1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-03 08:30:09 +00:00
emacs/src/blockinput.h

128 lines
4.2 KiB
C

/* blockinput.h - interface to blocking complicated interrupt-driven input.
Copyright (C) 1989, 1993, 2001-2011 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#ifndef EMACS_BLOCKINPUT_H
#define EMACS_BLOCKINPUT_H
#include "atimer.h"
/* When Emacs is using signal-driven input, the processing of those
input signals can get pretty hairy. For example, when Emacs is
running under X windows, handling an input signal can entail
retrieving events from the X event queue, or making other X calls.
If an input signal occurs while Emacs is in the midst of some
non-reentrant code, and the signal processing invokes that same
code, we lose. For example, malloc and the Xlib functions aren't
usually re-entrant, and both are used by the X input signal handler
- if we try to process an input signal in the midst of executing
any of these functions, we'll lose.
To avoid this, we make the following requirements:
* Everyone must evaluate BLOCK_INPUT before entering these functions,
and then call UNBLOCK_INPUT after performing them. Calls
BLOCK_INPUT and UNBLOCK_INPUT may be nested.
* Any complicated interrupt handling code should test
interrupt_input_blocked, and put off its work until later.
* If the interrupt handling code wishes, it may set
interrupt_input_pending to a non-zero value. If that flag is set
when input becomes unblocked, UNBLOCK_INPUT will send a new SIGIO. */
extern volatile int interrupt_input_blocked;
/* Nonzero means an input interrupt has arrived
during the current critical section. */
extern int interrupt_input_pending;
/* Non-zero means asynchronous timers should be run when input is
unblocked. */
extern int pending_atimers;
/* Begin critical section. */
#define BLOCK_INPUT (interrupt_input_blocked++)
/* End critical section.
If doing signal-driven input, and a signal came in when input was
blocked, reinvoke the signal handler now to deal with it.
We used to have two possible definitions of this macro - one for
when SIGIO was #defined, and one for when it wasn't; when SIGIO
wasn't #defined, we wouldn't bother to check if we should re-invoke
the signal handler. But that doesn't work very well; some of the
files which use this macro don't #include the right files to get
SIGIO.
So, we always test interrupt_input_pending now; that's not too
expensive, and it'll never get set if we don't need to resignal. */
#define UNBLOCK_INPUT \
do \
{ \
--interrupt_input_blocked; \
if (interrupt_input_blocked == 0) \
{ \
if (interrupt_input_pending) \
reinvoke_input_signal (); \
if (pending_atimers) \
do_pending_atimers (); \
} \
else if (interrupt_input_blocked < 0) \
abort (); \
} \
while (0)
/* Undo any number of BLOCK_INPUT calls,
and also reinvoke any pending signal. */
#define TOTALLY_UNBLOCK_INPUT \
do if (interrupt_input_blocked != 0) \
{ \
interrupt_input_blocked = 1; \
UNBLOCK_INPUT; \
} \
while (0)
/* Undo any number of BLOCK_INPUT calls down to level LEVEL,
and also (if the level is now 0) reinvoke any pending signal. */
#define UNBLOCK_INPUT_TO(LEVEL) \
do \
{ \
interrupt_input_blocked = (LEVEL) + 1; \
UNBLOCK_INPUT; \
} \
while (0)
#define UNBLOCK_INPUT_RESIGNAL UNBLOCK_INPUT
/* In critical section ? */
#define INPUT_BLOCKED_P (interrupt_input_blocked > 0)
/* Defined in keyboard.c */
extern void reinvoke_input_signal (void);
#endif /* EMACS_BLOCKINPUT_H */