1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-12-12 09:28:24 +00:00
emacs/src/floatfns.c
1993-06-12 07:19:24 +00:00

880 lines
21 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
Copyright (C) 1988, 1993 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* ANSI C requires only these float functions:
acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
Define HAVE_CBRT if you have cbrt.
Define HAVE_RINT if you have rint.
If you don't define these, then the appropriate routines will be simulated.
Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
(This should happen automatically.)
Define FLOAT_CHECK_ERRNO if the float library routines set errno.
This has no effect if HAVE_MATHERR is defined.
Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
(What systems actually do this? Please let us know.)
Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
range checking will happen before calling the float routines. This has
no effect if HAVE_MATHERR is defined (since matherr will be called when
a domain error occurs.)
*/
#include <signal.h>
#include "config.h"
#include "lisp.h"
#include "syssignal.h"
Lisp_Object Qarith_error;
#ifdef LISP_FLOAT_TYPE
#include <math.h>
#ifndef hpux
/* These declarations are omitted on some systems, like Ultrix. */
extern double logb ();
#endif
#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
/* If those are defined, then this is probably a `matherr' machine. */
# ifndef HAVE_MATHERR
# define HAVE_MATHERR
# endif
#endif
#ifdef NO_MATHERR
#undef HAVE_MATHERR
#endif
#ifdef HAVE_MATHERR
# ifdef FLOAT_CHECK_ERRNO
# undef FLOAT_CHECK_ERRNO
# endif
# ifdef FLOAT_CHECK_DOMAIN
# undef FLOAT_CHECK_DOMAIN
# endif
#endif
#ifndef NO_FLOAT_CHECK_ERRNO
#define FLOAT_CHECK_ERRNO
#endif
#ifdef FLOAT_CHECK_ERRNO
# include <errno.h>
extern int errno;
#endif
/* Avoid traps on VMS from sinh and cosh.
All the other functions set errno instead. */
#ifdef VMS
#undef cosh
#undef sinh
#define cosh(x) ((exp(x)+exp(-x))*0.5)
#define sinh(x) ((exp(x)-exp(-x))*0.5)
#endif /* VMS */
#ifndef HAVE_RINT
#define rint(x) (floor((x)+0.5))
#endif
static SIGTYPE float_error ();
/* Nonzero while executing in floating point.
This tells float_error what to do. */
static int in_float;
/* If an argument is out of range for a mathematical function,
here is the actual argument value to use in the error message. */
static Lisp_Object float_error_arg, float_error_arg2;
static char *float_error_fn_name;
/* Evaluate the floating point expression D, recording NUM
as the original argument for error messages.
D is normally an assignment expression.
Handle errors which may result in signals or may set errno.
Note that float_error may be declared to return void, so you can't
just cast the zero after the colon to (SIGTYPE) to make the types
check properly. */
#ifdef FLOAT_CHECK_ERRNO
#define IN_FLOAT(d, name, num) \
do { \
float_error_arg = num; \
float_error_fn_name = name; \
in_float = 1; errno = 0; (d); in_float = 0; \
switch (errno) { \
case 0: break; \
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
default: arith_error (float_error_fn_name, float_error_arg); \
} \
} while (0)
#define IN_FLOAT2(d, name, num, num2) \
do { \
float_error_arg = num; \
float_error_arg2 = num2; \
float_error_fn_name = name; \
in_float = 1; errno = 0; (d); in_float = 0; \
switch (errno) { \
case 0: break; \
case EDOM: domain_error (float_error_fn_name, float_error_arg); \
case ERANGE: range_error (float_error_fn_name, float_error_arg); \
default: arith_error (float_error_fn_name, float_error_arg); \
} \
} while (0)
#else
#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
#endif
#define arith_error(op,arg) \
Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define range_error(op,arg) \
Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define domain_error(op,arg) \
Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
#define domain_error2(op,a1,a2) \
Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((a1), Fcons ((a2), Qnil))))
/* Extract a Lisp number as a `double', or signal an error. */
double
extract_float (num)
Lisp_Object num;
{
CHECK_NUMBER_OR_FLOAT (num, 0);
if (XTYPE (num) == Lisp_Float)
return XFLOAT (num)->data;
return (double) XINT (num);
}
/* Trig functions. */
DEFUN ("acos", Facos, Sacos, 1, 1, 0,
"Return the inverse cosine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("acos", arg);
#endif
IN_FLOAT (d = acos (d), "acos", arg);
return make_float (d);
}
DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
"Return the inverse sine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 1.0 || d < -1.0)
domain_error ("asin", arg);
#endif
IN_FLOAT (d = asin (d), "asin", arg);
return make_float (d);
}
DEFUN ("atan", Fatan, Satan, 1, 1, 0,
"Return the inverse tangent of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = atan (d), "atan", arg);
return make_float (d);
}
DEFUN ("cos", Fcos, Scos, 1, 1, 0,
"Return the cosine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = cos (d), "cos", arg);
return make_float (d);
}
DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
"Return the sine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = sin (d), "sin", arg);
return make_float (d);
}
DEFUN ("tan", Ftan, Stan, 1, 1, 0,
"Return the tangent of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
double c = cos (d);
#ifdef FLOAT_CHECK_DOMAIN
if (c == 0.0)
domain_error ("tan", arg);
#endif
IN_FLOAT (d = sin (d) / c, "tan", arg);
return make_float (d);
}
#if 0 /* Leave these out unless we find there's a reason for them. */
DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
"Return the bessel function j0 of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j0 (d), "bessel-j0", arg);
return make_float (d);
}
DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
"Return the bessel function j1 of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = j1 (d), "bessel-j1", arg);
return make_float (d);
}
DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
"Return the order N bessel function output jn of ARG.\n\
The first arg (the order) is truncated to an integer.")
(arg1, arg2)
register Lisp_Object arg1, arg2;
{
int i1 = extract_float (arg1);
double f2 = extract_float (arg2);
IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
return make_float (f2);
}
DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
"Return the bessel function y0 of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y0 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
"Return the bessel function y1 of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = y1 (d), "bessel-y0", arg);
return make_float (d);
}
DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
"Return the order N bessel function output yn of ARG.\n\
The first arg (the order) is truncated to an integer.")
(arg1, arg2)
register Lisp_Object arg1, arg2;
{
int i1 = extract_float (arg1);
double f2 = extract_float (arg2);
IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
return make_float (f2);
}
#endif
#if 0 /* Leave these out unless we see they are worth having. */
DEFUN ("erf", Ferf, Serf, 1, 1, 0,
"Return the mathematical error function of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erf (d), "erf", arg);
return make_float (d);
}
DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
"Return the complementary error function of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = erfc (d), "erfc", arg);
return make_float (d);
}
DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
"Return the log gamma of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = lgamma (d), "log-gamma", arg);
return make_float (d);
}
DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
"Return the cube root of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_CBRT
IN_FLOAT (d = cbrt (d), "cube-root", arg);
#else
if (d >= 0.0)
IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
else
IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
#endif
return make_float (d);
}
#endif
DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
"Return the exponential base e of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 709.7827) /* Assume IEEE doubles here */
range_error ("exp", arg);
else if (d < -709.0)
return make_float (0.0);
else
#endif
IN_FLOAT (d = exp (d), "exp", arg);
return make_float (d);
}
DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
"Return the exponential X ** Y.")
(arg1, arg2)
register Lisp_Object arg1, arg2;
{
double f1, f2;
CHECK_NUMBER_OR_FLOAT (arg1, 0);
CHECK_NUMBER_OR_FLOAT (arg2, 0);
if ((XTYPE (arg1) == Lisp_Int) && /* common lisp spec */
(XTYPE (arg2) == Lisp_Int)) /* don't promote, if both are ints */
{ /* this can be improved by pre-calculating */
int acc, x, y; /* some binary powers of x then accumulating */
Lisp_Object val;
x = XINT (arg1);
y = XINT (arg2);
acc = 1;
if (y < 0)
{
if (x == 1)
acc = 1;
else if (x == -1)
acc = (y & 1) ? -1 : 1;
else
acc = 0;
}
else
{
for (; y > 0; y--)
while (y > 0)
{
if (y & 1)
acc *= x;
x *= x;
y = (unsigned)y >> 1;
}
}
XSET (val, Lisp_Int, acc);
return val;
}
f1 = (XTYPE (arg1) == Lisp_Float) ? XFLOAT (arg1)->data : XINT (arg1);
f2 = (XTYPE (arg2) == Lisp_Float) ? XFLOAT (arg2)->data : XINT (arg2);
/* Really should check for overflow, too */
if (f1 == 0.0 && f2 == 0.0)
f1 = 1.0;
#ifdef FLOAT_CHECK_DOMAIN
else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
domain_error2 ("expt", arg1, arg2);
#endif
IN_FLOAT (f1 = pow (f1, f2), "expt", arg1);
return make_float (f1);
}
DEFUN ("log", Flog, Slog, 1, 2, 0,
"Return the natural logarithm of ARG.\n\
If second optional argument BASE is given, return log ARG using that base.")
(arg, base)
register Lisp_Object arg, base;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error2 ("log", arg, base);
#endif
if (NILP (base))
IN_FLOAT (d = log (d), "log", arg);
else
{
double b = extract_float (base);
#ifdef FLOAT_CHECK_DOMAIN
if (b <= 0.0 || b == 1.0)
domain_error2 ("log", arg, base);
#endif
if (b == 10.0)
IN_FLOAT2 (d = log10 (d), "log", arg, base);
else
IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
}
return make_float (d);
}
DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
"Return the logarithm base 10 of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d <= 0.0)
domain_error ("log10", arg);
#endif
IN_FLOAT (d = log10 (d), "log10", arg);
return make_float (d);
}
DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
"Return the square root of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 0.0)
domain_error ("sqrt", arg);
#endif
IN_FLOAT (d = sqrt (d), "sqrt", arg);
return make_float (d);
}
#if 0 /* Not clearly worth adding. */
DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
"Return the inverse hyperbolic cosine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d < 1.0)
domain_error ("acosh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = acosh (d), "acosh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
#endif
return make_float (d);
}
DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
"Return the inverse hyperbolic sine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = asinh (d), "asinh", arg);
#else
IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
#endif
return make_float (d);
}
DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
"Return the inverse hyperbolic tangent of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d >= 1.0 || d <= -1.0)
domain_error ("atanh", arg);
#endif
#ifdef HAVE_INVERSE_HYPERBOLIC
IN_FLOAT (d = atanh (d), "atanh", arg);
#else
IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
#endif
return make_float (d);
}
DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
"Return the hyperbolic cosine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("cosh", arg);
#endif
IN_FLOAT (d = cosh (d), "cosh", arg);
return make_float (d);
}
DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
"Return the hyperbolic sine of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
#ifdef FLOAT_CHECK_DOMAIN
if (d > 710.0 || d < -710.0)
range_error ("sinh", arg);
#endif
IN_FLOAT (d = sinh (d), "sinh", arg);
return make_float (d);
}
DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
"Return the hyperbolic tangent of ARG.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = tanh (d), "tanh", arg);
return make_float (d);
}
#endif
DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
"Return the absolute value of ARG.")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Float)
IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
else if (XINT (arg) < 0)
XSETINT (arg, - XFASTINT (arg));
return arg;
}
DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
"Return the floating point number equal to ARG.")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Int)
return make_float ((double) XINT (arg));
else /* give 'em the same float back */
return arg;
}
DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
"Returns the integer not greater than the base 2 log of the magnitude of ARG.\n\
This is the same as the exponent of a float.")
(arg)
Lisp_Object arg;
{
Lisp_Object val;
int value;
double f = extract_float (arg);
#ifdef USG
{
int exp;
IN_FLOAT (frexp (f, &exp), "logb", arg);
XSET (val, Lisp_Int, exp-1);
}
#else
IN_FLOAT (value = logb (f), "logb", arg);
XSET (val, Lisp_Int, value);
#endif
return val;
}
/* the rounding functions */
DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
"Return the smallest integer no less than ARG. (Round toward +inf.)")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Float)
IN_FLOAT (XSET (arg, Lisp_Int, ceil (XFLOAT (arg)->data)), "ceiling", arg);
return arg;
}
DEFUN ("floor", Ffloor, Sfloor, 1, 1, 0,
"Return the largest integer no greater than ARG. (Round towards -inf.)")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Float)
IN_FLOAT (XSET (arg, Lisp_Int, floor (XFLOAT (arg)->data)), "floor", arg);
return arg;
}
DEFUN ("round", Fround, Sround, 1, 1, 0,
"Return the nearest integer to ARG.")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Float)
/* Screw the prevailing rounding mode. */
IN_FLOAT (XSET (arg, Lisp_Int, rint (XFLOAT (arg)->data)), "round", arg);
return arg;
}
DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
"Truncate a floating point number to an int.\n\
Rounds the value toward zero.")
(arg)
register Lisp_Object arg;
{
CHECK_NUMBER_OR_FLOAT (arg, 0);
if (XTYPE (arg) == Lisp_Float)
XSET (arg, Lisp_Int, (int) XFLOAT (arg)->data);
return arg;
}
#if 0
/* It's not clear these are worth adding. */
DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
"Return the smallest integer no less than ARG, as a float.\n\
\(Round toward +inf.\)")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = ceil (d), "fceiling", arg);
return make_float (d);
}
DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
"Return the largest integer no greater than ARG, as a float.\n\
\(Round towards -inf.\)")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = floor (d), "ffloor", arg);
return make_float (d);
}
DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
"Return the nearest integer to ARG, as a float.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
IN_FLOAT (d = rint (XFLOAT (arg)->data), "fround", arg);
return make_float (d);
}
DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
"Truncate a floating point number to an integral float value.\n\
Rounds the value toward zero.")
(arg)
register Lisp_Object arg;
{
double d = extract_float (arg);
if (d >= 0.0)
IN_FLOAT (d = floor (d), "ftruncate", arg);
else
IN_FLOAT (d = ceil (d), arg);
return make_float (d);
}
#endif
#ifdef FLOAT_CATCH_SIGILL
static SIGTYPE
float_error (signo)
int signo;
{
if (! in_float)
fatal_error_signal (signo);
#ifdef BSD
#ifdef BSD4_1
sigrelse (SIGILL);
#else /* not BSD4_1 */
sigsetmask (SIGEMPTYMASK);
#endif /* not BSD4_1 */
#else
/* Must reestablish handler each time it is called. */
signal (SIGILL, float_error);
#endif /* BSD */
in_float = 0;
Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
}
/* Another idea was to replace the library function `infnan'
where SIGILL is signaled. */
#endif /* FLOAT_CATCH_SIGILL */
#ifdef HAVE_MATHERR
int
matherr (x)
struct exception *x;
{
Lisp_Object args;
if (! in_float)
/* Not called from emacs-lisp float routines; do the default thing. */
return 0;
if (!strcmp (x->name, "pow"))
x->name = "expt";
args
= Fcons (build_string (x->name),
Fcons (make_float (x->arg1),
((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
? Fcons (make_float (x->arg2), Qnil)
: Qnil)));
switch (x->type)
{
case DOMAIN: Fsignal (Qdomain_error, args); break;
case SING: Fsignal (Qsingularity_error, args); break;
case OVERFLOW: Fsignal (Qoverflow_error, args); break;
case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
default: Fsignal (Qarith_error, args); break;
}
return (1); /* don't set errno or print a message */
}
#endif /* HAVE_MATHERR */
init_floatfns ()
{
#ifdef FLOAT_CATCH_SIGILL
signal (SIGILL, float_error);
#endif
in_float = 0;
}
syms_of_floatfns ()
{
defsubr (&Sacos);
defsubr (&Sasin);
defsubr (&Satan);
defsubr (&Scos);
defsubr (&Ssin);
defsubr (&Stan);
#if 0
defsubr (&Sacosh);
defsubr (&Sasinh);
defsubr (&Satanh);
defsubr (&Scosh);
defsubr (&Ssinh);
defsubr (&Stanh);
defsubr (&Sbessel_y0);
defsubr (&Sbessel_y1);
defsubr (&Sbessel_yn);
defsubr (&Sbessel_j0);
defsubr (&Sbessel_j1);
defsubr (&Sbessel_jn);
defsubr (&Serf);
defsubr (&Serfc);
defsubr (&Slog_gamma);
defsubr (&Scube_root);
defsubr (&Sfceiling);
defsubr (&Sffloor);
defsubr (&Sfround);
defsubr (&Sftruncate);
#endif
defsubr (&Sexp);
defsubr (&Sexpt);
defsubr (&Slog);
defsubr (&Slog10);
defsubr (&Ssqrt);
defsubr (&Sabs);
defsubr (&Sfloat);
defsubr (&Slogb);
defsubr (&Sceiling);
defsubr (&Sfloor);
defsubr (&Sround);
defsubr (&Struncate);
}
#else /* not LISP_FLOAT_TYPE */
init_floatfns ()
{}
syms_of_floatfns ()
{}
#endif /* not LISP_FLOAT_TYPE */