1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2025-01-17 17:58:46 +00:00
emacs/lisp/emacs-lisp/radix-tree.el
Paul Eggert bc511a64f6 Prefer HTTPS to FTP and HTTP in documentation
Most of this change is to boilerplate commentary such as license URLs.
This change was prompted by ftp://ftp.gnu.org's going-away party,
planned for November.  Change these FTP URLs to https://ftp.gnu.org
instead.  Make similar changes for URLs to other organizations moving
away from FTP.  Also, change HTTP to HTTPS for URLs to gnu.org and
fsf.org when this works, as this will further help defend against
man-in-the-middle attacks (for this part I omitted the MS-DOS and
MS-Windows sources and the test tarballs to keep the workload down).
HTTPS is not fully working to lists.gnu.org so I left those URLs alone
for now.
2017-09-13 15:54:37 -07:00

247 lines
9.1 KiB
EmacsLisp

;;; radix-tree.el --- A simple library of radix trees -*- lexical-binding: t; -*-
;; Copyright (C) 2016-2017 Free Software Foundation, Inc.
;; Author: Stefan Monnier <monnier@iro.umontreal.ca>
;; Keywords:
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; There are many different options for how to represent radix trees
;; in Elisp. Here I chose a very simple one. A radix-tree can be either:
;; - a node, of the form ((PREFIX . PTREE) . RTREE) where PREFIX is a string
;; meaning that everything that starts with PREFIX is in PTREE,
;; and everything else in RTREE. It also has the property that
;; everything that starts with the first letter of PREFIX but not with
;; that whole PREFIX is not in RTREE (i.e. is not in the tree at all).
;; - anything else is taken as the value to associate with the empty string.
;; So every node is basically an (improper) alist where each mapping applies
;; to a different leading letter.
;;
;; The main downside of this representation is that the lookup operation
;; is slower because each level of the tree is an alist rather than some kind
;; of array, so every level's lookup is O(N) rather than O(1). We could easily
;; solve this by using char-tables instead of alists, but that would make every
;; level take up a lot more memory, and it would make the resulting
;; data structure harder to read (by a human) when printed out.
;;; Code:
(defun radix-tree--insert (tree key val i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil key i ni)))
(if (eq t cmp)
(let ((nptree (radix-tree--insert ptree key val ni)))
`((,prefix . ,nptree) . ,rtree))
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(let ((nrtree (radix-tree--insert rtree key val i)))
`((,prefix . ,ptree) . ,nrtree))
(let* ((nprefix (substring prefix 0 n))
(kprefix (substring key (+ i n)))
(pprefix (substring prefix n))
(ktree (if (equal kprefix "") val
`((,kprefix . ,val)))))
`((,nprefix
. ((,pprefix . ,ptree) . ,ktree))
. ,rtree)))))))
(_
(if (= (length key) i) val
(let ((prefix (substring key i)))
`((,prefix . ,val) . ,tree))))))
(defun radix-tree--remove (tree key i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil key i ni)))
(if (eq t cmp)
(pcase (radix-tree--remove ptree key ni)
(`nil rtree)
(`((,pprefix . ,pptree))
`((,(concat prefix pprefix) . ,pptree) . ,rtree))
(nptree `((,prefix . ,nptree) . ,rtree)))
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(let ((nrtree (radix-tree--remove rtree key i)))
`((,prefix . ,ptree) . ,nrtree))
tree)))))
(_
(if (= (length key) i) nil tree))))
(defun radix-tree--lookup (tree string i)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni)))
(if (eq t cmp)
(radix-tree--lookup ptree string ni)
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(if (zerop n)
(radix-tree--lookup rtree string i)
(+ i n))))))
(val
(if (and val (equal (length string) i))
(if (integerp val) `(t . ,val) val)
i))))
;; (defun radix-tree--trim (tree string i)
;; (if (= i (length string))
;; tree
;; (pcase tree
;; (`((,prefix . ,ptree) . ,rtree)
;; (let* ((ni (+ i (length prefix)))
;; (cmp (compare-strings prefix nil nil string i ni))
;; ;; FIXME: We could compute nrtree more efficiently
;; ;; whenever cmp is not -1 or 1.
;; (nrtree (radix-tree--trim rtree string i)))
;; (if (eq t cmp)
;; (pcase (radix-tree--trim ptree string ni)
;; (`nil nrtree)
;; (`((,pprefix . ,pptree))
;; `((,(concat prefix pprefix) . ,pptree) . ,nrtree))
;; (nptree `((,prefix . ,nptree) . ,nrtree)))
;; (let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
;; (cond
;; ((equal (+ n i) (length string))
;; `((,prefix . ,ptree) . ,nrtree))
;; (t nrtree))))))
;; (val val))))
(defun radix-tree--prefixes (tree string i prefixes)
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni))
;; FIXME: We could compute prefixes more efficiently
;; whenever cmp is not -1 or 1.
(prefixes (radix-tree--prefixes rtree string i prefixes)))
(if (eq t cmp)
(radix-tree--prefixes ptree string ni prefixes)
prefixes)))
(val
(if (null val)
prefixes
(cons (cons (substring string 0 i)
(if (eq (car-safe val) t) (cdr val) val))
prefixes)))))
(defun radix-tree--subtree (tree string i)
(if (equal (length string) i) tree
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(let* ((ni (+ i (length prefix)))
(cmp (compare-strings prefix nil nil string i ni)))
(if (eq t cmp)
(radix-tree--subtree ptree string ni)
(let ((n (if (< cmp 0) (- -1 cmp) (- cmp 1))))
(cond
((zerop n) (radix-tree--subtree rtree string i))
((equal (+ n i) (length string))
(let ((nprefix (substring prefix n)))
`((,nprefix . ,ptree))))
(t nil))))))
(_ nil))))
;;; Entry points
(defconst radix-tree-empty nil
"The empty radix-tree.")
(defun radix-tree-insert (tree key val)
"Insert a mapping from KEY to VAL in radix TREE."
(when (consp val) (setq val `(t . ,val)))
(if val (radix-tree--insert tree key val 0)
(radix-tree--remove tree key 0)))
(defun radix-tree-lookup (tree key)
"Return the value associated to KEY in radix TREE.
If not found, return nil."
(pcase (radix-tree--lookup tree key 0)
(`(t . ,val) val)
((pred numberp) nil)
(val val)))
(defun radix-tree-subtree (tree string)
"Return the subtree of TREE rooted at the prefix STRING."
(radix-tree--subtree tree string 0))
;; (defun radix-tree-trim (tree string)
;; "Return a TREE which only holds entries \"related\" to STRING.
;; \"Related\" is here defined as entries where there's a `string-prefix-p' relation
;; between STRING and the key."
;; (radix-tree-trim tree string 0))
(defun radix-tree-prefixes (tree string)
"Return an alist of all bindings in TREE for prefixes of STRING."
(radix-tree--prefixes tree string 0 nil))
(eval-and-compile
(pcase-defmacro radix-tree-leaf (vpat)
;; FIXME: We'd like to use a negative pattern (not consp), but pcase
;; doesn't support it. Using `atom' works but generates sub-optimal code.
`(or `(t . ,,vpat) (and (pred atom) ,vpat))))
(defun radix-tree-iter-subtrees (tree fun)
"Apply FUN to every immediate subtree of radix TREE.
FUN is called with two arguments: PREFIX and SUBTREE.
You can test if SUBTREE is a leaf (and extract its value) with the
pcase pattern (radix-tree-leaf PAT)."
(while tree
(pcase tree
(`((,prefix . ,ptree) . ,rtree)
(funcall fun prefix ptree)
(setq tree rtree))
(_ (funcall fun "" tree)
(setq tree nil)))))
(defun radix-tree-iter-mappings (tree fun &optional prefix)
"Apply FUN to every mapping in TREE.
FUN is called with two arguments: KEY and VAL.
PREFIX is only used internally."
(radix-tree-iter-subtrees
tree
(lambda (p s)
(let ((nprefix (concat prefix p)))
(pcase s
((radix-tree-leaf v) (funcall fun nprefix v))
(_ (radix-tree-iter-mappings s fun nprefix)))))))
;; (defun radix-tree->alist (tree)
;; (let ((al nil))
;; (radix-tree-iter-mappings tree (lambda (p v) (push (cons p v) al)))
;; al))
(defun radix-tree-count (tree)
(let ((i 0))
(radix-tree-iter-mappings tree (lambda (_k _v) (setq i (1+ i))))
i))
(defun radix-tree-from-map (map)
;; Aka (cl-defmethod map-into (map (type (eql radix-tree)))) ...)
(require 'map)
(let ((rt nil))
(map-apply (lambda (k v) (setq rt (radix-tree-insert rt k v))) map)
rt))
(provide 'radix-tree)
;;; radix-tree.el ends here