1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-22 10:26:20 +00:00
emacs/lisp/calc/calc-funcs.el
Paul Eggert bc511a64f6 Prefer HTTPS to FTP and HTTP in documentation
Most of this change is to boilerplate commentary such as license URLs.
This change was prompted by ftp://ftp.gnu.org's going-away party,
planned for November.  Change these FTP URLs to https://ftp.gnu.org
instead.  Make similar changes for URLs to other organizations moving
away from FTP.  Also, change HTTP to HTTPS for URLs to gnu.org and
fsf.org when this works, as this will further help defend against
man-in-the-middle attacks (for this part I omitted the MS-DOS and
MS-Windows sources and the test tarballs to keep the workload down).
HTTPS is not fully working to lists.gnu.org so I left those URLs alone
for now.
2017-09-13 15:54:37 -07:00

1011 lines
32 KiB
EmacsLisp

;;; calc-funcs.el --- well-known functions for Calc
;; Copyright (C) 1990-1993, 2001-2017 Free Software Foundation, Inc.
;; Author: David Gillespie <daveg@synaptics.com>
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;;; Code:
;; This file is autoloaded from calc-ext.el.
(require 'calc-ext)
(require 'calc-macs)
(defun calc-inc-gamma (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(if (calc-is-hyperbolic)
(calc-binary-op "gamG" 'calcFunc-gammaG arg)
(calc-binary-op "gamQ" 'calcFunc-gammaQ arg))
(if (calc-is-hyperbolic)
(calc-binary-op "gamg" 'calcFunc-gammag arg)
(calc-binary-op "gamP" 'calcFunc-gammaP arg)))))
(defun calc-erf (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-unary-op "erfc" 'calcFunc-erfc arg)
(calc-unary-op "erf" 'calcFunc-erf arg))))
(defun calc-erfc (arg)
(interactive "P")
(calc-invert-func)
(calc-erf arg))
(defun calc-beta (arg)
(interactive "P")
(calc-slow-wrapper
(calc-binary-op "beta" 'calcFunc-beta arg)))
(defun calc-inc-beta ()
(interactive)
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-enter-result 3 "betB" (cons 'calcFunc-betaB (calc-top-list-n 3)))
(calc-enter-result 3 "betI" (cons 'calcFunc-betaI (calc-top-list-n 3))))))
(defun calc-bessel-J (arg)
(interactive "P")
(calc-slow-wrapper
(calc-binary-op "besJ" 'calcFunc-besJ arg)))
(defun calc-bessel-Y (arg)
(interactive "P")
(calc-slow-wrapper
(calc-binary-op "besY" 'calcFunc-besY arg)))
(defun calc-bernoulli-number (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-binary-op "bern" 'calcFunc-bern arg)
(calc-unary-op "bern" 'calcFunc-bern arg))))
(defun calc-euler-number (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-binary-op "eulr" 'calcFunc-euler arg)
(calc-unary-op "eulr" 'calcFunc-euler arg))))
(defun calc-stirling-number (arg)
(interactive "P")
(calc-slow-wrapper
(if (calc-is-hyperbolic)
(calc-binary-op "str2" 'calcFunc-stir2 arg)
(calc-binary-op "str1" 'calcFunc-stir1 arg))))
(defun calc-utpb ()
(interactive)
(calc-prob-dist "b" 3))
(defun calc-utpc ()
(interactive)
(calc-prob-dist "c" 2))
(defun calc-utpf ()
(interactive)
(calc-prob-dist "f" 3))
(defun calc-utpn ()
(interactive)
(calc-prob-dist "n" 3))
(defun calc-utpp ()
(interactive)
(calc-prob-dist "p" 2))
(defun calc-utpt ()
(interactive)
(calc-prob-dist "t" 2))
(defun calc-prob-dist (letter nargs)
(calc-slow-wrapper
(if (calc-is-inverse)
(calc-enter-result nargs (concat "ltp" letter)
(append (list (intern (concat "calcFunc-ltp" letter))
(calc-top-n 1))
(calc-top-list-n (1- nargs) 2)))
(calc-enter-result nargs (concat "utp" letter)
(append (list (intern (concat "calcFunc-utp" letter))
(calc-top-n 1))
(calc-top-list-n (1- nargs) 2))))))
;;; Sources: Numerical Recipes, Press et al;
;;; Handbook of Mathematical Functions, Abramowitz & Stegun.
;;; Gamma function.
(defun calcFunc-gamma (x)
(or (math-numberp x) (math-reject-arg x 'numberp))
(calcFunc-fact (math-add x -1)))
(defun math-gammap1-raw (x &optional fprec nfprec)
"Compute gamma(1+X) to the appropriate precision."
(or fprec
(setq fprec (math-float calc-internal-prec)
nfprec (math-float (- calc-internal-prec))))
(cond ((math-lessp-float (calcFunc-re x) fprec)
(if (math-lessp-float (calcFunc-re x) nfprec)
(math-neg (math-div
(math-pi)
(math-mul (math-gammap1-raw
(math-add (math-neg x)
'(float -1 0))
fprec nfprec)
(math-sin-raw
(math-mul (math-pi) x)))))
(let ((xplus1 (math-add x '(float 1 0))))
(math-div (math-gammap1-raw xplus1 fprec nfprec) xplus1))))
((and (math-realp x)
(math-lessp-float '(float 736276 0) x))
(math-overflow))
(t ; re(x) now >= 10.0
(let ((xinv (math-div 1 x))
(lnx (math-ln-raw x)))
(math-mul (math-sqrt-two-pi)
(math-exp-raw
(math-gamma-series
(math-sub (math-mul (math-add x '(float 5 -1))
lnx)
x)
xinv
(math-sqr xinv)
'(float 0 0)
2)))))))
(defun math-gamma-series (sum x xinvsqr oterm n)
(math-working "gamma" sum)
(let* ((bn (math-bernoulli-number n))
(term (math-mul (math-div-float (math-float (nth 1 bn))
(math-float (* (nth 2 bn)
(* n (1- n)))))
x))
(next (math-add sum term)))
(if (math-nearly-equal sum next)
next
(if (> n (* 2 calc-internal-prec))
(progn
;; Need this because series eventually diverges for large enough n.
(calc-record-why
"*Gamma computation stopped early, not all digits may be valid")
next)
(math-gamma-series next (math-mul x xinvsqr) xinvsqr term (+ n 2))))))
;;; Incomplete gamma function.
(defvar math-current-gamma-value nil)
(defun calcFunc-gammaP (a x)
(if (equal x '(var inf var-inf))
'(float 1 0)
(math-inexact-result)
(or (Math-numberp a) (math-reject-arg a 'numberp))
(or (math-numberp x) (math-reject-arg x 'numberp))
(if (and (math-num-integerp a)
(integerp (setq a (math-trunc a)))
(> a 0) (< a 20))
(math-sub 1 (calcFunc-gammaQ a x))
(let ((math-current-gamma-value (calcFunc-gamma a)))
(math-div (calcFunc-gammag a x) math-current-gamma-value)))))
(defun calcFunc-gammaQ (a x)
(if (equal x '(var inf var-inf))
'(float 0 0)
(math-inexact-result)
(or (Math-numberp a) (math-reject-arg a 'numberp))
(or (math-numberp x) (math-reject-arg x 'numberp))
(if (and (math-num-integerp a)
(integerp (setq a (math-trunc a)))
(> a 0) (< a 20))
(let ((n 0)
(sum '(float 1 0))
(term '(float 1 0)))
(math-with-extra-prec 1
(while (< (setq n (1+ n)) a)
(setq term (math-div (math-mul term x) n)
sum (math-add sum term))
(math-working "gamma" sum))
(math-mul sum (calcFunc-exp (math-neg x)))))
(let ((math-current-gamma-value (calcFunc-gamma a)))
(math-div (calcFunc-gammaG a x) math-current-gamma-value)))))
(defun calcFunc-gammag (a x)
(if (equal x '(var inf var-inf))
(calcFunc-gamma a)
(math-inexact-result)
(or (Math-numberp a) (math-reject-arg a 'numberp))
(or (Math-numberp x) (math-reject-arg x 'numberp))
(math-with-extra-prec 2
(setq a (math-float a))
(setq x (math-float x))
(if (or (math-negp (calcFunc-re a))
(math-lessp-float (calcFunc-re x)
(math-add-float (calcFunc-re a)
'(float 1 0))))
(math-inc-gamma-series a x)
(math-sub (or math-current-gamma-value (calcFunc-gamma a))
(math-inc-gamma-cfrac a x))))))
(defun calcFunc-gammaG (a x)
(if (equal x '(var inf var-inf))
'(float 0 0)
(math-inexact-result)
(or (Math-numberp a) (math-reject-arg a 'numberp))
(or (Math-numberp x) (math-reject-arg x 'numberp))
(math-with-extra-prec 2
(setq a (math-float a))
(setq x (math-float x))
(if (or (math-negp (calcFunc-re a))
(math-lessp-float (calcFunc-re x)
(math-add-float (math-abs-approx a)
'(float 1 0))))
(math-sub (or math-current-gamma-value (calcFunc-gamma a))
(math-inc-gamma-series a x))
(math-inc-gamma-cfrac a x)))))
(defun math-inc-gamma-series (a x)
(if (Math-zerop x)
'(float 0 0)
(math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
(math-with-extra-prec 2
(let ((start (math-div '(float 1 0) a)))
(math-inc-gamma-series-step start start a x))))))
(defun math-inc-gamma-series-step (sum term a x)
(math-working "gamma" sum)
(setq a (math-add a '(float 1 0))
term (math-div (math-mul term x) a))
(let ((next (math-add sum term)))
(if (math-nearly-equal sum next)
next
(math-inc-gamma-series-step next term a x))))
(defun math-inc-gamma-cfrac (a x)
(if (Math-zerop x)
(or math-current-gamma-value (calcFunc-gamma a))
(math-mul (math-exp-raw (math-sub (math-mul a (math-ln-raw x)) x))
(math-inc-gamma-cfrac-step '(float 1 0) x
'(float 0 0) '(float 1 0)
'(float 1 0) '(float 1 0) '(float 0 0)
a x))))
(defun math-inc-gamma-cfrac-step (a0 a1 b0 b1 n fac g a x)
(let ((ana (math-sub n a))
(anf (math-mul n fac)))
(setq n (math-add n '(float 1 0))
a0 (math-mul (math-add a1 (math-mul a0 ana)) fac)
b0 (math-mul (math-add b1 (math-mul b0 ana)) fac)
a1 (math-add (math-mul x a0) (math-mul anf a1))
b1 (math-add (math-mul x b0) (math-mul anf b1)))
(if (math-zerop a1)
(math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac g a x)
(setq fac (math-div '(float 1 0) a1))
(let ((next (math-mul b1 fac)))
(math-working "gamma" next)
(if (math-nearly-equal next g)
next
(math-inc-gamma-cfrac-step a0 a1 b0 b1 n fac next a x))))))
;;; Error function.
(defun calcFunc-erf (x)
(if (equal x '(var inf var-inf))
'(float 1 0)
(if (equal x '(neg (var inf var-inf)))
'(float -1 0)
(if (Math-zerop x)
x
(let ((math-current-gamma-value (math-sqrt-pi)))
(math-to-same-complex-quad
(math-div (calcFunc-gammag '(float 5 -1)
(math-sqr (math-to-complex-quad-one x)))
math-current-gamma-value)
x))))))
(defun calcFunc-erfc (x)
(if (equal x '(var inf var-inf))
'(float 0 0)
(if (math-posp x)
(let ((math-current-gamma-value (math-sqrt-pi)))
(math-div (calcFunc-gammaG '(float 5 -1) (math-sqr x))
math-current-gamma-value))
(math-sub 1 (calcFunc-erf x)))))
(defun math-to-complex-quad-one (x)
(if (eq (car-safe x) 'polar) (setq x (math-complex x)))
(if (eq (car-safe x) 'cplx)
(list 'cplx (math-abs (nth 1 x)) (math-abs (nth 2 x)))
x))
(defun math-to-same-complex-quad (x y)
(if (eq (car-safe y) 'cplx)
(if (eq (car-safe x) 'cplx)
(list 'cplx
(if (math-negp (nth 1 y)) (math-neg (nth 1 x)) (nth 1 x))
(if (math-negp (nth 2 y)) (math-neg (nth 2 x)) (nth 2 x)))
(if (math-negp (nth 1 y)) (math-neg x) x))
(if (math-negp y)
(if (eq (car-safe x) 'cplx)
(list 'cplx (math-neg (nth 1 x)) (nth 2 x))
(math-neg x))
x)))
;;; Beta function.
(defun calcFunc-beta (a b)
(if (math-num-integerp a)
(let ((am (math-add a -1)))
(or (math-numberp b) (math-reject-arg b 'numberp))
(math-div 1 (math-mul b (calcFunc-choose (math-add b am) am))))
(if (math-num-integerp b)
(calcFunc-beta b a)
(math-div (math-mul (calcFunc-gamma a) (calcFunc-gamma b))
(calcFunc-gamma (math-add a b))))))
;;; Incomplete beta function.
(defvar math-current-beta-value nil)
(defun calcFunc-betaI (x a b)
(cond ((math-zerop x)
'(float 0 0))
((math-equal-int x 1)
'(float 1 0))
((or (math-zerop a)
(and (math-num-integerp a)
(math-negp a)))
(if (or (math-zerop b)
(and (math-num-integerp b)
(math-negp b)))
(math-reject-arg b 'range)
'(float 1 0)))
((or (math-zerop b)
(and (math-num-integerp b)
(math-negp b)))
'(float 0 0))
((not (math-numberp a)) (math-reject-arg a 'numberp))
((not (math-numberp b)) (math-reject-arg b 'numberp))
((math-inexact-result))
(t (let ((math-current-beta-value (calcFunc-beta a b)))
(math-div (calcFunc-betaB x a b) math-current-beta-value)))))
(defun calcFunc-betaB (x a b)
(cond
((math-zerop x)
'(float 0 0))
((math-equal-int x 1)
(calcFunc-beta a b))
((not (math-numberp x)) (math-reject-arg x 'numberp))
((not (math-numberp a)) (math-reject-arg a 'numberp))
((not (math-numberp b)) (math-reject-arg b 'numberp))
((math-zerop a) (math-reject-arg a 'nonzerop))
((math-zerop b) (math-reject-arg b 'nonzerop))
((and (math-num-integerp b)
(if (math-negp b)
(math-reject-arg b 'range)
(Math-natnum-lessp (setq b (math-trunc b)) 20)))
(and calc-symbolic-mode (or (math-floatp a) (math-floatp b))
(math-inexact-result))
(math-mul
(math-with-extra-prec 2
(let* ((i 0)
(term 1)
(sum (math-div term a)))
(while (< (setq i (1+ i)) b)
(setq term (math-mul (math-div (math-mul term (- i b)) i) x)
sum (math-add sum (math-div term (math-add a i))))
(math-working "beta" sum))
sum))
(math-pow x a)))
((and (math-num-integerp a)
(if (math-negp a)
(math-reject-arg a 'range)
(Math-natnum-lessp (setq a (math-trunc a)) 20)))
(math-sub (or math-current-beta-value (calcFunc-beta a b))
(calcFunc-betaB (math-sub 1 x) b a)))
(t
(math-inexact-result)
(math-with-extra-prec 2
(setq x (math-float x))
(setq a (math-float a))
(setq b (math-float b))
(let ((bt (math-exp-raw (math-add (math-mul a (math-ln-raw x))
(math-mul b (math-ln-raw
(math-sub '(float 1 0)
x)))))))
(if (Math-lessp x (math-div (math-add a '(float 1 0))
(math-add (math-add a b) '(float 2 0))))
(math-div (math-mul bt (math-beta-cfrac a b x)) a)
(math-sub (or math-current-beta-value (calcFunc-beta a b))
(math-div (math-mul bt
(math-beta-cfrac b a (math-sub 1 x)))
b))))))))
(defun math-beta-cfrac (a b x)
(let ((qab (math-add a b))
(qap (math-add a '(float 1 0)))
(qam (math-add a '(float -1 0))))
(math-beta-cfrac-step '(float 1 0)
(math-sub '(float 1 0)
(math-div (math-mul qab x) qap))
'(float 1 0) '(float 1 0)
'(float 1 0)
qab qap qam a b x)))
(defun math-beta-cfrac-step (az bz am bm m qab qap qam a b x)
(let* ((two-m (math-mul m '(float 2 0)))
(d (math-div (math-mul (math-mul (math-sub b m) m) x)
(math-mul (math-add qam two-m) (math-add a two-m))))
(ap (math-add az (math-mul d am)))
(bp (math-add bz (math-mul d bm)))
(d2 (math-neg
(math-div (math-mul (math-mul (math-add a m) (math-add qab m)) x)
(math-mul (math-add qap two-m) (math-add a two-m)))))
(app (math-add ap (math-mul d2 az)))
(bpp (math-add bp (math-mul d2 bz)))
(next (math-div app bpp)))
(math-working "beta" next)
(if (math-nearly-equal next az)
next
(math-beta-cfrac-step next '(float 1 0)
(math-div ap bpp) (math-div bp bpp)
(math-add m '(float 1 0))
qab qap qam a b x))))
;;; Bessel functions.
;;; Should generalize this to handle arbitrary precision!
(defun calcFunc-besJ (v x)
(or (math-numberp v) (math-reject-arg v 'numberp))
(or (math-numberp x) (math-reject-arg x 'numberp))
(let ((calc-internal-prec (min 8 calc-internal-prec)))
(math-with-extra-prec 3
(setq x (math-float (math-normalize x)))
(setq v (math-float (math-normalize v)))
(cond ((math-zerop x)
(if (math-zerop v)
'(float 1 0)
'(float 0 0)))
((math-inexact-result))
((not (math-num-integerp v))
(let ((start (math-div 1 (calcFunc-fact v))))
(math-mul (math-besJ-series start start
0
(math-mul '(float -25 -2)
(math-sqr x))
v)
(math-pow (math-div x 2) v))))
((math-negp (setq v (math-trunc v)))
(if (math-oddp v)
(math-neg (calcFunc-besJ (math-neg v) x))
(calcFunc-besJ (math-neg v) x)))
((eq v 0)
(math-besJ0 x))
((eq v 1)
(math-besJ1 x))
((Math-lessp v (math-abs-approx x))
(let ((j 0)
(bjm (math-besJ0 x))
(bj (math-besJ1 x))
(two-over-x (math-div 2 x))
bjp)
(while (< (setq j (1+ j)) v)
(setq bjp (math-sub (math-mul (math-mul j two-over-x) bj)
bjm)
bjm bj
bj bjp))
bj))
(t
(if (Math-lessp 100 v) (math-reject-arg v 'range))
(let* ((j (logior (+ v (math-isqrt-small (* 40 v))) 1))
(two-over-x (math-div 2 x))
(jsum nil)
(bjp '(float 0 0))
(sum '(float 0 0))
(bj '(float 1 0))
bjm ans)
(while (> (setq j (1- j)) 0)
(setq bjm (math-sub (math-mul (math-mul j two-over-x) bj)
bjp)
bjp bj
bj bjm)
(if (> (nth 2 (math-abs-approx bj)) 10)
(setq bj (math-mul bj '(float 1 -10))
bjp (math-mul bjp '(float 1 -10))
ans (and ans (math-mul ans '(float 1 -10)))
sum (math-mul sum '(float 1 -10))))
(or (setq jsum (not jsum))
(setq sum (math-add sum bj)))
(if (= j v)
(setq ans bjp)))
(math-div ans (math-sub (math-mul 2 sum) bj))))))))
(defun math-besJ-series (sum term k zz vk)
(math-working "besJ" sum)
(setq k (1+ k)
vk (math-add 1 vk)
term (math-div (math-mul term zz) (math-mul k vk)))
(let ((next (math-add sum term)))
(if (math-nearly-equal next sum)
next
(math-besJ-series next term k zz vk))))
(defun math-besJ0 (x &optional yflag)
(cond ((and (not yflag) (math-negp (calcFunc-re x)))
(math-besJ0 (math-neg x)))
((Math-lessp '(float 8 0) (math-abs-approx x))
(let* ((z (math-div '(float 8 0) x))
(y (math-sqr z))
(xx (math-add x
(math-read-number-simple "-0.785398164")))
(a1 (math-poly-eval y
(list
(math-read-number-simple "0.0000002093887211")
(math-read-number-simple "-0.000002073370639")
(math-read-number-simple "0.00002734510407")
(math-read-number-simple "-0.001098628627")
'(float 1 0))))
(a2 (math-poly-eval y
(list
(math-read-number-simple "-0.0000000934935152")
(math-read-number-simple "0.0000007621095161")
(math-read-number-simple "-0.000006911147651")
(math-read-number-simple "0.0001430488765")
(math-read-number-simple "-0.01562499995"))))
(sc (math-sin-cos-raw xx)))
(if yflag
(setq sc (cons (math-neg (cdr sc)) (car sc))))
(math-mul (math-sqrt
(math-div (math-read-number-simple "0.636619722")
x))
(math-sub (math-mul (cdr sc) a1)
(math-mul (car sc) (math-mul z a2))))))
(t
(let ((y (math-sqr x)))
(math-div (math-poly-eval y
(list
(math-read-number-simple "-184.9052456")
(math-read-number-simple "77392.33017")
(math-read-number-simple "-11214424.18")
(math-read-number-simple "651619640.7")
(math-read-number-simple "-13362590354.0")
(math-read-number-simple "57568490574.0")))
(math-poly-eval y
(list
'(float 1 0)
(math-read-number-simple "267.8532712")
(math-read-number-simple "59272.64853")
(math-read-number-simple "9494680.718")
(math-read-number-simple "1029532985.0")
(math-read-number-simple "57568490411.0"))))))))
(defun math-besJ1 (x &optional yflag)
(cond ((and (math-negp (calcFunc-re x)) (not yflag))
(math-neg (math-besJ1 (math-neg x))))
((Math-lessp '(float 8 0) (math-abs-approx x))
(let* ((z (math-div '(float 8 0) x))
(y (math-sqr z))
(xx (math-add x (math-read-number-simple "-2.356194491")))
(a1 (math-poly-eval y
(list
(math-read-number-simple "-0.000000240337019")
(math-read-number-simple "0.000002457520174")
(math-read-number-simple "-0.00003516396496")
'(float 183105 -8)
'(float 1 0))))
(a2 (math-poly-eval y
(list
(math-read-number-simple "0.000000105787412")
(math-read-number-simple "-0.00000088228987")
(math-read-number-simple "0.000008449199096")
(math-read-number-simple "-0.0002002690873")
(math-read-number-simple "0.04687499995"))))
(sc (math-sin-cos-raw xx)))
(if yflag
(setq sc (cons (math-neg (cdr sc)) (car sc)))
(if (math-negp x)
(setq sc (cons (math-neg (car sc)) (math-neg (cdr sc))))))
(math-mul (math-sqrt (math-div
(math-read-number-simple "0.636619722")
x))
(math-sub (math-mul (cdr sc) a1)
(math-mul (car sc) (math-mul z a2))))))
(t
(let ((y (math-sqr x)))
(math-mul
x
(math-div (math-poly-eval y
(list
(math-read-number-simple "-30.16036606")
(math-read-number-simple "15704.4826")
(math-read-number-simple "-2972611.439")
(math-read-number-simple "242396853.1")
(math-read-number-simple "-7895059235.0")
(math-read-number-simple "72362614232.0")))
(math-poly-eval y
(list
'(float 1 0)
(math-read-number-simple "376.9991397")
(math-read-number-simple "99447.43394")
(math-read-number-simple "18583304.74")
(math-read-number-simple "2300535178.0")
(math-read-number-simple "144725228442.0")))))))))
(defun calcFunc-besY (v x)
(math-inexact-result)
(or (math-numberp v) (math-reject-arg v 'numberp))
(or (math-numberp x) (math-reject-arg x 'numberp))
(let ((calc-internal-prec (min 8 calc-internal-prec)))
(math-with-extra-prec 3
(setq x (math-float (math-normalize x)))
(setq v (math-float (math-normalize v)))
(cond ((not (math-num-integerp v))
(let ((sc (math-sin-cos-raw (math-mul v (math-pi)))))
(math-div (math-sub (math-mul (calcFunc-besJ v x) (cdr sc))
(calcFunc-besJ (math-neg v) x))
(car sc))))
((math-negp (setq v (math-trunc v)))
(if (math-oddp v)
(math-neg (calcFunc-besY (math-neg v) x))
(calcFunc-besY (math-neg v) x)))
((eq v 0)
(math-besY0 x))
((eq v 1)
(math-besY1 x))
(t
(let ((j 0)
(bym (math-besY0 x))
(by (math-besY1 x))
(two-over-x (math-div 2 x))
byp)
(while (< (setq j (1+ j)) v)
(setq byp (math-sub (math-mul (math-mul j two-over-x) by)
bym)
bym by
by byp))
by))))))
(defun math-besY0 (x)
(cond ((Math-lessp (math-abs-approx x) '(float 8 0))
(let ((y (math-sqr x)))
(math-add
(math-div (math-poly-eval y
(list
(math-read-number-simple "228.4622733")
(math-read-number-simple "-86327.92757")
(math-read-number-simple "10879881.29")
(math-read-number-simple "-512359803.6")
(math-read-number-simple "7062834065.0")
(math-read-number-simple "-2957821389.0")))
(math-poly-eval y
(list
'(float 1 0)
(math-read-number-simple "226.1030244")
(math-read-number-simple "47447.2647")
(math-read-number-simple "7189466.438")
(math-read-number-simple "745249964.8")
(math-read-number-simple "40076544269.0"))))
(math-mul (math-read-number-simple "0.636619772")
(math-mul (math-besJ0 x) (math-ln-raw x))))))
((math-negp (calcFunc-re x))
(math-add (math-besJ0 (math-neg x) t)
(math-mul '(cplx 0 2)
(math-besJ0 (math-neg x)))))
(t
(math-besJ0 x t))))
(defun math-besY1 (x)
(cond ((Math-lessp (math-abs-approx x) '(float 8 0))
(let ((y (math-sqr x)))
(math-add
(math-mul
x
(math-div (math-poly-eval y
(list
(math-read-number-simple "8511.937935")
(math-read-number-simple "-4237922.726")
(math-read-number-simple "734926455.1")
(math-read-number-simple "-51534381390.0")
(math-read-number-simple "1275274390000.0")
(math-read-number-simple "-4900604943000.0")))
(math-poly-eval y
(list
'(float 1 0)
(math-read-number-simple "354.9632885")
(math-read-number-simple "102042.605")
(math-read-number-simple "22459040.02")
(math-read-number-simple "3733650367.0")
(math-read-number-simple "424441966400.0")
(math-read-number-simple "24995805700000.0")))))
(math-mul (math-read-number-simple "0.636619772")
(math-sub (math-mul (math-besJ1 x) (math-ln-raw x))
(math-div 1 x))))))
((math-negp (calcFunc-re x))
(math-neg
(math-add (math-besJ1 (math-neg x) t)
(math-mul '(cplx 0 2)
(math-besJ1 (math-neg x))))))
(t
(math-besJ1 x t))))
(defun math-poly-eval (x coefs)
(let ((accum (car coefs)))
(while (setq coefs (cdr coefs))
(setq accum (math-add (car coefs) (math-mul accum x))))
accum))
;;;; Bernoulli and Euler polynomials and numbers.
(defun calcFunc-bern (n &optional x)
(if (and x (not (math-zerop x)))
(if (and calc-symbolic-mode (math-floatp x))
(math-inexact-result)
(math-build-polynomial-expr (math-bernoulli-coefs n) x))
(or (math-num-natnump n) (math-reject-arg n 'natnump))
(if (consp n)
(progn
(math-inexact-result)
(math-float (math-bernoulli-number (math-trunc n))))
(math-bernoulli-number n))))
(defun calcFunc-euler (n &optional x)
(or (math-num-natnump n) (math-reject-arg n 'natnump))
(if x
(let* ((n1 (math-add n 1))
(coefs (math-bernoulli-coefs n1))
(fac (math-div (math-pow 2 n1) n1))
(k -1)
(x1 (math-div (math-add x 1) 2))
(x2 (math-div x 2)))
(if (math-numberp x)
(if (and calc-symbolic-mode (math-floatp x))
(math-inexact-result)
(math-mul fac
(math-sub (math-build-polynomial-expr coefs x1)
(math-build-polynomial-expr coefs x2))))
(calcFunc-collect
(math-reduce-vec
'math-add
(cons 'vec
(mapcar (function
(lambda (c)
(setq k (1+ k))
(math-mul (math-mul fac c)
(math-sub (math-pow x1 k)
(math-pow x2 k)))))
coefs)))
x)))
(math-mul (math-pow 2 n)
(if (consp n)
(progn
(math-inexact-result)
(calcFunc-euler n '(float 5 -1)))
(calcFunc-euler n '(frac 1 2))))))
(defvar math-bernoulli-b-cache
(list
(list 'frac
-174611
(math-read-number-simple "802857662698291200000"))
(list 'frac
43867
(math-read-number-simple "5109094217170944000"))
(list 'frac
-3617
(math-read-number-simple "10670622842880000"))
(list 'frac
1
(math-read-number-simple "74724249600"))
(list 'frac
-691
(math-read-number-simple "1307674368000"))
(list 'frac
1
(math-read-number-simple "47900160"))
(list 'frac
-1
(math-read-number-simple "1209600"))
(list 'frac
1
30240)
(list 'frac
-1
720)
(list 'frac
1
12)
1 ))
(defvar math-bernoulli-B-cache
'((frac -174611 330) (frac 43867 798)
(frac -3617 510) (frac 7 6) (frac -691 2730)
(frac 5 66) (frac -1 30) (frac 1 42)
(frac -1 30) (frac 1 6) 1 ))
(defvar math-bernoulli-cache-size 11)
(defun math-bernoulli-coefs (n)
(let* ((coefs (list (calcFunc-bern n)))
(nn (math-trunc n))
(k nn)
(term nn)
coef
(calc-prefer-frac (or (integerp n) calc-prefer-frac)))
(while (>= (setq k (1- k)) 0)
(setq term (math-div term (- nn k))
coef (math-mul term (math-bernoulli-number k))
coefs (cons (if (consp n) (math-float coef) coef) coefs)
term (math-mul term k)))
(nreverse coefs)))
(defun math-bernoulli-number (n)
(if (= (% n 2) 1)
(if (= n 1)
'(frac -1 2)
0)
(setq n (/ n 2))
(while (>= n math-bernoulli-cache-size)
(let* ((sum 0)
(nk 1) ; nk = n-k+1
(fact 1) ; fact = (n-k+1)!
ofact
(p math-bernoulli-b-cache)
(calc-prefer-frac t))
(math-working "bernoulli B" (* 2 math-bernoulli-cache-size))
(while p
(setq nk (+ nk 2)
ofact fact
fact (math-mul fact (* nk (1- nk)))
sum (math-add sum (math-div (car p) fact))
p (cdr p)))
(setq ofact (math-mul ofact (1- nk))
sum (math-sub (math-div '(frac 1 2) ofact) sum)
math-bernoulli-b-cache (cons sum math-bernoulli-b-cache)
math-bernoulli-B-cache (cons (math-mul sum ofact)
math-bernoulli-B-cache)
math-bernoulli-cache-size (1+ math-bernoulli-cache-size))))
(nth (- math-bernoulli-cache-size n 1) math-bernoulli-B-cache)))
;;; Bn = n! bn
;;; bn = - sum_k=0^n-1 bk / (n-k+1)!
;;; A faster method would be to use "tangent numbers", c.f., Concrete
;;; Mathematics pg. 273.
;;; Probability distributions.
;;; Binomial.
(defun calcFunc-utpb (x n p)
(if math-expand-formulas
(math-normalize (list 'calcFunc-betaI p x (list '+ (list '- n x) 1)))
(calcFunc-betaI p x (math-add (math-sub n x) 1))))
(put 'calcFunc-utpb 'math-expandable t)
(defun calcFunc-ltpb (x n p)
(math-sub 1 (calcFunc-utpb x n p)))
(put 'calcFunc-ltpb 'math-expandable t)
;;; Chi-square.
(defun calcFunc-utpc (chisq v)
(if math-expand-formulas
(math-normalize (list 'calcFunc-gammaQ (list '/ v 2) (list '/ chisq 2)))
(calcFunc-gammaQ (math-div v 2) (math-div chisq 2))))
(put 'calcFunc-utpc 'math-expandable t)
(defun calcFunc-ltpc (chisq v)
(if math-expand-formulas
(math-normalize (list 'calcFunc-gammaP (list '/ v 2) (list '/ chisq 2)))
(calcFunc-gammaP (math-div v 2) (math-div chisq 2))))
(put 'calcFunc-ltpc 'math-expandable t)
;;; F-distribution.
(defun calcFunc-utpf (f v1 v2)
(if math-expand-formulas
(math-normalize (list 'calcFunc-betaI
(list '/ v2 (list '+ v2 (list '* v1 f)))
(list '/ v2 2)
(list '/ v1 2)))
(calcFunc-betaI (math-div v2 (math-add v2 (math-mul v1 f)))
(math-div v2 2)
(math-div v1 2))))
(put 'calcFunc-utpf 'math-expandable t)
(defun calcFunc-ltpf (f v1 v2)
(math-sub 1 (calcFunc-utpf f v1 v2)))
(put 'calcFunc-ltpf 'math-expandable t)
;;; Normal.
(defun calcFunc-utpn (x mean sdev)
(if math-expand-formulas
(math-normalize
(list '/
(list '+ 1
(list 'calcFunc-erf
(list '/ (list '- mean x)
(list '* sdev (list 'calcFunc-sqrt 2)))))
2))
(math-mul (math-add '(float 1 0)
(calcFunc-erf
(math-div (math-sub mean x)
(math-mul sdev (math-sqrt-2)))))
'(float 5 -1))))
(put 'calcFunc-utpn 'math-expandable t)
(defun calcFunc-ltpn (x mean sdev)
(if math-expand-formulas
(math-normalize
(list '/
(list '+ 1
(list 'calcFunc-erf
(list '/ (list '- x mean)
(list '* sdev (list 'calcFunc-sqrt 2)))))
2))
(math-mul (math-add '(float 1 0)
(calcFunc-erf
(math-div (math-sub x mean)
(math-mul sdev (math-sqrt-2)))))
'(float 5 -1))))
(put 'calcFunc-ltpn 'math-expandable t)
;;; Poisson.
(defun calcFunc-utpp (n x)
(if math-expand-formulas
(math-normalize (list 'calcFunc-gammaP x n))
(calcFunc-gammaP x n)))
(put 'calcFunc-utpp 'math-expandable t)
(defun calcFunc-ltpp (n x)
(if math-expand-formulas
(math-normalize (list 'calcFunc-gammaQ x n))
(calcFunc-gammaQ x n)))
(put 'calcFunc-ltpp 'math-expandable t)
;;; Student's t. (As defined in Abramowitz & Stegun and Numerical Recipes.)
(defun calcFunc-utpt (tt v)
(if math-expand-formulas
(math-normalize (list 'calcFunc-betaI
(list '/ v (list '+ v (list '^ tt 2)))
(list '/ v 2)
'(float 5 -1)))
(calcFunc-betaI (math-div v (math-add v (math-sqr tt)))
(math-div v 2)
'(float 5 -1))))
(put 'calcFunc-utpt 'math-expandable t)
(defun calcFunc-ltpt (tt v)
(math-sub 1 (calcFunc-utpt tt v)))
(put 'calcFunc-ltpt 'math-expandable t)
(provide 'calc-funcs)
;;; calc-funcs.el ends here