mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-17 10:06:13 +00:00
1cee1e272f
(re_match_2_internal) <on_failure_jump, on_failure_jump_smart>: Don't check for quit, since any loop will go through fail or jump.
6503 lines
186 KiB
C
6503 lines
186 KiB
C
/* Extended regular expression matching and search library, version
|
||
0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
|
||
internationalization features.)
|
||
|
||
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
||
2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
||
USA. */
|
||
|
||
/* TODO:
|
||
- structure the opcode space into opcode+flag.
|
||
- merge with glibc's regex.[ch].
|
||
- replace (succeed_n + jump_n + set_number_at) with something that doesn't
|
||
need to modify the compiled regexp so that re_match can be reentrant.
|
||
- get rid of on_failure_jump_smart by doing the optimization in re_comp
|
||
rather than at run-time, so that re_match can be reentrant.
|
||
*/
|
||
|
||
/* AIX requires this to be the first thing in the file. */
|
||
#if defined _AIX && !defined REGEX_MALLOC
|
||
#pragma alloca
|
||
#endif
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#if defined STDC_HEADERS && !defined emacs
|
||
# include <stddef.h>
|
||
#else
|
||
/* We need this for `regex.h', and perhaps for the Emacs include files. */
|
||
# include <sys/types.h>
|
||
#endif
|
||
|
||
/* Whether to use ISO C Amendment 1 wide char functions.
|
||
Those should not be used for Emacs since it uses its own. */
|
||
#if defined _LIBC
|
||
#define WIDE_CHAR_SUPPORT 1
|
||
#else
|
||
#define WIDE_CHAR_SUPPORT \
|
||
(HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
|
||
#endif
|
||
|
||
/* For platform which support the ISO C amendement 1 functionality we
|
||
support user defined character classes. */
|
||
#if WIDE_CHAR_SUPPORT
|
||
/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
|
||
# include <wchar.h>
|
||
# include <wctype.h>
|
||
#endif
|
||
|
||
#ifdef _LIBC
|
||
/* We have to keep the namespace clean. */
|
||
# define regfree(preg) __regfree (preg)
|
||
# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
|
||
# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
|
||
# define regerror(errcode, preg, errbuf, errbuf_size) \
|
||
__regerror(errcode, preg, errbuf, errbuf_size)
|
||
# define re_set_registers(bu, re, nu, st, en) \
|
||
__re_set_registers (bu, re, nu, st, en)
|
||
# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
|
||
__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
|
||
# define re_match(bufp, string, size, pos, regs) \
|
||
__re_match (bufp, string, size, pos, regs)
|
||
# define re_search(bufp, string, size, startpos, range, regs) \
|
||
__re_search (bufp, string, size, startpos, range, regs)
|
||
# define re_compile_pattern(pattern, length, bufp) \
|
||
__re_compile_pattern (pattern, length, bufp)
|
||
# define re_set_syntax(syntax) __re_set_syntax (syntax)
|
||
# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
|
||
__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
|
||
# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
|
||
|
||
/* Make sure we call libc's function even if the user overrides them. */
|
||
# define btowc __btowc
|
||
# define iswctype __iswctype
|
||
# define wctype __wctype
|
||
|
||
# define WEAK_ALIAS(a,b) weak_alias (a, b)
|
||
|
||
/* We are also using some library internals. */
|
||
# include <locale/localeinfo.h>
|
||
# include <locale/elem-hash.h>
|
||
# include <langinfo.h>
|
||
#else
|
||
# define WEAK_ALIAS(a,b)
|
||
#endif
|
||
|
||
/* This is for other GNU distributions with internationalized messages. */
|
||
#if HAVE_LIBINTL_H || defined _LIBC
|
||
# include <libintl.h>
|
||
#else
|
||
# define gettext(msgid) (msgid)
|
||
#endif
|
||
|
||
#ifndef gettext_noop
|
||
/* This define is so xgettext can find the internationalizable
|
||
strings. */
|
||
# define gettext_noop(String) String
|
||
#endif
|
||
|
||
/* The `emacs' switch turns on certain matching commands
|
||
that make sense only in Emacs. */
|
||
#ifdef emacs
|
||
|
||
# include "lisp.h"
|
||
# include "buffer.h"
|
||
|
||
/* Make syntax table lookup grant data in gl_state. */
|
||
# define SYNTAX_ENTRY_VIA_PROPERTY
|
||
|
||
# include "syntax.h"
|
||
# include "charset.h"
|
||
# include "category.h"
|
||
|
||
# ifdef malloc
|
||
# undef malloc
|
||
# endif
|
||
# define malloc xmalloc
|
||
# ifdef realloc
|
||
# undef realloc
|
||
# endif
|
||
# define realloc xrealloc
|
||
# ifdef free
|
||
# undef free
|
||
# endif
|
||
# define free xfree
|
||
|
||
/* Converts the pointer to the char to BEG-based offset from the start. */
|
||
# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
|
||
# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
|
||
|
||
# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
|
||
# define RE_STRING_CHAR(p, s) \
|
||
(multibyte ? (STRING_CHAR (p, s)) : (*(p)))
|
||
# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
|
||
(multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
|
||
|
||
/* Set C a (possibly multibyte) character before P. P points into a
|
||
string which is the virtual concatenation of STR1 (which ends at
|
||
END1) or STR2 (which ends at END2). */
|
||
# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
|
||
do { \
|
||
if (multibyte) \
|
||
{ \
|
||
re_char *dtemp = (p) == (str2) ? (end1) : (p); \
|
||
re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
|
||
re_char *d0 = dtemp; \
|
||
PREV_CHAR_BOUNDARY (d0, dlimit); \
|
||
c = STRING_CHAR (d0, dtemp - d0); \
|
||
} \
|
||
else \
|
||
(c = ((p) == (str2) ? (end1) : (p))[-1]); \
|
||
} while (0)
|
||
|
||
|
||
#else /* not emacs */
|
||
|
||
/* If we are not linking with Emacs proper,
|
||
we can't use the relocating allocator
|
||
even if config.h says that we can. */
|
||
# undef REL_ALLOC
|
||
|
||
# if defined STDC_HEADERS || defined _LIBC
|
||
# include <stdlib.h>
|
||
# else
|
||
char *malloc ();
|
||
char *realloc ();
|
||
# endif
|
||
|
||
/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
|
||
If nothing else has been done, use the method below. */
|
||
# ifdef INHIBIT_STRING_HEADER
|
||
# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
|
||
# if !defined bzero && !defined bcopy
|
||
# undef INHIBIT_STRING_HEADER
|
||
# endif
|
||
# endif
|
||
# endif
|
||
|
||
/* This is the normal way of making sure we have memcpy, memcmp and bzero.
|
||
This is used in most programs--a few other programs avoid this
|
||
by defining INHIBIT_STRING_HEADER. */
|
||
# ifndef INHIBIT_STRING_HEADER
|
||
# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
|
||
# include <string.h>
|
||
# ifndef bzero
|
||
# ifndef _LIBC
|
||
# define bzero(s, n) (memset (s, '\0', n), (s))
|
||
# else
|
||
# define bzero(s, n) __bzero (s, n)
|
||
# endif
|
||
# endif
|
||
# else
|
||
# include <strings.h>
|
||
# ifndef memcmp
|
||
# define memcmp(s1, s2, n) bcmp (s1, s2, n)
|
||
# endif
|
||
# ifndef memcpy
|
||
# define memcpy(d, s, n) (bcopy (s, d, n), (d))
|
||
# endif
|
||
# endif
|
||
# endif
|
||
|
||
/* Define the syntax stuff for \<, \>, etc. */
|
||
|
||
/* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
|
||
enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
|
||
|
||
# ifdef SWITCH_ENUM_BUG
|
||
# define SWITCH_ENUM_CAST(x) ((int)(x))
|
||
# else
|
||
# define SWITCH_ENUM_CAST(x) (x)
|
||
# endif
|
||
|
||
/* Dummy macros for non-Emacs environments. */
|
||
# define BASE_LEADING_CODE_P(c) (0)
|
||
# define CHAR_CHARSET(c) 0
|
||
# define CHARSET_LEADING_CODE_BASE(c) 0
|
||
# define MAX_MULTIBYTE_LENGTH 1
|
||
# define RE_MULTIBYTE_P(x) 0
|
||
# define WORD_BOUNDARY_P(c1, c2) (0)
|
||
# define CHAR_HEAD_P(p) (1)
|
||
# define SINGLE_BYTE_CHAR_P(c) (1)
|
||
# define SAME_CHARSET_P(c1, c2) (1)
|
||
# define MULTIBYTE_FORM_LENGTH(p, s) (1)
|
||
# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
|
||
# define STRING_CHAR(p, s) (*(p))
|
||
# define RE_STRING_CHAR STRING_CHAR
|
||
# define CHAR_STRING(c, s) (*(s) = (c), 1)
|
||
# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
|
||
# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
|
||
# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
|
||
(c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
|
||
# define MAKE_CHAR(charset, c1, c2) (c1)
|
||
#endif /* not emacs */
|
||
|
||
#ifndef RE_TRANSLATE
|
||
# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
|
||
# define RE_TRANSLATE_P(TBL) (TBL)
|
||
#endif
|
||
|
||
/* Get the interface, including the syntax bits. */
|
||
#include "regex.h"
|
||
|
||
/* isalpha etc. are used for the character classes. */
|
||
#include <ctype.h>
|
||
|
||
#ifdef emacs
|
||
|
||
/* 1 if C is an ASCII character. */
|
||
# define IS_REAL_ASCII(c) ((c) < 0200)
|
||
|
||
/* 1 if C is a unibyte character. */
|
||
# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
|
||
|
||
/* The Emacs definitions should not be directly affected by locales. */
|
||
|
||
/* In Emacs, these are only used for single-byte characters. */
|
||
# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
|
||
# define ISCNTRL(c) ((c) < ' ')
|
||
# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
|
||
|| ((c) >= 'a' && (c) <= 'f') \
|
||
|| ((c) >= 'A' && (c) <= 'F'))
|
||
|
||
/* This is only used for single-byte characters. */
|
||
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
||
|
||
/* The rest must handle multibyte characters. */
|
||
|
||
# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
|
||
? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
|
||
: 1)
|
||
|
||
# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
|
||
? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
|
||
: 1)
|
||
|
||
# define ISALNUM(c) (IS_REAL_ASCII (c) \
|
||
? (((c) >= 'a' && (c) <= 'z') \
|
||
|| ((c) >= 'A' && (c) <= 'Z') \
|
||
|| ((c) >= '0' && (c) <= '9')) \
|
||
: SYNTAX (c) == Sword)
|
||
|
||
# define ISALPHA(c) (IS_REAL_ASCII (c) \
|
||
? (((c) >= 'a' && (c) <= 'z') \
|
||
|| ((c) >= 'A' && (c) <= 'Z')) \
|
||
: SYNTAX (c) == Sword)
|
||
|
||
# define ISLOWER(c) (LOWERCASEP (c))
|
||
|
||
# define ISPUNCT(c) (IS_REAL_ASCII (c) \
|
||
? ((c) > ' ' && (c) < 0177 \
|
||
&& !(((c) >= 'a' && (c) <= 'z') \
|
||
|| ((c) >= 'A' && (c) <= 'Z') \
|
||
|| ((c) >= '0' && (c) <= '9'))) \
|
||
: SYNTAX (c) != Sword)
|
||
|
||
# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
|
||
|
||
# define ISUPPER(c) (UPPERCASEP (c))
|
||
|
||
# define ISWORD(c) (SYNTAX (c) == Sword)
|
||
|
||
#else /* not emacs */
|
||
|
||
/* Jim Meyering writes:
|
||
|
||
"... Some ctype macros are valid only for character codes that
|
||
isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
|
||
using /bin/cc or gcc but without giving an ansi option). So, all
|
||
ctype uses should be through macros like ISPRINT... If
|
||
STDC_HEADERS is defined, then autoconf has verified that the ctype
|
||
macros don't need to be guarded with references to isascii. ...
|
||
Defining isascii to 1 should let any compiler worth its salt
|
||
eliminate the && through constant folding."
|
||
Solaris defines some of these symbols so we must undefine them first. */
|
||
|
||
# undef ISASCII
|
||
# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
|
||
# define ISASCII(c) 1
|
||
# else
|
||
# define ISASCII(c) isascii(c)
|
||
# endif
|
||
|
||
/* 1 if C is an ASCII character. */
|
||
# define IS_REAL_ASCII(c) ((c) < 0200)
|
||
|
||
/* This distinction is not meaningful, except in Emacs. */
|
||
# define ISUNIBYTE(c) 1
|
||
|
||
# ifdef isblank
|
||
# define ISBLANK(c) (ISASCII (c) && isblank (c))
|
||
# else
|
||
# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
|
||
# endif
|
||
# ifdef isgraph
|
||
# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
|
||
# else
|
||
# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
|
||
# endif
|
||
|
||
# undef ISPRINT
|
||
# define ISPRINT(c) (ISASCII (c) && isprint (c))
|
||
# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
|
||
# define ISALNUM(c) (ISASCII (c) && isalnum (c))
|
||
# define ISALPHA(c) (ISASCII (c) && isalpha (c))
|
||
# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
|
||
# define ISLOWER(c) (ISASCII (c) && islower (c))
|
||
# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
|
||
# define ISSPACE(c) (ISASCII (c) && isspace (c))
|
||
# define ISUPPER(c) (ISASCII (c) && isupper (c))
|
||
# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
|
||
|
||
# define ISWORD(c) ISALPHA(c)
|
||
|
||
# ifdef _tolower
|
||
# define TOLOWER(c) _tolower(c)
|
||
# else
|
||
# define TOLOWER(c) tolower(c)
|
||
# endif
|
||
|
||
/* How many characters in the character set. */
|
||
# define CHAR_SET_SIZE 256
|
||
|
||
# ifdef SYNTAX_TABLE
|
||
|
||
extern char *re_syntax_table;
|
||
|
||
# else /* not SYNTAX_TABLE */
|
||
|
||
static char re_syntax_table[CHAR_SET_SIZE];
|
||
|
||
static void
|
||
init_syntax_once ()
|
||
{
|
||
register int c;
|
||
static int done = 0;
|
||
|
||
if (done)
|
||
return;
|
||
|
||
bzero (re_syntax_table, sizeof re_syntax_table);
|
||
|
||
for (c = 0; c < CHAR_SET_SIZE; ++c)
|
||
if (ISALNUM (c))
|
||
re_syntax_table[c] = Sword;
|
||
|
||
re_syntax_table['_'] = Ssymbol;
|
||
|
||
done = 1;
|
||
}
|
||
|
||
# endif /* not SYNTAX_TABLE */
|
||
|
||
# define SYNTAX(c) re_syntax_table[(c)]
|
||
|
||
#endif /* not emacs */
|
||
|
||
#ifndef NULL
|
||
# define NULL (void *)0
|
||
#endif
|
||
|
||
/* We remove any previous definition of `SIGN_EXTEND_CHAR',
|
||
since ours (we hope) works properly with all combinations of
|
||
machines, compilers, `char' and `unsigned char' argument types.
|
||
(Per Bothner suggested the basic approach.) */
|
||
#undef SIGN_EXTEND_CHAR
|
||
#if __STDC__
|
||
# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
|
||
#else /* not __STDC__ */
|
||
/* As in Harbison and Steele. */
|
||
# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
|
||
#endif
|
||
|
||
/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
|
||
use `alloca' instead of `malloc'. This is because using malloc in
|
||
re_search* or re_match* could cause memory leaks when C-g is used in
|
||
Emacs; also, malloc is slower and causes storage fragmentation. On
|
||
the other hand, malloc is more portable, and easier to debug.
|
||
|
||
Because we sometimes use alloca, some routines have to be macros,
|
||
not functions -- `alloca'-allocated space disappears at the end of the
|
||
function it is called in. */
|
||
|
||
#ifdef REGEX_MALLOC
|
||
|
||
# define REGEX_ALLOCATE malloc
|
||
# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
|
||
# define REGEX_FREE free
|
||
|
||
#else /* not REGEX_MALLOC */
|
||
|
||
/* Emacs already defines alloca, sometimes. */
|
||
# ifndef alloca
|
||
|
||
/* Make alloca work the best possible way. */
|
||
# ifdef __GNUC__
|
||
# define alloca __builtin_alloca
|
||
# else /* not __GNUC__ */
|
||
# if HAVE_ALLOCA_H
|
||
# include <alloca.h>
|
||
# endif /* HAVE_ALLOCA_H */
|
||
# endif /* not __GNUC__ */
|
||
|
||
# endif /* not alloca */
|
||
|
||
# define REGEX_ALLOCATE alloca
|
||
|
||
/* Assumes a `char *destination' variable. */
|
||
# define REGEX_REALLOCATE(source, osize, nsize) \
|
||
(destination = (char *) alloca (nsize), \
|
||
memcpy (destination, source, osize))
|
||
|
||
/* No need to do anything to free, after alloca. */
|
||
# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
|
||
|
||
#endif /* not REGEX_MALLOC */
|
||
|
||
/* Define how to allocate the failure stack. */
|
||
|
||
#if defined REL_ALLOC && defined REGEX_MALLOC
|
||
|
||
# define REGEX_ALLOCATE_STACK(size) \
|
||
r_alloc (&failure_stack_ptr, (size))
|
||
# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
||
r_re_alloc (&failure_stack_ptr, (nsize))
|
||
# define REGEX_FREE_STACK(ptr) \
|
||
r_alloc_free (&failure_stack_ptr)
|
||
|
||
#else /* not using relocating allocator */
|
||
|
||
# ifdef REGEX_MALLOC
|
||
|
||
# define REGEX_ALLOCATE_STACK malloc
|
||
# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
|
||
# define REGEX_FREE_STACK free
|
||
|
||
# else /* not REGEX_MALLOC */
|
||
|
||
# define REGEX_ALLOCATE_STACK alloca
|
||
|
||
# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
|
||
REGEX_REALLOCATE (source, osize, nsize)
|
||
/* No need to explicitly free anything. */
|
||
# define REGEX_FREE_STACK(arg) ((void)0)
|
||
|
||
# endif /* not REGEX_MALLOC */
|
||
#endif /* not using relocating allocator */
|
||
|
||
|
||
/* True if `size1' is non-NULL and PTR is pointing anywhere inside
|
||
`string1' or just past its end. This works if PTR is NULL, which is
|
||
a good thing. */
|
||
#define FIRST_STRING_P(ptr) \
|
||
(size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
|
||
|
||
/* (Re)Allocate N items of type T using malloc, or fail. */
|
||
#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
|
||
#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
|
||
#define RETALLOC_IF(addr, n, t) \
|
||
if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
|
||
#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
|
||
|
||
#define BYTEWIDTH 8 /* In bits. */
|
||
|
||
#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
|
||
|
||
#undef MAX
|
||
#undef MIN
|
||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||
|
||
/* Type of source-pattern and string chars. */
|
||
typedef const unsigned char re_char;
|
||
|
||
typedef char boolean;
|
||
#define false 0
|
||
#define true 1
|
||
|
||
static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
|
||
re_char *string1, int size1,
|
||
re_char *string2, int size2,
|
||
int pos,
|
||
struct re_registers *regs,
|
||
int stop));
|
||
|
||
/* These are the command codes that appear in compiled regular
|
||
expressions. Some opcodes are followed by argument bytes. A
|
||
command code can specify any interpretation whatsoever for its
|
||
arguments. Zero bytes may appear in the compiled regular expression. */
|
||
|
||
typedef enum
|
||
{
|
||
no_op = 0,
|
||
|
||
/* Succeed right away--no more backtracking. */
|
||
succeed,
|
||
|
||
/* Followed by one byte giving n, then by n literal bytes. */
|
||
exactn,
|
||
|
||
/* Matches any (more or less) character. */
|
||
anychar,
|
||
|
||
/* Matches any one char belonging to specified set. First
|
||
following byte is number of bitmap bytes. Then come bytes
|
||
for a bitmap saying which chars are in. Bits in each byte
|
||
are ordered low-bit-first. A character is in the set if its
|
||
bit is 1. A character too large to have a bit in the map is
|
||
automatically not in the set.
|
||
|
||
If the length byte has the 0x80 bit set, then that stuff
|
||
is followed by a range table:
|
||
2 bytes of flags for character sets (low 8 bits, high 8 bits)
|
||
See RANGE_TABLE_WORK_BITS below.
|
||
2 bytes, the number of pairs that follow (upto 32767)
|
||
pairs, each 2 multibyte characters,
|
||
each multibyte character represented as 3 bytes. */
|
||
charset,
|
||
|
||
/* Same parameters as charset, but match any character that is
|
||
not one of those specified. */
|
||
charset_not,
|
||
|
||
/* Start remembering the text that is matched, for storing in a
|
||
register. Followed by one byte with the register number, in
|
||
the range 0 to one less than the pattern buffer's re_nsub
|
||
field. */
|
||
start_memory,
|
||
|
||
/* Stop remembering the text that is matched and store it in a
|
||
memory register. Followed by one byte with the register
|
||
number, in the range 0 to one less than `re_nsub' in the
|
||
pattern buffer. */
|
||
stop_memory,
|
||
|
||
/* Match a duplicate of something remembered. Followed by one
|
||
byte containing the register number. */
|
||
duplicate,
|
||
|
||
/* Fail unless at beginning of line. */
|
||
begline,
|
||
|
||
/* Fail unless at end of line. */
|
||
endline,
|
||
|
||
/* Succeeds if at beginning of buffer (if emacs) or at beginning
|
||
of string to be matched (if not). */
|
||
begbuf,
|
||
|
||
/* Analogously, for end of buffer/string. */
|
||
endbuf,
|
||
|
||
/* Followed by two byte relative address to which to jump. */
|
||
jump,
|
||
|
||
/* Followed by two-byte relative address of place to resume at
|
||
in case of failure. */
|
||
on_failure_jump,
|
||
|
||
/* Like on_failure_jump, but pushes a placeholder instead of the
|
||
current string position when executed. */
|
||
on_failure_keep_string_jump,
|
||
|
||
/* Just like `on_failure_jump', except that it checks that we
|
||
don't get stuck in an infinite loop (matching an empty string
|
||
indefinitely). */
|
||
on_failure_jump_loop,
|
||
|
||
/* Just like `on_failure_jump_loop', except that it checks for
|
||
a different kind of loop (the kind that shows up with non-greedy
|
||
operators). This operation has to be immediately preceded
|
||
by a `no_op'. */
|
||
on_failure_jump_nastyloop,
|
||
|
||
/* A smart `on_failure_jump' used for greedy * and + operators.
|
||
It analyses the loop before which it is put and if the
|
||
loop does not require backtracking, it changes itself to
|
||
`on_failure_keep_string_jump' and short-circuits the loop,
|
||
else it just defaults to changing itself into `on_failure_jump'.
|
||
It assumes that it is pointing to just past a `jump'. */
|
||
on_failure_jump_smart,
|
||
|
||
/* Followed by two-byte relative address and two-byte number n.
|
||
After matching N times, jump to the address upon failure.
|
||
Does not work if N starts at 0: use on_failure_jump_loop
|
||
instead. */
|
||
succeed_n,
|
||
|
||
/* Followed by two-byte relative address, and two-byte number n.
|
||
Jump to the address N times, then fail. */
|
||
jump_n,
|
||
|
||
/* Set the following two-byte relative address to the
|
||
subsequent two-byte number. The address *includes* the two
|
||
bytes of number. */
|
||
set_number_at,
|
||
|
||
wordbeg, /* Succeeds if at word beginning. */
|
||
wordend, /* Succeeds if at word end. */
|
||
|
||
wordbound, /* Succeeds if at a word boundary. */
|
||
notwordbound, /* Succeeds if not at a word boundary. */
|
||
|
||
symbeg, /* Succeeds if at symbol beginning. */
|
||
symend, /* Succeeds if at symbol end. */
|
||
|
||
/* Matches any character whose syntax is specified. Followed by
|
||
a byte which contains a syntax code, e.g., Sword. */
|
||
syntaxspec,
|
||
|
||
/* Matches any character whose syntax is not that specified. */
|
||
notsyntaxspec
|
||
|
||
#ifdef emacs
|
||
,before_dot, /* Succeeds if before point. */
|
||
at_dot, /* Succeeds if at point. */
|
||
after_dot, /* Succeeds if after point. */
|
||
|
||
/* Matches any character whose category-set contains the specified
|
||
category. The operator is followed by a byte which contains a
|
||
category code (mnemonic ASCII character). */
|
||
categoryspec,
|
||
|
||
/* Matches any character whose category-set does not contain the
|
||
specified category. The operator is followed by a byte which
|
||
contains the category code (mnemonic ASCII character). */
|
||
notcategoryspec
|
||
#endif /* emacs */
|
||
} re_opcode_t;
|
||
|
||
/* Common operations on the compiled pattern. */
|
||
|
||
/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
|
||
|
||
#define STORE_NUMBER(destination, number) \
|
||
do { \
|
||
(destination)[0] = (number) & 0377; \
|
||
(destination)[1] = (number) >> 8; \
|
||
} while (0)
|
||
|
||
/* Same as STORE_NUMBER, except increment DESTINATION to
|
||
the byte after where the number is stored. Therefore, DESTINATION
|
||
must be an lvalue. */
|
||
|
||
#define STORE_NUMBER_AND_INCR(destination, number) \
|
||
do { \
|
||
STORE_NUMBER (destination, number); \
|
||
(destination) += 2; \
|
||
} while (0)
|
||
|
||
/* Put into DESTINATION a number stored in two contiguous bytes starting
|
||
at SOURCE. */
|
||
|
||
#define EXTRACT_NUMBER(destination, source) \
|
||
do { \
|
||
(destination) = *(source) & 0377; \
|
||
(destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
|
||
} while (0)
|
||
|
||
#ifdef DEBUG
|
||
static void extract_number _RE_ARGS ((int *dest, re_char *source));
|
||
static void
|
||
extract_number (dest, source)
|
||
int *dest;
|
||
re_char *source;
|
||
{
|
||
int temp = SIGN_EXTEND_CHAR (*(source + 1));
|
||
*dest = *source & 0377;
|
||
*dest += temp << 8;
|
||
}
|
||
|
||
# ifndef EXTRACT_MACROS /* To debug the macros. */
|
||
# undef EXTRACT_NUMBER
|
||
# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
|
||
# endif /* not EXTRACT_MACROS */
|
||
|
||
#endif /* DEBUG */
|
||
|
||
/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
|
||
SOURCE must be an lvalue. */
|
||
|
||
#define EXTRACT_NUMBER_AND_INCR(destination, source) \
|
||
do { \
|
||
EXTRACT_NUMBER (destination, source); \
|
||
(source) += 2; \
|
||
} while (0)
|
||
|
||
#ifdef DEBUG
|
||
static void extract_number_and_incr _RE_ARGS ((int *destination,
|
||
re_char **source));
|
||
static void
|
||
extract_number_and_incr (destination, source)
|
||
int *destination;
|
||
re_char **source;
|
||
{
|
||
extract_number (destination, *source);
|
||
*source += 2;
|
||
}
|
||
|
||
# ifndef EXTRACT_MACROS
|
||
# undef EXTRACT_NUMBER_AND_INCR
|
||
# define EXTRACT_NUMBER_AND_INCR(dest, src) \
|
||
extract_number_and_incr (&dest, &src)
|
||
# endif /* not EXTRACT_MACROS */
|
||
|
||
#endif /* DEBUG */
|
||
|
||
/* Store a multibyte character in three contiguous bytes starting
|
||
DESTINATION, and increment DESTINATION to the byte after where the
|
||
character is stored. Therefore, DESTINATION must be an lvalue. */
|
||
|
||
#define STORE_CHARACTER_AND_INCR(destination, character) \
|
||
do { \
|
||
(destination)[0] = (character) & 0377; \
|
||
(destination)[1] = ((character) >> 8) & 0377; \
|
||
(destination)[2] = (character) >> 16; \
|
||
(destination) += 3; \
|
||
} while (0)
|
||
|
||
/* Put into DESTINATION a character stored in three contiguous bytes
|
||
starting at SOURCE. */
|
||
|
||
#define EXTRACT_CHARACTER(destination, source) \
|
||
do { \
|
||
(destination) = ((source)[0] \
|
||
| ((source)[1] << 8) \
|
||
| ((source)[2] << 16)); \
|
||
} while (0)
|
||
|
||
|
||
/* Macros for charset. */
|
||
|
||
/* Size of bitmap of charset P in bytes. P is a start of charset,
|
||
i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
|
||
#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
|
||
|
||
/* Nonzero if charset P has range table. */
|
||
#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
|
||
|
||
/* Return the address of range table of charset P. But not the start
|
||
of table itself, but the before where the number of ranges is
|
||
stored. `2 +' means to skip re_opcode_t and size of bitmap,
|
||
and the 2 bytes of flags at the start of the range table. */
|
||
#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
|
||
|
||
/* Extract the bit flags that start a range table. */
|
||
#define CHARSET_RANGE_TABLE_BITS(p) \
|
||
((p)[2 + CHARSET_BITMAP_SIZE (p)] \
|
||
+ (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
|
||
|
||
/* Test if C is listed in the bitmap of charset P. */
|
||
#define CHARSET_LOOKUP_BITMAP(p, c) \
|
||
((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
|
||
&& (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
|
||
|
||
/* Return the address of end of RANGE_TABLE. COUNT is number of
|
||
ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
|
||
is start of range and end of range. `* 3' is size of each start
|
||
and end. */
|
||
#define CHARSET_RANGE_TABLE_END(range_table, count) \
|
||
((range_table) + (count) * 2 * 3)
|
||
|
||
/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
|
||
COUNT is number of ranges in RANGE_TABLE. */
|
||
#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
|
||
do \
|
||
{ \
|
||
re_wchar_t range_start, range_end; \
|
||
re_char *p; \
|
||
re_char *range_table_end \
|
||
= CHARSET_RANGE_TABLE_END ((range_table), (count)); \
|
||
\
|
||
for (p = (range_table); p < range_table_end; p += 2 * 3) \
|
||
{ \
|
||
EXTRACT_CHARACTER (range_start, p); \
|
||
EXTRACT_CHARACTER (range_end, p + 3); \
|
||
\
|
||
if (range_start <= (c) && (c) <= range_end) \
|
||
{ \
|
||
(not) = !(not); \
|
||
break; \
|
||
} \
|
||
} \
|
||
} \
|
||
while (0)
|
||
|
||
/* Test if C is in range table of CHARSET. The flag NOT is negated if
|
||
C is listed in it. */
|
||
#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
|
||
do \
|
||
{ \
|
||
/* Number of ranges in range table. */ \
|
||
int count; \
|
||
re_char *range_table = CHARSET_RANGE_TABLE (charset); \
|
||
\
|
||
EXTRACT_NUMBER_AND_INCR (count, range_table); \
|
||
CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
|
||
} \
|
||
while (0)
|
||
|
||
/* If DEBUG is defined, Regex prints many voluminous messages about what
|
||
it is doing (if the variable `debug' is nonzero). If linked with the
|
||
main program in `iregex.c', you can enter patterns and strings
|
||
interactively. And if linked with the main program in `main.c' and
|
||
the other test files, you can run the already-written tests. */
|
||
|
||
#ifdef DEBUG
|
||
|
||
/* We use standard I/O for debugging. */
|
||
# include <stdio.h>
|
||
|
||
/* It is useful to test things that ``must'' be true when debugging. */
|
||
# include <assert.h>
|
||
|
||
static int debug = -100000;
|
||
|
||
# define DEBUG_STATEMENT(e) e
|
||
# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
|
||
# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
|
||
# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
|
||
# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
|
||
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
|
||
if (debug > 0) print_partial_compiled_pattern (s, e)
|
||
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
|
||
if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
|
||
|
||
|
||
/* Print the fastmap in human-readable form. */
|
||
|
||
void
|
||
print_fastmap (fastmap)
|
||
char *fastmap;
|
||
{
|
||
unsigned was_a_range = 0;
|
||
unsigned i = 0;
|
||
|
||
while (i < (1 << BYTEWIDTH))
|
||
{
|
||
if (fastmap[i++])
|
||
{
|
||
was_a_range = 0;
|
||
putchar (i - 1);
|
||
while (i < (1 << BYTEWIDTH) && fastmap[i])
|
||
{
|
||
was_a_range = 1;
|
||
i++;
|
||
}
|
||
if (was_a_range)
|
||
{
|
||
printf ("-");
|
||
putchar (i - 1);
|
||
}
|
||
}
|
||
}
|
||
putchar ('\n');
|
||
}
|
||
|
||
|
||
/* Print a compiled pattern string in human-readable form, starting at
|
||
the START pointer into it and ending just before the pointer END. */
|
||
|
||
void
|
||
print_partial_compiled_pattern (start, end)
|
||
re_char *start;
|
||
re_char *end;
|
||
{
|
||
int mcnt, mcnt2;
|
||
re_char *p = start;
|
||
re_char *pend = end;
|
||
|
||
if (start == NULL)
|
||
{
|
||
fprintf (stderr, "(null)\n");
|
||
return;
|
||
}
|
||
|
||
/* Loop over pattern commands. */
|
||
while (p < pend)
|
||
{
|
||
fprintf (stderr, "%d:\t", p - start);
|
||
|
||
switch ((re_opcode_t) *p++)
|
||
{
|
||
case no_op:
|
||
fprintf (stderr, "/no_op");
|
||
break;
|
||
|
||
case succeed:
|
||
fprintf (stderr, "/succeed");
|
||
break;
|
||
|
||
case exactn:
|
||
mcnt = *p++;
|
||
fprintf (stderr, "/exactn/%d", mcnt);
|
||
do
|
||
{
|
||
fprintf (stderr, "/%c", *p++);
|
||
}
|
||
while (--mcnt);
|
||
break;
|
||
|
||
case start_memory:
|
||
fprintf (stderr, "/start_memory/%d", *p++);
|
||
break;
|
||
|
||
case stop_memory:
|
||
fprintf (stderr, "/stop_memory/%d", *p++);
|
||
break;
|
||
|
||
case duplicate:
|
||
fprintf (stderr, "/duplicate/%d", *p++);
|
||
break;
|
||
|
||
case anychar:
|
||
fprintf (stderr, "/anychar");
|
||
break;
|
||
|
||
case charset:
|
||
case charset_not:
|
||
{
|
||
register int c, last = -100;
|
||
register int in_range = 0;
|
||
int length = CHARSET_BITMAP_SIZE (p - 1);
|
||
int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
|
||
|
||
fprintf (stderr, "/charset [%s",
|
||
(re_opcode_t) *(p - 1) == charset_not ? "^" : "");
|
||
|
||
if (p + *p >= pend)
|
||
fprintf (stderr, " !extends past end of pattern! ");
|
||
|
||
for (c = 0; c < 256; c++)
|
||
if (c / 8 < length
|
||
&& (p[1 + (c/8)] & (1 << (c % 8))))
|
||
{
|
||
/* Are we starting a range? */
|
||
if (last + 1 == c && ! in_range)
|
||
{
|
||
fprintf (stderr, "-");
|
||
in_range = 1;
|
||
}
|
||
/* Have we broken a range? */
|
||
else if (last + 1 != c && in_range)
|
||
{
|
||
fprintf (stderr, "%c", last);
|
||
in_range = 0;
|
||
}
|
||
|
||
if (! in_range)
|
||
fprintf (stderr, "%c", c);
|
||
|
||
last = c;
|
||
}
|
||
|
||
if (in_range)
|
||
fprintf (stderr, "%c", last);
|
||
|
||
fprintf (stderr, "]");
|
||
|
||
p += 1 + length;
|
||
|
||
if (has_range_table)
|
||
{
|
||
int count;
|
||
fprintf (stderr, "has-range-table");
|
||
|
||
/* ??? Should print the range table; for now, just skip it. */
|
||
p += 2; /* skip range table bits */
|
||
EXTRACT_NUMBER_AND_INCR (count, p);
|
||
p = CHARSET_RANGE_TABLE_END (p, count);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case begline:
|
||
fprintf (stderr, "/begline");
|
||
break;
|
||
|
||
case endline:
|
||
fprintf (stderr, "/endline");
|
||
break;
|
||
|
||
case on_failure_jump:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case on_failure_keep_string_jump:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case on_failure_jump_nastyloop:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case on_failure_jump_loop:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case on_failure_jump_smart:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case jump:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
fprintf (stderr, "/jump to %d", p + mcnt - start);
|
||
break;
|
||
|
||
case succeed_n:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
extract_number_and_incr (&mcnt2, &p);
|
||
fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
|
||
break;
|
||
|
||
case jump_n:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
extract_number_and_incr (&mcnt2, &p);
|
||
fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
|
||
break;
|
||
|
||
case set_number_at:
|
||
extract_number_and_incr (&mcnt, &p);
|
||
extract_number_and_incr (&mcnt2, &p);
|
||
fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
|
||
break;
|
||
|
||
case wordbound:
|
||
fprintf (stderr, "/wordbound");
|
||
break;
|
||
|
||
case notwordbound:
|
||
fprintf (stderr, "/notwordbound");
|
||
break;
|
||
|
||
case wordbeg:
|
||
fprintf (stderr, "/wordbeg");
|
||
break;
|
||
|
||
case wordend:
|
||
fprintf (stderr, "/wordend");
|
||
break;
|
||
|
||
case symbeg:
|
||
fprintf (stderr, "/symbeg");
|
||
break;
|
||
|
||
case symend:
|
||
fprintf (stderr, "/symend");
|
||
break;
|
||
|
||
case syntaxspec:
|
||
fprintf (stderr, "/syntaxspec");
|
||
mcnt = *p++;
|
||
fprintf (stderr, "/%d", mcnt);
|
||
break;
|
||
|
||
case notsyntaxspec:
|
||
fprintf (stderr, "/notsyntaxspec");
|
||
mcnt = *p++;
|
||
fprintf (stderr, "/%d", mcnt);
|
||
break;
|
||
|
||
# ifdef emacs
|
||
case before_dot:
|
||
fprintf (stderr, "/before_dot");
|
||
break;
|
||
|
||
case at_dot:
|
||
fprintf (stderr, "/at_dot");
|
||
break;
|
||
|
||
case after_dot:
|
||
fprintf (stderr, "/after_dot");
|
||
break;
|
||
|
||
case categoryspec:
|
||
fprintf (stderr, "/categoryspec");
|
||
mcnt = *p++;
|
||
fprintf (stderr, "/%d", mcnt);
|
||
break;
|
||
|
||
case notcategoryspec:
|
||
fprintf (stderr, "/notcategoryspec");
|
||
mcnt = *p++;
|
||
fprintf (stderr, "/%d", mcnt);
|
||
break;
|
||
# endif /* emacs */
|
||
|
||
case begbuf:
|
||
fprintf (stderr, "/begbuf");
|
||
break;
|
||
|
||
case endbuf:
|
||
fprintf (stderr, "/endbuf");
|
||
break;
|
||
|
||
default:
|
||
fprintf (stderr, "?%d", *(p-1));
|
||
}
|
||
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
fprintf (stderr, "%d:\tend of pattern.\n", p - start);
|
||
}
|
||
|
||
|
||
void
|
||
print_compiled_pattern (bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
re_char *buffer = bufp->buffer;
|
||
|
||
print_partial_compiled_pattern (buffer, buffer + bufp->used);
|
||
printf ("%ld bytes used/%ld bytes allocated.\n",
|
||
bufp->used, bufp->allocated);
|
||
|
||
if (bufp->fastmap_accurate && bufp->fastmap)
|
||
{
|
||
printf ("fastmap: ");
|
||
print_fastmap (bufp->fastmap);
|
||
}
|
||
|
||
printf ("re_nsub: %d\t", bufp->re_nsub);
|
||
printf ("regs_alloc: %d\t", bufp->regs_allocated);
|
||
printf ("can_be_null: %d\t", bufp->can_be_null);
|
||
printf ("no_sub: %d\t", bufp->no_sub);
|
||
printf ("not_bol: %d\t", bufp->not_bol);
|
||
printf ("not_eol: %d\t", bufp->not_eol);
|
||
printf ("syntax: %lx\n", bufp->syntax);
|
||
fflush (stdout);
|
||
/* Perhaps we should print the translate table? */
|
||
}
|
||
|
||
|
||
void
|
||
print_double_string (where, string1, size1, string2, size2)
|
||
re_char *where;
|
||
re_char *string1;
|
||
re_char *string2;
|
||
int size1;
|
||
int size2;
|
||
{
|
||
int this_char;
|
||
|
||
if (where == NULL)
|
||
printf ("(null)");
|
||
else
|
||
{
|
||
if (FIRST_STRING_P (where))
|
||
{
|
||
for (this_char = where - string1; this_char < size1; this_char++)
|
||
putchar (string1[this_char]);
|
||
|
||
where = string2;
|
||
}
|
||
|
||
for (this_char = where - string2; this_char < size2; this_char++)
|
||
putchar (string2[this_char]);
|
||
}
|
||
}
|
||
|
||
#else /* not DEBUG */
|
||
|
||
# undef assert
|
||
# define assert(e)
|
||
|
||
# define DEBUG_STATEMENT(e)
|
||
# define DEBUG_PRINT1(x)
|
||
# define DEBUG_PRINT2(x1, x2)
|
||
# define DEBUG_PRINT3(x1, x2, x3)
|
||
# define DEBUG_PRINT4(x1, x2, x3, x4)
|
||
# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
|
||
# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
|
||
|
||
#endif /* not DEBUG */
|
||
|
||
/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
|
||
also be assigned to arbitrarily: each pattern buffer stores its own
|
||
syntax, so it can be changed between regex compilations. */
|
||
/* This has no initializer because initialized variables in Emacs
|
||
become read-only after dumping. */
|
||
reg_syntax_t re_syntax_options;
|
||
|
||
|
||
/* Specify the precise syntax of regexps for compilation. This provides
|
||
for compatibility for various utilities which historically have
|
||
different, incompatible syntaxes.
|
||
|
||
The argument SYNTAX is a bit mask comprised of the various bits
|
||
defined in regex.h. We return the old syntax. */
|
||
|
||
reg_syntax_t
|
||
re_set_syntax (syntax)
|
||
reg_syntax_t syntax;
|
||
{
|
||
reg_syntax_t ret = re_syntax_options;
|
||
|
||
re_syntax_options = syntax;
|
||
return ret;
|
||
}
|
||
WEAK_ALIAS (__re_set_syntax, re_set_syntax)
|
||
|
||
/* Regexp to use to replace spaces, or NULL meaning don't. */
|
||
static re_char *whitespace_regexp;
|
||
|
||
void
|
||
re_set_whitespace_regexp (regexp)
|
||
const char *regexp;
|
||
{
|
||
whitespace_regexp = (re_char *) regexp;
|
||
}
|
||
WEAK_ALIAS (__re_set_syntax, re_set_syntax)
|
||
|
||
/* This table gives an error message for each of the error codes listed
|
||
in regex.h. Obviously the order here has to be same as there.
|
||
POSIX doesn't require that we do anything for REG_NOERROR,
|
||
but why not be nice? */
|
||
|
||
static const char *re_error_msgid[] =
|
||
{
|
||
gettext_noop ("Success"), /* REG_NOERROR */
|
||
gettext_noop ("No match"), /* REG_NOMATCH */
|
||
gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
|
||
gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
|
||
gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
|
||
gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
|
||
gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
|
||
gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
|
||
gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
|
||
gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
|
||
gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
|
||
gettext_noop ("Invalid range end"), /* REG_ERANGE */
|
||
gettext_noop ("Memory exhausted"), /* REG_ESPACE */
|
||
gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
|
||
gettext_noop ("Premature end of regular expression"), /* REG_EEND */
|
||
gettext_noop ("Regular expression too big"), /* REG_ESIZE */
|
||
gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
|
||
gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
|
||
};
|
||
|
||
/* Avoiding alloca during matching, to placate r_alloc. */
|
||
|
||
/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
|
||
searching and matching functions should not call alloca. On some
|
||
systems, alloca is implemented in terms of malloc, and if we're
|
||
using the relocating allocator routines, then malloc could cause a
|
||
relocation, which might (if the strings being searched are in the
|
||
ralloc heap) shift the data out from underneath the regexp
|
||
routines.
|
||
|
||
Here's another reason to avoid allocation: Emacs
|
||
processes input from X in a signal handler; processing X input may
|
||
call malloc; if input arrives while a matching routine is calling
|
||
malloc, then we're scrod. But Emacs can't just block input while
|
||
calling matching routines; then we don't notice interrupts when
|
||
they come in. So, Emacs blocks input around all regexp calls
|
||
except the matching calls, which it leaves unprotected, in the
|
||
faith that they will not malloc. */
|
||
|
||
/* Normally, this is fine. */
|
||
#define MATCH_MAY_ALLOCATE
|
||
|
||
/* When using GNU C, we are not REALLY using the C alloca, no matter
|
||
what config.h may say. So don't take precautions for it. */
|
||
#ifdef __GNUC__
|
||
# undef C_ALLOCA
|
||
#endif
|
||
|
||
/* The match routines may not allocate if (1) they would do it with malloc
|
||
and (2) it's not safe for them to use malloc.
|
||
Note that if REL_ALLOC is defined, matching would not use malloc for the
|
||
failure stack, but we would still use it for the register vectors;
|
||
so REL_ALLOC should not affect this. */
|
||
#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
|
||
# undef MATCH_MAY_ALLOCATE
|
||
#endif
|
||
|
||
|
||
/* Failure stack declarations and macros; both re_compile_fastmap and
|
||
re_match_2 use a failure stack. These have to be macros because of
|
||
REGEX_ALLOCATE_STACK. */
|
||
|
||
|
||
/* Approximate number of failure points for which to initially allocate space
|
||
when matching. If this number is exceeded, we allocate more
|
||
space, so it is not a hard limit. */
|
||
#ifndef INIT_FAILURE_ALLOC
|
||
# define INIT_FAILURE_ALLOC 20
|
||
#endif
|
||
|
||
/* Roughly the maximum number of failure points on the stack. Would be
|
||
exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
|
||
This is a variable only so users of regex can assign to it; we never
|
||
change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
|
||
before using it, so it should probably be a byte-count instead. */
|
||
# if defined MATCH_MAY_ALLOCATE
|
||
/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
|
||
whose default stack limit is 2mb. In order for a larger
|
||
value to work reliably, you have to try to make it accord
|
||
with the process stack limit. */
|
||
size_t re_max_failures = 40000;
|
||
# else
|
||
size_t re_max_failures = 4000;
|
||
# endif
|
||
|
||
union fail_stack_elt
|
||
{
|
||
re_char *pointer;
|
||
/* This should be the biggest `int' that's no bigger than a pointer. */
|
||
long integer;
|
||
};
|
||
|
||
typedef union fail_stack_elt fail_stack_elt_t;
|
||
|
||
typedef struct
|
||
{
|
||
fail_stack_elt_t *stack;
|
||
size_t size;
|
||
size_t avail; /* Offset of next open position. */
|
||
size_t frame; /* Offset of the cur constructed frame. */
|
||
} fail_stack_type;
|
||
|
||
#define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
|
||
#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
|
||
|
||
|
||
/* Define macros to initialize and free the failure stack.
|
||
Do `return -2' if the alloc fails. */
|
||
|
||
#ifdef MATCH_MAY_ALLOCATE
|
||
# define INIT_FAIL_STACK() \
|
||
do { \
|
||
fail_stack.stack = (fail_stack_elt_t *) \
|
||
REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
|
||
* sizeof (fail_stack_elt_t)); \
|
||
\
|
||
if (fail_stack.stack == NULL) \
|
||
return -2; \
|
||
\
|
||
fail_stack.size = INIT_FAILURE_ALLOC; \
|
||
fail_stack.avail = 0; \
|
||
fail_stack.frame = 0; \
|
||
} while (0)
|
||
|
||
# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
|
||
#else
|
||
# define INIT_FAIL_STACK() \
|
||
do { \
|
||
fail_stack.avail = 0; \
|
||
fail_stack.frame = 0; \
|
||
} while (0)
|
||
|
||
# define RESET_FAIL_STACK() ((void)0)
|
||
#endif
|
||
|
||
|
||
/* Double the size of FAIL_STACK, up to a limit
|
||
which allows approximately `re_max_failures' items.
|
||
|
||
Return 1 if succeeds, and 0 if either ran out of memory
|
||
allocating space for it or it was already too large.
|
||
|
||
REGEX_REALLOCATE_STACK requires `destination' be declared. */
|
||
|
||
/* Factor to increase the failure stack size by
|
||
when we increase it.
|
||
This used to be 2, but 2 was too wasteful
|
||
because the old discarded stacks added up to as much space
|
||
were as ultimate, maximum-size stack. */
|
||
#define FAIL_STACK_GROWTH_FACTOR 4
|
||
|
||
#define GROW_FAIL_STACK(fail_stack) \
|
||
(((fail_stack).size * sizeof (fail_stack_elt_t) \
|
||
>= re_max_failures * TYPICAL_FAILURE_SIZE) \
|
||
? 0 \
|
||
: ((fail_stack).stack \
|
||
= (fail_stack_elt_t *) \
|
||
REGEX_REALLOCATE_STACK ((fail_stack).stack, \
|
||
(fail_stack).size * sizeof (fail_stack_elt_t), \
|
||
MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
|
||
((fail_stack).size * sizeof (fail_stack_elt_t) \
|
||
* FAIL_STACK_GROWTH_FACTOR))), \
|
||
\
|
||
(fail_stack).stack == NULL \
|
||
? 0 \
|
||
: ((fail_stack).size \
|
||
= (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
|
||
((fail_stack).size * sizeof (fail_stack_elt_t) \
|
||
* FAIL_STACK_GROWTH_FACTOR)) \
|
||
/ sizeof (fail_stack_elt_t)), \
|
||
1)))
|
||
|
||
|
||
/* Push a pointer value onto the failure stack.
|
||
Assumes the variable `fail_stack'. Probably should only
|
||
be called from within `PUSH_FAILURE_POINT'. */
|
||
#define PUSH_FAILURE_POINTER(item) \
|
||
fail_stack.stack[fail_stack.avail++].pointer = (item)
|
||
|
||
/* This pushes an integer-valued item onto the failure stack.
|
||
Assumes the variable `fail_stack'. Probably should only
|
||
be called from within `PUSH_FAILURE_POINT'. */
|
||
#define PUSH_FAILURE_INT(item) \
|
||
fail_stack.stack[fail_stack.avail++].integer = (item)
|
||
|
||
/* Push a fail_stack_elt_t value onto the failure stack.
|
||
Assumes the variable `fail_stack'. Probably should only
|
||
be called from within `PUSH_FAILURE_POINT'. */
|
||
#define PUSH_FAILURE_ELT(item) \
|
||
fail_stack.stack[fail_stack.avail++] = (item)
|
||
|
||
/* These three POP... operations complement the three PUSH... operations.
|
||
All assume that `fail_stack' is nonempty. */
|
||
#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
|
||
#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
|
||
#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
|
||
|
||
/* Individual items aside from the registers. */
|
||
#define NUM_NONREG_ITEMS 3
|
||
|
||
/* Used to examine the stack (to detect infinite loops). */
|
||
#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
|
||
#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
|
||
#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
|
||
#define TOP_FAILURE_HANDLE() fail_stack.frame
|
||
|
||
|
||
#define ENSURE_FAIL_STACK(space) \
|
||
while (REMAINING_AVAIL_SLOTS <= space) { \
|
||
if (!GROW_FAIL_STACK (fail_stack)) \
|
||
return -2; \
|
||
DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
|
||
DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
|
||
}
|
||
|
||
/* Push register NUM onto the stack. */
|
||
#define PUSH_FAILURE_REG(num) \
|
||
do { \
|
||
char *destination; \
|
||
ENSURE_FAIL_STACK(3); \
|
||
DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
|
||
num, regstart[num], regend[num]); \
|
||
PUSH_FAILURE_POINTER (regstart[num]); \
|
||
PUSH_FAILURE_POINTER (regend[num]); \
|
||
PUSH_FAILURE_INT (num); \
|
||
} while (0)
|
||
|
||
/* Change the counter's value to VAL, but make sure that it will
|
||
be reset when backtracking. */
|
||
#define PUSH_NUMBER(ptr,val) \
|
||
do { \
|
||
char *destination; \
|
||
int c; \
|
||
ENSURE_FAIL_STACK(3); \
|
||
EXTRACT_NUMBER (c, ptr); \
|
||
DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
|
||
PUSH_FAILURE_INT (c); \
|
||
PUSH_FAILURE_POINTER (ptr); \
|
||
PUSH_FAILURE_INT (-1); \
|
||
STORE_NUMBER (ptr, val); \
|
||
} while (0)
|
||
|
||
/* Pop a saved register off the stack. */
|
||
#define POP_FAILURE_REG_OR_COUNT() \
|
||
do { \
|
||
int reg = POP_FAILURE_INT (); \
|
||
if (reg == -1) \
|
||
{ \
|
||
/* It's a counter. */ \
|
||
/* Here, we discard `const', making re_match non-reentrant. */ \
|
||
unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
|
||
reg = POP_FAILURE_INT (); \
|
||
STORE_NUMBER (ptr, reg); \
|
||
DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
|
||
} \
|
||
else \
|
||
{ \
|
||
regend[reg] = POP_FAILURE_POINTER (); \
|
||
regstart[reg] = POP_FAILURE_POINTER (); \
|
||
DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
|
||
reg, regstart[reg], regend[reg]); \
|
||
} \
|
||
} while (0)
|
||
|
||
/* Check that we are not stuck in an infinite loop. */
|
||
#define CHECK_INFINITE_LOOP(pat_cur, string_place) \
|
||
do { \
|
||
int failure = TOP_FAILURE_HANDLE (); \
|
||
/* Check for infinite matching loops */ \
|
||
while (failure > 0 \
|
||
&& (FAILURE_STR (failure) == string_place \
|
||
|| FAILURE_STR (failure) == NULL)) \
|
||
{ \
|
||
assert (FAILURE_PAT (failure) >= bufp->buffer \
|
||
&& FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
|
||
if (FAILURE_PAT (failure) == pat_cur) \
|
||
{ \
|
||
cycle = 1; \
|
||
break; \
|
||
} \
|
||
DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
|
||
failure = NEXT_FAILURE_HANDLE(failure); \
|
||
} \
|
||
DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
|
||
} while (0)
|
||
|
||
/* Push the information about the state we will need
|
||
if we ever fail back to it.
|
||
|
||
Requires variables fail_stack, regstart, regend and
|
||
num_regs be declared. GROW_FAIL_STACK requires `destination' be
|
||
declared.
|
||
|
||
Does `return FAILURE_CODE' if runs out of memory. */
|
||
|
||
#define PUSH_FAILURE_POINT(pattern, string_place) \
|
||
do { \
|
||
char *destination; \
|
||
/* Must be int, so when we don't save any registers, the arithmetic \
|
||
of 0 + -1 isn't done as unsigned. */ \
|
||
\
|
||
DEBUG_STATEMENT (nfailure_points_pushed++); \
|
||
DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
|
||
DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
|
||
DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
|
||
\
|
||
ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
|
||
\
|
||
DEBUG_PRINT1 ("\n"); \
|
||
\
|
||
DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
|
||
PUSH_FAILURE_INT (fail_stack.frame); \
|
||
\
|
||
DEBUG_PRINT2 (" Push string %p: `", string_place); \
|
||
DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
|
||
DEBUG_PRINT1 ("'\n"); \
|
||
PUSH_FAILURE_POINTER (string_place); \
|
||
\
|
||
DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
|
||
DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
|
||
PUSH_FAILURE_POINTER (pattern); \
|
||
\
|
||
/* Close the frame by moving the frame pointer past it. */ \
|
||
fail_stack.frame = fail_stack.avail; \
|
||
} while (0)
|
||
|
||
/* Estimate the size of data pushed by a typical failure stack entry.
|
||
An estimate is all we need, because all we use this for
|
||
is to choose a limit for how big to make the failure stack. */
|
||
/* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
|
||
#define TYPICAL_FAILURE_SIZE 20
|
||
|
||
/* How many items can still be added to the stack without overflowing it. */
|
||
#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
|
||
|
||
|
||
/* Pops what PUSH_FAIL_STACK pushes.
|
||
|
||
We restore into the parameters, all of which should be lvalues:
|
||
STR -- the saved data position.
|
||
PAT -- the saved pattern position.
|
||
REGSTART, REGEND -- arrays of string positions.
|
||
|
||
Also assumes the variables `fail_stack' and (if debugging), `bufp',
|
||
`pend', `string1', `size1', `string2', and `size2'. */
|
||
|
||
#define POP_FAILURE_POINT(str, pat) \
|
||
do { \
|
||
assert (!FAIL_STACK_EMPTY ()); \
|
||
\
|
||
/* Remove failure points and point to how many regs pushed. */ \
|
||
DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
|
||
DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
|
||
DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
|
||
\
|
||
/* Pop the saved registers. */ \
|
||
while (fail_stack.frame < fail_stack.avail) \
|
||
POP_FAILURE_REG_OR_COUNT (); \
|
||
\
|
||
pat = POP_FAILURE_POINTER (); \
|
||
DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
|
||
DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
|
||
\
|
||
/* If the saved string location is NULL, it came from an \
|
||
on_failure_keep_string_jump opcode, and we want to throw away the \
|
||
saved NULL, thus retaining our current position in the string. */ \
|
||
str = POP_FAILURE_POINTER (); \
|
||
DEBUG_PRINT2 (" Popping string %p: `", str); \
|
||
DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
|
||
DEBUG_PRINT1 ("'\n"); \
|
||
\
|
||
fail_stack.frame = POP_FAILURE_INT (); \
|
||
DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
|
||
\
|
||
assert (fail_stack.avail >= 0); \
|
||
assert (fail_stack.frame <= fail_stack.avail); \
|
||
\
|
||
DEBUG_STATEMENT (nfailure_points_popped++); \
|
||
} while (0) /* POP_FAILURE_POINT */
|
||
|
||
|
||
|
||
/* Registers are set to a sentinel when they haven't yet matched. */
|
||
#define REG_UNSET(e) ((e) == NULL)
|
||
|
||
/* Subroutine declarations and macros for regex_compile. */
|
||
|
||
static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
|
||
reg_syntax_t syntax,
|
||
struct re_pattern_buffer *bufp));
|
||
static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
|
||
static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
|
||
int arg1, int arg2));
|
||
static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
|
||
int arg, unsigned char *end));
|
||
static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
|
||
int arg1, int arg2, unsigned char *end));
|
||
static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
|
||
re_char *p,
|
||
reg_syntax_t syntax));
|
||
static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
|
||
re_char *pend,
|
||
reg_syntax_t syntax));
|
||
static re_char *skip_one_char _RE_ARGS ((re_char *p));
|
||
static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
|
||
char *fastmap, const int multibyte));
|
||
|
||
/* Fetch the next character in the uncompiled pattern, with no
|
||
translation. */
|
||
#define PATFETCH(c) \
|
||
do { \
|
||
int len; \
|
||
if (p == pend) return REG_EEND; \
|
||
c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
|
||
p += len; \
|
||
} while (0)
|
||
|
||
|
||
/* If `translate' is non-null, return translate[D], else just D. We
|
||
cast the subscript to translate because some data is declared as
|
||
`char *', to avoid warnings when a string constant is passed. But
|
||
when we use a character as a subscript we must make it unsigned. */
|
||
#ifndef TRANSLATE
|
||
# define TRANSLATE(d) \
|
||
(RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
|
||
#endif
|
||
|
||
|
||
/* Macros for outputting the compiled pattern into `buffer'. */
|
||
|
||
/* If the buffer isn't allocated when it comes in, use this. */
|
||
#define INIT_BUF_SIZE 32
|
||
|
||
/* Make sure we have at least N more bytes of space in buffer. */
|
||
#define GET_BUFFER_SPACE(n) \
|
||
while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
|
||
EXTEND_BUFFER ()
|
||
|
||
/* Make sure we have one more byte of buffer space and then add C to it. */
|
||
#define BUF_PUSH(c) \
|
||
do { \
|
||
GET_BUFFER_SPACE (1); \
|
||
*b++ = (unsigned char) (c); \
|
||
} while (0)
|
||
|
||
|
||
/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
|
||
#define BUF_PUSH_2(c1, c2) \
|
||
do { \
|
||
GET_BUFFER_SPACE (2); \
|
||
*b++ = (unsigned char) (c1); \
|
||
*b++ = (unsigned char) (c2); \
|
||
} while (0)
|
||
|
||
|
||
/* As with BUF_PUSH_2, except for three bytes. */
|
||
#define BUF_PUSH_3(c1, c2, c3) \
|
||
do { \
|
||
GET_BUFFER_SPACE (3); \
|
||
*b++ = (unsigned char) (c1); \
|
||
*b++ = (unsigned char) (c2); \
|
||
*b++ = (unsigned char) (c3); \
|
||
} while (0)
|
||
|
||
|
||
/* Store a jump with opcode OP at LOC to location TO. We store a
|
||
relative address offset by the three bytes the jump itself occupies. */
|
||
#define STORE_JUMP(op, loc, to) \
|
||
store_op1 (op, loc, (to) - (loc) - 3)
|
||
|
||
/* Likewise, for a two-argument jump. */
|
||
#define STORE_JUMP2(op, loc, to, arg) \
|
||
store_op2 (op, loc, (to) - (loc) - 3, arg)
|
||
|
||
/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
|
||
#define INSERT_JUMP(op, loc, to) \
|
||
insert_op1 (op, loc, (to) - (loc) - 3, b)
|
||
|
||
/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
|
||
#define INSERT_JUMP2(op, loc, to, arg) \
|
||
insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
|
||
|
||
|
||
/* This is not an arbitrary limit: the arguments which represent offsets
|
||
into the pattern are two bytes long. So if 2^15 bytes turns out to
|
||
be too small, many things would have to change. */
|
||
# define MAX_BUF_SIZE (1L << 15)
|
||
|
||
#if 0 /* This is when we thought it could be 2^16 bytes. */
|
||
/* Any other compiler which, like MSC, has allocation limit below 2^16
|
||
bytes will have to use approach similar to what was done below for
|
||
MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
|
||
reallocating to 0 bytes. Such thing is not going to work too well.
|
||
You have been warned!! */
|
||
#if defined _MSC_VER && !defined WIN32
|
||
/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
|
||
# define MAX_BUF_SIZE 65500L
|
||
#else
|
||
# define MAX_BUF_SIZE (1L << 16)
|
||
#endif
|
||
#endif /* 0 */
|
||
|
||
/* Extend the buffer by twice its current size via realloc and
|
||
reset the pointers that pointed into the old block to point to the
|
||
correct places in the new one. If extending the buffer results in it
|
||
being larger than MAX_BUF_SIZE, then flag memory exhausted. */
|
||
#if __BOUNDED_POINTERS__
|
||
# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
|
||
# define MOVE_BUFFER_POINTER(P) \
|
||
(__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
|
||
# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
|
||
else \
|
||
{ \
|
||
SET_HIGH_BOUND (b); \
|
||
SET_HIGH_BOUND (begalt); \
|
||
if (fixup_alt_jump) \
|
||
SET_HIGH_BOUND (fixup_alt_jump); \
|
||
if (laststart) \
|
||
SET_HIGH_BOUND (laststart); \
|
||
if (pending_exact) \
|
||
SET_HIGH_BOUND (pending_exact); \
|
||
}
|
||
#else
|
||
# define MOVE_BUFFER_POINTER(P) (P) += incr
|
||
# define ELSE_EXTEND_BUFFER_HIGH_BOUND
|
||
#endif
|
||
#define EXTEND_BUFFER() \
|
||
do { \
|
||
re_char *old_buffer = bufp->buffer; \
|
||
if (bufp->allocated == MAX_BUF_SIZE) \
|
||
return REG_ESIZE; \
|
||
bufp->allocated <<= 1; \
|
||
if (bufp->allocated > MAX_BUF_SIZE) \
|
||
bufp->allocated = MAX_BUF_SIZE; \
|
||
RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
|
||
if (bufp->buffer == NULL) \
|
||
return REG_ESPACE; \
|
||
/* If the buffer moved, move all the pointers into it. */ \
|
||
if (old_buffer != bufp->buffer) \
|
||
{ \
|
||
int incr = bufp->buffer - old_buffer; \
|
||
MOVE_BUFFER_POINTER (b); \
|
||
MOVE_BUFFER_POINTER (begalt); \
|
||
if (fixup_alt_jump) \
|
||
MOVE_BUFFER_POINTER (fixup_alt_jump); \
|
||
if (laststart) \
|
||
MOVE_BUFFER_POINTER (laststart); \
|
||
if (pending_exact) \
|
||
MOVE_BUFFER_POINTER (pending_exact); \
|
||
} \
|
||
ELSE_EXTEND_BUFFER_HIGH_BOUND \
|
||
} while (0)
|
||
|
||
|
||
/* Since we have one byte reserved for the register number argument to
|
||
{start,stop}_memory, the maximum number of groups we can report
|
||
things about is what fits in that byte. */
|
||
#define MAX_REGNUM 255
|
||
|
||
/* But patterns can have more than `MAX_REGNUM' registers. We just
|
||
ignore the excess. */
|
||
typedef int regnum_t;
|
||
|
||
|
||
/* Macros for the compile stack. */
|
||
|
||
/* Since offsets can go either forwards or backwards, this type needs to
|
||
be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
|
||
/* int may be not enough when sizeof(int) == 2. */
|
||
typedef long pattern_offset_t;
|
||
|
||
typedef struct
|
||
{
|
||
pattern_offset_t begalt_offset;
|
||
pattern_offset_t fixup_alt_jump;
|
||
pattern_offset_t laststart_offset;
|
||
regnum_t regnum;
|
||
} compile_stack_elt_t;
|
||
|
||
|
||
typedef struct
|
||
{
|
||
compile_stack_elt_t *stack;
|
||
unsigned size;
|
||
unsigned avail; /* Offset of next open position. */
|
||
} compile_stack_type;
|
||
|
||
|
||
#define INIT_COMPILE_STACK_SIZE 32
|
||
|
||
#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
|
||
#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
|
||
|
||
/* The next available element. */
|
||
#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
|
||
|
||
/* Explicit quit checking is only used on NTemacs and whenever we
|
||
use polling to process input events. */
|
||
#if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
|
||
extern int immediate_quit;
|
||
# define IMMEDIATE_QUIT_CHECK \
|
||
do { \
|
||
if (immediate_quit) QUIT; \
|
||
} while (0)
|
||
#else
|
||
# define IMMEDIATE_QUIT_CHECK ((void)0)
|
||
#endif
|
||
|
||
/* Structure to manage work area for range table. */
|
||
struct range_table_work_area
|
||
{
|
||
int *table; /* actual work area. */
|
||
int allocated; /* allocated size for work area in bytes. */
|
||
int used; /* actually used size in words. */
|
||
int bits; /* flag to record character classes */
|
||
};
|
||
|
||
/* Make sure that WORK_AREA can hold more N multibyte characters.
|
||
This is used only in set_image_of_range and set_image_of_range_1.
|
||
It expects WORK_AREA to be a pointer.
|
||
If it can't get the space, it returns from the surrounding function. */
|
||
|
||
#define EXTEND_RANGE_TABLE(work_area, n) \
|
||
do { \
|
||
if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
|
||
{ \
|
||
extend_range_table_work_area (work_area); \
|
||
if ((work_area)->table == 0) \
|
||
return (REG_ESPACE); \
|
||
} \
|
||
} while (0)
|
||
|
||
#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
|
||
(work_area).bits |= (bit)
|
||
|
||
/* Bits used to implement the multibyte-part of the various character classes
|
||
such as [:alnum:] in a charset's range table. */
|
||
#define BIT_WORD 0x1
|
||
#define BIT_LOWER 0x2
|
||
#define BIT_PUNCT 0x4
|
||
#define BIT_SPACE 0x8
|
||
#define BIT_UPPER 0x10
|
||
#define BIT_MULTIBYTE 0x20
|
||
|
||
/* Set a range START..END to WORK_AREA.
|
||
The range is passed through TRANSLATE, so START and END
|
||
should be untranslated. */
|
||
#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
|
||
do { \
|
||
int tem; \
|
||
tem = set_image_of_range (&work_area, start, end, translate); \
|
||
if (tem > 0) \
|
||
FREE_STACK_RETURN (tem); \
|
||
} while (0)
|
||
|
||
/* Free allocated memory for WORK_AREA. */
|
||
#define FREE_RANGE_TABLE_WORK_AREA(work_area) \
|
||
do { \
|
||
if ((work_area).table) \
|
||
free ((work_area).table); \
|
||
} while (0)
|
||
|
||
#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
|
||
#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
|
||
#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
|
||
#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
|
||
|
||
|
||
/* Set the bit for character C in a list. */
|
||
#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
|
||
|
||
|
||
/* Get the next unsigned number in the uncompiled pattern. */
|
||
#define GET_UNSIGNED_NUMBER(num) \
|
||
do { \
|
||
if (p == pend) \
|
||
FREE_STACK_RETURN (REG_EBRACE); \
|
||
else \
|
||
{ \
|
||
PATFETCH (c); \
|
||
while ('0' <= c && c <= '9') \
|
||
{ \
|
||
int prev; \
|
||
if (num < 0) \
|
||
num = 0; \
|
||
prev = num; \
|
||
num = num * 10 + c - '0'; \
|
||
if (num / 10 != prev) \
|
||
FREE_STACK_RETURN (REG_BADBR); \
|
||
if (p == pend) \
|
||
FREE_STACK_RETURN (REG_EBRACE); \
|
||
PATFETCH (c); \
|
||
} \
|
||
} \
|
||
} while (0)
|
||
|
||
#if ! WIDE_CHAR_SUPPORT
|
||
|
||
/* Map a string to the char class it names (if any). */
|
||
re_wctype_t
|
||
re_wctype (str)
|
||
re_char *str;
|
||
{
|
||
const char *string = str;
|
||
if (STREQ (string, "alnum")) return RECC_ALNUM;
|
||
else if (STREQ (string, "alpha")) return RECC_ALPHA;
|
||
else if (STREQ (string, "word")) return RECC_WORD;
|
||
else if (STREQ (string, "ascii")) return RECC_ASCII;
|
||
else if (STREQ (string, "nonascii")) return RECC_NONASCII;
|
||
else if (STREQ (string, "graph")) return RECC_GRAPH;
|
||
else if (STREQ (string, "lower")) return RECC_LOWER;
|
||
else if (STREQ (string, "print")) return RECC_PRINT;
|
||
else if (STREQ (string, "punct")) return RECC_PUNCT;
|
||
else if (STREQ (string, "space")) return RECC_SPACE;
|
||
else if (STREQ (string, "upper")) return RECC_UPPER;
|
||
else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
|
||
else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
|
||
else if (STREQ (string, "digit")) return RECC_DIGIT;
|
||
else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
|
||
else if (STREQ (string, "cntrl")) return RECC_CNTRL;
|
||
else if (STREQ (string, "blank")) return RECC_BLANK;
|
||
else return 0;
|
||
}
|
||
|
||
/* True iff CH is in the char class CC. */
|
||
boolean
|
||
re_iswctype (ch, cc)
|
||
int ch;
|
||
re_wctype_t cc;
|
||
{
|
||
switch (cc)
|
||
{
|
||
case RECC_ALNUM: return ISALNUM (ch);
|
||
case RECC_ALPHA: return ISALPHA (ch);
|
||
case RECC_BLANK: return ISBLANK (ch);
|
||
case RECC_CNTRL: return ISCNTRL (ch);
|
||
case RECC_DIGIT: return ISDIGIT (ch);
|
||
case RECC_GRAPH: return ISGRAPH (ch);
|
||
case RECC_LOWER: return ISLOWER (ch);
|
||
case RECC_PRINT: return ISPRINT (ch);
|
||
case RECC_PUNCT: return ISPUNCT (ch);
|
||
case RECC_SPACE: return ISSPACE (ch);
|
||
case RECC_UPPER: return ISUPPER (ch);
|
||
case RECC_XDIGIT: return ISXDIGIT (ch);
|
||
case RECC_ASCII: return IS_REAL_ASCII (ch);
|
||
case RECC_NONASCII: return !IS_REAL_ASCII (ch);
|
||
case RECC_UNIBYTE: return ISUNIBYTE (ch);
|
||
case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
|
||
case RECC_WORD: return ISWORD (ch);
|
||
case RECC_ERROR: return false;
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
|
||
/* Return a bit-pattern to use in the range-table bits to match multibyte
|
||
chars of class CC. */
|
||
static int
|
||
re_wctype_to_bit (cc)
|
||
re_wctype_t cc;
|
||
{
|
||
switch (cc)
|
||
{
|
||
case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
|
||
case RECC_MULTIBYTE: return BIT_MULTIBYTE;
|
||
case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
|
||
case RECC_LOWER: return BIT_LOWER;
|
||
case RECC_UPPER: return BIT_UPPER;
|
||
case RECC_PUNCT: return BIT_PUNCT;
|
||
case RECC_SPACE: return BIT_SPACE;
|
||
case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
|
||
case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Filling in the work area of a range. */
|
||
|
||
/* Actually extend the space in WORK_AREA. */
|
||
|
||
static void
|
||
extend_range_table_work_area (work_area)
|
||
struct range_table_work_area *work_area;
|
||
{
|
||
work_area->allocated += 16 * sizeof (int);
|
||
if (work_area->table)
|
||
work_area->table
|
||
= (int *) realloc (work_area->table, work_area->allocated);
|
||
else
|
||
work_area->table
|
||
= (int *) malloc (work_area->allocated);
|
||
}
|
||
|
||
#ifdef emacs
|
||
|
||
/* Carefully find the ranges of codes that are equivalent
|
||
under case conversion to the range start..end when passed through
|
||
TRANSLATE. Handle the case where non-letters can come in between
|
||
two upper-case letters (which happens in Latin-1).
|
||
Also handle the case of groups of more than 2 case-equivalent chars.
|
||
|
||
The basic method is to look at consecutive characters and see
|
||
if they can form a run that can be handled as one.
|
||
|
||
Returns -1 if successful, REG_ESPACE if ran out of space. */
|
||
|
||
static int
|
||
set_image_of_range_1 (work_area, start, end, translate)
|
||
RE_TRANSLATE_TYPE translate;
|
||
struct range_table_work_area *work_area;
|
||
re_wchar_t start, end;
|
||
{
|
||
/* `one_case' indicates a character, or a run of characters,
|
||
each of which is an isolate (no case-equivalents).
|
||
This includes all ASCII non-letters.
|
||
|
||
`two_case' indicates a character, or a run of characters,
|
||
each of which has two case-equivalent forms.
|
||
This includes all ASCII letters.
|
||
|
||
`strange' indicates a character that has more than one
|
||
case-equivalent. */
|
||
|
||
enum case_type {one_case, two_case, strange};
|
||
|
||
/* Describe the run that is in progress,
|
||
which the next character can try to extend.
|
||
If run_type is strange, that means there really is no run.
|
||
If run_type is one_case, then run_start...run_end is the run.
|
||
If run_type is two_case, then the run is run_start...run_end,
|
||
and the case-equivalents end at run_eqv_end. */
|
||
|
||
enum case_type run_type = strange;
|
||
int run_start, run_end, run_eqv_end;
|
||
|
||
Lisp_Object eqv_table;
|
||
|
||
if (!RE_TRANSLATE_P (translate))
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = (start);
|
||
work_area->table[work_area->used++] = (end);
|
||
return -1;
|
||
}
|
||
|
||
eqv_table = XCHAR_TABLE (translate)->extras[2];
|
||
|
||
for (; start <= end; start++)
|
||
{
|
||
enum case_type this_type;
|
||
int eqv = RE_TRANSLATE (eqv_table, start);
|
||
int minchar, maxchar;
|
||
|
||
/* Classify this character */
|
||
if (eqv == start)
|
||
this_type = one_case;
|
||
else if (RE_TRANSLATE (eqv_table, eqv) == start)
|
||
this_type = two_case;
|
||
else
|
||
this_type = strange;
|
||
|
||
if (start < eqv)
|
||
minchar = start, maxchar = eqv;
|
||
else
|
||
minchar = eqv, maxchar = start;
|
||
|
||
/* Can this character extend the run in progress? */
|
||
if (this_type == strange || this_type != run_type
|
||
|| !(minchar == run_end + 1
|
||
&& (run_type == two_case
|
||
? maxchar == run_eqv_end + 1 : 1)))
|
||
{
|
||
/* No, end the run.
|
||
Record each of its equivalent ranges. */
|
||
if (run_type == one_case)
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = run_start;
|
||
work_area->table[work_area->used++] = run_end;
|
||
}
|
||
else if (run_type == two_case)
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 4);
|
||
work_area->table[work_area->used++] = run_start;
|
||
work_area->table[work_area->used++] = run_end;
|
||
work_area->table[work_area->used++]
|
||
= RE_TRANSLATE (eqv_table, run_start);
|
||
work_area->table[work_area->used++]
|
||
= RE_TRANSLATE (eqv_table, run_end);
|
||
}
|
||
run_type = strange;
|
||
}
|
||
|
||
if (this_type == strange)
|
||
{
|
||
/* For a strange character, add each of its equivalents, one
|
||
by one. Don't start a range. */
|
||
do
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = eqv;
|
||
work_area->table[work_area->used++] = eqv;
|
||
eqv = RE_TRANSLATE (eqv_table, eqv);
|
||
}
|
||
while (eqv != start);
|
||
}
|
||
|
||
/* Add this char to the run, or start a new run. */
|
||
else if (run_type == strange)
|
||
{
|
||
/* Initialize a new range. */
|
||
run_type = this_type;
|
||
run_start = start;
|
||
run_end = start;
|
||
run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
|
||
}
|
||
else
|
||
{
|
||
/* Extend a running range. */
|
||
run_end = minchar;
|
||
run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
|
||
}
|
||
}
|
||
|
||
/* If a run is still in progress at the end, finish it now
|
||
by recording its equivalent ranges. */
|
||
if (run_type == one_case)
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = run_start;
|
||
work_area->table[work_area->used++] = run_end;
|
||
}
|
||
else if (run_type == two_case)
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 4);
|
||
work_area->table[work_area->used++] = run_start;
|
||
work_area->table[work_area->used++] = run_end;
|
||
work_area->table[work_area->used++]
|
||
= RE_TRANSLATE (eqv_table, run_start);
|
||
work_area->table[work_area->used++]
|
||
= RE_TRANSLATE (eqv_table, run_end);
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
#endif /* emacs */
|
||
|
||
/* Record the the image of the range start..end when passed through
|
||
TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
|
||
and is not even necessarily contiguous.
|
||
Normally we approximate it with the smallest contiguous range that contains
|
||
all the chars we need. However, for Latin-1 we go to extra effort
|
||
to do a better job.
|
||
|
||
This function is not called for ASCII ranges.
|
||
|
||
Returns -1 if successful, REG_ESPACE if ran out of space. */
|
||
|
||
static int
|
||
set_image_of_range (work_area, start, end, translate)
|
||
RE_TRANSLATE_TYPE translate;
|
||
struct range_table_work_area *work_area;
|
||
re_wchar_t start, end;
|
||
{
|
||
re_wchar_t cmin, cmax;
|
||
|
||
#ifdef emacs
|
||
/* For Latin-1 ranges, use set_image_of_range_1
|
||
to get proper handling of ranges that include letters and nonletters.
|
||
For a range that includes the whole of Latin-1, this is not necessary.
|
||
For other character sets, we don't bother to get this right. */
|
||
if (RE_TRANSLATE_P (translate) && start < 04400
|
||
&& !(start < 04200 && end >= 04377))
|
||
{
|
||
int newend;
|
||
int tem;
|
||
newend = end;
|
||
if (newend > 04377)
|
||
newend = 04377;
|
||
tem = set_image_of_range_1 (work_area, start, newend, translate);
|
||
if (tem > 0)
|
||
return tem;
|
||
|
||
start = 04400;
|
||
if (end < 04400)
|
||
return -1;
|
||
}
|
||
#endif
|
||
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = (start);
|
||
work_area->table[work_area->used++] = (end);
|
||
|
||
cmin = -1, cmax = -1;
|
||
|
||
if (RE_TRANSLATE_P (translate))
|
||
{
|
||
int ch;
|
||
|
||
for (ch = start; ch <= end; ch++)
|
||
{
|
||
re_wchar_t c = TRANSLATE (ch);
|
||
if (! (start <= c && c <= end))
|
||
{
|
||
if (cmin == -1)
|
||
cmin = c, cmax = c;
|
||
else
|
||
{
|
||
cmin = MIN (cmin, c);
|
||
cmax = MAX (cmax, c);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (cmin != -1)
|
||
{
|
||
EXTEND_RANGE_TABLE (work_area, 2);
|
||
work_area->table[work_area->used++] = (cmin);
|
||
work_area->table[work_area->used++] = (cmax);
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
#ifndef MATCH_MAY_ALLOCATE
|
||
|
||
/* If we cannot allocate large objects within re_match_2_internal,
|
||
we make the fail stack and register vectors global.
|
||
The fail stack, we grow to the maximum size when a regexp
|
||
is compiled.
|
||
The register vectors, we adjust in size each time we
|
||
compile a regexp, according to the number of registers it needs. */
|
||
|
||
static fail_stack_type fail_stack;
|
||
|
||
/* Size with which the following vectors are currently allocated.
|
||
That is so we can make them bigger as needed,
|
||
but never make them smaller. */
|
||
static int regs_allocated_size;
|
||
|
||
static re_char ** regstart, ** regend;
|
||
static re_char **best_regstart, **best_regend;
|
||
|
||
/* Make the register vectors big enough for NUM_REGS registers,
|
||
but don't make them smaller. */
|
||
|
||
static
|
||
regex_grow_registers (num_regs)
|
||
int num_regs;
|
||
{
|
||
if (num_regs > regs_allocated_size)
|
||
{
|
||
RETALLOC_IF (regstart, num_regs, re_char *);
|
||
RETALLOC_IF (regend, num_regs, re_char *);
|
||
RETALLOC_IF (best_regstart, num_regs, re_char *);
|
||
RETALLOC_IF (best_regend, num_regs, re_char *);
|
||
|
||
regs_allocated_size = num_regs;
|
||
}
|
||
}
|
||
|
||
#endif /* not MATCH_MAY_ALLOCATE */
|
||
|
||
static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
|
||
compile_stack,
|
||
regnum_t regnum));
|
||
|
||
/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
|
||
Returns one of error codes defined in `regex.h', or zero for success.
|
||
|
||
Assumes the `allocated' (and perhaps `buffer') and `translate'
|
||
fields are set in BUFP on entry.
|
||
|
||
If it succeeds, results are put in BUFP (if it returns an error, the
|
||
contents of BUFP are undefined):
|
||
`buffer' is the compiled pattern;
|
||
`syntax' is set to SYNTAX;
|
||
`used' is set to the length of the compiled pattern;
|
||
`fastmap_accurate' is zero;
|
||
`re_nsub' is the number of subexpressions in PATTERN;
|
||
`not_bol' and `not_eol' are zero;
|
||
|
||
The `fastmap' field is neither examined nor set. */
|
||
|
||
/* Insert the `jump' from the end of last alternative to "here".
|
||
The space for the jump has already been allocated. */
|
||
#define FIXUP_ALT_JUMP() \
|
||
do { \
|
||
if (fixup_alt_jump) \
|
||
STORE_JUMP (jump, fixup_alt_jump, b); \
|
||
} while (0)
|
||
|
||
|
||
/* Return, freeing storage we allocated. */
|
||
#define FREE_STACK_RETURN(value) \
|
||
do { \
|
||
FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
|
||
free (compile_stack.stack); \
|
||
return value; \
|
||
} while (0)
|
||
|
||
static reg_errcode_t
|
||
regex_compile (pattern, size, syntax, bufp)
|
||
re_char *pattern;
|
||
size_t size;
|
||
reg_syntax_t syntax;
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
/* We fetch characters from PATTERN here. */
|
||
register re_wchar_t c, c1;
|
||
|
||
/* A random temporary spot in PATTERN. */
|
||
re_char *p1;
|
||
|
||
/* Points to the end of the buffer, where we should append. */
|
||
register unsigned char *b;
|
||
|
||
/* Keeps track of unclosed groups. */
|
||
compile_stack_type compile_stack;
|
||
|
||
/* Points to the current (ending) position in the pattern. */
|
||
#ifdef AIX
|
||
/* `const' makes AIX compiler fail. */
|
||
unsigned char *p = pattern;
|
||
#else
|
||
re_char *p = pattern;
|
||
#endif
|
||
re_char *pend = pattern + size;
|
||
|
||
/* How to translate the characters in the pattern. */
|
||
RE_TRANSLATE_TYPE translate = bufp->translate;
|
||
|
||
/* Address of the count-byte of the most recently inserted `exactn'
|
||
command. This makes it possible to tell if a new exact-match
|
||
character can be added to that command or if the character requires
|
||
a new `exactn' command. */
|
||
unsigned char *pending_exact = 0;
|
||
|
||
/* Address of start of the most recently finished expression.
|
||
This tells, e.g., postfix * where to find the start of its
|
||
operand. Reset at the beginning of groups and alternatives. */
|
||
unsigned char *laststart = 0;
|
||
|
||
/* Address of beginning of regexp, or inside of last group. */
|
||
unsigned char *begalt;
|
||
|
||
/* Place in the uncompiled pattern (i.e., the {) to
|
||
which to go back if the interval is invalid. */
|
||
re_char *beg_interval;
|
||
|
||
/* Address of the place where a forward jump should go to the end of
|
||
the containing expression. Each alternative of an `or' -- except the
|
||
last -- ends with a forward jump of this sort. */
|
||
unsigned char *fixup_alt_jump = 0;
|
||
|
||
/* Counts open-groups as they are encountered. Remembered for the
|
||
matching close-group on the compile stack, so the same register
|
||
number is put in the stop_memory as the start_memory. */
|
||
regnum_t regnum = 0;
|
||
|
||
/* Work area for range table of charset. */
|
||
struct range_table_work_area range_table_work;
|
||
|
||
/* If the object matched can contain multibyte characters. */
|
||
const boolean multibyte = RE_MULTIBYTE_P (bufp);
|
||
|
||
/* Nonzero if we have pushed down into a subpattern. */
|
||
int in_subpattern = 0;
|
||
|
||
/* These hold the values of p, pattern, and pend from the main
|
||
pattern when we have pushed into a subpattern. */
|
||
re_char *main_p;
|
||
re_char *main_pattern;
|
||
re_char *main_pend;
|
||
|
||
#ifdef DEBUG
|
||
debug++;
|
||
DEBUG_PRINT1 ("\nCompiling pattern: ");
|
||
if (debug > 0)
|
||
{
|
||
unsigned debug_count;
|
||
|
||
for (debug_count = 0; debug_count < size; debug_count++)
|
||
putchar (pattern[debug_count]);
|
||
putchar ('\n');
|
||
}
|
||
#endif /* DEBUG */
|
||
|
||
/* Initialize the compile stack. */
|
||
compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
|
||
if (compile_stack.stack == NULL)
|
||
return REG_ESPACE;
|
||
|
||
compile_stack.size = INIT_COMPILE_STACK_SIZE;
|
||
compile_stack.avail = 0;
|
||
|
||
range_table_work.table = 0;
|
||
range_table_work.allocated = 0;
|
||
|
||
/* Initialize the pattern buffer. */
|
||
bufp->syntax = syntax;
|
||
bufp->fastmap_accurate = 0;
|
||
bufp->not_bol = bufp->not_eol = 0;
|
||
|
||
/* Set `used' to zero, so that if we return an error, the pattern
|
||
printer (for debugging) will think there's no pattern. We reset it
|
||
at the end. */
|
||
bufp->used = 0;
|
||
|
||
/* Always count groups, whether or not bufp->no_sub is set. */
|
||
bufp->re_nsub = 0;
|
||
|
||
#if !defined emacs && !defined SYNTAX_TABLE
|
||
/* Initialize the syntax table. */
|
||
init_syntax_once ();
|
||
#endif
|
||
|
||
if (bufp->allocated == 0)
|
||
{
|
||
if (bufp->buffer)
|
||
{ /* If zero allocated, but buffer is non-null, try to realloc
|
||
enough space. This loses if buffer's address is bogus, but
|
||
that is the user's responsibility. */
|
||
RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
|
||
}
|
||
else
|
||
{ /* Caller did not allocate a buffer. Do it for them. */
|
||
bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
|
||
}
|
||
if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
|
||
|
||
bufp->allocated = INIT_BUF_SIZE;
|
||
}
|
||
|
||
begalt = b = bufp->buffer;
|
||
|
||
/* Loop through the uncompiled pattern until we're at the end. */
|
||
while (1)
|
||
{
|
||
if (p == pend)
|
||
{
|
||
/* If this is the end of an included regexp,
|
||
pop back to the main regexp and try again. */
|
||
if (in_subpattern)
|
||
{
|
||
in_subpattern = 0;
|
||
pattern = main_pattern;
|
||
p = main_p;
|
||
pend = main_pend;
|
||
continue;
|
||
}
|
||
/* If this is the end of the main regexp, we are done. */
|
||
break;
|
||
}
|
||
|
||
PATFETCH (c);
|
||
|
||
switch (c)
|
||
{
|
||
case ' ':
|
||
{
|
||
re_char *p1 = p;
|
||
|
||
/* If there's no special whitespace regexp, treat
|
||
spaces normally. And don't try to do this recursively. */
|
||
if (!whitespace_regexp || in_subpattern)
|
||
goto normal_char;
|
||
|
||
/* Peek past following spaces. */
|
||
while (p1 != pend)
|
||
{
|
||
if (*p1 != ' ')
|
||
break;
|
||
p1++;
|
||
}
|
||
/* If the spaces are followed by a repetition op,
|
||
treat them normally. */
|
||
if (p1 != pend
|
||
&& (*p1 == '*' || *p1 == '+' || *p1 == '?'
|
||
|| (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
|
||
goto normal_char;
|
||
|
||
/* Replace the spaces with the whitespace regexp. */
|
||
in_subpattern = 1;
|
||
main_p = p1;
|
||
main_pend = pend;
|
||
main_pattern = pattern;
|
||
p = pattern = whitespace_regexp;
|
||
pend = p + strlen (p);
|
||
break;
|
||
}
|
||
|
||
case '^':
|
||
{
|
||
if ( /* If at start of pattern, it's an operator. */
|
||
p == pattern + 1
|
||
/* If context independent, it's an operator. */
|
||
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
||
/* Otherwise, depends on what's come before. */
|
||
|| at_begline_loc_p (pattern, p, syntax))
|
||
BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
|
||
else
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
case '$':
|
||
{
|
||
if ( /* If at end of pattern, it's an operator. */
|
||
p == pend
|
||
/* If context independent, it's an operator. */
|
||
|| syntax & RE_CONTEXT_INDEP_ANCHORS
|
||
/* Otherwise, depends on what's next. */
|
||
|| at_endline_loc_p (p, pend, syntax))
|
||
BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
|
||
else
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
case '+':
|
||
case '?':
|
||
if ((syntax & RE_BK_PLUS_QM)
|
||
|| (syntax & RE_LIMITED_OPS))
|
||
goto normal_char;
|
||
handle_plus:
|
||
case '*':
|
||
/* If there is no previous pattern... */
|
||
if (!laststart)
|
||
{
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
FREE_STACK_RETURN (REG_BADRPT);
|
||
else if (!(syntax & RE_CONTEXT_INDEP_OPS))
|
||
goto normal_char;
|
||
}
|
||
|
||
{
|
||
/* 1 means zero (many) matches is allowed. */
|
||
boolean zero_times_ok = 0, many_times_ok = 0;
|
||
boolean greedy = 1;
|
||
|
||
/* If there is a sequence of repetition chars, collapse it
|
||
down to just one (the right one). We can't combine
|
||
interval operators with these because of, e.g., `a{2}*',
|
||
which should only match an even number of `a's. */
|
||
|
||
for (;;)
|
||
{
|
||
if ((syntax & RE_FRUGAL)
|
||
&& c == '?' && (zero_times_ok || many_times_ok))
|
||
greedy = 0;
|
||
else
|
||
{
|
||
zero_times_ok |= c != '+';
|
||
many_times_ok |= c != '?';
|
||
}
|
||
|
||
if (p == pend)
|
||
break;
|
||
else if (*p == '*'
|
||
|| (!(syntax & RE_BK_PLUS_QM)
|
||
&& (*p == '+' || *p == '?')))
|
||
;
|
||
else if (syntax & RE_BK_PLUS_QM && *p == '\\')
|
||
{
|
||
if (p+1 == pend)
|
||
FREE_STACK_RETURN (REG_EESCAPE);
|
||
if (p[1] == '+' || p[1] == '?')
|
||
PATFETCH (c); /* Gobble up the backslash. */
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
/* If we get here, we found another repeat character. */
|
||
PATFETCH (c);
|
||
}
|
||
|
||
/* Star, etc. applied to an empty pattern is equivalent
|
||
to an empty pattern. */
|
||
if (!laststart || laststart == b)
|
||
break;
|
||
|
||
/* Now we know whether or not zero matches is allowed
|
||
and also whether or not two or more matches is allowed. */
|
||
if (greedy)
|
||
{
|
||
if (many_times_ok)
|
||
{
|
||
boolean simple = skip_one_char (laststart) == b;
|
||
unsigned int startoffset = 0;
|
||
re_opcode_t ofj =
|
||
/* Check if the loop can match the empty string. */
|
||
(simple || !analyse_first (laststart, b, NULL, 0))
|
||
? on_failure_jump : on_failure_jump_loop;
|
||
assert (skip_one_char (laststart) <= b);
|
||
|
||
if (!zero_times_ok && simple)
|
||
{ /* Since simple * loops can be made faster by using
|
||
on_failure_keep_string_jump, we turn simple P+
|
||
into PP* if P is simple. */
|
||
unsigned char *p1, *p2;
|
||
startoffset = b - laststart;
|
||
GET_BUFFER_SPACE (startoffset);
|
||
p1 = b; p2 = laststart;
|
||
while (p2 < p1)
|
||
*b++ = *p2++;
|
||
zero_times_ok = 1;
|
||
}
|
||
|
||
GET_BUFFER_SPACE (6);
|
||
if (!zero_times_ok)
|
||
/* A + loop. */
|
||
STORE_JUMP (ofj, b, b + 6);
|
||
else
|
||
/* Simple * loops can use on_failure_keep_string_jump
|
||
depending on what follows. But since we don't know
|
||
that yet, we leave the decision up to
|
||
on_failure_jump_smart. */
|
||
INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
|
||
laststart + startoffset, b + 6);
|
||
b += 3;
|
||
STORE_JUMP (jump, b, laststart + startoffset);
|
||
b += 3;
|
||
}
|
||
else
|
||
{
|
||
/* A simple ? pattern. */
|
||
assert (zero_times_ok);
|
||
GET_BUFFER_SPACE (3);
|
||
INSERT_JUMP (on_failure_jump, laststart, b + 3);
|
||
b += 3;
|
||
}
|
||
}
|
||
else /* not greedy */
|
||
{ /* I wish the greedy and non-greedy cases could be merged. */
|
||
|
||
GET_BUFFER_SPACE (7); /* We might use less. */
|
||
if (many_times_ok)
|
||
{
|
||
boolean emptyp = analyse_first (laststart, b, NULL, 0);
|
||
|
||
/* The non-greedy multiple match looks like
|
||
a repeat..until: we only need a conditional jump
|
||
at the end of the loop. */
|
||
if (emptyp) BUF_PUSH (no_op);
|
||
STORE_JUMP (emptyp ? on_failure_jump_nastyloop
|
||
: on_failure_jump, b, laststart);
|
||
b += 3;
|
||
if (zero_times_ok)
|
||
{
|
||
/* The repeat...until naturally matches one or more.
|
||
To also match zero times, we need to first jump to
|
||
the end of the loop (its conditional jump). */
|
||
INSERT_JUMP (jump, laststart, b);
|
||
b += 3;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* non-greedy a?? */
|
||
INSERT_JUMP (jump, laststart, b + 3);
|
||
b += 3;
|
||
INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
|
||
b += 3;
|
||
}
|
||
}
|
||
}
|
||
pending_exact = 0;
|
||
break;
|
||
|
||
|
||
case '.':
|
||
laststart = b;
|
||
BUF_PUSH (anychar);
|
||
break;
|
||
|
||
|
||
case '[':
|
||
{
|
||
CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
|
||
|
||
if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
||
|
||
/* Ensure that we have enough space to push a charset: the
|
||
opcode, the length count, and the bitset; 34 bytes in all. */
|
||
GET_BUFFER_SPACE (34);
|
||
|
||
laststart = b;
|
||
|
||
/* We test `*p == '^' twice, instead of using an if
|
||
statement, so we only need one BUF_PUSH. */
|
||
BUF_PUSH (*p == '^' ? charset_not : charset);
|
||
if (*p == '^')
|
||
p++;
|
||
|
||
/* Remember the first position in the bracket expression. */
|
||
p1 = p;
|
||
|
||
/* Push the number of bytes in the bitmap. */
|
||
BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
|
||
|
||
/* Clear the whole map. */
|
||
bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
|
||
|
||
/* charset_not matches newline according to a syntax bit. */
|
||
if ((re_opcode_t) b[-2] == charset_not
|
||
&& (syntax & RE_HAT_LISTS_NOT_NEWLINE))
|
||
SET_LIST_BIT ('\n');
|
||
|
||
/* Read in characters and ranges, setting map bits. */
|
||
for (;;)
|
||
{
|
||
boolean escaped_char = false;
|
||
const unsigned char *p2 = p;
|
||
|
||
if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
||
|
||
/* Don't translate yet. The range TRANSLATE(X..Y) cannot
|
||
always be determined from TRANSLATE(X) and TRANSLATE(Y)
|
||
So the translation is done later in a loop. Example:
|
||
(let ((case-fold-search t)) (string-match "[A-_]" "A")) */
|
||
PATFETCH (c);
|
||
|
||
/* \ might escape characters inside [...] and [^...]. */
|
||
if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
|
||
{
|
||
if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
||
|
||
PATFETCH (c);
|
||
escaped_char = true;
|
||
}
|
||
else
|
||
{
|
||
/* Could be the end of the bracket expression. If it's
|
||
not (i.e., when the bracket expression is `[]' so
|
||
far), the ']' character bit gets set way below. */
|
||
if (c == ']' && p2 != p1)
|
||
break;
|
||
}
|
||
|
||
/* What should we do for the character which is
|
||
greater than 0x7F, but not BASE_LEADING_CODE_P?
|
||
XXX */
|
||
|
||
/* See if we're at the beginning of a possible character
|
||
class. */
|
||
|
||
if (!escaped_char &&
|
||
syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
|
||
{
|
||
/* Leave room for the null. */
|
||
unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
|
||
const unsigned char *class_beg;
|
||
|
||
PATFETCH (c);
|
||
c1 = 0;
|
||
class_beg = p;
|
||
|
||
/* If pattern is `[[:'. */
|
||
if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
||
|
||
for (;;)
|
||
{
|
||
PATFETCH (c);
|
||
if ((c == ':' && *p == ']') || p == pend)
|
||
break;
|
||
if (c1 < CHAR_CLASS_MAX_LENGTH)
|
||
str[c1++] = c;
|
||
else
|
||
/* This is in any case an invalid class name. */
|
||
str[0] = '\0';
|
||
}
|
||
str[c1] = '\0';
|
||
|
||
/* If isn't a word bracketed by `[:' and `:]':
|
||
undo the ending character, the letters, and
|
||
leave the leading `:' and `[' (but set bits for
|
||
them). */
|
||
if (c == ':' && *p == ']')
|
||
{
|
||
re_wchar_t ch;
|
||
re_wctype_t cc;
|
||
|
||
cc = re_wctype (str);
|
||
|
||
if (cc == 0)
|
||
FREE_STACK_RETURN (REG_ECTYPE);
|
||
|
||
/* Throw away the ] at the end of the character
|
||
class. */
|
||
PATFETCH (c);
|
||
|
||
if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
|
||
|
||
/* Most character classes in a multibyte match
|
||
just set a flag. Exceptions are is_blank,
|
||
is_digit, is_cntrl, and is_xdigit, since
|
||
they can only match ASCII characters. We
|
||
don't need to handle them for multibyte.
|
||
They are distinguished by a negative wctype. */
|
||
|
||
if (multibyte)
|
||
SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
|
||
re_wctype_to_bit (cc));
|
||
|
||
for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
|
||
{
|
||
int translated = TRANSLATE (ch);
|
||
if (re_iswctype (btowc (ch), cc))
|
||
SET_LIST_BIT (translated);
|
||
}
|
||
|
||
/* Repeat the loop. */
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
/* Go back to right after the "[:". */
|
||
p = class_beg;
|
||
SET_LIST_BIT ('[');
|
||
|
||
/* Because the `:' may starts the range, we
|
||
can't simply set bit and repeat the loop.
|
||
Instead, just set it to C and handle below. */
|
||
c = ':';
|
||
}
|
||
}
|
||
|
||
if (p < pend && p[0] == '-' && p[1] != ']')
|
||
{
|
||
|
||
/* Discard the `-'. */
|
||
PATFETCH (c1);
|
||
|
||
/* Fetch the character which ends the range. */
|
||
PATFETCH (c1);
|
||
|
||
if (SINGLE_BYTE_CHAR_P (c))
|
||
{
|
||
if (! SINGLE_BYTE_CHAR_P (c1))
|
||
{
|
||
/* Handle a range starting with a
|
||
character of less than 256, and ending
|
||
with a character of not less than 256.
|
||
Split that into two ranges, the low one
|
||
ending at 0377, and the high one
|
||
starting at the smallest character in
|
||
the charset of C1 and ending at C1. */
|
||
int charset = CHAR_CHARSET (c1);
|
||
re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
|
||
|
||
SET_RANGE_TABLE_WORK_AREA (range_table_work,
|
||
c2, c1);
|
||
c1 = 0377;
|
||
}
|
||
}
|
||
else if (!SAME_CHARSET_P (c, c1))
|
||
FREE_STACK_RETURN (REG_ERANGEX);
|
||
}
|
||
else
|
||
/* Range from C to C. */
|
||
c1 = c;
|
||
|
||
/* Set the range ... */
|
||
if (SINGLE_BYTE_CHAR_P (c))
|
||
/* ... into bitmap. */
|
||
{
|
||
re_wchar_t this_char;
|
||
re_wchar_t range_start = c, range_end = c1;
|
||
|
||
/* If the start is after the end, the range is empty. */
|
||
if (range_start > range_end)
|
||
{
|
||
if (syntax & RE_NO_EMPTY_RANGES)
|
||
FREE_STACK_RETURN (REG_ERANGE);
|
||
/* Else, repeat the loop. */
|
||
}
|
||
else
|
||
{
|
||
for (this_char = range_start; this_char <= range_end;
|
||
this_char++)
|
||
SET_LIST_BIT (TRANSLATE (this_char));
|
||
}
|
||
}
|
||
else
|
||
/* ... into range table. */
|
||
SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
|
||
}
|
||
|
||
/* Discard any (non)matching list bytes that are all 0 at the
|
||
end of the map. Decrease the map-length byte too. */
|
||
while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
|
||
b[-1]--;
|
||
b += b[-1];
|
||
|
||
/* Build real range table from work area. */
|
||
if (RANGE_TABLE_WORK_USED (range_table_work)
|
||
|| RANGE_TABLE_WORK_BITS (range_table_work))
|
||
{
|
||
int i;
|
||
int used = RANGE_TABLE_WORK_USED (range_table_work);
|
||
|
||
/* Allocate space for COUNT + RANGE_TABLE. Needs two
|
||
bytes for flags, two for COUNT, and three bytes for
|
||
each character. */
|
||
GET_BUFFER_SPACE (4 + used * 3);
|
||
|
||
/* Indicate the existence of range table. */
|
||
laststart[1] |= 0x80;
|
||
|
||
/* Store the character class flag bits into the range table.
|
||
If not in emacs, these flag bits are always 0. */
|
||
*b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
|
||
*b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
|
||
|
||
STORE_NUMBER_AND_INCR (b, used / 2);
|
||
for (i = 0; i < used; i++)
|
||
STORE_CHARACTER_AND_INCR
|
||
(b, RANGE_TABLE_WORK_ELT (range_table_work, i));
|
||
}
|
||
}
|
||
break;
|
||
|
||
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto handle_open;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto handle_close;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '\n':
|
||
if (syntax & RE_NEWLINE_ALT)
|
||
goto handle_alt;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '|':
|
||
if (syntax & RE_NO_BK_VBAR)
|
||
goto handle_alt;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '{':
|
||
if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
|
||
goto handle_interval;
|
||
else
|
||
goto normal_char;
|
||
|
||
|
||
case '\\':
|
||
if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
|
||
|
||
/* Do not translate the character after the \, so that we can
|
||
distinguish, e.g., \B from \b, even if we normally would
|
||
translate, e.g., B to b. */
|
||
PATFETCH (c);
|
||
|
||
switch (c)
|
||
{
|
||
case '(':
|
||
if (syntax & RE_NO_BK_PARENS)
|
||
goto normal_backslash;
|
||
|
||
handle_open:
|
||
{
|
||
int shy = 0;
|
||
if (p+1 < pend)
|
||
{
|
||
/* Look for a special (?...) construct */
|
||
if ((syntax & RE_SHY_GROUPS) && *p == '?')
|
||
{
|
||
PATFETCH (c); /* Gobble up the '?'. */
|
||
PATFETCH (c);
|
||
switch (c)
|
||
{
|
||
case ':': shy = 1; break;
|
||
default:
|
||
/* Only (?:...) is supported right now. */
|
||
FREE_STACK_RETURN (REG_BADPAT);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!shy)
|
||
{
|
||
bufp->re_nsub++;
|
||
regnum++;
|
||
}
|
||
|
||
if (COMPILE_STACK_FULL)
|
||
{
|
||
RETALLOC (compile_stack.stack, compile_stack.size << 1,
|
||
compile_stack_elt_t);
|
||
if (compile_stack.stack == NULL) return REG_ESPACE;
|
||
|
||
compile_stack.size <<= 1;
|
||
}
|
||
|
||
/* These are the values to restore when we hit end of this
|
||
group. They are all relative offsets, so that if the
|
||
whole pattern moves because of realloc, they will still
|
||
be valid. */
|
||
COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
|
||
COMPILE_STACK_TOP.fixup_alt_jump
|
||
= fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
|
||
COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
|
||
COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
|
||
|
||
/* Do not push a
|
||
start_memory for groups beyond the last one we can
|
||
represent in the compiled pattern. */
|
||
if (regnum <= MAX_REGNUM && !shy)
|
||
BUF_PUSH_2 (start_memory, regnum);
|
||
|
||
compile_stack.avail++;
|
||
|
||
fixup_alt_jump = 0;
|
||
laststart = 0;
|
||
begalt = b;
|
||
/* If we've reached MAX_REGNUM groups, then this open
|
||
won't actually generate any code, so we'll have to
|
||
clear pending_exact explicitly. */
|
||
pending_exact = 0;
|
||
break;
|
||
}
|
||
|
||
case ')':
|
||
if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
|
||
|
||
if (COMPILE_STACK_EMPTY)
|
||
{
|
||
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
||
goto normal_backslash;
|
||
else
|
||
FREE_STACK_RETURN (REG_ERPAREN);
|
||
}
|
||
|
||
handle_close:
|
||
FIXUP_ALT_JUMP ();
|
||
|
||
/* See similar code for backslashed left paren above. */
|
||
if (COMPILE_STACK_EMPTY)
|
||
{
|
||
if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
||
goto normal_char;
|
||
else
|
||
FREE_STACK_RETURN (REG_ERPAREN);
|
||
}
|
||
|
||
/* Since we just checked for an empty stack above, this
|
||
``can't happen''. */
|
||
assert (compile_stack.avail != 0);
|
||
{
|
||
/* We don't just want to restore into `regnum', because
|
||
later groups should continue to be numbered higher,
|
||
as in `(ab)c(de)' -- the second group is #2. */
|
||
regnum_t this_group_regnum;
|
||
|
||
compile_stack.avail--;
|
||
begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
|
||
fixup_alt_jump
|
||
= COMPILE_STACK_TOP.fixup_alt_jump
|
||
? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
|
||
: 0;
|
||
laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
|
||
this_group_regnum = COMPILE_STACK_TOP.regnum;
|
||
/* If we've reached MAX_REGNUM groups, then this open
|
||
won't actually generate any code, so we'll have to
|
||
clear pending_exact explicitly. */
|
||
pending_exact = 0;
|
||
|
||
/* We're at the end of the group, so now we know how many
|
||
groups were inside this one. */
|
||
if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
|
||
BUF_PUSH_2 (stop_memory, this_group_regnum);
|
||
}
|
||
break;
|
||
|
||
|
||
case '|': /* `\|'. */
|
||
if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
|
||
goto normal_backslash;
|
||
handle_alt:
|
||
if (syntax & RE_LIMITED_OPS)
|
||
goto normal_char;
|
||
|
||
/* Insert before the previous alternative a jump which
|
||
jumps to this alternative if the former fails. */
|
||
GET_BUFFER_SPACE (3);
|
||
INSERT_JUMP (on_failure_jump, begalt, b + 6);
|
||
pending_exact = 0;
|
||
b += 3;
|
||
|
||
/* The alternative before this one has a jump after it
|
||
which gets executed if it gets matched. Adjust that
|
||
jump so it will jump to this alternative's analogous
|
||
jump (put in below, which in turn will jump to the next
|
||
(if any) alternative's such jump, etc.). The last such
|
||
jump jumps to the correct final destination. A picture:
|
||
_____ _____
|
||
| | | |
|
||
| v | v
|
||
a | b | c
|
||
|
||
If we are at `b', then fixup_alt_jump right now points to a
|
||
three-byte space after `a'. We'll put in the jump, set
|
||
fixup_alt_jump to right after `b', and leave behind three
|
||
bytes which we'll fill in when we get to after `c'. */
|
||
|
||
FIXUP_ALT_JUMP ();
|
||
|
||
/* Mark and leave space for a jump after this alternative,
|
||
to be filled in later either by next alternative or
|
||
when know we're at the end of a series of alternatives. */
|
||
fixup_alt_jump = b;
|
||
GET_BUFFER_SPACE (3);
|
||
b += 3;
|
||
|
||
laststart = 0;
|
||
begalt = b;
|
||
break;
|
||
|
||
|
||
case '{':
|
||
/* If \{ is a literal. */
|
||
if (!(syntax & RE_INTERVALS)
|
||
/* If we're at `\{' and it's not the open-interval
|
||
operator. */
|
||
|| (syntax & RE_NO_BK_BRACES))
|
||
goto normal_backslash;
|
||
|
||
handle_interval:
|
||
{
|
||
/* If got here, then the syntax allows intervals. */
|
||
|
||
/* At least (most) this many matches must be made. */
|
||
int lower_bound = 0, upper_bound = -1;
|
||
|
||
beg_interval = p;
|
||
|
||
GET_UNSIGNED_NUMBER (lower_bound);
|
||
|
||
if (c == ',')
|
||
GET_UNSIGNED_NUMBER (upper_bound);
|
||
else
|
||
/* Interval such as `{1}' => match exactly once. */
|
||
upper_bound = lower_bound;
|
||
|
||
if (lower_bound < 0 || upper_bound > RE_DUP_MAX
|
||
|| (upper_bound >= 0 && lower_bound > upper_bound))
|
||
FREE_STACK_RETURN (REG_BADBR);
|
||
|
||
if (!(syntax & RE_NO_BK_BRACES))
|
||
{
|
||
if (c != '\\')
|
||
FREE_STACK_RETURN (REG_BADBR);
|
||
if (p == pend)
|
||
FREE_STACK_RETURN (REG_EESCAPE);
|
||
PATFETCH (c);
|
||
}
|
||
|
||
if (c != '}')
|
||
FREE_STACK_RETURN (REG_BADBR);
|
||
|
||
/* We just parsed a valid interval. */
|
||
|
||
/* If it's invalid to have no preceding re. */
|
||
if (!laststart)
|
||
{
|
||
if (syntax & RE_CONTEXT_INVALID_OPS)
|
||
FREE_STACK_RETURN (REG_BADRPT);
|
||
else if (syntax & RE_CONTEXT_INDEP_OPS)
|
||
laststart = b;
|
||
else
|
||
goto unfetch_interval;
|
||
}
|
||
|
||
if (upper_bound == 0)
|
||
/* If the upper bound is zero, just drop the sub pattern
|
||
altogether. */
|
||
b = laststart;
|
||
else if (lower_bound == 1 && upper_bound == 1)
|
||
/* Just match it once: nothing to do here. */
|
||
;
|
||
|
||
/* Otherwise, we have a nontrivial interval. When
|
||
we're all done, the pattern will look like:
|
||
set_number_at <jump count> <upper bound>
|
||
set_number_at <succeed_n count> <lower bound>
|
||
succeed_n <after jump addr> <succeed_n count>
|
||
<body of loop>
|
||
jump_n <succeed_n addr> <jump count>
|
||
(The upper bound and `jump_n' are omitted if
|
||
`upper_bound' is 1, though.) */
|
||
else
|
||
{ /* If the upper bound is > 1, we need to insert
|
||
more at the end of the loop. */
|
||
unsigned int nbytes = (upper_bound < 0 ? 3
|
||
: upper_bound > 1 ? 5 : 0);
|
||
unsigned int startoffset = 0;
|
||
|
||
GET_BUFFER_SPACE (20); /* We might use less. */
|
||
|
||
if (lower_bound == 0)
|
||
{
|
||
/* A succeed_n that starts with 0 is really a
|
||
a simple on_failure_jump_loop. */
|
||
INSERT_JUMP (on_failure_jump_loop, laststart,
|
||
b + 3 + nbytes);
|
||
b += 3;
|
||
}
|
||
else
|
||
{
|
||
/* Initialize lower bound of the `succeed_n', even
|
||
though it will be set during matching by its
|
||
attendant `set_number_at' (inserted next),
|
||
because `re_compile_fastmap' needs to know.
|
||
Jump to the `jump_n' we might insert below. */
|
||
INSERT_JUMP2 (succeed_n, laststart,
|
||
b + 5 + nbytes,
|
||
lower_bound);
|
||
b += 5;
|
||
|
||
/* Code to initialize the lower bound. Insert
|
||
before the `succeed_n'. The `5' is the last two
|
||
bytes of this `set_number_at', plus 3 bytes of
|
||
the following `succeed_n'. */
|
||
insert_op2 (set_number_at, laststart, 5, lower_bound, b);
|
||
b += 5;
|
||
startoffset += 5;
|
||
}
|
||
|
||
if (upper_bound < 0)
|
||
{
|
||
/* A negative upper bound stands for infinity,
|
||
in which case it degenerates to a plain jump. */
|
||
STORE_JUMP (jump, b, laststart + startoffset);
|
||
b += 3;
|
||
}
|
||
else if (upper_bound > 1)
|
||
{ /* More than one repetition is allowed, so
|
||
append a backward jump to the `succeed_n'
|
||
that starts this interval.
|
||
|
||
When we've reached this during matching,
|
||
we'll have matched the interval once, so
|
||
jump back only `upper_bound - 1' times. */
|
||
STORE_JUMP2 (jump_n, b, laststart + startoffset,
|
||
upper_bound - 1);
|
||
b += 5;
|
||
|
||
/* The location we want to set is the second
|
||
parameter of the `jump_n'; that is `b-2' as
|
||
an absolute address. `laststart' will be
|
||
the `set_number_at' we're about to insert;
|
||
`laststart+3' the number to set, the source
|
||
for the relative address. But we are
|
||
inserting into the middle of the pattern --
|
||
so everything is getting moved up by 5.
|
||
Conclusion: (b - 2) - (laststart + 3) + 5,
|
||
i.e., b - laststart.
|
||
|
||
We insert this at the beginning of the loop
|
||
so that if we fail during matching, we'll
|
||
reinitialize the bounds. */
|
||
insert_op2 (set_number_at, laststart, b - laststart,
|
||
upper_bound - 1, b);
|
||
b += 5;
|
||
}
|
||
}
|
||
pending_exact = 0;
|
||
beg_interval = NULL;
|
||
}
|
||
break;
|
||
|
||
unfetch_interval:
|
||
/* If an invalid interval, match the characters as literals. */
|
||
assert (beg_interval);
|
||
p = beg_interval;
|
||
beg_interval = NULL;
|
||
|
||
/* normal_char and normal_backslash need `c'. */
|
||
c = '{';
|
||
|
||
if (!(syntax & RE_NO_BK_BRACES))
|
||
{
|
||
assert (p > pattern && p[-1] == '\\');
|
||
goto normal_backslash;
|
||
}
|
||
else
|
||
goto normal_char;
|
||
|
||
#ifdef emacs
|
||
/* There is no way to specify the before_dot and after_dot
|
||
operators. rms says this is ok. --karl */
|
||
case '=':
|
||
BUF_PUSH (at_dot);
|
||
break;
|
||
|
||
case 's':
|
||
laststart = b;
|
||
PATFETCH (c);
|
||
BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
|
||
break;
|
||
|
||
case 'S':
|
||
laststart = b;
|
||
PATFETCH (c);
|
||
BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
|
||
break;
|
||
|
||
case 'c':
|
||
laststart = b;
|
||
PATFETCH (c);
|
||
BUF_PUSH_2 (categoryspec, c);
|
||
break;
|
||
|
||
case 'C':
|
||
laststart = b;
|
||
PATFETCH (c);
|
||
BUF_PUSH_2 (notcategoryspec, c);
|
||
break;
|
||
#endif /* emacs */
|
||
|
||
|
||
case 'w':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
laststart = b;
|
||
BUF_PUSH_2 (syntaxspec, Sword);
|
||
break;
|
||
|
||
|
||
case 'W':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
laststart = b;
|
||
BUF_PUSH_2 (notsyntaxspec, Sword);
|
||
break;
|
||
|
||
|
||
case '<':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (wordbeg);
|
||
break;
|
||
|
||
case '>':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (wordend);
|
||
break;
|
||
|
||
case '_':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
laststart = b;
|
||
PATFETCH (c);
|
||
if (c == '<')
|
||
BUF_PUSH (symbeg);
|
||
else if (c == '>')
|
||
BUF_PUSH (symend);
|
||
else
|
||
FREE_STACK_RETURN (REG_BADPAT);
|
||
break;
|
||
|
||
case 'b':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (wordbound);
|
||
break;
|
||
|
||
case 'B':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (notwordbound);
|
||
break;
|
||
|
||
case '`':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (begbuf);
|
||
break;
|
||
|
||
case '\'':
|
||
if (syntax & RE_NO_GNU_OPS)
|
||
goto normal_char;
|
||
BUF_PUSH (endbuf);
|
||
break;
|
||
|
||
case '1': case '2': case '3': case '4': case '5':
|
||
case '6': case '7': case '8': case '9':
|
||
{
|
||
regnum_t reg;
|
||
|
||
if (syntax & RE_NO_BK_REFS)
|
||
goto normal_backslash;
|
||
|
||
reg = c - '0';
|
||
|
||
/* Can't back reference to a subexpression before its end. */
|
||
if (reg > regnum || group_in_compile_stack (compile_stack, reg))
|
||
FREE_STACK_RETURN (REG_ESUBREG);
|
||
|
||
laststart = b;
|
||
BUF_PUSH_2 (duplicate, reg);
|
||
}
|
||
break;
|
||
|
||
|
||
case '+':
|
||
case '?':
|
||
if (syntax & RE_BK_PLUS_QM)
|
||
goto handle_plus;
|
||
else
|
||
goto normal_backslash;
|
||
|
||
default:
|
||
normal_backslash:
|
||
/* You might think it would be useful for \ to mean
|
||
not to translate; but if we don't translate it
|
||
it will never match anything. */
|
||
goto normal_char;
|
||
}
|
||
break;
|
||
|
||
|
||
default:
|
||
/* Expects the character in `c'. */
|
||
normal_char:
|
||
/* If no exactn currently being built. */
|
||
if (!pending_exact
|
||
|
||
/* If last exactn not at current position. */
|
||
|| pending_exact + *pending_exact + 1 != b
|
||
|
||
/* We have only one byte following the exactn for the count. */
|
||
|| *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
|
||
|
||
/* If followed by a repetition operator. */
|
||
|| (p != pend && (*p == '*' || *p == '^'))
|
||
|| ((syntax & RE_BK_PLUS_QM)
|
||
? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
|
||
: p != pend && (*p == '+' || *p == '?'))
|
||
|| ((syntax & RE_INTERVALS)
|
||
&& ((syntax & RE_NO_BK_BRACES)
|
||
? p != pend && *p == '{'
|
||
: p + 1 < pend && p[0] == '\\' && p[1] == '{')))
|
||
{
|
||
/* Start building a new exactn. */
|
||
|
||
laststart = b;
|
||
|
||
BUF_PUSH_2 (exactn, 0);
|
||
pending_exact = b - 1;
|
||
}
|
||
|
||
GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
|
||
{
|
||
int len;
|
||
|
||
c = TRANSLATE (c);
|
||
if (multibyte)
|
||
len = CHAR_STRING (c, b);
|
||
else
|
||
*b = c, len = 1;
|
||
b += len;
|
||
(*pending_exact) += len;
|
||
}
|
||
|
||
break;
|
||
} /* switch (c) */
|
||
} /* while p != pend */
|
||
|
||
|
||
/* Through the pattern now. */
|
||
|
||
FIXUP_ALT_JUMP ();
|
||
|
||
if (!COMPILE_STACK_EMPTY)
|
||
FREE_STACK_RETURN (REG_EPAREN);
|
||
|
||
/* If we don't want backtracking, force success
|
||
the first time we reach the end of the compiled pattern. */
|
||
if (syntax & RE_NO_POSIX_BACKTRACKING)
|
||
BUF_PUSH (succeed);
|
||
|
||
/* We have succeeded; set the length of the buffer. */
|
||
bufp->used = b - bufp->buffer;
|
||
|
||
#ifdef DEBUG
|
||
if (debug > 0)
|
||
{
|
||
re_compile_fastmap (bufp);
|
||
DEBUG_PRINT1 ("\nCompiled pattern: \n");
|
||
print_compiled_pattern (bufp);
|
||
}
|
||
debug--;
|
||
#endif /* DEBUG */
|
||
|
||
#ifndef MATCH_MAY_ALLOCATE
|
||
/* Initialize the failure stack to the largest possible stack. This
|
||
isn't necessary unless we're trying to avoid calling alloca in
|
||
the search and match routines. */
|
||
{
|
||
int num_regs = bufp->re_nsub + 1;
|
||
|
||
if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
|
||
{
|
||
fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
|
||
|
||
if (! fail_stack.stack)
|
||
fail_stack.stack
|
||
= (fail_stack_elt_t *) malloc (fail_stack.size
|
||
* sizeof (fail_stack_elt_t));
|
||
else
|
||
fail_stack.stack
|
||
= (fail_stack_elt_t *) realloc (fail_stack.stack,
|
||
(fail_stack.size
|
||
* sizeof (fail_stack_elt_t)));
|
||
}
|
||
|
||
regex_grow_registers (num_regs);
|
||
}
|
||
#endif /* not MATCH_MAY_ALLOCATE */
|
||
|
||
FREE_STACK_RETURN (REG_NOERROR);
|
||
} /* regex_compile */
|
||
|
||
/* Subroutines for `regex_compile'. */
|
||
|
||
/* Store OP at LOC followed by two-byte integer parameter ARG. */
|
||
|
||
static void
|
||
store_op1 (op, loc, arg)
|
||
re_opcode_t op;
|
||
unsigned char *loc;
|
||
int arg;
|
||
{
|
||
*loc = (unsigned char) op;
|
||
STORE_NUMBER (loc + 1, arg);
|
||
}
|
||
|
||
|
||
/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
|
||
|
||
static void
|
||
store_op2 (op, loc, arg1, arg2)
|
||
re_opcode_t op;
|
||
unsigned char *loc;
|
||
int arg1, arg2;
|
||
{
|
||
*loc = (unsigned char) op;
|
||
STORE_NUMBER (loc + 1, arg1);
|
||
STORE_NUMBER (loc + 3, arg2);
|
||
}
|
||
|
||
|
||
/* Copy the bytes from LOC to END to open up three bytes of space at LOC
|
||
for OP followed by two-byte integer parameter ARG. */
|
||
|
||
static void
|
||
insert_op1 (op, loc, arg, end)
|
||
re_opcode_t op;
|
||
unsigned char *loc;
|
||
int arg;
|
||
unsigned char *end;
|
||
{
|
||
register unsigned char *pfrom = end;
|
||
register unsigned char *pto = end + 3;
|
||
|
||
while (pfrom != loc)
|
||
*--pto = *--pfrom;
|
||
|
||
store_op1 (op, loc, arg);
|
||
}
|
||
|
||
|
||
/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
|
||
|
||
static void
|
||
insert_op2 (op, loc, arg1, arg2, end)
|
||
re_opcode_t op;
|
||
unsigned char *loc;
|
||
int arg1, arg2;
|
||
unsigned char *end;
|
||
{
|
||
register unsigned char *pfrom = end;
|
||
register unsigned char *pto = end + 5;
|
||
|
||
while (pfrom != loc)
|
||
*--pto = *--pfrom;
|
||
|
||
store_op2 (op, loc, arg1, arg2);
|
||
}
|
||
|
||
|
||
/* P points to just after a ^ in PATTERN. Return true if that ^ comes
|
||
after an alternative or a begin-subexpression. We assume there is at
|
||
least one character before the ^. */
|
||
|
||
static boolean
|
||
at_begline_loc_p (pattern, p, syntax)
|
||
re_char *pattern, *p;
|
||
reg_syntax_t syntax;
|
||
{
|
||
re_char *prev = p - 2;
|
||
boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
|
||
|
||
return
|
||
/* After a subexpression? */
|
||
(*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
|
||
/* After an alternative? */
|
||
|| (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
|
||
/* After a shy subexpression? */
|
||
|| ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
|
||
&& prev[-1] == '?' && prev[-2] == '('
|
||
&& (syntax & RE_NO_BK_PARENS
|
||
|| (prev - 3 >= pattern && prev[-3] == '\\')));
|
||
}
|
||
|
||
|
||
/* The dual of at_begline_loc_p. This one is for $. We assume there is
|
||
at least one character after the $, i.e., `P < PEND'. */
|
||
|
||
static boolean
|
||
at_endline_loc_p (p, pend, syntax)
|
||
re_char *p, *pend;
|
||
reg_syntax_t syntax;
|
||
{
|
||
re_char *next = p;
|
||
boolean next_backslash = *next == '\\';
|
||
re_char *next_next = p + 1 < pend ? p + 1 : 0;
|
||
|
||
return
|
||
/* Before a subexpression? */
|
||
(syntax & RE_NO_BK_PARENS ? *next == ')'
|
||
: next_backslash && next_next && *next_next == ')')
|
||
/* Before an alternative? */
|
||
|| (syntax & RE_NO_BK_VBAR ? *next == '|'
|
||
: next_backslash && next_next && *next_next == '|');
|
||
}
|
||
|
||
|
||
/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
|
||
false if it's not. */
|
||
|
||
static boolean
|
||
group_in_compile_stack (compile_stack, regnum)
|
||
compile_stack_type compile_stack;
|
||
regnum_t regnum;
|
||
{
|
||
int this_element;
|
||
|
||
for (this_element = compile_stack.avail - 1;
|
||
this_element >= 0;
|
||
this_element--)
|
||
if (compile_stack.stack[this_element].regnum == regnum)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* analyse_first.
|
||
If fastmap is non-NULL, go through the pattern and fill fastmap
|
||
with all the possible leading chars. If fastmap is NULL, don't
|
||
bother filling it up (obviously) and only return whether the
|
||
pattern could potentially match the empty string.
|
||
|
||
Return 1 if p..pend might match the empty string.
|
||
Return 0 if p..pend matches at least one char.
|
||
Return -1 if fastmap was not updated accurately. */
|
||
|
||
static int
|
||
analyse_first (p, pend, fastmap, multibyte)
|
||
re_char *p, *pend;
|
||
char *fastmap;
|
||
const int multibyte;
|
||
{
|
||
int j, k;
|
||
boolean not;
|
||
|
||
/* If all elements for base leading-codes in fastmap is set, this
|
||
flag is set true. */
|
||
boolean match_any_multibyte_characters = false;
|
||
|
||
assert (p);
|
||
|
||
/* The loop below works as follows:
|
||
- It has a working-list kept in the PATTERN_STACK and which basically
|
||
starts by only containing a pointer to the first operation.
|
||
- If the opcode we're looking at is a match against some set of
|
||
chars, then we add those chars to the fastmap and go on to the
|
||
next work element from the worklist (done via `break').
|
||
- If the opcode is a control operator on the other hand, we either
|
||
ignore it (if it's meaningless at this point, such as `start_memory')
|
||
or execute it (if it's a jump). If the jump has several destinations
|
||
(i.e. `on_failure_jump'), then we push the other destination onto the
|
||
worklist.
|
||
We guarantee termination by ignoring backward jumps (more or less),
|
||
so that `p' is monotonically increasing. More to the point, we
|
||
never set `p' (or push) anything `<= p1'. */
|
||
|
||
while (p < pend)
|
||
{
|
||
/* `p1' is used as a marker of how far back a `on_failure_jump'
|
||
can go without being ignored. It is normally equal to `p'
|
||
(which prevents any backward `on_failure_jump') except right
|
||
after a plain `jump', to allow patterns such as:
|
||
0: jump 10
|
||
3..9: <body>
|
||
10: on_failure_jump 3
|
||
as used for the *? operator. */
|
||
re_char *p1 = p;
|
||
|
||
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
||
{
|
||
case succeed:
|
||
return 1;
|
||
continue;
|
||
|
||
case duplicate:
|
||
/* If the first character has to match a backreference, that means
|
||
that the group was empty (since it already matched). Since this
|
||
is the only case that interests us here, we can assume that the
|
||
backreference must match the empty string. */
|
||
p++;
|
||
continue;
|
||
|
||
|
||
/* Following are the cases which match a character. These end
|
||
with `break'. */
|
||
|
||
case exactn:
|
||
if (fastmap)
|
||
{
|
||
int c = RE_STRING_CHAR (p + 1, pend - p);
|
||
|
||
if (SINGLE_BYTE_CHAR_P (c))
|
||
fastmap[c] = 1;
|
||
else
|
||
fastmap[p[1]] = 1;
|
||
}
|
||
break;
|
||
|
||
|
||
case anychar:
|
||
/* We could put all the chars except for \n (and maybe \0)
|
||
but we don't bother since it is generally not worth it. */
|
||
if (!fastmap) break;
|
||
return -1;
|
||
|
||
|
||
case charset_not:
|
||
/* Chars beyond end of bitmap are possible matches.
|
||
All the single-byte codes can occur in multibyte buffers.
|
||
So any that are not listed in the charset
|
||
are possible matches, even in multibyte buffers. */
|
||
if (!fastmap) break;
|
||
for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
|
||
j < (1 << BYTEWIDTH); j++)
|
||
fastmap[j] = 1;
|
||
/* Fallthrough */
|
||
case charset:
|
||
if (!fastmap) break;
|
||
not = (re_opcode_t) *(p - 1) == charset_not;
|
||
for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
|
||
j >= 0; j--)
|
||
if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
|
||
fastmap[j] = 1;
|
||
|
||
if ((not && multibyte)
|
||
/* Any character set can possibly contain a character
|
||
which doesn't match the specified set of characters. */
|
||
|| (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
|
||
&& CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
|
||
/* If we can match a character class, we can match
|
||
any character set. */
|
||
{
|
||
set_fastmap_for_multibyte_characters:
|
||
if (match_any_multibyte_characters == false)
|
||
{
|
||
for (j = 0x80; j < 0xA0; j++) /* XXX */
|
||
if (BASE_LEADING_CODE_P (j))
|
||
fastmap[j] = 1;
|
||
match_any_multibyte_characters = true;
|
||
}
|
||
}
|
||
|
||
else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
|
||
&& match_any_multibyte_characters == false)
|
||
{
|
||
/* Set fastmap[I] 1 where I is a base leading code of each
|
||
multibyte character in the range table. */
|
||
int c, count;
|
||
|
||
/* Make P points the range table. `+ 2' is to skip flag
|
||
bits for a character class. */
|
||
p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
|
||
|
||
/* Extract the number of ranges in range table into COUNT. */
|
||
EXTRACT_NUMBER_AND_INCR (count, p);
|
||
for (; count > 0; count--, p += 2 * 3) /* XXX */
|
||
{
|
||
/* Extract the start of each range. */
|
||
EXTRACT_CHARACTER (c, p);
|
||
j = CHAR_CHARSET (c);
|
||
fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case syntaxspec:
|
||
case notsyntaxspec:
|
||
if (!fastmap) break;
|
||
#ifndef emacs
|
||
not = (re_opcode_t)p[-1] == notsyntaxspec;
|
||
k = *p++;
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
|
||
fastmap[j] = 1;
|
||
break;
|
||
#else /* emacs */
|
||
/* This match depends on text properties. These end with
|
||
aborting optimizations. */
|
||
return -1;
|
||
|
||
case categoryspec:
|
||
case notcategoryspec:
|
||
if (!fastmap) break;
|
||
not = (re_opcode_t)p[-1] == notcategoryspec;
|
||
k = *p++;
|
||
for (j = 0; j < (1 << BYTEWIDTH); j++)
|
||
if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
|
||
fastmap[j] = 1;
|
||
|
||
if (multibyte)
|
||
/* Any character set can possibly contain a character
|
||
whose category is K (or not). */
|
||
goto set_fastmap_for_multibyte_characters;
|
||
break;
|
||
|
||
/* All cases after this match the empty string. These end with
|
||
`continue'. */
|
||
|
||
case before_dot:
|
||
case at_dot:
|
||
case after_dot:
|
||
#endif /* !emacs */
|
||
case no_op:
|
||
case begline:
|
||
case endline:
|
||
case begbuf:
|
||
case endbuf:
|
||
case wordbound:
|
||
case notwordbound:
|
||
case wordbeg:
|
||
case wordend:
|
||
case symbeg:
|
||
case symend:
|
||
continue;
|
||
|
||
|
||
case jump:
|
||
EXTRACT_NUMBER_AND_INCR (j, p);
|
||
if (j < 0)
|
||
/* Backward jumps can only go back to code that we've already
|
||
visited. `re_compile' should make sure this is true. */
|
||
break;
|
||
p += j;
|
||
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
|
||
{
|
||
case on_failure_jump:
|
||
case on_failure_keep_string_jump:
|
||
case on_failure_jump_loop:
|
||
case on_failure_jump_nastyloop:
|
||
case on_failure_jump_smart:
|
||
p++;
|
||
break;
|
||
default:
|
||
continue;
|
||
};
|
||
/* Keep `p1' to allow the `on_failure_jump' we are jumping to
|
||
to jump back to "just after here". */
|
||
/* Fallthrough */
|
||
|
||
case on_failure_jump:
|
||
case on_failure_keep_string_jump:
|
||
case on_failure_jump_nastyloop:
|
||
case on_failure_jump_loop:
|
||
case on_failure_jump_smart:
|
||
EXTRACT_NUMBER_AND_INCR (j, p);
|
||
if (p + j <= p1)
|
||
; /* Backward jump to be ignored. */
|
||
else
|
||
{ /* We have to look down both arms.
|
||
We first go down the "straight" path so as to minimize
|
||
stack usage when going through alternatives. */
|
||
int r = analyse_first (p, pend, fastmap, multibyte);
|
||
if (r) return r;
|
||
p += j;
|
||
}
|
||
continue;
|
||
|
||
|
||
case jump_n:
|
||
/* This code simply does not properly handle forward jump_n. */
|
||
DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
|
||
p += 4;
|
||
/* jump_n can either jump or fall through. The (backward) jump
|
||
case has already been handled, so we only need to look at the
|
||
fallthrough case. */
|
||
continue;
|
||
|
||
case succeed_n:
|
||
/* If N == 0, it should be an on_failure_jump_loop instead. */
|
||
DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
|
||
p += 4;
|
||
/* We only care about one iteration of the loop, so we don't
|
||
need to consider the case where this behaves like an
|
||
on_failure_jump. */
|
||
continue;
|
||
|
||
|
||
case set_number_at:
|
||
p += 4;
|
||
continue;
|
||
|
||
|
||
case start_memory:
|
||
case stop_memory:
|
||
p += 1;
|
||
continue;
|
||
|
||
|
||
default:
|
||
abort (); /* We have listed all the cases. */
|
||
} /* switch *p++ */
|
||
|
||
/* Getting here means we have found the possible starting
|
||
characters for one path of the pattern -- and that the empty
|
||
string does not match. We need not follow this path further. */
|
||
return 0;
|
||
} /* while p */
|
||
|
||
/* We reached the end without matching anything. */
|
||
return 1;
|
||
|
||
} /* analyse_first */
|
||
|
||
/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
|
||
BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
|
||
characters can start a string that matches the pattern. This fastmap
|
||
is used by re_search to skip quickly over impossible starting points.
|
||
|
||
Character codes above (1 << BYTEWIDTH) are not represented in the
|
||
fastmap, but the leading codes are represented. Thus, the fastmap
|
||
indicates which character sets could start a match.
|
||
|
||
The caller must supply the address of a (1 << BYTEWIDTH)-byte data
|
||
area as BUFP->fastmap.
|
||
|
||
We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
|
||
the pattern buffer.
|
||
|
||
Returns 0 if we succeed, -2 if an internal error. */
|
||
|
||
int
|
||
re_compile_fastmap (bufp)
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
char *fastmap = bufp->fastmap;
|
||
int analysis;
|
||
|
||
assert (fastmap && bufp->buffer);
|
||
|
||
bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
|
||
bufp->fastmap_accurate = 1; /* It will be when we're done. */
|
||
|
||
analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
|
||
fastmap, RE_MULTIBYTE_P (bufp));
|
||
bufp->can_be_null = (analysis != 0);
|
||
return 0;
|
||
} /* re_compile_fastmap */
|
||
|
||
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
||
ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
|
||
this memory for recording register information. STARTS and ENDS
|
||
must be allocated using the malloc library routine, and must each
|
||
be at least NUM_REGS * sizeof (regoff_t) bytes long.
|
||
|
||
If NUM_REGS == 0, then subsequent matches should allocate their own
|
||
register data.
|
||
|
||
Unless this function is called, the first search or match using
|
||
PATTERN_BUFFER will allocate its own register data, without
|
||
freeing the old data. */
|
||
|
||
void
|
||
re_set_registers (bufp, regs, num_regs, starts, ends)
|
||
struct re_pattern_buffer *bufp;
|
||
struct re_registers *regs;
|
||
unsigned num_regs;
|
||
regoff_t *starts, *ends;
|
||
{
|
||
if (num_regs)
|
||
{
|
||
bufp->regs_allocated = REGS_REALLOCATE;
|
||
regs->num_regs = num_regs;
|
||
regs->start = starts;
|
||
regs->end = ends;
|
||
}
|
||
else
|
||
{
|
||
bufp->regs_allocated = REGS_UNALLOCATED;
|
||
regs->num_regs = 0;
|
||
regs->start = regs->end = (regoff_t *) 0;
|
||
}
|
||
}
|
||
WEAK_ALIAS (__re_set_registers, re_set_registers)
|
||
|
||
/* Searching routines. */
|
||
|
||
/* Like re_search_2, below, but only one string is specified, and
|
||
doesn't let you say where to stop matching. */
|
||
|
||
int
|
||
re_search (bufp, string, size, startpos, range, regs)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string;
|
||
int size, startpos, range;
|
||
struct re_registers *regs;
|
||
{
|
||
return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
|
||
regs, size);
|
||
}
|
||
WEAK_ALIAS (__re_search, re_search)
|
||
|
||
/* Head address of virtual concatenation of string. */
|
||
#define HEAD_ADDR_VSTRING(P) \
|
||
(((P) >= size1 ? string2 : string1))
|
||
|
||
/* End address of virtual concatenation of string. */
|
||
#define STOP_ADDR_VSTRING(P) \
|
||
(((P) >= size1 ? string2 + size2 : string1 + size1))
|
||
|
||
/* Address of POS in the concatenation of virtual string. */
|
||
#define POS_ADDR_VSTRING(POS) \
|
||
(((POS) >= size1 ? string2 - size1 : string1) + (POS))
|
||
|
||
/* Using the compiled pattern in BUFP->buffer, first tries to match the
|
||
virtual concatenation of STRING1 and STRING2, starting first at index
|
||
STARTPOS, then at STARTPOS + 1, and so on.
|
||
|
||
STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
|
||
|
||
RANGE is how far to scan while trying to match. RANGE = 0 means try
|
||
only at STARTPOS; in general, the last start tried is STARTPOS +
|
||
RANGE.
|
||
|
||
In REGS, return the indices of the virtual concatenation of STRING1
|
||
and STRING2 that matched the entire BUFP->buffer and its contained
|
||
subexpressions.
|
||
|
||
Do not consider matching one past the index STOP in the virtual
|
||
concatenation of STRING1 and STRING2.
|
||
|
||
We return either the position in the strings at which the match was
|
||
found, -1 if no match, or -2 if error (such as failure
|
||
stack overflow). */
|
||
|
||
int
|
||
re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *str1, *str2;
|
||
int size1, size2;
|
||
int startpos;
|
||
int range;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
{
|
||
int val;
|
||
re_char *string1 = (re_char*) str1;
|
||
re_char *string2 = (re_char*) str2;
|
||
register char *fastmap = bufp->fastmap;
|
||
register RE_TRANSLATE_TYPE translate = bufp->translate;
|
||
int total_size = size1 + size2;
|
||
int endpos = startpos + range;
|
||
boolean anchored_start;
|
||
|
||
/* Nonzero if we have to concern multibyte character. */
|
||
const boolean multibyte = RE_MULTIBYTE_P (bufp);
|
||
|
||
/* Check for out-of-range STARTPOS. */
|
||
if (startpos < 0 || startpos > total_size)
|
||
return -1;
|
||
|
||
/* Fix up RANGE if it might eventually take us outside
|
||
the virtual concatenation of STRING1 and STRING2.
|
||
Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
|
||
if (endpos < 0)
|
||
range = 0 - startpos;
|
||
else if (endpos > total_size)
|
||
range = total_size - startpos;
|
||
|
||
/* If the search isn't to be a backwards one, don't waste time in a
|
||
search for a pattern anchored at beginning of buffer. */
|
||
if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
|
||
{
|
||
if (startpos > 0)
|
||
return -1;
|
||
else
|
||
range = 0;
|
||
}
|
||
|
||
#ifdef emacs
|
||
/* In a forward search for something that starts with \=.
|
||
don't keep searching past point. */
|
||
if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
|
||
{
|
||
range = PT_BYTE - BEGV_BYTE - startpos;
|
||
if (range < 0)
|
||
return -1;
|
||
}
|
||
#endif /* emacs */
|
||
|
||
/* Update the fastmap now if not correct already. */
|
||
if (fastmap && !bufp->fastmap_accurate)
|
||
re_compile_fastmap (bufp);
|
||
|
||
/* See whether the pattern is anchored. */
|
||
anchored_start = (bufp->buffer[0] == begline);
|
||
|
||
#ifdef emacs
|
||
gl_state.object = re_match_object;
|
||
{
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
|
||
|
||
SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
|
||
}
|
||
#endif
|
||
|
||
/* Loop through the string, looking for a place to start matching. */
|
||
for (;;)
|
||
{
|
||
/* If the pattern is anchored,
|
||
skip quickly past places we cannot match.
|
||
We don't bother to treat startpos == 0 specially
|
||
because that case doesn't repeat. */
|
||
if (anchored_start && startpos > 0)
|
||
{
|
||
if (! ((startpos <= size1 ? string1[startpos - 1]
|
||
: string2[startpos - size1 - 1])
|
||
== '\n'))
|
||
goto advance;
|
||
}
|
||
|
||
/* If a fastmap is supplied, skip quickly over characters that
|
||
cannot be the start of a match. If the pattern can match the
|
||
null string, however, we don't need to skip characters; we want
|
||
the first null string. */
|
||
if (fastmap && startpos < total_size && !bufp->can_be_null)
|
||
{
|
||
register re_char *d;
|
||
register re_wchar_t buf_ch;
|
||
|
||
d = POS_ADDR_VSTRING (startpos);
|
||
|
||
if (range > 0) /* Searching forwards. */
|
||
{
|
||
register int lim = 0;
|
||
int irange = range;
|
||
|
||
if (startpos < size1 && startpos + range >= size1)
|
||
lim = range - (size1 - startpos);
|
||
|
||
/* Written out as an if-else to avoid testing `translate'
|
||
inside the loop. */
|
||
if (RE_TRANSLATE_P (translate))
|
||
{
|
||
if (multibyte)
|
||
while (range > lim)
|
||
{
|
||
int buf_charlen;
|
||
|
||
buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
|
||
buf_charlen);
|
||
|
||
buf_ch = RE_TRANSLATE (translate, buf_ch);
|
||
if (buf_ch >= 0400
|
||
|| fastmap[buf_ch])
|
||
break;
|
||
|
||
range -= buf_charlen;
|
||
d += buf_charlen;
|
||
}
|
||
else
|
||
{
|
||
/* Convert *d to integer to shut up GCC's
|
||
whining about comparison that is always
|
||
true. */
|
||
int di = *d;
|
||
|
||
while (range > lim
|
||
&& !fastmap[RE_TRANSLATE (translate, di)])
|
||
{
|
||
di = *(++d);
|
||
range--;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
while (range > lim && !fastmap[*d])
|
||
{
|
||
d++;
|
||
range--;
|
||
}
|
||
|
||
startpos += irange - range;
|
||
}
|
||
else /* Searching backwards. */
|
||
{
|
||
int room = (startpos >= size1
|
||
? size2 + size1 - startpos
|
||
: size1 - startpos);
|
||
buf_ch = RE_STRING_CHAR (d, room);
|
||
buf_ch = TRANSLATE (buf_ch);
|
||
|
||
if (! (buf_ch >= 0400
|
||
|| fastmap[buf_ch]))
|
||
goto advance;
|
||
}
|
||
}
|
||
|
||
/* If can't match the null string, and that's all we have left, fail. */
|
||
if (range >= 0 && startpos == total_size && fastmap
|
||
&& !bufp->can_be_null)
|
||
return -1;
|
||
|
||
val = re_match_2_internal (bufp, string1, size1, string2, size2,
|
||
startpos, regs, stop);
|
||
#ifndef REGEX_MALLOC
|
||
# ifdef C_ALLOCA
|
||
alloca (0);
|
||
# endif
|
||
#endif
|
||
|
||
if (val >= 0)
|
||
return startpos;
|
||
|
||
if (val == -2)
|
||
return -2;
|
||
|
||
advance:
|
||
if (!range)
|
||
break;
|
||
else if (range > 0)
|
||
{
|
||
/* Update STARTPOS to the next character boundary. */
|
||
if (multibyte)
|
||
{
|
||
re_char *p = POS_ADDR_VSTRING (startpos);
|
||
re_char *pend = STOP_ADDR_VSTRING (startpos);
|
||
int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
|
||
|
||
range -= len;
|
||
if (range < 0)
|
||
break;
|
||
startpos += len;
|
||
}
|
||
else
|
||
{
|
||
range--;
|
||
startpos++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
range++;
|
||
startpos--;
|
||
|
||
/* Update STARTPOS to the previous character boundary. */
|
||
if (multibyte)
|
||
{
|
||
re_char *p = POS_ADDR_VSTRING (startpos) + 1;
|
||
re_char *p0 = p;
|
||
re_char *phead = HEAD_ADDR_VSTRING (startpos);
|
||
|
||
/* Find the head of multibyte form. */
|
||
PREV_CHAR_BOUNDARY (p, phead);
|
||
range += p0 - 1 - p;
|
||
if (range > 0)
|
||
break;
|
||
|
||
startpos -= p0 - 1 - p;
|
||
}
|
||
}
|
||
}
|
||
return -1;
|
||
} /* re_search_2 */
|
||
WEAK_ALIAS (__re_search_2, re_search_2)
|
||
|
||
/* Declarations and macros for re_match_2. */
|
||
|
||
static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
|
||
register int len,
|
||
RE_TRANSLATE_TYPE translate,
|
||
const int multibyte));
|
||
|
||
/* This converts PTR, a pointer into one of the search strings `string1'
|
||
and `string2' into an offset from the beginning of that string. */
|
||
#define POINTER_TO_OFFSET(ptr) \
|
||
(FIRST_STRING_P (ptr) \
|
||
? ((regoff_t) ((ptr) - string1)) \
|
||
: ((regoff_t) ((ptr) - string2 + size1)))
|
||
|
||
/* Call before fetching a character with *d. This switches over to
|
||
string2 if necessary.
|
||
Check re_match_2_internal for a discussion of why end_match_2 might
|
||
not be within string2 (but be equal to end_match_1 instead). */
|
||
#define PREFETCH() \
|
||
while (d == dend) \
|
||
{ \
|
||
/* End of string2 => fail. */ \
|
||
if (dend == end_match_2) \
|
||
goto fail; \
|
||
/* End of string1 => advance to string2. */ \
|
||
d = string2; \
|
||
dend = end_match_2; \
|
||
}
|
||
|
||
/* Call before fetching a char with *d if you already checked other limits.
|
||
This is meant for use in lookahead operations like wordend, etc..
|
||
where we might need to look at parts of the string that might be
|
||
outside of the LIMITs (i.e past `stop'). */
|
||
#define PREFETCH_NOLIMIT() \
|
||
if (d == end1) \
|
||
{ \
|
||
d = string2; \
|
||
dend = end_match_2; \
|
||
} \
|
||
|
||
/* Test if at very beginning or at very end of the virtual concatenation
|
||
of `string1' and `string2'. If only one string, it's `string2'. */
|
||
#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
|
||
#define AT_STRINGS_END(d) ((d) == end2)
|
||
|
||
|
||
/* Test if D points to a character which is word-constituent. We have
|
||
two special cases to check for: if past the end of string1, look at
|
||
the first character in string2; and if before the beginning of
|
||
string2, look at the last character in string1. */
|
||
#define WORDCHAR_P(d) \
|
||
(SYNTAX ((d) == end1 ? *string2 \
|
||
: (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
|
||
== Sword)
|
||
|
||
/* Disabled due to a compiler bug -- see comment at case wordbound */
|
||
|
||
/* The comment at case wordbound is following one, but we don't use
|
||
AT_WORD_BOUNDARY anymore to support multibyte form.
|
||
|
||
The DEC Alpha C compiler 3.x generates incorrect code for the
|
||
test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
|
||
AT_WORD_BOUNDARY, so this code is disabled. Expanding the
|
||
macro and introducing temporary variables works around the bug. */
|
||
|
||
#if 0
|
||
/* Test if the character before D and the one at D differ with respect
|
||
to being word-constituent. */
|
||
#define AT_WORD_BOUNDARY(d) \
|
||
(AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
|
||
|| WORDCHAR_P (d - 1) != WORDCHAR_P (d))
|
||
#endif
|
||
|
||
/* Free everything we malloc. */
|
||
#ifdef MATCH_MAY_ALLOCATE
|
||
# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
|
||
# define FREE_VARIABLES() \
|
||
do { \
|
||
REGEX_FREE_STACK (fail_stack.stack); \
|
||
FREE_VAR (regstart); \
|
||
FREE_VAR (regend); \
|
||
FREE_VAR (best_regstart); \
|
||
FREE_VAR (best_regend); \
|
||
} while (0)
|
||
#else
|
||
# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
|
||
#endif /* not MATCH_MAY_ALLOCATE */
|
||
|
||
|
||
/* Optimization routines. */
|
||
|
||
/* If the operation is a match against one or more chars,
|
||
return a pointer to the next operation, else return NULL. */
|
||
static re_char *
|
||
skip_one_char (p)
|
||
re_char *p;
|
||
{
|
||
switch (SWITCH_ENUM_CAST (*p++))
|
||
{
|
||
case anychar:
|
||
break;
|
||
|
||
case exactn:
|
||
p += *p + 1;
|
||
break;
|
||
|
||
case charset_not:
|
||
case charset:
|
||
if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
|
||
{
|
||
int mcnt;
|
||
p = CHARSET_RANGE_TABLE (p - 1);
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
p = CHARSET_RANGE_TABLE_END (p, mcnt);
|
||
}
|
||
else
|
||
p += 1 + CHARSET_BITMAP_SIZE (p - 1);
|
||
break;
|
||
|
||
case syntaxspec:
|
||
case notsyntaxspec:
|
||
#ifdef emacs
|
||
case categoryspec:
|
||
case notcategoryspec:
|
||
#endif /* emacs */
|
||
p++;
|
||
break;
|
||
|
||
default:
|
||
p = NULL;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
|
||
/* Jump over non-matching operations. */
|
||
static re_char *
|
||
skip_noops (p, pend)
|
||
re_char *p, *pend;
|
||
{
|
||
int mcnt;
|
||
while (p < pend)
|
||
{
|
||
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
|
||
{
|
||
case start_memory:
|
||
case stop_memory:
|
||
p += 2; break;
|
||
case no_op:
|
||
p += 1; break;
|
||
case jump:
|
||
p += 1;
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
p += mcnt;
|
||
break;
|
||
default:
|
||
return p;
|
||
}
|
||
}
|
||
assert (p == pend);
|
||
return p;
|
||
}
|
||
|
||
/* Non-zero if "p1 matches something" implies "p2 fails". */
|
||
static int
|
||
mutually_exclusive_p (bufp, p1, p2)
|
||
struct re_pattern_buffer *bufp;
|
||
re_char *p1, *p2;
|
||
{
|
||
re_opcode_t op2;
|
||
const boolean multibyte = RE_MULTIBYTE_P (bufp);
|
||
unsigned char *pend = bufp->buffer + bufp->used;
|
||
|
||
assert (p1 >= bufp->buffer && p1 < pend
|
||
&& p2 >= bufp->buffer && p2 <= pend);
|
||
|
||
/* Skip over open/close-group commands.
|
||
If what follows this loop is a ...+ construct,
|
||
look at what begins its body, since we will have to
|
||
match at least one of that. */
|
||
p2 = skip_noops (p2, pend);
|
||
/* The same skip can be done for p1, except that this function
|
||
is only used in the case where p1 is a simple match operator. */
|
||
/* p1 = skip_noops (p1, pend); */
|
||
|
||
assert (p1 >= bufp->buffer && p1 < pend
|
||
&& p2 >= bufp->buffer && p2 <= pend);
|
||
|
||
op2 = p2 == pend ? succeed : *p2;
|
||
|
||
switch (SWITCH_ENUM_CAST (op2))
|
||
{
|
||
case succeed:
|
||
case endbuf:
|
||
/* If we're at the end of the pattern, we can change. */
|
||
if (skip_one_char (p1))
|
||
{
|
||
DEBUG_PRINT1 (" End of pattern: fast loop.\n");
|
||
return 1;
|
||
}
|
||
break;
|
||
|
||
case endline:
|
||
case exactn:
|
||
{
|
||
register re_wchar_t c
|
||
= (re_opcode_t) *p2 == endline ? '\n'
|
||
: RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
|
||
|
||
if ((re_opcode_t) *p1 == exactn)
|
||
{
|
||
if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
|
||
{
|
||
DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
else if ((re_opcode_t) *p1 == charset
|
||
|| (re_opcode_t) *p1 == charset_not)
|
||
{
|
||
int not = (re_opcode_t) *p1 == charset_not;
|
||
|
||
/* Test if C is listed in charset (or charset_not)
|
||
at `p1'. */
|
||
if (SINGLE_BYTE_CHAR_P (c))
|
||
{
|
||
if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
|
||
&& p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
||
not = !not;
|
||
}
|
||
else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
|
||
CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
|
||
|
||
/* `not' is equal to 1 if c would match, which means
|
||
that we can't change to pop_failure_jump. */
|
||
if (!not)
|
||
{
|
||
DEBUG_PRINT1 (" No match => fast loop.\n");
|
||
return 1;
|
||
}
|
||
}
|
||
else if ((re_opcode_t) *p1 == anychar
|
||
&& c == '\n')
|
||
{
|
||
DEBUG_PRINT1 (" . != \\n => fast loop.\n");
|
||
return 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case charset:
|
||
{
|
||
if ((re_opcode_t) *p1 == exactn)
|
||
/* Reuse the code above. */
|
||
return mutually_exclusive_p (bufp, p2, p1);
|
||
|
||
/* It is hard to list up all the character in charset
|
||
P2 if it includes multibyte character. Give up in
|
||
such case. */
|
||
else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
|
||
{
|
||
/* Now, we are sure that P2 has no range table.
|
||
So, for the size of bitmap in P2, `p2[1]' is
|
||
enough. But P1 may have range table, so the
|
||
size of bitmap table of P1 is extracted by
|
||
using macro `CHARSET_BITMAP_SIZE'.
|
||
|
||
Since we know that all the character listed in
|
||
P2 is ASCII, it is enough to test only bitmap
|
||
table of P1. */
|
||
|
||
if ((re_opcode_t) *p1 == charset)
|
||
{
|
||
int idx;
|
||
/* We win if the charset inside the loop
|
||
has no overlap with the one after the loop. */
|
||
for (idx = 0;
|
||
(idx < (int) p2[1]
|
||
&& idx < CHARSET_BITMAP_SIZE (p1));
|
||
idx++)
|
||
if ((p2[2 + idx] & p1[2 + idx]) != 0)
|
||
break;
|
||
|
||
if (idx == p2[1]
|
||
|| idx == CHARSET_BITMAP_SIZE (p1))
|
||
{
|
||
DEBUG_PRINT1 (" No match => fast loop.\n");
|
||
return 1;
|
||
}
|
||
}
|
||
else if ((re_opcode_t) *p1 == charset_not)
|
||
{
|
||
int idx;
|
||
/* We win if the charset_not inside the loop lists
|
||
every character listed in the charset after. */
|
||
for (idx = 0; idx < (int) p2[1]; idx++)
|
||
if (! (p2[2 + idx] == 0
|
||
|| (idx < CHARSET_BITMAP_SIZE (p1)
|
||
&& ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
|
||
break;
|
||
|
||
if (idx == p2[1])
|
||
{
|
||
DEBUG_PRINT1 (" No match => fast loop.\n");
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
case charset_not:
|
||
switch (SWITCH_ENUM_CAST (*p1))
|
||
{
|
||
case exactn:
|
||
case charset:
|
||
/* Reuse the code above. */
|
||
return mutually_exclusive_p (bufp, p2, p1);
|
||
case charset_not:
|
||
/* When we have two charset_not, it's very unlikely that
|
||
they don't overlap. The union of the two sets of excluded
|
||
chars should cover all possible chars, which, as a matter of
|
||
fact, is virtually impossible in multibyte buffers. */
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case wordend:
|
||
return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
|
||
case symend:
|
||
return ((re_opcode_t) *p1 == syntaxspec
|
||
&& (p1[1] == Ssymbol || p1[1] == Sword));
|
||
case notsyntaxspec:
|
||
return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
|
||
|
||
case wordbeg:
|
||
return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
|
||
case symbeg:
|
||
return ((re_opcode_t) *p1 == notsyntaxspec
|
||
&& (p1[1] == Ssymbol || p1[1] == Sword));
|
||
case syntaxspec:
|
||
return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
|
||
|
||
case wordbound:
|
||
return (((re_opcode_t) *p1 == notsyntaxspec
|
||
|| (re_opcode_t) *p1 == syntaxspec)
|
||
&& p1[1] == Sword);
|
||
|
||
#ifdef emacs
|
||
case categoryspec:
|
||
return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
|
||
case notcategoryspec:
|
||
return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
|
||
#endif /* emacs */
|
||
|
||
default:
|
||
;
|
||
}
|
||
|
||
/* Safe default. */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Matching routines. */
|
||
|
||
#ifndef emacs /* Emacs never uses this. */
|
||
/* re_match is like re_match_2 except it takes only a single string. */
|
||
|
||
int
|
||
re_match (bufp, string, size, pos, regs)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string;
|
||
int size, pos;
|
||
struct re_registers *regs;
|
||
{
|
||
int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
|
||
pos, regs, size);
|
||
# if defined C_ALLOCA && !defined REGEX_MALLOC
|
||
alloca (0);
|
||
# endif
|
||
return result;
|
||
}
|
||
WEAK_ALIAS (__re_match, re_match)
|
||
#endif /* not emacs */
|
||
|
||
#ifdef emacs
|
||
/* In Emacs, this is the string or buffer in which we
|
||
are matching. It is used for looking up syntax properties. */
|
||
Lisp_Object re_match_object;
|
||
#endif
|
||
|
||
/* re_match_2 matches the compiled pattern in BUFP against the
|
||
the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
|
||
and SIZE2, respectively). We start matching at POS, and stop
|
||
matching at STOP.
|
||
|
||
If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
|
||
store offsets for the substring each group matched in REGS. See the
|
||
documentation for exactly how many groups we fill.
|
||
|
||
We return -1 if no match, -2 if an internal error (such as the
|
||
failure stack overflowing). Otherwise, we return the length of the
|
||
matched substring. */
|
||
|
||
int
|
||
re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
|
||
struct re_pattern_buffer *bufp;
|
||
const char *string1, *string2;
|
||
int size1, size2;
|
||
int pos;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
{
|
||
int result;
|
||
|
||
#ifdef emacs
|
||
int charpos;
|
||
gl_state.object = re_match_object;
|
||
charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
|
||
SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
|
||
#endif
|
||
|
||
result = re_match_2_internal (bufp, (re_char*) string1, size1,
|
||
(re_char*) string2, size2,
|
||
pos, regs, stop);
|
||
#if defined C_ALLOCA && !defined REGEX_MALLOC
|
||
alloca (0);
|
||
#endif
|
||
return result;
|
||
}
|
||
WEAK_ALIAS (__re_match_2, re_match_2)
|
||
|
||
/* This is a separate function so that we can force an alloca cleanup
|
||
afterwards. */
|
||
static int
|
||
re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
|
||
struct re_pattern_buffer *bufp;
|
||
re_char *string1, *string2;
|
||
int size1, size2;
|
||
int pos;
|
||
struct re_registers *regs;
|
||
int stop;
|
||
{
|
||
/* General temporaries. */
|
||
int mcnt;
|
||
size_t reg;
|
||
boolean not;
|
||
|
||
/* Just past the end of the corresponding string. */
|
||
re_char *end1, *end2;
|
||
|
||
/* Pointers into string1 and string2, just past the last characters in
|
||
each to consider matching. */
|
||
re_char *end_match_1, *end_match_2;
|
||
|
||
/* Where we are in the data, and the end of the current string. */
|
||
re_char *d, *dend;
|
||
|
||
/* Used sometimes to remember where we were before starting matching
|
||
an operator so that we can go back in case of failure. This "atomic"
|
||
behavior of matching opcodes is indispensable to the correctness
|
||
of the on_failure_keep_string_jump optimization. */
|
||
re_char *dfail;
|
||
|
||
/* Where we are in the pattern, and the end of the pattern. */
|
||
re_char *p = bufp->buffer;
|
||
re_char *pend = p + bufp->used;
|
||
|
||
/* We use this to map every character in the string. */
|
||
RE_TRANSLATE_TYPE translate = bufp->translate;
|
||
|
||
/* Nonzero if we have to concern multibyte character. */
|
||
const boolean multibyte = RE_MULTIBYTE_P (bufp);
|
||
|
||
/* Failure point stack. Each place that can handle a failure further
|
||
down the line pushes a failure point on this stack. It consists of
|
||
regstart, and regend for all registers corresponding to
|
||
the subexpressions we're currently inside, plus the number of such
|
||
registers, and, finally, two char *'s. The first char * is where
|
||
to resume scanning the pattern; the second one is where to resume
|
||
scanning the strings. */
|
||
#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
|
||
fail_stack_type fail_stack;
|
||
#endif
|
||
#ifdef DEBUG
|
||
unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
|
||
#endif
|
||
|
||
#if defined REL_ALLOC && defined REGEX_MALLOC
|
||
/* This holds the pointer to the failure stack, when
|
||
it is allocated relocatably. */
|
||
fail_stack_elt_t *failure_stack_ptr;
|
||
#endif
|
||
|
||
/* We fill all the registers internally, independent of what we
|
||
return, for use in backreferences. The number here includes
|
||
an element for register zero. */
|
||
size_t num_regs = bufp->re_nsub + 1;
|
||
|
||
/* Information on the contents of registers. These are pointers into
|
||
the input strings; they record just what was matched (on this
|
||
attempt) by a subexpression part of the pattern, that is, the
|
||
regnum-th regstart pointer points to where in the pattern we began
|
||
matching and the regnum-th regend points to right after where we
|
||
stopped matching the regnum-th subexpression. (The zeroth register
|
||
keeps track of what the whole pattern matches.) */
|
||
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
||
re_char **regstart, **regend;
|
||
#endif
|
||
|
||
/* The following record the register info as found in the above
|
||
variables when we find a match better than any we've seen before.
|
||
This happens as we backtrack through the failure points, which in
|
||
turn happens only if we have not yet matched the entire string. */
|
||
unsigned best_regs_set = false;
|
||
#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
|
||
re_char **best_regstart, **best_regend;
|
||
#endif
|
||
|
||
/* Logically, this is `best_regend[0]'. But we don't want to have to
|
||
allocate space for that if we're not allocating space for anything
|
||
else (see below). Also, we never need info about register 0 for
|
||
any of the other register vectors, and it seems rather a kludge to
|
||
treat `best_regend' differently than the rest. So we keep track of
|
||
the end of the best match so far in a separate variable. We
|
||
initialize this to NULL so that when we backtrack the first time
|
||
and need to test it, it's not garbage. */
|
||
re_char *match_end = NULL;
|
||
|
||
#ifdef DEBUG
|
||
/* Counts the total number of registers pushed. */
|
||
unsigned num_regs_pushed = 0;
|
||
#endif
|
||
|
||
DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
|
||
|
||
INIT_FAIL_STACK ();
|
||
|
||
#ifdef MATCH_MAY_ALLOCATE
|
||
/* Do not bother to initialize all the register variables if there are
|
||
no groups in the pattern, as it takes a fair amount of time. If
|
||
there are groups, we include space for register 0 (the whole
|
||
pattern), even though we never use it, since it simplifies the
|
||
array indexing. We should fix this. */
|
||
if (bufp->re_nsub)
|
||
{
|
||
regstart = REGEX_TALLOC (num_regs, re_char *);
|
||
regend = REGEX_TALLOC (num_regs, re_char *);
|
||
best_regstart = REGEX_TALLOC (num_regs, re_char *);
|
||
best_regend = REGEX_TALLOC (num_regs, re_char *);
|
||
|
||
if (!(regstart && regend && best_regstart && best_regend))
|
||
{
|
||
FREE_VARIABLES ();
|
||
return -2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We must initialize all our variables to NULL, so that
|
||
`FREE_VARIABLES' doesn't try to free them. */
|
||
regstart = regend = best_regstart = best_regend = NULL;
|
||
}
|
||
#endif /* MATCH_MAY_ALLOCATE */
|
||
|
||
/* The starting position is bogus. */
|
||
if (pos < 0 || pos > size1 + size2)
|
||
{
|
||
FREE_VARIABLES ();
|
||
return -1;
|
||
}
|
||
|
||
/* Initialize subexpression text positions to -1 to mark ones that no
|
||
start_memory/stop_memory has been seen for. Also initialize the
|
||
register information struct. */
|
||
for (reg = 1; reg < num_regs; reg++)
|
||
regstart[reg] = regend[reg] = NULL;
|
||
|
||
/* We move `string1' into `string2' if the latter's empty -- but not if
|
||
`string1' is null. */
|
||
if (size2 == 0 && string1 != NULL)
|
||
{
|
||
string2 = string1;
|
||
size2 = size1;
|
||
string1 = 0;
|
||
size1 = 0;
|
||
}
|
||
end1 = string1 + size1;
|
||
end2 = string2 + size2;
|
||
|
||
/* `p' scans through the pattern as `d' scans through the data.
|
||
`dend' is the end of the input string that `d' points within. `d'
|
||
is advanced into the following input string whenever necessary, but
|
||
this happens before fetching; therefore, at the beginning of the
|
||
loop, `d' can be pointing at the end of a string, but it cannot
|
||
equal `string2'. */
|
||
if (pos >= size1)
|
||
{
|
||
/* Only match within string2. */
|
||
d = string2 + pos - size1;
|
||
dend = end_match_2 = string2 + stop - size1;
|
||
end_match_1 = end1; /* Just to give it a value. */
|
||
}
|
||
else
|
||
{
|
||
if (stop < size1)
|
||
{
|
||
/* Only match within string1. */
|
||
end_match_1 = string1 + stop;
|
||
/* BEWARE!
|
||
When we reach end_match_1, PREFETCH normally switches to string2.
|
||
But in the present case, this means that just doing a PREFETCH
|
||
makes us jump from `stop' to `gap' within the string.
|
||
What we really want here is for the search to stop as
|
||
soon as we hit end_match_1. That's why we set end_match_2
|
||
to end_match_1 (since PREFETCH fails as soon as we hit
|
||
end_match_2). */
|
||
end_match_2 = end_match_1;
|
||
}
|
||
else
|
||
{ /* It's important to use this code when stop == size so that
|
||
moving `d' from end1 to string2 will not prevent the d == dend
|
||
check from catching the end of string. */
|
||
end_match_1 = end1;
|
||
end_match_2 = string2 + stop - size1;
|
||
}
|
||
d = string1 + pos;
|
||
dend = end_match_1;
|
||
}
|
||
|
||
DEBUG_PRINT1 ("The compiled pattern is: ");
|
||
DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
|
||
DEBUG_PRINT1 ("The string to match is: `");
|
||
DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
|
||
DEBUG_PRINT1 ("'\n");
|
||
|
||
/* This loops over pattern commands. It exits by returning from the
|
||
function if the match is complete, or it drops through if the match
|
||
fails at this starting point in the input data. */
|
||
for (;;)
|
||
{
|
||
DEBUG_PRINT2 ("\n%p: ", p);
|
||
|
||
if (p == pend)
|
||
{ /* End of pattern means we might have succeeded. */
|
||
DEBUG_PRINT1 ("end of pattern ... ");
|
||
|
||
/* If we haven't matched the entire string, and we want the
|
||
longest match, try backtracking. */
|
||
if (d != end_match_2)
|
||
{
|
||
/* 1 if this match ends in the same string (string1 or string2)
|
||
as the best previous match. */
|
||
boolean same_str_p = (FIRST_STRING_P (match_end)
|
||
== FIRST_STRING_P (d));
|
||
/* 1 if this match is the best seen so far. */
|
||
boolean best_match_p;
|
||
|
||
/* AIX compiler got confused when this was combined
|
||
with the previous declaration. */
|
||
if (same_str_p)
|
||
best_match_p = d > match_end;
|
||
else
|
||
best_match_p = !FIRST_STRING_P (d);
|
||
|
||
DEBUG_PRINT1 ("backtracking.\n");
|
||
|
||
if (!FAIL_STACK_EMPTY ())
|
||
{ /* More failure points to try. */
|
||
|
||
/* If exceeds best match so far, save it. */
|
||
if (!best_regs_set || best_match_p)
|
||
{
|
||
best_regs_set = true;
|
||
match_end = d;
|
||
|
||
DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
|
||
|
||
for (reg = 1; reg < num_regs; reg++)
|
||
{
|
||
best_regstart[reg] = regstart[reg];
|
||
best_regend[reg] = regend[reg];
|
||
}
|
||
}
|
||
goto fail;
|
||
}
|
||
|
||
/* If no failure points, don't restore garbage. And if
|
||
last match is real best match, don't restore second
|
||
best one. */
|
||
else if (best_regs_set && !best_match_p)
|
||
{
|
||
restore_best_regs:
|
||
/* Restore best match. It may happen that `dend ==
|
||
end_match_1' while the restored d is in string2.
|
||
For example, the pattern `x.*y.*z' against the
|
||
strings `x-' and `y-z-', if the two strings are
|
||
not consecutive in memory. */
|
||
DEBUG_PRINT1 ("Restoring best registers.\n");
|
||
|
||
d = match_end;
|
||
dend = ((d >= string1 && d <= end1)
|
||
? end_match_1 : end_match_2);
|
||
|
||
for (reg = 1; reg < num_regs; reg++)
|
||
{
|
||
regstart[reg] = best_regstart[reg];
|
||
regend[reg] = best_regend[reg];
|
||
}
|
||
}
|
||
} /* d != end_match_2 */
|
||
|
||
succeed_label:
|
||
DEBUG_PRINT1 ("Accepting match.\n");
|
||
|
||
/* If caller wants register contents data back, do it. */
|
||
if (regs && !bufp->no_sub)
|
||
{
|
||
/* Have the register data arrays been allocated? */
|
||
if (bufp->regs_allocated == REGS_UNALLOCATED)
|
||
{ /* No. So allocate them with malloc. We need one
|
||
extra element beyond `num_regs' for the `-1' marker
|
||
GNU code uses. */
|
||
regs->num_regs = MAX (RE_NREGS, num_regs + 1);
|
||
regs->start = TALLOC (regs->num_regs, regoff_t);
|
||
regs->end = TALLOC (regs->num_regs, regoff_t);
|
||
if (regs->start == NULL || regs->end == NULL)
|
||
{
|
||
FREE_VARIABLES ();
|
||
return -2;
|
||
}
|
||
bufp->regs_allocated = REGS_REALLOCATE;
|
||
}
|
||
else if (bufp->regs_allocated == REGS_REALLOCATE)
|
||
{ /* Yes. If we need more elements than were already
|
||
allocated, reallocate them. If we need fewer, just
|
||
leave it alone. */
|
||
if (regs->num_regs < num_regs + 1)
|
||
{
|
||
regs->num_regs = num_regs + 1;
|
||
RETALLOC (regs->start, regs->num_regs, regoff_t);
|
||
RETALLOC (regs->end, regs->num_regs, regoff_t);
|
||
if (regs->start == NULL || regs->end == NULL)
|
||
{
|
||
FREE_VARIABLES ();
|
||
return -2;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* These braces fend off a "empty body in an else-statement"
|
||
warning under GCC when assert expands to nothing. */
|
||
assert (bufp->regs_allocated == REGS_FIXED);
|
||
}
|
||
|
||
/* Convert the pointer data in `regstart' and `regend' to
|
||
indices. Register zero has to be set differently,
|
||
since we haven't kept track of any info for it. */
|
||
if (regs->num_regs > 0)
|
||
{
|
||
regs->start[0] = pos;
|
||
regs->end[0] = POINTER_TO_OFFSET (d);
|
||
}
|
||
|
||
/* Go through the first `min (num_regs, regs->num_regs)'
|
||
registers, since that is all we initialized. */
|
||
for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
|
||
{
|
||
if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
|
||
regs->start[reg] = regs->end[reg] = -1;
|
||
else
|
||
{
|
||
regs->start[reg]
|
||
= (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
|
||
regs->end[reg]
|
||
= (regoff_t) POINTER_TO_OFFSET (regend[reg]);
|
||
}
|
||
}
|
||
|
||
/* If the regs structure we return has more elements than
|
||
were in the pattern, set the extra elements to -1. If
|
||
we (re)allocated the registers, this is the case,
|
||
because we always allocate enough to have at least one
|
||
-1 at the end. */
|
||
for (reg = num_regs; reg < regs->num_regs; reg++)
|
||
regs->start[reg] = regs->end[reg] = -1;
|
||
} /* regs && !bufp->no_sub */
|
||
|
||
DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
|
||
nfailure_points_pushed, nfailure_points_popped,
|
||
nfailure_points_pushed - nfailure_points_popped);
|
||
DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
|
||
|
||
mcnt = POINTER_TO_OFFSET (d) - pos;
|
||
|
||
DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
|
||
|
||
FREE_VARIABLES ();
|
||
return mcnt;
|
||
}
|
||
|
||
/* Otherwise match next pattern command. */
|
||
switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
|
||
{
|
||
/* Ignore these. Used to ignore the n of succeed_n's which
|
||
currently have n == 0. */
|
||
case no_op:
|
||
DEBUG_PRINT1 ("EXECUTING no_op.\n");
|
||
break;
|
||
|
||
case succeed:
|
||
DEBUG_PRINT1 ("EXECUTING succeed.\n");
|
||
goto succeed_label;
|
||
|
||
/* Match the next n pattern characters exactly. The following
|
||
byte in the pattern defines n, and the n bytes after that
|
||
are the characters to match. */
|
||
case exactn:
|
||
mcnt = *p++;
|
||
DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
|
||
|
||
/* Remember the start point to rollback upon failure. */
|
||
dfail = d;
|
||
|
||
/* This is written out as an if-else so we don't waste time
|
||
testing `translate' inside the loop. */
|
||
if (RE_TRANSLATE_P (translate))
|
||
{
|
||
if (multibyte)
|
||
do
|
||
{
|
||
int pat_charlen, buf_charlen;
|
||
unsigned int pat_ch, buf_ch;
|
||
|
||
PREFETCH ();
|
||
pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
|
||
buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
|
||
|
||
if (RE_TRANSLATE (translate, buf_ch)
|
||
!= pat_ch)
|
||
{
|
||
d = dfail;
|
||
goto fail;
|
||
}
|
||
|
||
p += pat_charlen;
|
||
d += buf_charlen;
|
||
mcnt -= pat_charlen;
|
||
}
|
||
while (mcnt > 0);
|
||
else
|
||
do
|
||
{
|
||
/* Avoid compiler whining about comparison being
|
||
always true. */
|
||
int di;
|
||
|
||
PREFETCH ();
|
||
di = *d;
|
||
if (RE_TRANSLATE (translate, di) != *p++)
|
||
{
|
||
d = dfail;
|
||
goto fail;
|
||
}
|
||
d++;
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
else
|
||
{
|
||
do
|
||
{
|
||
PREFETCH ();
|
||
if (*d++ != *p++)
|
||
{
|
||
d = dfail;
|
||
goto fail;
|
||
}
|
||
}
|
||
while (--mcnt);
|
||
}
|
||
break;
|
||
|
||
|
||
/* Match any character except possibly a newline or a null. */
|
||
case anychar:
|
||
{
|
||
int buf_charlen;
|
||
re_wchar_t buf_ch;
|
||
|
||
DEBUG_PRINT1 ("EXECUTING anychar.\n");
|
||
|
||
PREFETCH ();
|
||
buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
|
||
buf_ch = TRANSLATE (buf_ch);
|
||
|
||
if ((!(bufp->syntax & RE_DOT_NEWLINE)
|
||
&& buf_ch == '\n')
|
||
|| ((bufp->syntax & RE_DOT_NOT_NULL)
|
||
&& buf_ch == '\000'))
|
||
goto fail;
|
||
|
||
DEBUG_PRINT2 (" Matched `%d'.\n", *d);
|
||
d += buf_charlen;
|
||
}
|
||
break;
|
||
|
||
|
||
case charset:
|
||
case charset_not:
|
||
{
|
||
register unsigned int c;
|
||
boolean not = (re_opcode_t) *(p - 1) == charset_not;
|
||
int len;
|
||
|
||
/* Start of actual range_table, or end of bitmap if there is no
|
||
range table. */
|
||
re_char *range_table;
|
||
|
||
/* Nonzero if there is a range table. */
|
||
int range_table_exists;
|
||
|
||
/* Number of ranges of range table. This is not included
|
||
in the initial byte-length of the command. */
|
||
int count = 0;
|
||
|
||
DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
|
||
|
||
range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
|
||
|
||
if (range_table_exists)
|
||
{
|
||
range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
|
||
EXTRACT_NUMBER_AND_INCR (count, range_table);
|
||
}
|
||
|
||
PREFETCH ();
|
||
c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
|
||
c = TRANSLATE (c); /* The character to match. */
|
||
|
||
if (SINGLE_BYTE_CHAR_P (c))
|
||
{ /* Lookup bitmap. */
|
||
/* Cast to `unsigned' instead of `unsigned char' in
|
||
case the bit list is a full 32 bytes long. */
|
||
if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
|
||
&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
|
||
not = !not;
|
||
}
|
||
#ifdef emacs
|
||
else if (range_table_exists)
|
||
{
|
||
int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
|
||
|
||
if ( (class_bits & BIT_LOWER && ISLOWER (c))
|
||
| (class_bits & BIT_MULTIBYTE)
|
||
| (class_bits & BIT_PUNCT && ISPUNCT (c))
|
||
| (class_bits & BIT_SPACE && ISSPACE (c))
|
||
| (class_bits & BIT_UPPER && ISUPPER (c))
|
||
| (class_bits & BIT_WORD && ISWORD (c)))
|
||
not = !not;
|
||
else
|
||
CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
|
||
}
|
||
#endif /* emacs */
|
||
|
||
if (range_table_exists)
|
||
p = CHARSET_RANGE_TABLE_END (range_table, count);
|
||
else
|
||
p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
|
||
|
||
if (!not) goto fail;
|
||
|
||
d += len;
|
||
break;
|
||
}
|
||
|
||
|
||
/* The beginning of a group is represented by start_memory.
|
||
The argument is the register number. The text
|
||
matched within the group is recorded (in the internal
|
||
registers data structure) under the register number. */
|
||
case start_memory:
|
||
DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
|
||
|
||
/* In case we need to undo this operation (via backtracking). */
|
||
PUSH_FAILURE_REG ((unsigned int)*p);
|
||
|
||
regstart[*p] = d;
|
||
regend[*p] = NULL; /* probably unnecessary. -sm */
|
||
DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
|
||
|
||
/* Move past the register number and inner group count. */
|
||
p += 1;
|
||
break;
|
||
|
||
|
||
/* The stop_memory opcode represents the end of a group. Its
|
||
argument is the same as start_memory's: the register number. */
|
||
case stop_memory:
|
||
DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
|
||
|
||
assert (!REG_UNSET (regstart[*p]));
|
||
/* Strictly speaking, there should be code such as:
|
||
|
||
assert (REG_UNSET (regend[*p]));
|
||
PUSH_FAILURE_REGSTOP ((unsigned int)*p);
|
||
|
||
But the only info to be pushed is regend[*p] and it is known to
|
||
be UNSET, so there really isn't anything to push.
|
||
Not pushing anything, on the other hand deprives us from the
|
||
guarantee that regend[*p] is UNSET since undoing this operation
|
||
will not reset its value properly. This is not important since
|
||
the value will only be read on the next start_memory or at
|
||
the very end and both events can only happen if this stop_memory
|
||
is *not* undone. */
|
||
|
||
regend[*p] = d;
|
||
DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
|
||
|
||
/* Move past the register number and the inner group count. */
|
||
p += 1;
|
||
break;
|
||
|
||
|
||
/* \<digit> has been turned into a `duplicate' command which is
|
||
followed by the numeric value of <digit> as the register number. */
|
||
case duplicate:
|
||
{
|
||
register re_char *d2, *dend2;
|
||
int regno = *p++; /* Get which register to match against. */
|
||
DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
|
||
|
||
/* Can't back reference a group which we've never matched. */
|
||
if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
|
||
goto fail;
|
||
|
||
/* Where in input to try to start matching. */
|
||
d2 = regstart[regno];
|
||
|
||
/* Remember the start point to rollback upon failure. */
|
||
dfail = d;
|
||
|
||
/* Where to stop matching; if both the place to start and
|
||
the place to stop matching are in the same string, then
|
||
set to the place to stop, otherwise, for now have to use
|
||
the end of the first string. */
|
||
|
||
dend2 = ((FIRST_STRING_P (regstart[regno])
|
||
== FIRST_STRING_P (regend[regno]))
|
||
? regend[regno] : end_match_1);
|
||
for (;;)
|
||
{
|
||
/* If necessary, advance to next segment in register
|
||
contents. */
|
||
while (d2 == dend2)
|
||
{
|
||
if (dend2 == end_match_2) break;
|
||
if (dend2 == regend[regno]) break;
|
||
|
||
/* End of string1 => advance to string2. */
|
||
d2 = string2;
|
||
dend2 = regend[regno];
|
||
}
|
||
/* At end of register contents => success */
|
||
if (d2 == dend2) break;
|
||
|
||
/* If necessary, advance to next segment in data. */
|
||
PREFETCH ();
|
||
|
||
/* How many characters left in this segment to match. */
|
||
mcnt = dend - d;
|
||
|
||
/* Want how many consecutive characters we can match in
|
||
one shot, so, if necessary, adjust the count. */
|
||
if (mcnt > dend2 - d2)
|
||
mcnt = dend2 - d2;
|
||
|
||
/* Compare that many; failure if mismatch, else move
|
||
past them. */
|
||
if (RE_TRANSLATE_P (translate)
|
||
? bcmp_translate (d, d2, mcnt, translate, multibyte)
|
||
: memcmp (d, d2, mcnt))
|
||
{
|
||
d = dfail;
|
||
goto fail;
|
||
}
|
||
d += mcnt, d2 += mcnt;
|
||
}
|
||
}
|
||
break;
|
||
|
||
|
||
/* begline matches the empty string at the beginning of the string
|
||
(unless `not_bol' is set in `bufp'), and after newlines. */
|
||
case begline:
|
||
DEBUG_PRINT1 ("EXECUTING begline.\n");
|
||
|
||
if (AT_STRINGS_BEG (d))
|
||
{
|
||
if (!bufp->not_bol) break;
|
||
}
|
||
else
|
||
{
|
||
unsigned char c;
|
||
GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
|
||
if (c == '\n')
|
||
break;
|
||
}
|
||
/* In all other cases, we fail. */
|
||
goto fail;
|
||
|
||
|
||
/* endline is the dual of begline. */
|
||
case endline:
|
||
DEBUG_PRINT1 ("EXECUTING endline.\n");
|
||
|
||
if (AT_STRINGS_END (d))
|
||
{
|
||
if (!bufp->not_eol) break;
|
||
}
|
||
else
|
||
{
|
||
PREFETCH_NOLIMIT ();
|
||
if (*d == '\n')
|
||
break;
|
||
}
|
||
goto fail;
|
||
|
||
|
||
/* Match at the very beginning of the data. */
|
||
case begbuf:
|
||
DEBUG_PRINT1 ("EXECUTING begbuf.\n");
|
||
if (AT_STRINGS_BEG (d))
|
||
break;
|
||
goto fail;
|
||
|
||
|
||
/* Match at the very end of the data. */
|
||
case endbuf:
|
||
DEBUG_PRINT1 ("EXECUTING endbuf.\n");
|
||
if (AT_STRINGS_END (d))
|
||
break;
|
||
goto fail;
|
||
|
||
|
||
/* on_failure_keep_string_jump is used to optimize `.*\n'. It
|
||
pushes NULL as the value for the string on the stack. Then
|
||
`POP_FAILURE_POINT' will keep the current value for the
|
||
string, instead of restoring it. To see why, consider
|
||
matching `foo\nbar' against `.*\n'. The .* matches the foo;
|
||
then the . fails against the \n. But the next thing we want
|
||
to do is match the \n against the \n; if we restored the
|
||
string value, we would be back at the foo.
|
||
|
||
Because this is used only in specific cases, we don't need to
|
||
check all the things that `on_failure_jump' does, to make
|
||
sure the right things get saved on the stack. Hence we don't
|
||
share its code. The only reason to push anything on the
|
||
stack at all is that otherwise we would have to change
|
||
`anychar's code to do something besides goto fail in this
|
||
case; that seems worse than this. */
|
||
case on_failure_keep_string_jump:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
|
||
mcnt, p + mcnt);
|
||
|
||
PUSH_FAILURE_POINT (p - 3, NULL);
|
||
break;
|
||
|
||
/* A nasty loop is introduced by the non-greedy *? and +?.
|
||
With such loops, the stack only ever contains one failure point
|
||
at a time, so that a plain on_failure_jump_loop kind of
|
||
cycle detection cannot work. Worse yet, such a detection
|
||
can not only fail to detect a cycle, but it can also wrongly
|
||
detect a cycle (between different instantiations of the same
|
||
loop).
|
||
So the method used for those nasty loops is a little different:
|
||
We use a special cycle-detection-stack-frame which is pushed
|
||
when the on_failure_jump_nastyloop failure-point is *popped*.
|
||
This special frame thus marks the beginning of one iteration
|
||
through the loop and we can hence easily check right here
|
||
whether something matched between the beginning and the end of
|
||
the loop. */
|
||
case on_failure_jump_nastyloop:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
|
||
mcnt, p + mcnt);
|
||
|
||
assert ((re_opcode_t)p[-4] == no_op);
|
||
{
|
||
int cycle = 0;
|
||
CHECK_INFINITE_LOOP (p - 4, d);
|
||
if (!cycle)
|
||
/* If there's a cycle, just continue without pushing
|
||
this failure point. The failure point is the "try again"
|
||
option, which shouldn't be tried.
|
||
We want (x?)*?y\1z to match both xxyz and xxyxz. */
|
||
PUSH_FAILURE_POINT (p - 3, d);
|
||
}
|
||
break;
|
||
|
||
/* Simple loop detecting on_failure_jump: just check on the
|
||
failure stack if the same spot was already hit earlier. */
|
||
case on_failure_jump_loop:
|
||
on_failure:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
|
||
mcnt, p + mcnt);
|
||
{
|
||
int cycle = 0;
|
||
CHECK_INFINITE_LOOP (p - 3, d);
|
||
if (cycle)
|
||
/* If there's a cycle, get out of the loop, as if the matching
|
||
had failed. We used to just `goto fail' here, but that was
|
||
aborting the search a bit too early: we want to keep the
|
||
empty-loop-match and keep matching after the loop.
|
||
We want (x?)*y\1z to match both xxyz and xxyxz. */
|
||
p += mcnt;
|
||
else
|
||
PUSH_FAILURE_POINT (p - 3, d);
|
||
}
|
||
break;
|
||
|
||
|
||
/* Uses of on_failure_jump:
|
||
|
||
Each alternative starts with an on_failure_jump that points
|
||
to the beginning of the next alternative. Each alternative
|
||
except the last ends with a jump that in effect jumps past
|
||
the rest of the alternatives. (They really jump to the
|
||
ending jump of the following alternative, because tensioning
|
||
these jumps is a hassle.)
|
||
|
||
Repeats start with an on_failure_jump that points past both
|
||
the repetition text and either the following jump or
|
||
pop_failure_jump back to this on_failure_jump. */
|
||
case on_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
|
||
mcnt, p + mcnt);
|
||
|
||
PUSH_FAILURE_POINT (p -3, d);
|
||
break;
|
||
|
||
/* This operation is used for greedy *.
|
||
Compare the beginning of the repeat with what in the
|
||
pattern follows its end. If we can establish that there
|
||
is nothing that they would both match, i.e., that we
|
||
would have to backtrack because of (as in, e.g., `a*a')
|
||
then we can use a non-backtracking loop based on
|
||
on_failure_keep_string_jump instead of on_failure_jump. */
|
||
case on_failure_jump_smart:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
|
||
mcnt, p + mcnt);
|
||
{
|
||
re_char *p1 = p; /* Next operation. */
|
||
/* Here, we discard `const', making re_match non-reentrant. */
|
||
unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
|
||
unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
|
||
|
||
p -= 3; /* Reset so that we will re-execute the
|
||
instruction once it's been changed. */
|
||
|
||
EXTRACT_NUMBER (mcnt, p2 - 2);
|
||
|
||
/* Ensure this is a indeed the trivial kind of loop
|
||
we are expecting. */
|
||
assert (skip_one_char (p1) == p2 - 3);
|
||
assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
|
||
DEBUG_STATEMENT (debug += 2);
|
||
if (mutually_exclusive_p (bufp, p1, p2))
|
||
{
|
||
/* Use a fast `on_failure_keep_string_jump' loop. */
|
||
DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
|
||
*p3 = (unsigned char) on_failure_keep_string_jump;
|
||
STORE_NUMBER (p2 - 2, mcnt + 3);
|
||
}
|
||
else
|
||
{
|
||
/* Default to a safe `on_failure_jump' loop. */
|
||
DEBUG_PRINT1 (" smart default => slow loop.\n");
|
||
*p3 = (unsigned char) on_failure_jump;
|
||
}
|
||
DEBUG_STATEMENT (debug -= 2);
|
||
}
|
||
break;
|
||
|
||
/* Unconditionally jump (without popping any failure points). */
|
||
case jump:
|
||
unconditional_jump:
|
||
IMMEDIATE_QUIT_CHECK;
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
|
||
DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
|
||
p += mcnt; /* Do the jump. */
|
||
DEBUG_PRINT2 ("(to %p).\n", p);
|
||
break;
|
||
|
||
|
||
/* Have to succeed matching what follows at least n times.
|
||
After that, handle like `on_failure_jump'. */
|
||
case succeed_n:
|
||
/* Signedness doesn't matter since we only compare MCNT to 0. */
|
||
EXTRACT_NUMBER (mcnt, p + 2);
|
||
DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
|
||
|
||
/* Originally, mcnt is how many times we HAVE to succeed. */
|
||
if (mcnt != 0)
|
||
{
|
||
/* Here, we discard `const', making re_match non-reentrant. */
|
||
unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
|
||
mcnt--;
|
||
p += 4;
|
||
PUSH_NUMBER (p2, mcnt);
|
||
}
|
||
else
|
||
/* The two bytes encoding mcnt == 0 are two no_op opcodes. */
|
||
goto on_failure;
|
||
break;
|
||
|
||
case jump_n:
|
||
/* Signedness doesn't matter since we only compare MCNT to 0. */
|
||
EXTRACT_NUMBER (mcnt, p + 2);
|
||
DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
|
||
|
||
/* Originally, this is how many times we CAN jump. */
|
||
if (mcnt != 0)
|
||
{
|
||
/* Here, we discard `const', making re_match non-reentrant. */
|
||
unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
|
||
mcnt--;
|
||
PUSH_NUMBER (p2, mcnt);
|
||
goto unconditional_jump;
|
||
}
|
||
/* If don't have to jump any more, skip over the rest of command. */
|
||
else
|
||
p += 4;
|
||
break;
|
||
|
||
case set_number_at:
|
||
{
|
||
unsigned char *p2; /* Location of the counter. */
|
||
DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
|
||
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
/* Here, we discard `const', making re_match non-reentrant. */
|
||
p2 = (unsigned char*) p + mcnt;
|
||
/* Signedness doesn't matter since we only copy MCNT's bits . */
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, p);
|
||
DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
|
||
PUSH_NUMBER (p2, mcnt);
|
||
break;
|
||
}
|
||
|
||
case wordbound:
|
||
case notwordbound:
|
||
not = (re_opcode_t) *(p - 1) == notwordbound;
|
||
DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
|
||
|
||
/* We SUCCEED (or FAIL) in one of the following cases: */
|
||
|
||
/* Case 1: D is at the beginning or the end of string. */
|
||
if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
|
||
not = !not;
|
||
else
|
||
{
|
||
/* C1 is the character before D, S1 is the syntax of C1, C2
|
||
is the character at D, and S2 is the syntax of C2. */
|
||
re_wchar_t c1, c2;
|
||
int s1, s2;
|
||
#ifdef emacs
|
||
int offset = PTR_TO_OFFSET (d - 1);
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (charpos);
|
||
#endif
|
||
GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
|
||
s1 = SYNTAX (c1);
|
||
#ifdef emacs
|
||
UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
|
||
#endif
|
||
PREFETCH_NOLIMIT ();
|
||
c2 = RE_STRING_CHAR (d, dend - d);
|
||
s2 = SYNTAX (c2);
|
||
|
||
if (/* Case 2: Only one of S1 and S2 is Sword. */
|
||
((s1 == Sword) != (s2 == Sword))
|
||
/* Case 3: Both of S1 and S2 are Sword, and macro
|
||
WORD_BOUNDARY_P (C1, C2) returns nonzero. */
|
||
|| ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
|
||
not = !not;
|
||
}
|
||
if (not)
|
||
break;
|
||
else
|
||
goto fail;
|
||
|
||
case wordbeg:
|
||
DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
|
||
|
||
/* We FAIL in one of the following cases: */
|
||
|
||
/* Case 1: D is at the end of string. */
|
||
if (AT_STRINGS_END (d))
|
||
goto fail;
|
||
else
|
||
{
|
||
/* C1 is the character before D, S1 is the syntax of C1, C2
|
||
is the character at D, and S2 is the syntax of C2. */
|
||
re_wchar_t c1, c2;
|
||
int s1, s2;
|
||
#ifdef emacs
|
||
int offset = PTR_TO_OFFSET (d);
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (charpos);
|
||
#endif
|
||
PREFETCH ();
|
||
c2 = RE_STRING_CHAR (d, dend - d);
|
||
s2 = SYNTAX (c2);
|
||
|
||
/* Case 2: S2 is not Sword. */
|
||
if (s2 != Sword)
|
||
goto fail;
|
||
|
||
/* Case 3: D is not at the beginning of string ... */
|
||
if (!AT_STRINGS_BEG (d))
|
||
{
|
||
GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
|
||
#ifdef emacs
|
||
UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
|
||
#endif
|
||
s1 = SYNTAX (c1);
|
||
|
||
/* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
|
||
returns 0. */
|
||
if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
|
||
goto fail;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case wordend:
|
||
DEBUG_PRINT1 ("EXECUTING wordend.\n");
|
||
|
||
/* We FAIL in one of the following cases: */
|
||
|
||
/* Case 1: D is at the beginning of string. */
|
||
if (AT_STRINGS_BEG (d))
|
||
goto fail;
|
||
else
|
||
{
|
||
/* C1 is the character before D, S1 is the syntax of C1, C2
|
||
is the character at D, and S2 is the syntax of C2. */
|
||
re_wchar_t c1, c2;
|
||
int s1, s2;
|
||
#ifdef emacs
|
||
int offset = PTR_TO_OFFSET (d) - 1;
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (charpos);
|
||
#endif
|
||
GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
|
||
s1 = SYNTAX (c1);
|
||
|
||
/* Case 2: S1 is not Sword. */
|
||
if (s1 != Sword)
|
||
goto fail;
|
||
|
||
/* Case 3: D is not at the end of string ... */
|
||
if (!AT_STRINGS_END (d))
|
||
{
|
||
PREFETCH_NOLIMIT ();
|
||
c2 = RE_STRING_CHAR (d, dend - d);
|
||
#ifdef emacs
|
||
UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
|
||
#endif
|
||
s2 = SYNTAX (c2);
|
||
|
||
/* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
|
||
returns 0. */
|
||
if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
|
||
goto fail;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case symbeg:
|
||
DEBUG_PRINT1 ("EXECUTING symbeg.\n");
|
||
|
||
/* We FAIL in one of the following cases: */
|
||
|
||
/* Case 1: D is at the end of string. */
|
||
if (AT_STRINGS_END (d))
|
||
goto fail;
|
||
else
|
||
{
|
||
/* C1 is the character before D, S1 is the syntax of C1, C2
|
||
is the character at D, and S2 is the syntax of C2. */
|
||
re_wchar_t c1, c2;
|
||
int s1, s2;
|
||
#ifdef emacs
|
||
int offset = PTR_TO_OFFSET (d);
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (charpos);
|
||
#endif
|
||
PREFETCH ();
|
||
c2 = RE_STRING_CHAR (d, dend - d);
|
||
s2 = SYNTAX (c2);
|
||
|
||
/* Case 2: S2 is neither Sword nor Ssymbol. */
|
||
if (s2 != Sword && s2 != Ssymbol)
|
||
goto fail;
|
||
|
||
/* Case 3: D is not at the beginning of string ... */
|
||
if (!AT_STRINGS_BEG (d))
|
||
{
|
||
GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
|
||
#ifdef emacs
|
||
UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
|
||
#endif
|
||
s1 = SYNTAX (c1);
|
||
|
||
/* ... and S1 is Sword or Ssymbol. */
|
||
if (s1 == Sword || s1 == Ssymbol)
|
||
goto fail;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case symend:
|
||
DEBUG_PRINT1 ("EXECUTING symend.\n");
|
||
|
||
/* We FAIL in one of the following cases: */
|
||
|
||
/* Case 1: D is at the beginning of string. */
|
||
if (AT_STRINGS_BEG (d))
|
||
goto fail;
|
||
else
|
||
{
|
||
/* C1 is the character before D, S1 is the syntax of C1, C2
|
||
is the character at D, and S2 is the syntax of C2. */
|
||
re_wchar_t c1, c2;
|
||
int s1, s2;
|
||
#ifdef emacs
|
||
int offset = PTR_TO_OFFSET (d) - 1;
|
||
int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (charpos);
|
||
#endif
|
||
GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
|
||
s1 = SYNTAX (c1);
|
||
|
||
/* Case 2: S1 is neither Ssymbol nor Sword. */
|
||
if (s1 != Sword && s1 != Ssymbol)
|
||
goto fail;
|
||
|
||
/* Case 3: D is not at the end of string ... */
|
||
if (!AT_STRINGS_END (d))
|
||
{
|
||
PREFETCH_NOLIMIT ();
|
||
c2 = RE_STRING_CHAR (d, dend - d);
|
||
#ifdef emacs
|
||
UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
|
||
#endif
|
||
s2 = SYNTAX (c2);
|
||
|
||
/* ... and S2 is Sword or Ssymbol. */
|
||
if (s2 == Sword || s2 == Ssymbol)
|
||
goto fail;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case syntaxspec:
|
||
case notsyntaxspec:
|
||
not = (re_opcode_t) *(p - 1) == notsyntaxspec;
|
||
mcnt = *p++;
|
||
DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
|
||
PREFETCH ();
|
||
#ifdef emacs
|
||
{
|
||
int offset = PTR_TO_OFFSET (d);
|
||
int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
|
||
UPDATE_SYNTAX_TABLE (pos1);
|
||
}
|
||
#endif
|
||
{
|
||
int len;
|
||
re_wchar_t c;
|
||
|
||
c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
|
||
|
||
if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
|
||
goto fail;
|
||
d += len;
|
||
}
|
||
break;
|
||
|
||
#ifdef emacs
|
||
case before_dot:
|
||
DEBUG_PRINT1 ("EXECUTING before_dot.\n");
|
||
if (PTR_BYTE_POS (d) >= PT_BYTE)
|
||
goto fail;
|
||
break;
|
||
|
||
case at_dot:
|
||
DEBUG_PRINT1 ("EXECUTING at_dot.\n");
|
||
if (PTR_BYTE_POS (d) != PT_BYTE)
|
||
goto fail;
|
||
break;
|
||
|
||
case after_dot:
|
||
DEBUG_PRINT1 ("EXECUTING after_dot.\n");
|
||
if (PTR_BYTE_POS (d) <= PT_BYTE)
|
||
goto fail;
|
||
break;
|
||
|
||
case categoryspec:
|
||
case notcategoryspec:
|
||
not = (re_opcode_t) *(p - 1) == notcategoryspec;
|
||
mcnt = *p++;
|
||
DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
|
||
PREFETCH ();
|
||
{
|
||
int len;
|
||
re_wchar_t c;
|
||
|
||
c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
|
||
|
||
if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
|
||
goto fail;
|
||
d += len;
|
||
}
|
||
break;
|
||
|
||
#endif /* emacs */
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
continue; /* Successfully executed one pattern command; keep going. */
|
||
|
||
|
||
/* We goto here if a matching operation fails. */
|
||
fail:
|
||
IMMEDIATE_QUIT_CHECK;
|
||
if (!FAIL_STACK_EMPTY ())
|
||
{
|
||
re_char *str, *pat;
|
||
/* A restart point is known. Restore to that state. */
|
||
DEBUG_PRINT1 ("\nFAIL:\n");
|
||
POP_FAILURE_POINT (str, pat);
|
||
switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
|
||
{
|
||
case on_failure_keep_string_jump:
|
||
assert (str == NULL);
|
||
goto continue_failure_jump;
|
||
|
||
case on_failure_jump_nastyloop:
|
||
assert ((re_opcode_t)pat[-2] == no_op);
|
||
PUSH_FAILURE_POINT (pat - 2, str);
|
||
/* Fallthrough */
|
||
|
||
case on_failure_jump_loop:
|
||
case on_failure_jump:
|
||
case succeed_n:
|
||
d = str;
|
||
continue_failure_jump:
|
||
EXTRACT_NUMBER_AND_INCR (mcnt, pat);
|
||
p = pat + mcnt;
|
||
break;
|
||
|
||
case no_op:
|
||
/* A special frame used for nastyloops. */
|
||
goto fail;
|
||
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
assert (p >= bufp->buffer && p <= pend);
|
||
|
||
if (d >= string1 && d <= end1)
|
||
dend = end_match_1;
|
||
}
|
||
else
|
||
break; /* Matching at this starting point really fails. */
|
||
} /* for (;;) */
|
||
|
||
if (best_regs_set)
|
||
goto restore_best_regs;
|
||
|
||
FREE_VARIABLES ();
|
||
|
||
return -1; /* Failure to match. */
|
||
} /* re_match_2 */
|
||
|
||
/* Subroutine definitions for re_match_2. */
|
||
|
||
/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
|
||
bytes; nonzero otherwise. */
|
||
|
||
static int
|
||
bcmp_translate (s1, s2, len, translate, multibyte)
|
||
re_char *s1, *s2;
|
||
register int len;
|
||
RE_TRANSLATE_TYPE translate;
|
||
const int multibyte;
|
||
{
|
||
register re_char *p1 = s1, *p2 = s2;
|
||
re_char *p1_end = s1 + len;
|
||
re_char *p2_end = s2 + len;
|
||
|
||
/* FIXME: Checking both p1 and p2 presumes that the two strings might have
|
||
different lengths, but relying on a single `len' would break this. -sm */
|
||
while (p1 < p1_end && p2 < p2_end)
|
||
{
|
||
int p1_charlen, p2_charlen;
|
||
re_wchar_t p1_ch, p2_ch;
|
||
|
||
p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
|
||
p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
|
||
|
||
if (RE_TRANSLATE (translate, p1_ch)
|
||
!= RE_TRANSLATE (translate, p2_ch))
|
||
return 1;
|
||
|
||
p1 += p1_charlen, p2 += p2_charlen;
|
||
}
|
||
|
||
if (p1 != p1_end || p2 != p2_end)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Entry points for GNU code. */
|
||
|
||
/* re_compile_pattern is the GNU regular expression compiler: it
|
||
compiles PATTERN (of length SIZE) and puts the result in BUFP.
|
||
Returns 0 if the pattern was valid, otherwise an error string.
|
||
|
||
Assumes the `allocated' (and perhaps `buffer') and `translate' fields
|
||
are set in BUFP on entry.
|
||
|
||
We call regex_compile to do the actual compilation. */
|
||
|
||
const char *
|
||
re_compile_pattern (pattern, length, bufp)
|
||
const char *pattern;
|
||
size_t length;
|
||
struct re_pattern_buffer *bufp;
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
/* GNU code is written to assume at least RE_NREGS registers will be set
|
||
(and at least one extra will be -1). */
|
||
bufp->regs_allocated = REGS_UNALLOCATED;
|
||
|
||
/* And GNU code determines whether or not to get register information
|
||
by passing null for the REGS argument to re_match, etc., not by
|
||
setting no_sub. */
|
||
bufp->no_sub = 0;
|
||
|
||
ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
return gettext (re_error_msgid[(int) ret]);
|
||
}
|
||
WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
|
||
|
||
/* Entry points compatible with 4.2 BSD regex library. We don't define
|
||
them unless specifically requested. */
|
||
|
||
#if defined _REGEX_RE_COMP || defined _LIBC
|
||
|
||
/* BSD has one and only one pattern buffer. */
|
||
static struct re_pattern_buffer re_comp_buf;
|
||
|
||
char *
|
||
# ifdef _LIBC
|
||
/* Make these definitions weak in libc, so POSIX programs can redefine
|
||
these names if they don't use our functions, and still use
|
||
regcomp/regexec below without link errors. */
|
||
weak_function
|
||
# endif
|
||
re_comp (s)
|
||
const char *s;
|
||
{
|
||
reg_errcode_t ret;
|
||
|
||
if (!s)
|
||
{
|
||
if (!re_comp_buf.buffer)
|
||
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext ("No previous regular expression");
|
||
return 0;
|
||
}
|
||
|
||
if (!re_comp_buf.buffer)
|
||
{
|
||
re_comp_buf.buffer = (unsigned char *) malloc (200);
|
||
if (re_comp_buf.buffer == NULL)
|
||
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
|
||
re_comp_buf.allocated = 200;
|
||
|
||
re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
|
||
if (re_comp_buf.fastmap == NULL)
|
||
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
|
||
}
|
||
|
||
/* Since `re_exec' always passes NULL for the `regs' argument, we
|
||
don't need to initialize the pattern buffer fields which affect it. */
|
||
|
||
ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
|
||
|
||
if (!ret)
|
||
return NULL;
|
||
|
||
/* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
|
||
return (char *) gettext (re_error_msgid[(int) ret]);
|
||
}
|
||
|
||
|
||
int
|
||
# ifdef _LIBC
|
||
weak_function
|
||
# endif
|
||
re_exec (s)
|
||
const char *s;
|
||
{
|
||
const int len = strlen (s);
|
||
return
|
||
0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
|
||
}
|
||
#endif /* _REGEX_RE_COMP */
|
||
|
||
/* POSIX.2 functions. Don't define these for Emacs. */
|
||
|
||
#ifndef emacs
|
||
|
||
/* regcomp takes a regular expression as a string and compiles it.
|
||
|
||
PREG is a regex_t *. We do not expect any fields to be initialized,
|
||
since POSIX says we shouldn't. Thus, we set
|
||
|
||
`buffer' to the compiled pattern;
|
||
`used' to the length of the compiled pattern;
|
||
`syntax' to RE_SYNTAX_POSIX_EXTENDED if the
|
||
REG_EXTENDED bit in CFLAGS is set; otherwise, to
|
||
RE_SYNTAX_POSIX_BASIC;
|
||
`fastmap' to an allocated space for the fastmap;
|
||
`fastmap_accurate' to zero;
|
||
`re_nsub' to the number of subexpressions in PATTERN.
|
||
|
||
PATTERN is the address of the pattern string.
|
||
|
||
CFLAGS is a series of bits which affect compilation.
|
||
|
||
If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
|
||
use POSIX basic syntax.
|
||
|
||
If REG_NEWLINE is set, then . and [^...] don't match newline.
|
||
Also, regexec will try a match beginning after every newline.
|
||
|
||
If REG_ICASE is set, then we considers upper- and lowercase
|
||
versions of letters to be equivalent when matching.
|
||
|
||
If REG_NOSUB is set, then when PREG is passed to regexec, that
|
||
routine will report only success or failure, and nothing about the
|
||
registers.
|
||
|
||
It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
|
||
the return codes and their meanings.) */
|
||
|
||
int
|
||
regcomp (preg, pattern, cflags)
|
||
regex_t *__restrict preg;
|
||
const char *__restrict pattern;
|
||
int cflags;
|
||
{
|
||
reg_errcode_t ret;
|
||
reg_syntax_t syntax
|
||
= (cflags & REG_EXTENDED) ?
|
||
RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
|
||
|
||
/* regex_compile will allocate the space for the compiled pattern. */
|
||
preg->buffer = 0;
|
||
preg->allocated = 0;
|
||
preg->used = 0;
|
||
|
||
/* Try to allocate space for the fastmap. */
|
||
preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
|
||
|
||
if (cflags & REG_ICASE)
|
||
{
|
||
unsigned i;
|
||
|
||
preg->translate
|
||
= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
|
||
* sizeof (*(RE_TRANSLATE_TYPE)0));
|
||
if (preg->translate == NULL)
|
||
return (int) REG_ESPACE;
|
||
|
||
/* Map uppercase characters to corresponding lowercase ones. */
|
||
for (i = 0; i < CHAR_SET_SIZE; i++)
|
||
preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
|
||
}
|
||
else
|
||
preg->translate = NULL;
|
||
|
||
/* If REG_NEWLINE is set, newlines are treated differently. */
|
||
if (cflags & REG_NEWLINE)
|
||
{ /* REG_NEWLINE implies neither . nor [^...] match newline. */
|
||
syntax &= ~RE_DOT_NEWLINE;
|
||
syntax |= RE_HAT_LISTS_NOT_NEWLINE;
|
||
}
|
||
else
|
||
syntax |= RE_NO_NEWLINE_ANCHOR;
|
||
|
||
preg->no_sub = !!(cflags & REG_NOSUB);
|
||
|
||
/* POSIX says a null character in the pattern terminates it, so we
|
||
can use strlen here in compiling the pattern. */
|
||
ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
|
||
|
||
/* POSIX doesn't distinguish between an unmatched open-group and an
|
||
unmatched close-group: both are REG_EPAREN. */
|
||
if (ret == REG_ERPAREN)
|
||
ret = REG_EPAREN;
|
||
|
||
if (ret == REG_NOERROR && preg->fastmap)
|
||
{ /* Compute the fastmap now, since regexec cannot modify the pattern
|
||
buffer. */
|
||
re_compile_fastmap (preg);
|
||
if (preg->can_be_null)
|
||
{ /* The fastmap can't be used anyway. */
|
||
free (preg->fastmap);
|
||
preg->fastmap = NULL;
|
||
}
|
||
}
|
||
return (int) ret;
|
||
}
|
||
WEAK_ALIAS (__regcomp, regcomp)
|
||
|
||
|
||
/* regexec searches for a given pattern, specified by PREG, in the
|
||
string STRING.
|
||
|
||
If NMATCH is zero or REG_NOSUB was set in the cflags argument to
|
||
`regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
|
||
least NMATCH elements, and we set them to the offsets of the
|
||
corresponding matched substrings.
|
||
|
||
EFLAGS specifies `execution flags' which affect matching: if
|
||
REG_NOTBOL is set, then ^ does not match at the beginning of the
|
||
string; if REG_NOTEOL is set, then $ does not match at the end.
|
||
|
||
We return 0 if we find a match and REG_NOMATCH if not. */
|
||
|
||
int
|
||
regexec (preg, string, nmatch, pmatch, eflags)
|
||
const regex_t *__restrict preg;
|
||
const char *__restrict string;
|
||
size_t nmatch;
|
||
regmatch_t pmatch[__restrict_arr];
|
||
int eflags;
|
||
{
|
||
int ret;
|
||
struct re_registers regs;
|
||
regex_t private_preg;
|
||
int len = strlen (string);
|
||
boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
|
||
|
||
private_preg = *preg;
|
||
|
||
private_preg.not_bol = !!(eflags & REG_NOTBOL);
|
||
private_preg.not_eol = !!(eflags & REG_NOTEOL);
|
||
|
||
/* The user has told us exactly how many registers to return
|
||
information about, via `nmatch'. We have to pass that on to the
|
||
matching routines. */
|
||
private_preg.regs_allocated = REGS_FIXED;
|
||
|
||
if (want_reg_info)
|
||
{
|
||
regs.num_regs = nmatch;
|
||
regs.start = TALLOC (nmatch * 2, regoff_t);
|
||
if (regs.start == NULL)
|
||
return (int) REG_NOMATCH;
|
||
regs.end = regs.start + nmatch;
|
||
}
|
||
|
||
/* Instead of using not_eol to implement REG_NOTEOL, we could simply
|
||
pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
|
||
was a little bit longer but still only matching the real part.
|
||
This works because the `endline' will check for a '\n' and will find a
|
||
'\0', correctly deciding that this is not the end of a line.
|
||
But it doesn't work out so nicely for REG_NOTBOL, since we don't have
|
||
a convenient '\0' there. For all we know, the string could be preceded
|
||
by '\n' which would throw things off. */
|
||
|
||
/* Perform the searching operation. */
|
||
ret = re_search (&private_preg, string, len,
|
||
/* start: */ 0, /* range: */ len,
|
||
want_reg_info ? ®s : (struct re_registers *) 0);
|
||
|
||
/* Copy the register information to the POSIX structure. */
|
||
if (want_reg_info)
|
||
{
|
||
if (ret >= 0)
|
||
{
|
||
unsigned r;
|
||
|
||
for (r = 0; r < nmatch; r++)
|
||
{
|
||
pmatch[r].rm_so = regs.start[r];
|
||
pmatch[r].rm_eo = regs.end[r];
|
||
}
|
||
}
|
||
|
||
/* If we needed the temporary register info, free the space now. */
|
||
free (regs.start);
|
||
}
|
||
|
||
/* We want zero return to mean success, unlike `re_search'. */
|
||
return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
|
||
}
|
||
WEAK_ALIAS (__regexec, regexec)
|
||
|
||
|
||
/* Returns a message corresponding to an error code, ERRCODE, returned
|
||
from either regcomp or regexec. We don't use PREG here. */
|
||
|
||
size_t
|
||
regerror (errcode, preg, errbuf, errbuf_size)
|
||
int errcode;
|
||
const regex_t *preg;
|
||
char *errbuf;
|
||
size_t errbuf_size;
|
||
{
|
||
const char *msg;
|
||
size_t msg_size;
|
||
|
||
if (errcode < 0
|
||
|| errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
|
||
/* Only error codes returned by the rest of the code should be passed
|
||
to this routine. If we are given anything else, or if other regex
|
||
code generates an invalid error code, then the program has a bug.
|
||
Dump core so we can fix it. */
|
||
abort ();
|
||
|
||
msg = gettext (re_error_msgid[errcode]);
|
||
|
||
msg_size = strlen (msg) + 1; /* Includes the null. */
|
||
|
||
if (errbuf_size != 0)
|
||
{
|
||
if (msg_size > errbuf_size)
|
||
{
|
||
strncpy (errbuf, msg, errbuf_size - 1);
|
||
errbuf[errbuf_size - 1] = 0;
|
||
}
|
||
else
|
||
strcpy (errbuf, msg);
|
||
}
|
||
|
||
return msg_size;
|
||
}
|
||
WEAK_ALIAS (__regerror, regerror)
|
||
|
||
|
||
/* Free dynamically allocated space used by PREG. */
|
||
|
||
void
|
||
regfree (preg)
|
||
regex_t *preg;
|
||
{
|
||
if (preg->buffer != NULL)
|
||
free (preg->buffer);
|
||
preg->buffer = NULL;
|
||
|
||
preg->allocated = 0;
|
||
preg->used = 0;
|
||
|
||
if (preg->fastmap != NULL)
|
||
free (preg->fastmap);
|
||
preg->fastmap = NULL;
|
||
preg->fastmap_accurate = 0;
|
||
|
||
if (preg->translate != NULL)
|
||
free (preg->translate);
|
||
preg->translate = NULL;
|
||
}
|
||
WEAK_ALIAS (__regfree, regfree)
|
||
|
||
#endif /* not emacs */
|
||
|
||
/* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
|
||
(do not change this comment) */
|