
(when-let ((new-form (comp-call-optim-form-call
(comp-mvar-constant f) rest self)))
(setcar insn-cell `(set ,lval ,new-form))))
(`(callref funcall ,f . ,rest)
(when-let ((new-form (comp-call-optim-form-call
(comp-mvar-constant f) rest self)))
(setcar insn-cell ,new-form)))))))
(defun comp-call-optim (_)
"Given FUNCS try to avoid funcall trampoline usage when possible."
(when (>= comp-speed 2)
(maphash (lambda (_ f)
(let ((comp-func f))
(comp-call-optim-func)))
(comp-ctxt-funcs-h comp-ctxt))))
;;; Dead code elimination pass specific code.
;; This simple pass try to eliminate insns became useful after propagation.
;; Even if gcc would take care of this is good to perform this here
;; in the hope of removing memory references (remember that most lisp
;; objects are loaded from the reloc array).
;;
;; This pass can be run as last optim.
(defun comp-collect-mvar-ids (insn)
"Collect the mvar unique identifiers into INSN."
(cl-loop for x in insn
if (consp x)
append (comp-collect-mvar-ids x)
else
when (comp-mvar-p x)
collect (comp-mvar-id x)))
(defun comp-dead-assignments-func ()
"Clean-up dead assignments into current function."
(let ((l-vals ())
(r-vals ()))
;; Collect used r and l values.
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn in (comp-block-insns b)
for (op arg0 . rest) = insn
if (comp-set-op-p op)
do (push (comp-mvar-id arg0) l-vals)
and
do (setf r-vals (nconc (comp-collect-mvar-ids rest) r-vals))
else
do (setf r-vals (nconc (comp-collect-mvar-ids insn) r-vals))))
;; Every l-value appearing that does not appear as r-value has no right to
;; exist and gets nuked.
(let ((nuke-list (cl-set-difference l-vals r-vals)))
(comp-log (format "Function %s\n" (comp-func-symbol-name comp-func)))
(comp-log (format "l-vals %s\n" l-vals))
(comp-log (format "r-vals %s\n" r-vals))
(comp-log (format "Nuking ids: %s\n" nuke-list))
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
for (op arg0 rest) = insn
when (and (comp-set-op-p op)
(member (comp-mvar-id arg0) nuke-list))
do (setcar insn-cell
(if (comp-limple-insn-call-p rest)
rest
`(comment ,(format "optimized out: %s"
insn)))))))))
(defun comp-remove-type-hints-func ()
"Remove type hints from the current function.
These are substituted with normals 'set'."
(cl-loop
for b being each hash-value of (comp-func-blocks comp-func)
do (cl-loop
for insn-cell on (comp-block-insns b)
for insn = (car insn-cell)
do (pcase insn
(`(set ,l-val (call ,(pred comp-type-hint-p) ,r-val))
(setcar insn-cell `(set ,l-val ,r-val)))))))
(defun comp-dead-code (_)
"Dead code elimination."
(when (>= comp-speed 2)
(maphash (lambda (_ f)
(let ((comp-func f))
(comp-dead-assignments-func)
(comp-remove-type-hints-func)
(comp-log-func comp-func)))
(comp-ctxt-funcs-h comp-ctxt))))
;;; Final pass specific code.
(defun comp-compile-ctxt-to-file (name)
"Compile as native code the current context naming it NAME.
Prepare every function for final compilation and drive the C back-end."
(cl-assert (= (length (comp-ctxt-data-relocs-l comp-ctxt))
(hash-table-count (comp-ctxt-data-relocs-idx comp-ctxt))))
(setf (comp-ctxt-exp-funcs comp-ctxt)
(cl-loop with h = (comp-ctxt-funcs-h comp-ctxt)
for f being each hash-value of h
for args = (comp-func-args f)
for doc = (when (> (length (comp-func-byte-func f)) 4)
(aref (comp-func-byte-func f) 4))
collect (vector (comp-func-symbol-name f)
(comp-func-c-func-name f)
(cons (comp-args-base-min args)
(if (comp-args-p args)
(comp-args-max args)
'many))
doc)))
(comp--compile-ctxt-to-file name))
(defun comp-final (_)
"Final pass driving DATA into the C back-end for code emission."
(let (compile-result)
(comp--init-ctxt)
(unwind-protect
(setq compile-result
(comp-compile-ctxt-to-file (comp-ctxt-output comp-ctxt)))
(and (comp--release-ctxt)
compile-result))))
;;; Compiler type hints.
;; These are public entry points be used in user code to give comp suggestion
;; about types.
;; Note that types will propagates.
;; WARNING: At speed >= 2 type checking is not performed anymore and suggestions
;; are assumed just to be true. Use with extreme caution...
(defun comp-hint-fixnum (x)
(cl-assert (fixnump x)))
(defun comp-hint-cons (x)
(cl-assert (consp x)))
;;; Compiler entry points.
(defun native-compile (input)
"Compile INPUT into native code.
This is the entrypoint for the Emacs Lisp native compiler.
If INPUT is a symbol, native-compile its function definition.
If INPUT is a string, use it as the file path to be native compiled."
(unless (or (symbolp input)
(stringp input))
(error "Trying to native compile something not a symbol function or file"))
(let ((data input)
(comp-ctxt (make-comp-ctxt :output (if (symbolp input)
(symbol-name input)
(file-name-sans-extension input)))))
(mapc (lambda (pass)
(comp-log (format "Running pass %s:\n" pass))
(setq data (funcall pass data)))
comp-passes)))
(provide 'comp)
;;; comp.el ends here