mirror of
https://git.FreeBSD.org/ports.git
synced 2024-10-31 21:57:12 +00:00
444 lines
16 KiB
C
444 lines
16 KiB
C
|
/* Definitions of target machine for GNU compiler,
|
||
|
for Alpha FreeBSD systems.
|
||
|
Copyright (C) 1998 Free Software Foundation, Inc.
|
||
|
|
||
|
This file is part of GNU CC.
|
||
|
|
||
|
GNU CC is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
GNU CC is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GNU CC; see the file COPYING. If not, write to
|
||
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
|
||
|
/* This is used on Alpha platforms that use the ELF format.
|
||
|
This was taken from the NetBSD configuration, and modified
|
||
|
for FreeBSD/alpha by Hidetoshi Shimokawa <simokawa@FreeBSD.ORG> */
|
||
|
|
||
|
|
||
|
/* Get generic FreeBSD definitions. */
|
||
|
#include <freebsd.h>
|
||
|
|
||
|
|
||
|
#undef OBJECT_FORMAT_COFF
|
||
|
#undef EXTENDED_COFF
|
||
|
#define OBJECT_FORMAT_ELF
|
||
|
|
||
|
/* This is BSD, so it wants DBX format. */
|
||
|
|
||
|
#define DBX_DEBUGGING_INFO
|
||
|
|
||
|
/* This is the char to use for continuation (in case we need to turn
|
||
|
continuation back on). */
|
||
|
|
||
|
#define DBX_CONTIN_CHAR '?'
|
||
|
|
||
|
#undef ASM_FINAL_SPEC
|
||
|
|
||
|
/* Names to predefine in the preprocessor for this target machine.
|
||
|
XXX FreeBSD, by convention, shouldn't do __alpha, but lots of applications
|
||
|
expect it because that's what OSF/1 does. */
|
||
|
|
||
|
#undef TARGET_DEFAULT
|
||
|
#define TARGET_DEFAULT (MASK_FP | MASK_FPREGS | MASK_GAS)
|
||
|
|
||
|
#undef CPP_PREDEFINES
|
||
|
#define CPP_PREDEFINES "\
|
||
|
-D__alpha__ -D__alpha -Acpu(alpha) -Amachine(alpha) " \
|
||
|
FBSD_CPP_PREDEFINES \
|
||
|
SUB_CPP_PREDEFINES
|
||
|
|
||
|
/* Make gcc agree with <machine/ansi.h> */
|
||
|
|
||
|
#undef WCHAR_TYPE
|
||
|
#define WCHAR_TYPE "int"
|
||
|
|
||
|
#undef WCHAR_TYPE_SIZE
|
||
|
#define WCHAR_TYPE_SIZE 32
|
||
|
|
||
|
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
|
for profiling a function entry. Under FreeBSD/Alpha, the assembler does
|
||
|
nothing special with -pg. */
|
||
|
|
||
|
#undef FUNCTION_PROFILER
|
||
|
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
|
fputs ("\tjsr $28,_mcount\n", (FILE))
|
||
|
|
||
|
/* Show that we need a GP when profiling. */
|
||
|
#define TARGET_PROFILING_NEEDS_GP
|
||
|
|
||
|
#undef HAS_INIT_SECTION
|
||
|
|
||
|
/* Provide an ASM_SPEC appropriate for a FreeBSD/alpha target. This differs
|
||
|
from the generic FreeBSD ASM_SPEC in that no special handling of PIC is
|
||
|
necessary on the Alpha. */
|
||
|
|
||
|
#undef ASM_SPEC
|
||
|
#define ASM_SPEC " %| %{mcpu=*:-m%*}"
|
||
|
|
||
|
/* Output at beginning of assembler file. */
|
||
|
|
||
|
#undef ASM_FILE_START
|
||
|
#define ASM_FILE_START(FILE) \
|
||
|
{ \
|
||
|
alpha_write_verstamp (FILE); \
|
||
|
output_file_directive (FILE, main_input_filename); \
|
||
|
fprintf (FILE, "\t.version\t\"01.01\"\n"); \
|
||
|
fprintf (FILE, "\t.set noat\n"); \
|
||
|
}
|
||
|
|
||
|
#define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
|
||
|
alpha_output_lineno (STREAM, LINE)
|
||
|
extern void alpha_output_lineno ();
|
||
|
|
||
|
extern void output_file_directive ();
|
||
|
|
||
|
/* Attach a special .ident directive to the end of the file to identify
|
||
|
the version of GCC which compiled this code. The format of the
|
||
|
.ident string is patterned after the ones produced by native svr4
|
||
|
C compilers. */
|
||
|
|
||
|
#define IDENT_ASM_OP ".ident"
|
||
|
|
||
|
#ifdef IDENTIFY_WITH_IDENT
|
||
|
#define ASM_IDENTIFY_GCC(FILE) /* nothing */
|
||
|
#define ASM_IDENTIFY_LANGUAGE(FILE) \
|
||
|
fprintf(FILE, "\t%s \"GCC (%s) %s\"\n", IDENT_ASM_OP, \
|
||
|
lang_identify(), version_string)
|
||
|
#else
|
||
|
#define ASM_FILE_END(FILE) \
|
||
|
do { \
|
||
|
fprintf ((FILE), "\t%s\t\"GCC: (GNU) %s\"\n", \
|
||
|
IDENT_ASM_OP, version_string); \
|
||
|
} while (0)
|
||
|
#endif
|
||
|
|
||
|
/* Allow #sccs in preprocessor. */
|
||
|
|
||
|
#define SCCS_DIRECTIVE
|
||
|
|
||
|
/* Output #ident as a .ident. */
|
||
|
|
||
|
#define ASM_OUTPUT_IDENT(FILE, NAME) \
|
||
|
fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
|
||
|
|
||
|
/* This is how to allocate empty space in some section. The .zero
|
||
|
pseudo-op is used for this on most svr4 assemblers. */
|
||
|
|
||
|
#define SKIP_ASM_OP ".zero"
|
||
|
|
||
|
#undef ASM_OUTPUT_SKIP
|
||
|
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
|
fprintf (FILE, "\t%s\t%u\n", SKIP_ASM_OP, (SIZE))
|
||
|
|
||
|
/* Output the label which precedes a jumptable. Note that for all svr4
|
||
|
systems where we actually generate jumptables (which is to say every
|
||
|
svr4 target except i386, where we use casesi instead) we put the jump-
|
||
|
tables into the .rodata section and since other stuff could have been
|
||
|
put into the .rodata section prior to any given jumptable, we have to
|
||
|
make sure that the location counter for the .rodata section gets pro-
|
||
|
perly re-aligned prior to the actual beginning of the jump table. */
|
||
|
|
||
|
#define ALIGN_ASM_OP ".align"
|
||
|
|
||
|
#ifndef ASM_OUTPUT_BEFORE_CASE_LABEL
|
||
|
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
|
||
|
ASM_OUTPUT_ALIGN ((FILE), 2);
|
||
|
#endif
|
||
|
|
||
|
#undef ASM_OUTPUT_CASE_LABEL
|
||
|
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,JUMPTABLE) \
|
||
|
do { \
|
||
|
ASM_OUTPUT_BEFORE_CASE_LABEL (FILE, PREFIX, NUM, JUMPTABLE) \
|
||
|
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
|
||
|
} while (0)
|
||
|
|
||
|
/* The standard SVR4 assembler seems to require that certain builtin
|
||
|
library routines (e.g. .udiv) be explicitly declared as .globl
|
||
|
in each assembly file where they are referenced. */
|
||
|
|
||
|
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
|
||
|
ASM_GLOBALIZE_LABEL (FILE, XSTR (FUN, 0))
|
||
|
|
||
|
/* This says how to output assembler code to declare an
|
||
|
uninitialized external linkage data object. Under SVR4,
|
||
|
the linker seems to want the alignment of data objects
|
||
|
to depend on their types. We do exactly that here. */
|
||
|
|
||
|
#define COMMON_ASM_OP ".comm"
|
||
|
|
||
|
#undef ASM_OUTPUT_ALIGNED_COMMON
|
||
|
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
|
||
|
do { \
|
||
|
fprintf ((FILE), "\t%s\t", COMMON_ASM_OP); \
|
||
|
assemble_name ((FILE), (NAME)); \
|
||
|
fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
|
||
|
} while (0)
|
||
|
|
||
|
/* This says how to output assembler code to declare an
|
||
|
uninitialized internal linkage data object. Under SVR4,
|
||
|
the linker seems to want the alignment of data objects
|
||
|
to depend on their types. We do exactly that here. */
|
||
|
|
||
|
#define LOCAL_ASM_OP ".local"
|
||
|
|
||
|
#undef ASM_OUTPUT_ALIGNED_LOCAL
|
||
|
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
|
||
|
do { \
|
||
|
fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP); \
|
||
|
assemble_name ((FILE), (NAME)); \
|
||
|
fprintf ((FILE), "\n"); \
|
||
|
ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
|
||
|
} while (0)
|
||
|
|
||
|
/* This is the pseudo-op used to generate a 64-bit word of data with a
|
||
|
specific value in some section. */
|
||
|
|
||
|
#define INT_ASM_OP ".quad"
|
||
|
|
||
|
/* This is the pseudo-op used to generate a contiguous sequence of byte
|
||
|
values from a double-quoted string WITHOUT HAVING A TERMINATING NUL
|
||
|
AUTOMATICALLY APPENDED. This is the same for most svr4 assemblers. */
|
||
|
|
||
|
#undef ASCII_DATA_ASM_OP
|
||
|
#define ASCII_DATA_ASM_OP ".ascii"
|
||
|
|
||
|
/* Support const sections and the ctors and dtors sections for g++.
|
||
|
Note that there appears to be two different ways to support const
|
||
|
sections at the moment. You can either #define the symbol
|
||
|
READONLY_DATA_SECTION (giving it some code which switches to the
|
||
|
readonly data section) or else you can #define the symbols
|
||
|
EXTRA_SECTIONS, EXTRA_SECTION_FUNCTIONS, SELECT_SECTION, and
|
||
|
SELECT_RTX_SECTION. We do both here just to be on the safe side. */
|
||
|
|
||
|
#define USE_CONST_SECTION 1
|
||
|
|
||
|
#define CONST_SECTION_ASM_OP ".section\t.rodata"
|
||
|
|
||
|
/* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
|
||
|
|
||
|
Note that we want to give these sections the SHF_WRITE attribute
|
||
|
because these sections will actually contain data (i.e. tables of
|
||
|
addresses of functions in the current root executable or shared library
|
||
|
file) and, in the case of a shared library, the relocatable addresses
|
||
|
will have to be properly resolved/relocated (and then written into) by
|
||
|
the dynamic linker when it actually attaches the given shared library
|
||
|
to the executing process. (Note that on SVR4, you may wish to use the
|
||
|
`-z text' option to the ELF linker, when building a shared library, as
|
||
|
an additional check that you are doing everything right. But if you do
|
||
|
use the `-z text' option when building a shared library, you will get
|
||
|
errors unless the .ctors and .dtors sections are marked as writable
|
||
|
via the SHF_WRITE attribute.) */
|
||
|
|
||
|
#define CTORS_SECTION_ASM_OP ".section\t.ctors,\"aw\""
|
||
|
#define DTORS_SECTION_ASM_OP ".section\t.dtors,\"aw\""
|
||
|
|
||
|
/* On svr4, we *do* have support for the .init and .fini sections, and we
|
||
|
can put stuff in there to be executed before and after `main'. We let
|
||
|
crtstuff.c and other files know this by defining the following symbols.
|
||
|
The definitions say how to change sections to the .init and .fini
|
||
|
sections. This is the same for all known svr4 assemblers. */
|
||
|
|
||
|
#define INIT_SECTION_ASM_OP ".section\t.init"
|
||
|
#define FINI_SECTION_ASM_OP ".section\t.fini"
|
||
|
|
||
|
/* A default list of other sections which we might be "in" at any given
|
||
|
time. For targets that use additional sections (e.g. .tdesc) you
|
||
|
should override this definition in the target-specific file which
|
||
|
includes this file. */
|
||
|
|
||
|
#undef EXTRA_SECTIONS
|
||
|
#define EXTRA_SECTIONS in_const, in_ctors, in_dtors
|
||
|
|
||
|
/* A default list of extra section function definitions. For targets
|
||
|
that use additional sections (e.g. .tdesc) you should override this
|
||
|
definition in the target-specific file which includes this file. */
|
||
|
|
||
|
#undef EXTRA_SECTION_FUNCTIONS
|
||
|
#define EXTRA_SECTION_FUNCTIONS \
|
||
|
CONST_SECTION_FUNCTION \
|
||
|
CTORS_SECTION_FUNCTION \
|
||
|
DTORS_SECTION_FUNCTION
|
||
|
|
||
|
#undef READONLY_DATA_SECTION
|
||
|
#define READONLY_DATA_SECTION() const_section ()
|
||
|
|
||
|
extern void text_section ();
|
||
|
|
||
|
#define CONST_SECTION_FUNCTION \
|
||
|
void \
|
||
|
const_section () \
|
||
|
{ \
|
||
|
if (!USE_CONST_SECTION) \
|
||
|
text_section(); \
|
||
|
else if (in_section != in_const) \
|
||
|
{ \
|
||
|
fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
|
||
|
in_section = in_const; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define CTORS_SECTION_FUNCTION \
|
||
|
void \
|
||
|
ctors_section () \
|
||
|
{ \
|
||
|
if (in_section != in_ctors) \
|
||
|
{ \
|
||
|
fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
|
||
|
in_section = in_ctors; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#define DTORS_SECTION_FUNCTION \
|
||
|
void \
|
||
|
dtors_section () \
|
||
|
{ \
|
||
|
if (in_section != in_dtors) \
|
||
|
{ \
|
||
|
fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
|
||
|
in_section = in_dtors; \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
/* Switch into a generic section.
|
||
|
This is currently only used to support section attributes.
|
||
|
|
||
|
We make the section read-only and executable for a function decl,
|
||
|
read-only for a const data decl, and writable for a non-const data decl. */
|
||
|
#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
|
||
|
fprintf (FILE, ".section\t%s,\"%s\",@progbits\n", NAME, \
|
||
|
(DECL) && TREE_CODE (DECL) == FUNCTION_DECL ? "ax" : \
|
||
|
(DECL) && DECL_READONLY_SECTION (DECL, RELOC) ? "a" : "aw")
|
||
|
|
||
|
|
||
|
/* A C statement (sans semicolon) to output an element in the table of
|
||
|
global constructors. */
|
||
|
#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
|
||
|
do { \
|
||
|
ctors_section (); \
|
||
|
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
|
||
|
assemble_name (FILE, NAME); \
|
||
|
fprintf (FILE, "\n"); \
|
||
|
} while (0)
|
||
|
|
||
|
/* A C statement (sans semicolon) to output an element in the table of
|
||
|
global destructors. */
|
||
|
#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
|
||
|
do { \
|
||
|
dtors_section (); \
|
||
|
fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
|
||
|
assemble_name (FILE, NAME); \
|
||
|
fprintf (FILE, "\n"); \
|
||
|
} while (0)
|
||
|
|
||
|
/* A C statement or statements to switch to the appropriate
|
||
|
section for output of DECL. DECL is either a `VAR_DECL' node
|
||
|
or a constant of some sort. RELOC indicates whether forming
|
||
|
the initial value of DECL requires link-time relocations. */
|
||
|
|
||
|
#define SELECT_SECTION(DECL,RELOC) \
|
||
|
{ \
|
||
|
if (TREE_CODE (DECL) == STRING_CST) \
|
||
|
{ \
|
||
|
if (! flag_writable_strings) \
|
||
|
const_section (); \
|
||
|
else \
|
||
|
data_section (); \
|
||
|
} \
|
||
|
else if (TREE_CODE (DECL) == VAR_DECL) \
|
||
|
{ \
|
||
|
if ((flag_pic && RELOC) \
|
||
|
|| !TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL) \
|
||
|
|| !DECL_INITIAL (DECL) \
|
||
|
|| (DECL_INITIAL (DECL) != error_mark_node \
|
||
|
&& !TREE_CONSTANT (DECL_INITIAL (DECL)))) \
|
||
|
data_section (); \
|
||
|
else \
|
||
|
const_section (); \
|
||
|
} \
|
||
|
else \
|
||
|
const_section (); \
|
||
|
}
|
||
|
|
||
|
/* A C statement or statements to switch to the appropriate
|
||
|
section for output of RTX in mode MODE. RTX is some kind
|
||
|
of constant in RTL. The argument MODE is redundant except
|
||
|
in the case of a `const_int' rtx. Currently, these always
|
||
|
go into the const section. */
|
||
|
|
||
|
#undef SELECT_RTX_SECTION
|
||
|
#define SELECT_RTX_SECTION(MODE,RTX) const_section()
|
||
|
|
||
|
/* Define the strings used for the special svr4 .type and .size directives.
|
||
|
These strings generally do not vary from one system running svr4 to
|
||
|
another, but if a given system (e.g. m88k running svr) needs to use
|
||
|
different pseudo-op names for these, they may be overridden in the
|
||
|
file which includes this one. */
|
||
|
|
||
|
#define TYPE_ASM_OP ".type"
|
||
|
#define SIZE_ASM_OP ".size"
|
||
|
|
||
|
/* This is how we tell the assembler that two symbols have the same value. */
|
||
|
|
||
|
#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
|
||
|
do { assemble_name(FILE, NAME1); \
|
||
|
fputs(" = ", FILE); \
|
||
|
assemble_name(FILE, NAME2); \
|
||
|
fputc('\n', FILE); } while (0)
|
||
|
|
||
|
/* A table of bytes codes used by the ASM_OUTPUT_ASCII and
|
||
|
ASM_OUTPUT_LIMITED_STRING macros. Each byte in the table
|
||
|
corresponds to a particular byte value [0..255]. For any
|
||
|
given byte value, if the value in the corresponding table
|
||
|
position is zero, the given character can be output directly.
|
||
|
If the table value is 1, the byte must be output as a \ooo
|
||
|
octal escape. If the tables value is anything else, then the
|
||
|
byte value should be output as a \ followed by the value
|
||
|
in the table. Note that we can use standard UN*X escape
|
||
|
sequences for many control characters, but we don't use
|
||
|
\a to represent BEL because some svr4 assemblers (e.g. on
|
||
|
the i386) don't know about that. Also, we don't use \v
|
||
|
since some versions of gas, such as 2.2 did not accept it. */
|
||
|
|
||
|
#define ESCAPES \
|
||
|
"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
|
||
|
\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
|
||
|
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
|
||
|
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
|
||
|
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
|
||
|
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
|
||
|
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
|
||
|
\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
|
||
|
|
||
|
/* Some svr4 assemblers have a limit on the number of characters which
|
||
|
can appear in the operand of a .string directive. If your assembler
|
||
|
has such a limitation, you should define STRING_LIMIT to reflect that
|
||
|
limit. Note that at least some svr4 assemblers have a limit on the
|
||
|
actual number of bytes in the double-quoted string, and that they
|
||
|
count each character in an escape sequence as one byte. Thus, an
|
||
|
escape sequence like \377 would count as four bytes.
|
||
|
|
||
|
If your target assembler doesn't support the .string directive, you
|
||
|
should define this to zero.
|
||
|
*/
|
||
|
|
||
|
#define STRING_LIMIT ((unsigned) 256)
|
||
|
|
||
|
#define STRING_ASM_OP ".string"
|
||
|
|
||
|
/*
|
||
|
* We always use gas here, so we don't worry about ECOFF assembler problems.
|
||
|
*/
|
||
|
#undef TARGET_GAS
|
||
|
#define TARGET_GAS (1)
|
||
|
|
||
|
#undef PREFERRED_DEBUGGING_TYPE
|
||
|
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
|