mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-12 09:28:24 +00:00
eebaeadde2
properties from before the insertion.
1672 lines
43 KiB
C
1672 lines
43 KiB
C
/* Code for doing intervals.
|
||
Copyright (C) 1993 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
|
||
/* NOTES:
|
||
|
||
Have to ensure that we can't put symbol nil on a plist, or some
|
||
functions may work incorrectly.
|
||
|
||
An idea: Have the owner of the tree keep count of splits and/or
|
||
insertion lengths (in intervals), and balance after every N.
|
||
|
||
Need to call *_left_hook when buffer is killed.
|
||
|
||
Scan for zero-length, or 0-length to see notes about handling
|
||
zero length interval-markers.
|
||
|
||
There are comments around about freeing intervals. It might be
|
||
faster to explicitly free them (put them on the free list) than
|
||
to GC them.
|
||
|
||
*/
|
||
|
||
|
||
#include "config.h"
|
||
#include "lisp.h"
|
||
#include "intervals.h"
|
||
#include "buffer.h"
|
||
|
||
/* The rest of the file is within this conditional. */
|
||
#ifdef USE_TEXT_PROPERTIES
|
||
|
||
/* Factor for weight-balancing interval trees. */
|
||
Lisp_Object interval_balance_threshold;
|
||
|
||
/* Utility functions for intervals. */
|
||
|
||
|
||
/* Create the root interval of some object, a buffer or string. */
|
||
|
||
INTERVAL
|
||
create_root_interval (parent)
|
||
Lisp_Object parent;
|
||
{
|
||
INTERVAL new = make_interval ();
|
||
|
||
if (XTYPE (parent) == Lisp_Buffer)
|
||
{
|
||
new->total_length = BUF_Z (XBUFFER (parent)) - 1;
|
||
XBUFFER (parent)->intervals = new;
|
||
}
|
||
else if (XTYPE (parent) == Lisp_String)
|
||
{
|
||
new->total_length = XSTRING (parent)->size;
|
||
XSTRING (parent)->intervals = new;
|
||
}
|
||
|
||
new->parent = (INTERVAL) parent;
|
||
new->position = 1;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Make the interval TARGET have exactly the properties of SOURCE */
|
||
|
||
void
|
||
copy_properties (source, target)
|
||
register INTERVAL source, target;
|
||
{
|
||
if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
|
||
return;
|
||
|
||
COPY_INTERVAL_CACHE (source, target);
|
||
target->plist = Fcopy_sequence (source->plist);
|
||
}
|
||
|
||
/* Merge the properties of interval SOURCE into the properties
|
||
of interval TARGET. That is to say, each property in SOURCE
|
||
is added to TARGET if TARGET has no such property as yet. */
|
||
|
||
static void
|
||
merge_properties (source, target)
|
||
register INTERVAL source, target;
|
||
{
|
||
register Lisp_Object o, sym, val;
|
||
|
||
if (DEFAULT_INTERVAL_P (source) && DEFAULT_INTERVAL_P (target))
|
||
return;
|
||
|
||
MERGE_INTERVAL_CACHE (source, target);
|
||
|
||
o = source->plist;
|
||
while (! EQ (o, Qnil))
|
||
{
|
||
sym = Fcar (o);
|
||
val = Fmemq (sym, target->plist);
|
||
|
||
if (NILP (val))
|
||
{
|
||
o = Fcdr (o);
|
||
val = Fcar (o);
|
||
target->plist = Fcons (sym, Fcons (val, target->plist));
|
||
o = Fcdr (o);
|
||
}
|
||
else
|
||
o = Fcdr (Fcdr (o));
|
||
}
|
||
}
|
||
|
||
/* Return 1 if the two intervals have the same properties,
|
||
0 otherwise. */
|
||
|
||
int
|
||
intervals_equal (i0, i1)
|
||
INTERVAL i0, i1;
|
||
{
|
||
register Lisp_Object i0_cdr, i0_sym, i1_val;
|
||
register i1_len;
|
||
|
||
if (DEFAULT_INTERVAL_P (i0) && DEFAULT_INTERVAL_P (i1))
|
||
return 1;
|
||
|
||
if (DEFAULT_INTERVAL_P (i0) || DEFAULT_INTERVAL_P (i1))
|
||
return 0;
|
||
|
||
i1_len = XFASTINT (Flength (i1->plist));
|
||
if (i1_len & 0x1) /* Paranoia -- plists are always even */
|
||
abort ();
|
||
i1_len /= 2;
|
||
i0_cdr = i0->plist;
|
||
while (!NILP (i0_cdr))
|
||
{
|
||
/* Lengths of the two plists were unequal */
|
||
if (i1_len == 0)
|
||
return 0;
|
||
|
||
i0_sym = Fcar (i0_cdr);
|
||
i1_val = Fmemq (i0_sym, i1->plist);
|
||
|
||
/* i0 has something i1 doesn't */
|
||
if (EQ (i1_val, Qnil))
|
||
return 0;
|
||
|
||
/* i0 and i1 both have sym, but it has different values in each */
|
||
i0_cdr = Fcdr (i0_cdr);
|
||
if (! Fequal (i1_val, Fcar (i0_cdr)))
|
||
return 0;
|
||
|
||
i0_cdr = Fcdr (i0_cdr);
|
||
i1_len--;
|
||
}
|
||
|
||
/* Lengths of the two plists were unequal */
|
||
if (i1_len > 0)
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int icount;
|
||
static int idepth;
|
||
static int zero_length;
|
||
|
||
/* Traverse an interval tree TREE, performing FUNCTION on each node.
|
||
Pass FUNCTION two args: an interval, and ARG. */
|
||
|
||
void
|
||
traverse_intervals (tree, position, depth, function, arg)
|
||
INTERVAL tree;
|
||
int position, depth;
|
||
void (* function) ();
|
||
Lisp_Object arg;
|
||
{
|
||
if (NULL_INTERVAL_P (tree))
|
||
return;
|
||
|
||
traverse_intervals (tree->left, position, depth + 1, function, arg);
|
||
position += LEFT_TOTAL_LENGTH (tree);
|
||
tree->position = position;
|
||
(*function) (tree, arg);
|
||
position += LENGTH (tree);
|
||
traverse_intervals (tree->right, position, depth + 1, function, arg);
|
||
}
|
||
|
||
#if 0
|
||
/* These functions are temporary, for debugging purposes only. */
|
||
|
||
INTERVAL search_interval, found_interval;
|
||
|
||
void
|
||
check_for_interval (i)
|
||
register INTERVAL i;
|
||
{
|
||
if (i == search_interval)
|
||
{
|
||
found_interval = i;
|
||
icount++;
|
||
}
|
||
}
|
||
|
||
INTERVAL
|
||
search_for_interval (i, tree)
|
||
register INTERVAL i, tree;
|
||
{
|
||
icount = 0;
|
||
search_interval = i;
|
||
found_interval = NULL_INTERVAL;
|
||
traverse_intervals (tree, 1, 0, &check_for_interval, Qnil);
|
||
return found_interval;
|
||
}
|
||
|
||
static void
|
||
inc_interval_count (i)
|
||
INTERVAL i;
|
||
{
|
||
icount++;
|
||
if (LENGTH (i) == 0)
|
||
zero_length++;
|
||
if (depth > idepth)
|
||
idepth = depth;
|
||
}
|
||
|
||
int
|
||
count_intervals (i)
|
||
register INTERVAL i;
|
||
{
|
||
icount = 0;
|
||
idepth = 0;
|
||
zero_length = 0;
|
||
traverse_intervals (i, 1, 0, &inc_interval_count, Qnil);
|
||
|
||
return icount;
|
||
}
|
||
|
||
static INTERVAL
|
||
root_interval (interval)
|
||
INTERVAL interval;
|
||
{
|
||
register INTERVAL i = interval;
|
||
|
||
while (! ROOT_INTERVAL_P (i))
|
||
i = i->parent;
|
||
|
||
return i;
|
||
}
|
||
#endif
|
||
|
||
/* Assuming that a left child exists, perform the following operation:
|
||
|
||
A B
|
||
/ \ / \
|
||
B => A
|
||
/ \ / \
|
||
c c
|
||
*/
|
||
|
||
static INTERVAL
|
||
rotate_right (interval)
|
||
INTERVAL interval;
|
||
{
|
||
INTERVAL i;
|
||
INTERVAL B = interval->left;
|
||
int len = LENGTH (interval);
|
||
|
||
/* Deal with any Parent of A; make it point to B. */
|
||
if (! ROOT_INTERVAL_P (interval))
|
||
if (AM_LEFT_CHILD (interval))
|
||
interval->parent->left = interval->left;
|
||
else
|
||
interval->parent->right = interval->left;
|
||
interval->left->parent = interval->parent;
|
||
|
||
/* B gets the same length as A, since it get A's position in the tree. */
|
||
interval->left->total_length = interval->total_length;
|
||
|
||
/* B becomes the parent of A. */
|
||
i = interval->left->right;
|
||
interval->left->right = interval;
|
||
interval->parent = interval->left;
|
||
|
||
/* A gets c as left child. */
|
||
interval->left = i;
|
||
if (! NULL_INTERVAL_P (i))
|
||
i->parent = interval;
|
||
interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
|
||
+ RIGHT_TOTAL_LENGTH (interval));
|
||
|
||
return B;
|
||
}
|
||
|
||
/* Assuming that a right child exists, perform the following operation:
|
||
|
||
A B
|
||
/ \ / \
|
||
B => A
|
||
/ \ / \
|
||
c c
|
||
*/
|
||
|
||
static INTERVAL
|
||
rotate_left (interval)
|
||
INTERVAL interval;
|
||
{
|
||
INTERVAL i;
|
||
INTERVAL B = interval->right;
|
||
int len = LENGTH (interval);
|
||
|
||
/* Deal with the parent of A. */
|
||
if (! ROOT_INTERVAL_P (interval))
|
||
if (AM_LEFT_CHILD (interval))
|
||
interval->parent->left = interval->right;
|
||
else
|
||
interval->parent->right = interval->right;
|
||
interval->right->parent = interval->parent;
|
||
|
||
/* B must have the same total length of A. */
|
||
interval->right->total_length = interval->total_length;
|
||
|
||
/* Make B the parent of A */
|
||
i = interval->right->left;
|
||
interval->right->left = interval;
|
||
interval->parent = interval->right;
|
||
|
||
/* Make A point to c */
|
||
interval->right = i;
|
||
if (! NULL_INTERVAL_P (i))
|
||
i->parent = interval;
|
||
interval->total_length = (len + LEFT_TOTAL_LENGTH (interval)
|
||
+ RIGHT_TOTAL_LENGTH (interval));
|
||
|
||
return B;
|
||
}
|
||
|
||
/* Split INTERVAL into two pieces, starting the second piece at character
|
||
position OFFSET (counting from 1), relative to INTERVAL. The right-hand
|
||
piece (second, lexicographically) is returned.
|
||
|
||
The size and position fields of the two intervals are set based upon
|
||
those of the original interval. The property list of the new interval
|
||
is reset, thus it is up to the caller to do the right thing with the
|
||
result.
|
||
|
||
Note that this does not change the position of INTERVAL; if it is a root,
|
||
it is still a root after this operation. */
|
||
|
||
INTERVAL
|
||
split_interval_right (interval, offset)
|
||
INTERVAL interval;
|
||
int offset;
|
||
{
|
||
INTERVAL new = make_interval ();
|
||
int position = interval->position;
|
||
int new_length = LENGTH (interval) - offset + 1;
|
||
|
||
new->position = position + offset - 1;
|
||
new->parent = interval;
|
||
|
||
if (LEAF_INTERVAL_P (interval) || NULL_RIGHT_CHILD (interval))
|
||
{
|
||
interval->right = new;
|
||
new->total_length = new_length;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Insert the new node between INTERVAL and its right child. */
|
||
new->right = interval->right;
|
||
interval->right->parent = new;
|
||
interval->right = new;
|
||
|
||
new->total_length = new_length + new->right->total_length;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Split INTERVAL into two pieces, starting the second piece at character
|
||
position OFFSET (counting from 1), relative to INTERVAL. The left-hand
|
||
piece (first, lexicographically) is returned.
|
||
|
||
The size and position fields of the two intervals are set based upon
|
||
those of the original interval. The property list of the new interval
|
||
is reset, thus it is up to the caller to do the right thing with the
|
||
result.
|
||
|
||
Note that this does not change the position of INTERVAL; if it is a root,
|
||
it is still a root after this operation. */
|
||
|
||
INTERVAL
|
||
split_interval_left (interval, offset)
|
||
INTERVAL interval;
|
||
int offset;
|
||
{
|
||
INTERVAL new = make_interval ();
|
||
int position = interval->position;
|
||
int new_length = offset - 1;
|
||
|
||
new->position = interval->position;
|
||
interval->position = interval->position + offset - 1;
|
||
new->parent = interval;
|
||
|
||
if (NULL_LEFT_CHILD (interval))
|
||
{
|
||
interval->left = new;
|
||
new->total_length = new_length;
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Insert the new node between INTERVAL and its left child. */
|
||
new->left = interval->left;
|
||
new->left->parent = new;
|
||
interval->left = new;
|
||
new->total_length = new_length + LEFT_TOTAL_LENGTH (new);
|
||
|
||
return new;
|
||
}
|
||
|
||
/* Find the interval containing text position POSITION in the text
|
||
represented by the interval tree TREE. POSITION is relative to
|
||
the beginning of that text.
|
||
|
||
The `position' field, which is a cache of an interval's position,
|
||
is updated in the interval found. Other functions (e.g., next_interval)
|
||
will update this cache based on the result of find_interval. */
|
||
|
||
INLINE INTERVAL
|
||
find_interval (tree, position)
|
||
register INTERVAL tree;
|
||
register int position;
|
||
{
|
||
register int relative_position = position;
|
||
|
||
if (NULL_INTERVAL_P (tree))
|
||
return NULL_INTERVAL;
|
||
|
||
if (position > TOTAL_LENGTH (tree))
|
||
abort (); /* Paranoia */
|
||
#if 0
|
||
position = TOTAL_LENGTH (tree);
|
||
#endif
|
||
|
||
while (1)
|
||
{
|
||
if (relative_position <= LEFT_TOTAL_LENGTH (tree))
|
||
{
|
||
tree = tree->left;
|
||
}
|
||
else if (relative_position > (TOTAL_LENGTH (tree)
|
||
- RIGHT_TOTAL_LENGTH (tree)))
|
||
{
|
||
relative_position -= (TOTAL_LENGTH (tree)
|
||
- RIGHT_TOTAL_LENGTH (tree));
|
||
tree = tree->right;
|
||
}
|
||
else
|
||
{
|
||
tree->position = LEFT_TOTAL_LENGTH (tree)
|
||
+ position - relative_position + 1;
|
||
return tree;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Find the succeeding interval (lexicographically) to INTERVAL.
|
||
Sets the `position' field based on that of INTERVAL (see
|
||
find_interval). */
|
||
|
||
INTERVAL
|
||
next_interval (interval)
|
||
register INTERVAL interval;
|
||
{
|
||
register INTERVAL i = interval;
|
||
register int next_position;
|
||
|
||
if (NULL_INTERVAL_P (i))
|
||
return NULL_INTERVAL;
|
||
next_position = interval->position + LENGTH (interval);
|
||
|
||
if (! NULL_RIGHT_CHILD (i))
|
||
{
|
||
i = i->right;
|
||
while (! NULL_LEFT_CHILD (i))
|
||
i = i->left;
|
||
|
||
i->position = next_position;
|
||
return i;
|
||
}
|
||
|
||
while (! NULL_PARENT (i))
|
||
{
|
||
if (AM_LEFT_CHILD (i))
|
||
{
|
||
i = i->parent;
|
||
i->position = next_position;
|
||
return i;
|
||
}
|
||
|
||
i = i->parent;
|
||
}
|
||
|
||
return NULL_INTERVAL;
|
||
}
|
||
|
||
/* Find the preceding interval (lexicographically) to INTERVAL.
|
||
Sets the `position' field based on that of INTERVAL (see
|
||
find_interval). */
|
||
|
||
INTERVAL
|
||
previous_interval (interval)
|
||
register INTERVAL interval;
|
||
{
|
||
register INTERVAL i;
|
||
register position_of_previous;
|
||
|
||
if (NULL_INTERVAL_P (interval))
|
||
return NULL_INTERVAL;
|
||
|
||
if (! NULL_LEFT_CHILD (interval))
|
||
{
|
||
i = interval->left;
|
||
while (! NULL_RIGHT_CHILD (i))
|
||
i = i->right;
|
||
|
||
i->position = interval->position - LENGTH (i);
|
||
return i;
|
||
}
|
||
|
||
i = interval;
|
||
while (! NULL_PARENT (i))
|
||
{
|
||
if (AM_RIGHT_CHILD (i))
|
||
{
|
||
i = i->parent;
|
||
|
||
i->position = interval->position - LENGTH (i);
|
||
return i;
|
||
}
|
||
i = i->parent;
|
||
}
|
||
|
||
return NULL_INTERVAL;
|
||
}
|
||
|
||
#if 0
|
||
/* Traverse a path down the interval tree TREE to the interval
|
||
containing POSITION, adjusting all nodes on the path for
|
||
an addition of LENGTH characters. Insertion between two intervals
|
||
(i.e., point == i->position, where i is second interval) means
|
||
text goes into second interval.
|
||
|
||
Modifications are needed to handle the hungry bits -- after simply
|
||
finding the interval at position (don't add length going down),
|
||
if it's the beginning of the interval, get the previous interval
|
||
and check the hugry bits of both. Then add the length going back up
|
||
to the root. */
|
||
|
||
static INTERVAL
|
||
adjust_intervals_for_insertion (tree, position, length)
|
||
INTERVAL tree;
|
||
int position, length;
|
||
{
|
||
register int relative_position;
|
||
register INTERVAL this;
|
||
|
||
if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
|
||
abort ();
|
||
|
||
/* If inserting at point-max of a buffer, that position
|
||
will be out of range */
|
||
if (position > TOTAL_LENGTH (tree))
|
||
position = TOTAL_LENGTH (tree);
|
||
relative_position = position;
|
||
this = tree;
|
||
|
||
while (1)
|
||
{
|
||
if (relative_position <= LEFT_TOTAL_LENGTH (this))
|
||
{
|
||
this->total_length += length;
|
||
this = this->left;
|
||
}
|
||
else if (relative_position > (TOTAL_LENGTH (this)
|
||
- RIGHT_TOTAL_LENGTH (this)))
|
||
{
|
||
relative_position -= (TOTAL_LENGTH (this)
|
||
- RIGHT_TOTAL_LENGTH (this));
|
||
this->total_length += length;
|
||
this = this->right;
|
||
}
|
||
else
|
||
{
|
||
/* If we are to use zero-length intervals as buffer pointers,
|
||
then this code will have to change. */
|
||
this->total_length += length;
|
||
this->position = LEFT_TOTAL_LENGTH (this)
|
||
+ position - relative_position + 1;
|
||
return tree;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Effect an adjustment corresponding to the addition of LENGTH characters
|
||
of text. Do this by finding the interval containing POSITION in the
|
||
interval tree TREE, and then adjusting all of it's ancestors by adding
|
||
LENGTH to them.
|
||
|
||
If POSITION is the first character of an interval, meaning that point
|
||
is actually between the two intervals, make the new text belong to
|
||
the interval which is "sticky".
|
||
|
||
If both intervals are "sticky", then make them belong to the left-most
|
||
interval. Another possibility would be to create a new interval for
|
||
this text, and make it have the merged properties of both ends. */
|
||
|
||
static INTERVAL
|
||
adjust_intervals_for_insertion (tree, position, length)
|
||
INTERVAL tree;
|
||
int position, length;
|
||
{
|
||
register INTERVAL i;
|
||
|
||
if (TOTAL_LENGTH (tree) == 0) /* Paranoia */
|
||
abort ();
|
||
|
||
/* If inserting at point-max of a buffer, that position
|
||
will be out of range. */
|
||
if (position > TOTAL_LENGTH (tree))
|
||
position = TOTAL_LENGTH (tree);
|
||
|
||
i = find_interval (tree, position);
|
||
/* If we are positioned between intervals, check the stickiness of
|
||
both of them. */
|
||
if (position == i->position
|
||
&& position != 1)
|
||
{
|
||
register INTERVAL prev = previous_interval (i);
|
||
|
||
/* If both intervals are sticky here, then default to the
|
||
left-most one. But perhaps we should create a new
|
||
interval here instead... */
|
||
if (END_STICKY_P (prev) || ! FRONT_STICKY_P (i))
|
||
i = prev;
|
||
}
|
||
|
||
while (! NULL_INTERVAL_P (i))
|
||
{
|
||
i->total_length += length;
|
||
i = i->parent;
|
||
}
|
||
|
||
return tree;
|
||
}
|
||
|
||
/* Delete an node I from its interval tree by merging its subtrees
|
||
into one subtree which is then returned. Caller is responsible for
|
||
storing the resulting subtree into its parent. */
|
||
|
||
static INTERVAL
|
||
delete_node (i)
|
||
register INTERVAL i;
|
||
{
|
||
register INTERVAL migrate, this;
|
||
register int migrate_amt;
|
||
|
||
if (NULL_INTERVAL_P (i->left))
|
||
return i->right;
|
||
if (NULL_INTERVAL_P (i->right))
|
||
return i->left;
|
||
|
||
migrate = i->left;
|
||
migrate_amt = i->left->total_length;
|
||
this = i->right;
|
||
this->total_length += migrate_amt;
|
||
while (! NULL_INTERVAL_P (this->left))
|
||
{
|
||
this = this->left;
|
||
this->total_length += migrate_amt;
|
||
}
|
||
this->left = migrate;
|
||
migrate->parent = this;
|
||
|
||
return i->right;
|
||
}
|
||
|
||
/* Delete interval I from its tree by calling `delete_node'
|
||
and properly connecting the resultant subtree.
|
||
|
||
I is presumed to be empty; that is, no adjustments are made
|
||
for the length of I. */
|
||
|
||
void
|
||
delete_interval (i)
|
||
register INTERVAL i;
|
||
{
|
||
register INTERVAL parent;
|
||
int amt = LENGTH (i);
|
||
|
||
if (amt > 0) /* Only used on zero-length intervals now. */
|
||
abort ();
|
||
|
||
if (ROOT_INTERVAL_P (i))
|
||
{
|
||
Lisp_Object owner = (Lisp_Object) i->parent;
|
||
parent = delete_node (i);
|
||
if (! NULL_INTERVAL_P (parent))
|
||
parent->parent = (INTERVAL) owner;
|
||
|
||
if (XTYPE (owner) == Lisp_Buffer)
|
||
XBUFFER (owner)->intervals = parent;
|
||
else if (XTYPE (owner) == Lisp_String)
|
||
XSTRING (owner)->intervals = parent;
|
||
else
|
||
abort ();
|
||
|
||
return;
|
||
}
|
||
|
||
parent = i->parent;
|
||
if (AM_LEFT_CHILD (i))
|
||
{
|
||
parent->left = delete_node (i);
|
||
if (! NULL_INTERVAL_P (parent->left))
|
||
parent->left->parent = parent;
|
||
}
|
||
else
|
||
{
|
||
parent->right = delete_node (i);
|
||
if (! NULL_INTERVAL_P (parent->right))
|
||
parent->right->parent = parent;
|
||
}
|
||
}
|
||
|
||
/* Find the interval in TREE corresponding to the character position FROM
|
||
and delete as much as possible of AMOUNT from that interval, starting
|
||
after the relative position of FROM within it. Return the amount
|
||
actually deleted, and if the interval was zeroed-out, delete that
|
||
interval node from the tree.
|
||
|
||
Do this by recursing down TREE to the interval in question, and
|
||
deleting the appropriate amount of text. */
|
||
|
||
static int
|
||
interval_deletion_adjustment (tree, from, amount)
|
||
register INTERVAL tree;
|
||
register int from, amount;
|
||
{
|
||
register int relative_position = from;
|
||
|
||
if (NULL_INTERVAL_P (tree))
|
||
return 0;
|
||
|
||
/* Left branch */
|
||
if (relative_position <= LEFT_TOTAL_LENGTH (tree))
|
||
{
|
||
int subtract = interval_deletion_adjustment (tree->left,
|
||
relative_position,
|
||
amount);
|
||
tree->total_length -= subtract;
|
||
return subtract;
|
||
}
|
||
/* Right branch */
|
||
else if (relative_position > (TOTAL_LENGTH (tree)
|
||
- RIGHT_TOTAL_LENGTH (tree)))
|
||
{
|
||
int subtract;
|
||
|
||
relative_position -= (tree->total_length
|
||
- RIGHT_TOTAL_LENGTH (tree));
|
||
subtract = interval_deletion_adjustment (tree->right,
|
||
relative_position,
|
||
amount);
|
||
tree->total_length -= subtract;
|
||
return subtract;
|
||
}
|
||
/* Here -- this node */
|
||
else
|
||
{
|
||
/* If this is a zero-length, marker interval, then
|
||
we must skip it. */
|
||
|
||
if (relative_position == LEFT_TOTAL_LENGTH (tree) + 1)
|
||
{
|
||
/* This means we're deleting from the beginning of this interval. */
|
||
register int my_amount = LENGTH (tree);
|
||
|
||
if (amount < my_amount)
|
||
{
|
||
tree->total_length -= amount;
|
||
return amount;
|
||
}
|
||
else
|
||
{
|
||
tree->total_length -= my_amount;
|
||
if (LENGTH (tree) != 0)
|
||
abort (); /* Paranoia */
|
||
|
||
delete_interval (tree);
|
||
return my_amount;
|
||
}
|
||
}
|
||
else /* Deleting starting in the middle. */
|
||
{
|
||
register int my_amount = ((tree->total_length
|
||
- RIGHT_TOTAL_LENGTH (tree))
|
||
- relative_position + 1);
|
||
|
||
if (amount <= my_amount)
|
||
{
|
||
tree->total_length -= amount;
|
||
return amount;
|
||
}
|
||
else
|
||
{
|
||
tree->total_length -= my_amount;
|
||
return my_amount;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Never reach here */
|
||
}
|
||
|
||
/* Effect the adjustments necessary to the interval tree of BUFFER
|
||
to correspond to the deletion of LENGTH characters from that buffer
|
||
text. The deletion is effected at position START (relative to the
|
||
buffer). */
|
||
|
||
static void
|
||
adjust_intervals_for_deletion (buffer, start, length)
|
||
struct buffer *buffer;
|
||
int start, length;
|
||
{
|
||
register int left_to_delete = length;
|
||
register INTERVAL tree = buffer->intervals;
|
||
register int deleted;
|
||
|
||
if (NULL_INTERVAL_P (tree))
|
||
return;
|
||
|
||
if (length == TOTAL_LENGTH (tree))
|
||
{
|
||
buffer->intervals = NULL_INTERVAL;
|
||
return;
|
||
}
|
||
|
||
if (ONLY_INTERVAL_P (tree))
|
||
{
|
||
tree->total_length -= length;
|
||
return;
|
||
}
|
||
|
||
if (start > TOTAL_LENGTH (tree))
|
||
start = TOTAL_LENGTH (tree);
|
||
while (left_to_delete > 0)
|
||
{
|
||
left_to_delete -= interval_deletion_adjustment (tree, start,
|
||
left_to_delete);
|
||
tree = buffer->intervals;
|
||
if (left_to_delete == tree->total_length)
|
||
{
|
||
buffer->intervals = NULL_INTERVAL;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Make the adjustments necessary to the interval tree of BUFFER to
|
||
represent an addition or deletion of LENGTH characters starting
|
||
at position START. Addition or deletion is indicated by the sign
|
||
of LENGTH. */
|
||
|
||
INLINE void
|
||
offset_intervals (buffer, start, length)
|
||
struct buffer *buffer;
|
||
int start, length;
|
||
{
|
||
if (NULL_INTERVAL_P (buffer->intervals) || length == 0)
|
||
return;
|
||
|
||
if (length > 0)
|
||
adjust_intervals_for_insertion (buffer->intervals, start, length);
|
||
else
|
||
adjust_intervals_for_deletion (buffer, start, -length);
|
||
}
|
||
|
||
/* Merge interval I with its lexicographic successor. The resulting
|
||
interval is returned, and has the properties of the original
|
||
successor. The properties of I are lost. I is removed from the
|
||
interval tree.
|
||
|
||
IMPORTANT:
|
||
The caller must verify that this is not the last (rightmost)
|
||
interval. */
|
||
|
||
INTERVAL
|
||
merge_interval_right (i)
|
||
register INTERVAL i;
|
||
{
|
||
register int absorb = LENGTH (i);
|
||
register INTERVAL successor;
|
||
|
||
/* Zero out this interval. */
|
||
i->total_length -= absorb;
|
||
|
||
/* Find the succeeding interval. */
|
||
if (! NULL_RIGHT_CHILD (i)) /* It's below us. Add absorb
|
||
as we descend. */
|
||
{
|
||
successor = i->right;
|
||
while (! NULL_LEFT_CHILD (successor))
|
||
{
|
||
successor->total_length += absorb;
|
||
successor = successor->left;
|
||
}
|
||
|
||
successor->total_length += absorb;
|
||
delete_interval (i);
|
||
return successor;
|
||
}
|
||
|
||
successor = i;
|
||
while (! NULL_PARENT (successor)) /* It's above us. Subtract as
|
||
we ascend. */
|
||
{
|
||
if (AM_LEFT_CHILD (successor))
|
||
{
|
||
successor = successor->parent;
|
||
delete_interval (i);
|
||
return successor;
|
||
}
|
||
|
||
successor = successor->parent;
|
||
successor->total_length -= absorb;
|
||
}
|
||
|
||
/* This must be the rightmost or last interval and cannot
|
||
be merged right. The caller should have known. */
|
||
abort ();
|
||
}
|
||
|
||
/* Merge interval I with its lexicographic predecessor. The resulting
|
||
interval is returned, and has the properties of the original predecessor.
|
||
The properties of I are lost. Interval node I is removed from the tree.
|
||
|
||
IMPORTANT:
|
||
The caller must verify that this is not the first (leftmost) interval. */
|
||
|
||
INTERVAL
|
||
merge_interval_left (i)
|
||
register INTERVAL i;
|
||
{
|
||
register int absorb = LENGTH (i);
|
||
register INTERVAL predecessor;
|
||
|
||
/* Zero out this interval. */
|
||
i->total_length -= absorb;
|
||
|
||
/* Find the preceding interval. */
|
||
if (! NULL_LEFT_CHILD (i)) /* It's below us. Go down,
|
||
adding ABSORB as we go. */
|
||
{
|
||
predecessor = i->left;
|
||
while (! NULL_RIGHT_CHILD (predecessor))
|
||
{
|
||
predecessor->total_length += absorb;
|
||
predecessor = predecessor->right;
|
||
}
|
||
|
||
predecessor->total_length += absorb;
|
||
delete_interval (i);
|
||
return predecessor;
|
||
}
|
||
|
||
predecessor = i;
|
||
while (! NULL_PARENT (predecessor)) /* It's above us. Go up,
|
||
subtracting ABSORB. */
|
||
{
|
||
if (AM_RIGHT_CHILD (predecessor))
|
||
{
|
||
predecessor = predecessor->parent;
|
||
delete_interval (i);
|
||
return predecessor;
|
||
}
|
||
|
||
predecessor = predecessor->parent;
|
||
predecessor->total_length -= absorb;
|
||
}
|
||
|
||
/* This must be the leftmost or first interval and cannot
|
||
be merged left. The caller should have known. */
|
||
abort ();
|
||
}
|
||
|
||
/* Make an exact copy of interval tree SOURCE which descends from
|
||
PARENT. This is done by recursing through SOURCE, copying
|
||
the current interval and its properties, and then adjusting
|
||
the pointers of the copy. */
|
||
|
||
static INTERVAL
|
||
reproduce_tree (source, parent)
|
||
INTERVAL source, parent;
|
||
{
|
||
register INTERVAL t = make_interval ();
|
||
|
||
bcopy (source, t, INTERVAL_SIZE);
|
||
copy_properties (source, t);
|
||
t->parent = parent;
|
||
if (! NULL_LEFT_CHILD (source))
|
||
t->left = reproduce_tree (source->left, t);
|
||
if (! NULL_RIGHT_CHILD (source))
|
||
t->right = reproduce_tree (source->right, t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Make a new interval of length LENGTH starting at START in the
|
||
group of intervals INTERVALS, which is actually an interval tree.
|
||
Returns the new interval.
|
||
|
||
Generate an error if the new positions would overlap an existing
|
||
interval. */
|
||
|
||
static INTERVAL
|
||
make_new_interval (intervals, start, length)
|
||
INTERVAL intervals;
|
||
int start, length;
|
||
{
|
||
INTERVAL slot;
|
||
|
||
slot = find_interval (intervals, start);
|
||
if (start + length > slot->position + LENGTH (slot))
|
||
error ("Interval would overlap");
|
||
|
||
if (start == slot->position && length == LENGTH (slot))
|
||
return slot;
|
||
|
||
if (slot->position == start)
|
||
{
|
||
/* New right node. */
|
||
split_interval_right (slot, length + 1);
|
||
return slot;
|
||
}
|
||
|
||
if (slot->position + LENGTH (slot) == start + length)
|
||
{
|
||
/* New left node. */
|
||
split_interval_left (slot, LENGTH (slot) - length + 1);
|
||
return slot;
|
||
}
|
||
|
||
/* Convert interval SLOT into three intervals. */
|
||
split_interval_left (slot, start - slot->position + 1);
|
||
split_interval_right (slot, length + 1);
|
||
return slot;
|
||
}
|
||
|
||
/* Insert the intervals of SOURCE into BUFFER at POSITION.
|
||
|
||
This is used in insdel.c when inserting Lisp_Strings into
|
||
the buffer. The text corresponding to SOURCE is already in
|
||
the buffer when this is called. The intervals of new tree are
|
||
those belonging to the string being inserted; a copy is not made.
|
||
|
||
If the inserted text had no intervals associated, this function
|
||
simply returns -- offset_intervals should handle placing the
|
||
text in the correct interval, depending on the sticky bits.
|
||
|
||
If the inserted text had properties (intervals), then there are two
|
||
cases -- either insertion happened in the middle of some interval,
|
||
or between two intervals.
|
||
|
||
If the text goes into the middle of an interval, then new
|
||
intervals are created in the middle with only the properties of
|
||
the new text, *unless* the macro MERGE_INSERTIONS is true, in
|
||
which case the new text has the union of its properties and those
|
||
of the text into which it was inserted.
|
||
|
||
If the text goes between two intervals, then if neither interval
|
||
had its appropriate sticky property set (front_sticky, rear_sticky),
|
||
the new text has only its properties. If one of the sticky properties
|
||
is set, then the new text "sticks" to that region and its properties
|
||
depend on merging as above. If both the preceding and succeeding
|
||
intervals to the new text are "sticky", then the new text retains
|
||
only its properties, as if neither sticky property were set. Perhaps
|
||
we should consider merging all three sets of properties onto the new
|
||
text... */
|
||
|
||
void
|
||
graft_intervals_into_buffer (source, position, buffer)
|
||
INTERVAL source;
|
||
int position;
|
||
struct buffer *buffer;
|
||
{
|
||
register INTERVAL under, over, this, prev;
|
||
register INTERVAL tree = buffer->intervals;
|
||
int middle;
|
||
|
||
/* If the new text has no properties, it becomes part of whatever
|
||
interval it was inserted into. */
|
||
if (NULL_INTERVAL_P (source))
|
||
return;
|
||
|
||
if (NULL_INTERVAL_P (tree))
|
||
{
|
||
/* The inserted text constitutes the whole buffer, so
|
||
simply copy over the interval structure. */
|
||
if (BUF_Z (buffer) == TOTAL_LENGTH (source))
|
||
{
|
||
buffer->intervals = reproduce_tree (source, tree->parent);
|
||
/* Explicitly free the old tree here. */
|
||
|
||
return;
|
||
}
|
||
|
||
/* Create an interval tree in which to place a copy
|
||
of the intervals of the inserted string. */
|
||
{
|
||
Lisp_Object buf;
|
||
XSET (buf, Lisp_Buffer, buffer);
|
||
tree = create_root_interval (buf);
|
||
}
|
||
}
|
||
else
|
||
if (TOTAL_LENGTH (tree) == TOTAL_LENGTH (source))
|
||
/* If the buffer contains only the new string, but
|
||
there was already some interval tree there, then it may be
|
||
some zero length intervals. Eventually, do something clever
|
||
about inserting properly. For now, just waste the old intervals. */
|
||
{
|
||
buffer->intervals = reproduce_tree (source, tree->parent);
|
||
/* Explicitly free the old tree here. */
|
||
|
||
return;
|
||
}
|
||
else
|
||
/* Paranoia -- the text has already been added, so this buffer
|
||
should be of non-zero length. */
|
||
if (TOTAL_LENGTH (tree) == 0)
|
||
abort ();
|
||
|
||
this = under = find_interval (tree, position);
|
||
if (NULL_INTERVAL_P (under)) /* Paranoia */
|
||
abort ();
|
||
over = find_interval (source, 1);
|
||
|
||
/* Here for insertion in the middle of an interval.
|
||
Split off an equivalent interval to the right,
|
||
then don't bother with it any more. */
|
||
|
||
if (position > under->position)
|
||
{
|
||
INTERVAL end_unchanged
|
||
= split_interval_left (this, position - under->position + 1);
|
||
copy_properties (under, end_unchanged);
|
||
under->position = position;
|
||
prev = 0;
|
||
middle = 1;
|
||
}
|
||
else
|
||
{
|
||
prev = previous_interval (under);
|
||
if (prev && !END_STICKY_P (prev))
|
||
prev = 0;
|
||
}
|
||
|
||
/* Insertion is now at beginning of UNDER. */
|
||
|
||
/* The inserted text "sticks" to the interval `under',
|
||
which means it gets those properties. */
|
||
while (! NULL_INTERVAL_P (over))
|
||
{
|
||
position = LENGTH (over) + 1;
|
||
if (position < LENGTH (under))
|
||
this = split_interval_left (under, position);
|
||
else
|
||
this = under;
|
||
copy_properties (over, this);
|
||
/* Insertion at the end of an interval, PREV,
|
||
inherits from PREV if PREV is sticky at the end. */
|
||
if (prev && ! FRONT_STICKY_P (under)
|
||
&& MERGE_INSERTIONS (prev))
|
||
merge_properties (prev, this);
|
||
/* Maybe it inherits from the following interval
|
||
if that is sticky at the front. */
|
||
else if ((FRONT_STICKY_P (under) || middle)
|
||
&& MERGE_INSERTIONS (under))
|
||
merge_properties (under, this);
|
||
over = next_interval (over);
|
||
}
|
||
|
||
buffer->intervals = balance_intervals (buffer->intervals);
|
||
return;
|
||
}
|
||
|
||
/* Get the value of property PROP from PLIST,
|
||
which is the plist of an interval.
|
||
We check for direct properties and for categories with property PROP. */
|
||
|
||
Lisp_Object
|
||
textget (plist, prop)
|
||
Lisp_Object plist;
|
||
register Lisp_Object prop;
|
||
{
|
||
register Lisp_Object tail, fallback;
|
||
fallback = Qnil;
|
||
|
||
for (tail = plist; !NILP (tail); tail = Fcdr (Fcdr (tail)))
|
||
{
|
||
register Lisp_Object tem;
|
||
tem = Fcar (tail);
|
||
if (EQ (prop, tem))
|
||
return Fcar (Fcdr (tail));
|
||
if (EQ (tem, Qcategory))
|
||
fallback = Fget (Fcar (Fcdr (tail)), prop);
|
||
}
|
||
|
||
return fallback;
|
||
}
|
||
|
||
/* Set point in BUFFER to POSITION. If the target position is
|
||
before an invisible character which is not displayed with a special glyph,
|
||
move back to an ok place to display. */
|
||
|
||
void
|
||
set_point (position, buffer)
|
||
register int position;
|
||
register struct buffer *buffer;
|
||
{
|
||
register INTERVAL to, from, toprev, fromprev, target;
|
||
register int iposition = position;
|
||
int buffer_point;
|
||
register Lisp_Object obj;
|
||
int backwards = (position < BUF_PT (buffer)) ? 1 : 0;
|
||
int old_position = buffer->text.pt;
|
||
|
||
if (position == buffer->text.pt)
|
||
return;
|
||
|
||
/* Check this now, before checking if the buffer has any intervals.
|
||
That way, we can catch conditions which break this sanity check
|
||
whether or not there are intervals in the buffer. */
|
||
if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
|
||
abort ();
|
||
|
||
if (NULL_INTERVAL_P (buffer->intervals))
|
||
{
|
||
buffer->text.pt = position;
|
||
return;
|
||
}
|
||
|
||
/* Position Z is really one past the last char in the buffer. */
|
||
if (position == BUF_ZV (buffer))
|
||
iposition = position - 1;
|
||
|
||
/* Set TO to the interval containing the char after POSITION,
|
||
and TOPREV to the interval containing the char before POSITION.
|
||
Either one may be null. They may be equal. */
|
||
to = find_interval (buffer->intervals, iposition);
|
||
if (position == BUF_BEGV (buffer))
|
||
toprev = 0;
|
||
else if (to->position == position)
|
||
toprev = previous_interval (to);
|
||
else if (iposition != position)
|
||
toprev = to, to = 0;
|
||
else
|
||
toprev = to;
|
||
|
||
buffer_point = (BUF_PT (buffer) == BUF_ZV (buffer)
|
||
? BUF_ZV (buffer) - 1
|
||
: BUF_PT (buffer));
|
||
|
||
/* Set FROM to the interval containing the char after PT,
|
||
and FROMPREV to the interval containing the char before PT.
|
||
Either one may be null. They may be equal. */
|
||
/* We could cache this and save time. */
|
||
from = find_interval (buffer->intervals, buffer_point);
|
||
if (from->position == BUF_BEGV (buffer))
|
||
fromprev = 0;
|
||
else if (from->position == BUF_PT (buffer))
|
||
fromprev = previous_interval (from);
|
||
else if (buffer_point != BUF_PT (buffer))
|
||
fromprev = from, from = 0;
|
||
else
|
||
fromprev = from;
|
||
|
||
/* Moving within an interval */
|
||
if (to == from && toprev == fromprev && INTERVAL_VISIBLE_P (to))
|
||
{
|
||
buffer->text.pt = position;
|
||
return;
|
||
}
|
||
|
||
/* If the new position is before an invisible character,
|
||
move forward over all such. */
|
||
while (! NULL_INTERVAL_P (to)
|
||
&& ! INTERVAL_VISIBLE_P (to)
|
||
&& ! DISPLAY_INVISIBLE_GLYPH (to))
|
||
{
|
||
toprev = to;
|
||
to = next_interval (to);
|
||
if (NULL_INTERVAL_P (to))
|
||
position = BUF_ZV (buffer);
|
||
else
|
||
position = to->position;
|
||
}
|
||
|
||
buffer->text.pt = position;
|
||
|
||
/* We run point-left and point-entered hooks here, iff the
|
||
two intervals are not equivalent. These hooks take
|
||
(old_point, new_point) as arguments. */
|
||
if (! intervals_equal (from, to)
|
||
|| ! intervals_equal (fromprev, toprev))
|
||
{
|
||
Lisp_Object leave_after, leave_before, enter_after, enter_before;
|
||
|
||
if (fromprev)
|
||
leave_after = textget (fromprev->plist, Qpoint_left);
|
||
else
|
||
leave_after = Qnil;
|
||
if (from)
|
||
leave_before = textget (from->plist, Qpoint_left);
|
||
else
|
||
leave_before = Qnil;
|
||
|
||
if (toprev)
|
||
enter_after = textget (toprev->plist, Qpoint_entered);
|
||
else
|
||
enter_after = Qnil;
|
||
if (to)
|
||
enter_before = textget (to->plist, Qpoint_entered);
|
||
else
|
||
enter_before = Qnil;
|
||
|
||
if (! EQ (leave_before, enter_before) && !NILP (leave_before))
|
||
call2 (leave_before, old_position, position);
|
||
if (! EQ (leave_after, enter_after) && !NILP (leave_after))
|
||
call2 (leave_after, old_position, position);
|
||
|
||
if (! EQ (enter_before, leave_before) && !NILP (enter_before))
|
||
call2 (enter_before, old_position, position);
|
||
if (! EQ (enter_after, leave_after) && !NILP (enter_after))
|
||
call2 (enter_after, old_position, position);
|
||
}
|
||
}
|
||
|
||
/* Set point temporarily, without checking any text properties. */
|
||
|
||
INLINE void
|
||
temp_set_point (position, buffer)
|
||
int position;
|
||
struct buffer *buffer;
|
||
{
|
||
buffer->text.pt = position;
|
||
}
|
||
|
||
/* Return the proper local map for position POSITION in BUFFER.
|
||
Use the map specified by the local-map property, if any.
|
||
Otherwise, use BUFFER's local map. */
|
||
|
||
Lisp_Object
|
||
get_local_map (position, buffer)
|
||
register int position;
|
||
register struct buffer *buffer;
|
||
{
|
||
register INTERVAL interval;
|
||
Lisp_Object prop, tem;
|
||
|
||
if (NULL_INTERVAL_P (buffer->intervals))
|
||
return current_buffer->keymap;
|
||
|
||
/* Perhaps we should just change `position' to the limit. */
|
||
if (position > BUF_Z (buffer) || position < BUF_BEG (buffer))
|
||
abort ();
|
||
|
||
/* Position Z is really one past the last char in the buffer. */
|
||
if (position == BUF_ZV (buffer))
|
||
return current_buffer->keymap;
|
||
|
||
interval = find_interval (buffer->intervals, position);
|
||
prop = textget (interval->plist, Qlocal_map);
|
||
if (NILP (prop))
|
||
return current_buffer->keymap;
|
||
|
||
/* Use the local map only if it is valid. */
|
||
tem = Fkeymapp (prop);
|
||
if (!NILP (tem))
|
||
return prop;
|
||
|
||
return current_buffer->keymap;
|
||
}
|
||
|
||
/* Call the modification hook functions in LIST, each with START and END. */
|
||
|
||
static void
|
||
call_mod_hooks (list, start, end)
|
||
Lisp_Object list, start, end;
|
||
{
|
||
struct gcpro gcpro1;
|
||
GCPRO1 (list);
|
||
while (!NILP (list))
|
||
{
|
||
call2 (Fcar (list), start, end);
|
||
list = Fcdr (list);
|
||
}
|
||
UNGCPRO;
|
||
}
|
||
|
||
/* Check for read-only intervals and signal an error if we find one.
|
||
Then check for any modification hooks in the range START up to
|
||
(but not including) TO. Create a list of all these hooks in
|
||
lexicographic order, eliminating consecutive extra copies of the
|
||
same hook. Then call those hooks in order, with START and END - 1
|
||
as arguments. */
|
||
|
||
void
|
||
verify_interval_modification (buf, start, end)
|
||
struct buffer *buf;
|
||
int start, end;
|
||
{
|
||
register INTERVAL intervals = buf->intervals;
|
||
register INTERVAL i, prev;
|
||
Lisp_Object hooks;
|
||
register Lisp_Object prev_mod_hooks;
|
||
Lisp_Object mod_hooks;
|
||
struct gcpro gcpro1;
|
||
|
||
hooks = Qnil;
|
||
prev_mod_hooks = Qnil;
|
||
mod_hooks = Qnil;
|
||
|
||
if (NULL_INTERVAL_P (intervals))
|
||
return;
|
||
|
||
if (start > end)
|
||
{
|
||
int temp = start;
|
||
start = end;
|
||
end = temp;
|
||
}
|
||
|
||
/* For an insert operation, check the two chars around the position. */
|
||
if (start == end)
|
||
{
|
||
INTERVAL prev;
|
||
Lisp_Object before, after;
|
||
|
||
/* Set I to the interval containing the char after START,
|
||
and PREV to the interval containing the char before START.
|
||
Either one may be null. They may be equal. */
|
||
i = find_interval (intervals,
|
||
(start == BUF_ZV (buf) ? start - 1 : start));
|
||
|
||
if (start == BUF_BEGV (buf))
|
||
prev = 0;
|
||
if (i->position == start)
|
||
prev = previous_interval (i);
|
||
else if (i->position < start)
|
||
prev = i;
|
||
if (start == BUF_ZV (buf))
|
||
i = 0;
|
||
|
||
if (NULL_INTERVAL_P (prev))
|
||
{
|
||
after = textget (i->plist, Qread_only);
|
||
if (! NILP (after))
|
||
error ("Attempt to insert within read-only text");
|
||
}
|
||
else if (NULL_INTERVAL_P (i))
|
||
{
|
||
before = textget (prev->plist, Qread_only);
|
||
if (! NILP (before))
|
||
error ("Attempt to insert within read-only text");
|
||
}
|
||
else
|
||
{
|
||
before = textget (prev->plist, Qread_only);
|
||
after = textget (i->plist, Qread_only);
|
||
if (! NILP (before) && EQ (before, after))
|
||
error ("Attempt to insert within read-only text");
|
||
}
|
||
|
||
/* Run both mod hooks (just once if they're the same). */
|
||
if (!NULL_INTERVAL_P (prev))
|
||
prev_mod_hooks = textget (prev->plist, Qmodification_hooks);
|
||
if (!NULL_INTERVAL_P (i))
|
||
mod_hooks = textget (i->plist, Qmodification_hooks);
|
||
GCPRO1 (mod_hooks);
|
||
if (! NILP (prev_mod_hooks))
|
||
call_mod_hooks (prev_mod_hooks, make_number (start),
|
||
make_number (end));
|
||
UNGCPRO;
|
||
if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
|
||
call_mod_hooks (mod_hooks, make_number (start), make_number (end));
|
||
}
|
||
else
|
||
{
|
||
/* Loop over intervals on or next to START...END,
|
||
collecting their hooks. */
|
||
|
||
i = find_interval (intervals, start);
|
||
do
|
||
{
|
||
if (! INTERVAL_WRITABLE_P (i))
|
||
error ("Attempt to modify read-only text");
|
||
|
||
mod_hooks = textget (i->plist, Qmodification_hooks);
|
||
if (! NILP (mod_hooks) && ! EQ (mod_hooks, prev_mod_hooks))
|
||
{
|
||
hooks = Fcons (mod_hooks, hooks);
|
||
prev_mod_hooks = mod_hooks;
|
||
}
|
||
|
||
i = next_interval (i);
|
||
}
|
||
/* Keep going thru the interval containing the char before END. */
|
||
while (! NULL_INTERVAL_P (i) && i->position < end);
|
||
|
||
GCPRO1 (hooks);
|
||
hooks = Fnreverse (hooks);
|
||
while (! EQ (hooks, Qnil))
|
||
{
|
||
call_mod_hooks (Fcar (hooks), make_number (start),
|
||
make_number (end));
|
||
hooks = Fcdr (hooks);
|
||
}
|
||
UNGCPRO;
|
||
}
|
||
}
|
||
|
||
/* Balance an interval node if the amount of text in its left and right
|
||
subtrees differs by more than the percentage specified by
|
||
`interval-balance-threshold'. */
|
||
|
||
static INTERVAL
|
||
balance_an_interval (i)
|
||
INTERVAL i;
|
||
{
|
||
register int total_children_size = (LEFT_TOTAL_LENGTH (i)
|
||
+ RIGHT_TOTAL_LENGTH (i));
|
||
register int threshold = (XFASTINT (interval_balance_threshold)
|
||
* (total_children_size / 100));
|
||
|
||
/* Balance within each side. */
|
||
balance_intervals (i->left);
|
||
balance_intervals (i->right);
|
||
|
||
if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
|
||
&& (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
|
||
{
|
||
i = rotate_right (i);
|
||
/* If that made it unbalanced the other way, take it back. */
|
||
if (RIGHT_TOTAL_LENGTH (i) > LEFT_TOTAL_LENGTH (i)
|
||
&& (RIGHT_TOTAL_LENGTH (i) - LEFT_TOTAL_LENGTH (i)) > threshold)
|
||
return rotate_left (i);
|
||
return i;
|
||
}
|
||
|
||
if (RIGHT_TOTAL_LENGTH (i) > LEFT_TOTAL_LENGTH (i)
|
||
&& (RIGHT_TOTAL_LENGTH (i) - LEFT_TOTAL_LENGTH (i)) > threshold)
|
||
{
|
||
i = rotate_left (i);
|
||
if (LEFT_TOTAL_LENGTH (i) > RIGHT_TOTAL_LENGTH (i)
|
||
&& (LEFT_TOTAL_LENGTH (i) - RIGHT_TOTAL_LENGTH (i)) > threshold)
|
||
return rotate_right (i);
|
||
return i;
|
||
}
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Balance the interval tree TREE. Balancing is by weight
|
||
(the amount of text). */
|
||
|
||
INTERVAL
|
||
balance_intervals (tree)
|
||
register INTERVAL tree;
|
||
{
|
||
register INTERVAL new_tree;
|
||
|
||
if (NULL_INTERVAL_P (tree))
|
||
return NULL_INTERVAL;
|
||
|
||
new_tree = tree;
|
||
do
|
||
{
|
||
tree = new_tree;
|
||
new_tree = balance_an_interval (new_tree);
|
||
}
|
||
while (new_tree != tree);
|
||
|
||
return new_tree;
|
||
}
|
||
|
||
/* Produce an interval tree reflecting the intervals in
|
||
TREE from START to START + LENGTH. */
|
||
|
||
INTERVAL
|
||
copy_intervals (tree, start, length)
|
||
INTERVAL tree;
|
||
int start, length;
|
||
{
|
||
register INTERVAL i, new, t;
|
||
register int got, prevlen;
|
||
|
||
if (NULL_INTERVAL_P (tree) || length <= 0)
|
||
return NULL_INTERVAL;
|
||
|
||
i = find_interval (tree, start);
|
||
if (NULL_INTERVAL_P (i) || LENGTH (i) == 0)
|
||
abort ();
|
||
|
||
/* If there is only one interval and it's the default, return nil. */
|
||
if ((start - i->position + 1 + length) < LENGTH (i)
|
||
&& DEFAULT_INTERVAL_P (i))
|
||
return NULL_INTERVAL;
|
||
|
||
new = make_interval ();
|
||
new->position = 1;
|
||
got = (LENGTH (i) - (start - i->position));
|
||
new->total_length = length;
|
||
copy_properties (i, new);
|
||
|
||
t = new;
|
||
prevlen = got;
|
||
while (got < length)
|
||
{
|
||
i = next_interval (i);
|
||
t = split_interval_right (t, prevlen + 1);
|
||
copy_properties (i, t);
|
||
prevlen = LENGTH (i);
|
||
got += prevlen;
|
||
}
|
||
|
||
return balance_intervals (new);
|
||
}
|
||
|
||
/* Give STRING the properties of BUFFER from POSITION to LENGTH. */
|
||
|
||
INLINE void
|
||
copy_intervals_to_string (string, buffer, position, length)
|
||
Lisp_Object string, buffer;
|
||
int position, length;
|
||
{
|
||
INTERVAL interval_copy = copy_intervals (XBUFFER (buffer)->intervals,
|
||
position, length);
|
||
if (NULL_INTERVAL_P (interval_copy))
|
||
return;
|
||
|
||
interval_copy->parent = (INTERVAL) string;
|
||
XSTRING (string)->intervals = interval_copy;
|
||
}
|
||
|
||
#endif /* USE_TEXT_PROPERTIES */
|