mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-12 09:28:24 +00:00
880 lines
21 KiB
C
880 lines
21 KiB
C
/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
|
||
Copyright (C) 1988, 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* ANSI C requires only these float functions:
|
||
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
|
||
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
|
||
|
||
Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
|
||
Define HAVE_CBRT if you have cbrt.
|
||
Define HAVE_RINT if you have rint.
|
||
If you don't define these, then the appropriate routines will be simulated.
|
||
|
||
Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
|
||
(This should happen automatically.)
|
||
|
||
Define FLOAT_CHECK_ERRNO if the float library routines set errno.
|
||
This has no effect if HAVE_MATHERR is defined.
|
||
|
||
Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
|
||
(What systems actually do this? Please let us know.)
|
||
|
||
Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
|
||
either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
|
||
range checking will happen before calling the float routines. This has
|
||
no effect if HAVE_MATHERR is defined (since matherr will be called when
|
||
a domain error occurs.)
|
||
*/
|
||
|
||
#include <signal.h>
|
||
|
||
#include "config.h"
|
||
#include "lisp.h"
|
||
#include "syssignal.h"
|
||
|
||
Lisp_Object Qarith_error;
|
||
|
||
#ifdef LISP_FLOAT_TYPE
|
||
|
||
#include <math.h>
|
||
|
||
#ifndef hpux
|
||
/* These declarations are omitted on some systems, like Ultrix. */
|
||
extern double logb ();
|
||
#endif
|
||
|
||
#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
|
||
/* If those are defined, then this is probably a `matherr' machine. */
|
||
# ifndef HAVE_MATHERR
|
||
# define HAVE_MATHERR
|
||
# endif
|
||
#endif
|
||
|
||
#ifdef NO_MATHERR
|
||
#undef HAVE_MATHERR
|
||
#endif
|
||
|
||
#ifdef HAVE_MATHERR
|
||
# ifdef FLOAT_CHECK_ERRNO
|
||
# undef FLOAT_CHECK_ERRNO
|
||
# endif
|
||
# ifdef FLOAT_CHECK_DOMAIN
|
||
# undef FLOAT_CHECK_DOMAIN
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef NO_FLOAT_CHECK_ERRNO
|
||
#define FLOAT_CHECK_ERRNO
|
||
#endif
|
||
|
||
#ifdef FLOAT_CHECK_ERRNO
|
||
# include <errno.h>
|
||
|
||
extern int errno;
|
||
#endif
|
||
|
||
/* Avoid traps on VMS from sinh and cosh.
|
||
All the other functions set errno instead. */
|
||
|
||
#ifdef VMS
|
||
#undef cosh
|
||
#undef sinh
|
||
#define cosh(x) ((exp(x)+exp(-x))*0.5)
|
||
#define sinh(x) ((exp(x)-exp(-x))*0.5)
|
||
#endif /* VMS */
|
||
|
||
#ifndef HAVE_RINT
|
||
#define rint(x) (floor((x)+0.5))
|
||
#endif
|
||
|
||
static SIGTYPE float_error ();
|
||
|
||
/* Nonzero while executing in floating point.
|
||
This tells float_error what to do. */
|
||
|
||
static int in_float;
|
||
|
||
/* If an argument is out of range for a mathematical function,
|
||
here is the actual argument value to use in the error message. */
|
||
|
||
static Lisp_Object float_error_arg, float_error_arg2;
|
||
|
||
static char *float_error_fn_name;
|
||
|
||
/* Evaluate the floating point expression D, recording NUM
|
||
as the original argument for error messages.
|
||
D is normally an assignment expression.
|
||
Handle errors which may result in signals or may set errno.
|
||
|
||
Note that float_error may be declared to return void, so you can't
|
||
just cast the zero after the colon to (SIGTYPE) to make the types
|
||
check properly. */
|
||
|
||
#ifdef FLOAT_CHECK_ERRNO
|
||
#define IN_FLOAT(d, name, num) \
|
||
do { \
|
||
float_error_arg = num; \
|
||
float_error_fn_name = name; \
|
||
in_float = 1; errno = 0; (d); in_float = 0; \
|
||
switch (errno) { \
|
||
case 0: break; \
|
||
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
|
||
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
|
||
default: arith_error (float_error_fn_name, float_error_arg); \
|
||
} \
|
||
} while (0)
|
||
#define IN_FLOAT2(d, name, num, num2) \
|
||
do { \
|
||
float_error_arg = num; \
|
||
float_error_arg2 = num2; \
|
||
float_error_fn_name = name; \
|
||
in_float = 1; errno = 0; (d); in_float = 0; \
|
||
switch (errno) { \
|
||
case 0: break; \
|
||
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
|
||
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
|
||
default: arith_error (float_error_fn_name, float_error_arg); \
|
||
} \
|
||
} while (0)
|
||
#else
|
||
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
|
||
#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
|
||
#endif
|
||
|
||
#define arith_error(op,arg) \
|
||
Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
|
||
#define range_error(op,arg) \
|
||
Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
|
||
#define domain_error(op,arg) \
|
||
Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
|
||
#define domain_error2(op,a1,a2) \
|
||
Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((a1), Fcons ((a2), Qnil))))
|
||
|
||
/* Extract a Lisp number as a `double', or signal an error. */
|
||
|
||
double
|
||
extract_float (num)
|
||
Lisp_Object num;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (num, 0);
|
||
|
||
if (XTYPE (num) == Lisp_Float)
|
||
return XFLOAT (num)->data;
|
||
return (double) XINT (num);
|
||
}
|
||
|
||
/* Trig functions. */
|
||
|
||
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
|
||
"Return the inverse cosine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 1.0 || d < -1.0)
|
||
domain_error ("acos", arg);
|
||
#endif
|
||
IN_FLOAT (d = acos (d), "acos", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
|
||
"Return the inverse sine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 1.0 || d < -1.0)
|
||
domain_error ("asin", arg);
|
||
#endif
|
||
IN_FLOAT (d = asin (d), "asin", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atan", Fatan, Satan, 1, 1, 0,
|
||
"Return the inverse tangent of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = atan (d), "atan", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
|
||
"Return the cosine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = cos (d), "cos", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
|
||
"Return the sine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = sin (d), "sin", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
|
||
"Return the tangent of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
double c = cos (d);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (c == 0.0)
|
||
domain_error ("tan", arg);
|
||
#endif
|
||
IN_FLOAT (d = sin (d) / c, "tan", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
#if 0 /* Leave these out unless we find there's a reason for them. */
|
||
|
||
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
|
||
"Return the bessel function j0 of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = j0 (d), "bessel-j0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
|
||
"Return the bessel function j1 of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = j1 (d), "bessel-j1", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
|
||
"Return the order N bessel function output jn of ARG.\n\
|
||
The first arg (the order) is truncated to an integer.")
|
||
(arg1, arg2)
|
||
register Lisp_Object arg1, arg2;
|
||
{
|
||
int i1 = extract_float (arg1);
|
||
double f2 = extract_float (arg2);
|
||
|
||
IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
|
||
return make_float (f2);
|
||
}
|
||
|
||
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
|
||
"Return the bessel function y0 of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = y0 (d), "bessel-y0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
|
||
"Return the bessel function y1 of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = y1 (d), "bessel-y0", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
|
||
"Return the order N bessel function output yn of ARG.\n\
|
||
The first arg (the order) is truncated to an integer.")
|
||
(arg1, arg2)
|
||
register Lisp_Object arg1, arg2;
|
||
{
|
||
int i1 = extract_float (arg1);
|
||
double f2 = extract_float (arg2);
|
||
|
||
IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
|
||
return make_float (f2);
|
||
}
|
||
|
||
#endif
|
||
|
||
#if 0 /* Leave these out unless we see they are worth having. */
|
||
|
||
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
|
||
"Return the mathematical error function of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = erf (d), "erf", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
|
||
"Return the complementary error function of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = erfc (d), "erfc", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
|
||
"Return the log gamma of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = lgamma (d), "log-gamma", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
|
||
"Return the cube root of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef HAVE_CBRT
|
||
IN_FLOAT (d = cbrt (d), "cube-root", arg);
|
||
#else
|
||
if (d >= 0.0)
|
||
IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
|
||
else
|
||
IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
#endif
|
||
|
||
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
|
||
"Return the exponential base e of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 709.7827) /* Assume IEEE doubles here */
|
||
range_error ("exp", arg);
|
||
else if (d < -709.0)
|
||
return make_float (0.0);
|
||
else
|
||
#endif
|
||
IN_FLOAT (d = exp (d), "exp", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
|
||
"Return the exponential X ** Y.")
|
||
(arg1, arg2)
|
||
register Lisp_Object arg1, arg2;
|
||
{
|
||
double f1, f2;
|
||
|
||
CHECK_NUMBER_OR_FLOAT (arg1, 0);
|
||
CHECK_NUMBER_OR_FLOAT (arg2, 0);
|
||
if ((XTYPE (arg1) == Lisp_Int) && /* common lisp spec */
|
||
(XTYPE (arg2) == Lisp_Int)) /* don't promote, if both are ints */
|
||
{ /* this can be improved by pre-calculating */
|
||
int acc, x, y; /* some binary powers of x then accumulating */
|
||
Lisp_Object val;
|
||
|
||
x = XINT (arg1);
|
||
y = XINT (arg2);
|
||
acc = 1;
|
||
|
||
if (y < 0)
|
||
{
|
||
if (x == 1)
|
||
acc = 1;
|
||
else if (x == -1)
|
||
acc = (y & 1) ? -1 : 1;
|
||
else
|
||
acc = 0;
|
||
}
|
||
else
|
||
{
|
||
for (; y > 0; y--)
|
||
while (y > 0)
|
||
{
|
||
if (y & 1)
|
||
acc *= x;
|
||
x *= x;
|
||
y = (unsigned)y >> 1;
|
||
}
|
||
}
|
||
XSET (val, Lisp_Int, acc);
|
||
return val;
|
||
}
|
||
f1 = (XTYPE (arg1) == Lisp_Float) ? XFLOAT (arg1)->data : XINT (arg1);
|
||
f2 = (XTYPE (arg2) == Lisp_Float) ? XFLOAT (arg2)->data : XINT (arg2);
|
||
/* Really should check for overflow, too */
|
||
if (f1 == 0.0 && f2 == 0.0)
|
||
f1 = 1.0;
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
|
||
domain_error2 ("expt", arg1, arg2);
|
||
#endif
|
||
IN_FLOAT (f1 = pow (f1, f2), "expt", arg1);
|
||
return make_float (f1);
|
||
}
|
||
|
||
DEFUN ("log", Flog, Slog, 1, 2, 0,
|
||
"Return the natural logarithm of ARG.\n\
|
||
If second optional argument BASE is given, return log ARG using that base.")
|
||
(arg, base)
|
||
register Lisp_Object arg, base;
|
||
{
|
||
double d = extract_float (arg);
|
||
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d <= 0.0)
|
||
domain_error2 ("log", arg, base);
|
||
#endif
|
||
if (NILP (base))
|
||
IN_FLOAT (d = log (d), "log", arg);
|
||
else
|
||
{
|
||
double b = extract_float (base);
|
||
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (b <= 0.0 || b == 1.0)
|
||
domain_error2 ("log", arg, base);
|
||
#endif
|
||
if (b == 10.0)
|
||
IN_FLOAT2 (d = log10 (d), "log", arg, base);
|
||
else
|
||
IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
|
||
}
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
|
||
"Return the logarithm base 10 of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d <= 0.0)
|
||
domain_error ("log10", arg);
|
||
#endif
|
||
IN_FLOAT (d = log10 (d), "log10", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
|
||
"Return the square root of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d < 0.0)
|
||
domain_error ("sqrt", arg);
|
||
#endif
|
||
IN_FLOAT (d = sqrt (d), "sqrt", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
#if 0 /* Not clearly worth adding. */
|
||
|
||
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
|
||
"Return the inverse hyperbolic cosine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d < 1.0)
|
||
domain_error ("acosh", arg);
|
||
#endif
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = acosh (d), "acosh", arg);
|
||
#else
|
||
IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
|
||
"Return the inverse hyperbolic sine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = asinh (d), "asinh", arg);
|
||
#else
|
||
IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
|
||
"Return the inverse hyperbolic tangent of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d >= 1.0 || d <= -1.0)
|
||
domain_error ("atanh", arg);
|
||
#endif
|
||
#ifdef HAVE_INVERSE_HYPERBOLIC
|
||
IN_FLOAT (d = atanh (d), "atanh", arg);
|
||
#else
|
||
IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
|
||
#endif
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
|
||
"Return the hyperbolic cosine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 710.0 || d < -710.0)
|
||
range_error ("cosh", arg);
|
||
#endif
|
||
IN_FLOAT (d = cosh (d), "cosh", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
|
||
"Return the hyperbolic sine of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
#ifdef FLOAT_CHECK_DOMAIN
|
||
if (d > 710.0 || d < -710.0)
|
||
range_error ("sinh", arg);
|
||
#endif
|
||
IN_FLOAT (d = sinh (d), "sinh", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
|
||
"Return the hyperbolic tangent of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = tanh (d), "tanh", arg);
|
||
return make_float (d);
|
||
}
|
||
#endif
|
||
|
||
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
|
||
"Return the absolute value of ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Float)
|
||
IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
|
||
else if (XINT (arg) < 0)
|
||
XSETINT (arg, - XFASTINT (arg));
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
|
||
"Return the floating point number equal to ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Int)
|
||
return make_float ((double) XINT (arg));
|
||
else /* give 'em the same float back */
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
|
||
"Returns the integer not greater than the base 2 log of the magnitude of ARG.\n\
|
||
This is the same as the exponent of a float.")
|
||
(arg)
|
||
Lisp_Object arg;
|
||
{
|
||
Lisp_Object val;
|
||
int value;
|
||
double f = extract_float (arg);
|
||
|
||
#ifdef USG
|
||
{
|
||
int exp;
|
||
|
||
IN_FLOAT (frexp (f, &exp), "logb", arg);
|
||
XSET (val, Lisp_Int, exp-1);
|
||
}
|
||
#else
|
||
IN_FLOAT (value = logb (f), "logb", arg);
|
||
XSET (val, Lisp_Int, value);
|
||
#endif
|
||
|
||
return val;
|
||
}
|
||
|
||
/* the rounding functions */
|
||
|
||
DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
|
||
"Return the smallest integer no less than ARG. (Round toward +inf.)")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Float)
|
||
IN_FLOAT (XSET (arg, Lisp_Int, ceil (XFLOAT (arg)->data)), "ceiling", arg);
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("floor", Ffloor, Sfloor, 1, 1, 0,
|
||
"Return the largest integer no greater than ARG. (Round towards -inf.)")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Float)
|
||
IN_FLOAT (XSET (arg, Lisp_Int, floor (XFLOAT (arg)->data)), "floor", arg);
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("round", Fround, Sround, 1, 1, 0,
|
||
"Return the nearest integer to ARG.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Float)
|
||
/* Screw the prevailing rounding mode. */
|
||
IN_FLOAT (XSET (arg, Lisp_Int, rint (XFLOAT (arg)->data)), "round", arg);
|
||
|
||
return arg;
|
||
}
|
||
|
||
DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
|
||
"Truncate a floating point number to an int.\n\
|
||
Rounds the value toward zero.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
CHECK_NUMBER_OR_FLOAT (arg, 0);
|
||
|
||
if (XTYPE (arg) == Lisp_Float)
|
||
XSET (arg, Lisp_Int, (int) XFLOAT (arg)->data);
|
||
|
||
return arg;
|
||
}
|
||
|
||
#if 0
|
||
/* It's not clear these are worth adding. */
|
||
|
||
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
|
||
"Return the smallest integer no less than ARG, as a float.\n\
|
||
\(Round toward +inf.\)")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = ceil (d), "fceiling", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
|
||
"Return the largest integer no greater than ARG, as a float.\n\
|
||
\(Round towards -inf.\)")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = floor (d), "ffloor", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
|
||
"Return the nearest integer to ARG, as a float.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
IN_FLOAT (d = rint (XFLOAT (arg)->data), "fround", arg);
|
||
return make_float (d);
|
||
}
|
||
|
||
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
|
||
"Truncate a floating point number to an integral float value.\n\
|
||
Rounds the value toward zero.")
|
||
(arg)
|
||
register Lisp_Object arg;
|
||
{
|
||
double d = extract_float (arg);
|
||
if (d >= 0.0)
|
||
IN_FLOAT (d = floor (d), "ftruncate", arg);
|
||
else
|
||
IN_FLOAT (d = ceil (d), arg);
|
||
return make_float (d);
|
||
}
|
||
#endif
|
||
|
||
#ifdef FLOAT_CATCH_SIGILL
|
||
static SIGTYPE
|
||
float_error (signo)
|
||
int signo;
|
||
{
|
||
if (! in_float)
|
||
fatal_error_signal (signo);
|
||
|
||
#ifdef BSD
|
||
#ifdef BSD4_1
|
||
sigrelse (SIGILL);
|
||
#else /* not BSD4_1 */
|
||
sigsetmask (SIGEMPTYMASK);
|
||
#endif /* not BSD4_1 */
|
||
#else
|
||
/* Must reestablish handler each time it is called. */
|
||
signal (SIGILL, float_error);
|
||
#endif /* BSD */
|
||
|
||
in_float = 0;
|
||
|
||
Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
|
||
}
|
||
|
||
/* Another idea was to replace the library function `infnan'
|
||
where SIGILL is signaled. */
|
||
|
||
#endif /* FLOAT_CATCH_SIGILL */
|
||
|
||
#ifdef HAVE_MATHERR
|
||
int
|
||
matherr (x)
|
||
struct exception *x;
|
||
{
|
||
Lisp_Object args;
|
||
if (! in_float)
|
||
/* Not called from emacs-lisp float routines; do the default thing. */
|
||
return 0;
|
||
if (!strcmp (x->name, "pow"))
|
||
x->name = "expt";
|
||
|
||
args
|
||
= Fcons (build_string (x->name),
|
||
Fcons (make_float (x->arg1),
|
||
((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
|
||
? Fcons (make_float (x->arg2), Qnil)
|
||
: Qnil)));
|
||
switch (x->type)
|
||
{
|
||
case DOMAIN: Fsignal (Qdomain_error, args); break;
|
||
case SING: Fsignal (Qsingularity_error, args); break;
|
||
case OVERFLOW: Fsignal (Qoverflow_error, args); break;
|
||
case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
|
||
default: Fsignal (Qarith_error, args); break;
|
||
}
|
||
return (1); /* don't set errno or print a message */
|
||
}
|
||
#endif /* HAVE_MATHERR */
|
||
|
||
init_floatfns ()
|
||
{
|
||
#ifdef FLOAT_CATCH_SIGILL
|
||
signal (SIGILL, float_error);
|
||
#endif
|
||
in_float = 0;
|
||
}
|
||
|
||
syms_of_floatfns ()
|
||
{
|
||
defsubr (&Sacos);
|
||
defsubr (&Sasin);
|
||
defsubr (&Satan);
|
||
defsubr (&Scos);
|
||
defsubr (&Ssin);
|
||
defsubr (&Stan);
|
||
#if 0
|
||
defsubr (&Sacosh);
|
||
defsubr (&Sasinh);
|
||
defsubr (&Satanh);
|
||
defsubr (&Scosh);
|
||
defsubr (&Ssinh);
|
||
defsubr (&Stanh);
|
||
defsubr (&Sbessel_y0);
|
||
defsubr (&Sbessel_y1);
|
||
defsubr (&Sbessel_yn);
|
||
defsubr (&Sbessel_j0);
|
||
defsubr (&Sbessel_j1);
|
||
defsubr (&Sbessel_jn);
|
||
defsubr (&Serf);
|
||
defsubr (&Serfc);
|
||
defsubr (&Slog_gamma);
|
||
defsubr (&Scube_root);
|
||
defsubr (&Sfceiling);
|
||
defsubr (&Sffloor);
|
||
defsubr (&Sfround);
|
||
defsubr (&Sftruncate);
|
||
#endif
|
||
defsubr (&Sexp);
|
||
defsubr (&Sexpt);
|
||
defsubr (&Slog);
|
||
defsubr (&Slog10);
|
||
defsubr (&Ssqrt);
|
||
|
||
defsubr (&Sabs);
|
||
defsubr (&Sfloat);
|
||
defsubr (&Slogb);
|
||
defsubr (&Sceiling);
|
||
defsubr (&Sfloor);
|
||
defsubr (&Sround);
|
||
defsubr (&Struncate);
|
||
}
|
||
|
||
#else /* not LISP_FLOAT_TYPE */
|
||
|
||
init_floatfns ()
|
||
{}
|
||
|
||
syms_of_floatfns ()
|
||
{}
|
||
|
||
#endif /* not LISP_FLOAT_TYPE */
|