1
0
mirror of https://git.FreeBSD.org/ports.git synced 2024-11-15 23:50:44 +00:00
freebsd-ports/lang/gnat/files/5ftaprop.adb

841 lines
27 KiB
Ada
Raw Normal View History

------------------------------------------------------------------------------
-- --
-- GNU ADA RUNTIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- (Version for new GNARL) --
-- --
-- $Revision: 1.1 $ --
-- --
-- Copyright (C) 1991,1992,1993,1994,1995,1996 Florida State University --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This is the FreeBSD PTHREADS version of this package. Contributed
-- by Daniel M. Eischen (deischen@iworks.InterWorks.org).
with Interfaces.C;
-- used for int
-- size_t
with System.Error_Reporting;
-- used for Shutdown
with System.Interrupt_Management;
-- used for Keep_Unmasked
-- Abort_Task_Interrupt
-- Interrupt_ID
with System.Interrupt_Management.Operations;
-- used for Set_Interrupt_Mask
-- All_Tasks_Mask
pragma Elaborate_All (System.Interrupt_Management.Operations);
with System.OS_Interface;
-- used for various type, constant, and operations
with System.Parameters;
-- used for Size_Type
with System.Tasking;
-- used for Ada_Task_Control_Block
-- Task_ID
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
use System.Tasking;
use Interfaces.C;
use System.Error_Reporting;
use System.OS_Interface;
use System.Parameters;
pragma Linker_Options ("-lc_r");
------------------
-- Local Data --
------------------
-- The followings are logically constants, but need to be initialized
-- at run time.
ATCB_Key : aliased pthread_key_t;
-- Key used to find the Ada Task_ID associated with a thread
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
-----------------------
-- Local Subprograms --
-----------------------
procedure Abort_Handler
(signo : Signal;
code : Interfaces.C.int;
context : access struct_sigcontext);
function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);
function To_Address is new Unchecked_Conversion (Task_ID, System.Address);
-------------------
-- Abort_Handler --
-------------------
-- Target-dependent binding of inter-thread Abort signal to
-- the raising of the Abort_Signal exception.
-- The technical issues and alternatives here are essentially
-- the same as for raising exceptions in response to other
-- signals (e.g. Storage_Error). See code and comments in
-- the package body System.Interrupt_Management.
-- Some implementations may not allow an exception to be propagated
-- out of a handler, and others might leave the signal or
-- interrupt that invoked this handler masked after the exceptional
-- return to the application code.
-- GNAT exceptions are originally implemented using setjmp()/longjmp().
-- On most UNIX systems, this will allow transfer out of a signal handler,
-- which is usually the only mechanism available for implementing
-- asynchronous handlers of this kind. However, some
-- systems do not restore the signal mask on longjmp(), leaving the
-- abort signal masked.
-- Alternative solutions include:
-- 1. Change the PC saved in the system-dependent Context
-- parameter to point to code that raises the exception.
-- Normal return from this handler will then raise
-- the exception after the mask and other system state has
-- been restored (see example below).
-- 2. Use siglongjmp()/sigsetjmp() to implement exceptions.
-- 3. Unmask the signal in the Abortion_Signal exception handler
-- (in the RTS).
-- The following procedure would be needed if we can't lonjmp out of
-- a signal handler. (See below.)
-- procedure Raise_Abort_Signal is
-- begin
-- raise Standard'Abort_Signal;
-- end if;
procedure Abort_Handler
(signo : Signal;
code : Interfaces.C.int;
context : access struct_sigcontext) is
T : Task_ID := Self;
Result : Interfaces.C.int;
Old_Set : aliased sigset_t;
begin
-- Assuming it is safe to longjmp out of a signal handler, the
-- following code can be used:
if T.Deferral_Level = 0
and then T.Pending_ATC_Level < T.ATC_Nesting_Level then
-- Make sure signals used for RTS internal purpose are unmasked
Result := pthread_sigmask
(SIG_UNBLOCK, Unblocked_Signal_Mask'Access, Old_Set'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Enter_Task (pthread_sigmask)"));
raise Standard'Abort_Signal;
end if;
-- Otherwise, something like this is required:
-- if not Abort_Is_Deferred.all then
-- -- Overwrite the return PC address with the address of the
-- -- special raise routine, and "return" to that routine's
-- -- starting address.
-- Context.PC := Raise_Abort_Signal'Address;
-- return;
-- end if;
end Abort_Handler;
----------
-- Self --
----------
function Self return Task_ID is
Result : System.Address;
begin
Result := pthread_getspecific (ATCB_Key);
pragma Assert (Result /= System.Null_Address
or else Shutdown ("GNULLI failure---pthread_getspecific"));
return To_Task_ID (Result);
end Self;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are
-- initialized in Intialize_TCB and the Storage_Error is
-- handled. Other mutexes (such as All_Tasks_Lock, Memory_Lock...)
-- used in RTS is initialized before any status change of RTS.
-- Therefore rasing Storage_Error in the following routines
-- should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : access Lock)
is
Attributes : aliased pthread_mutexattr_t;
Result : Interfaces.C.int;
begin
Result := pthread_mutexattr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutexattr_init"));
if Result = ENOMEM then
raise STORAGE_ERROR;
end if;
Result := pthread_mutex_init (L, Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutex_init"));
if Result = ENOMEM then
raise STORAGE_ERROR;
end if;
end Initialize_Lock;
procedure Initialize_Lock (L : access RTS_Lock) is
Attributes : aliased pthread_mutexattr_t;
Result : Interfaces.C.int;
begin
Result := pthread_mutexattr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutexattr_init"));
if Result = ENOMEM then
raise STORAGE_ERROR;
end if;
Result := pthread_mutex_init (L, Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutex_init"));
if Result = ENOMEM then
raise STORAGE_ERROR;
end if;
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_destroy"));
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_destroy (L);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_destroy"));
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_lock (L);
if Result = 0 then
Ceiling_Violation := False;
else
Ceiling_Violation := Result = EINVAL;
end if;
-- assumes the cause of EINVAL is a priority ceiling violation
pragma Assert (Result = 0 or else Result = EINVAL
or else Shutdown ("GNULLI failure---pthread_mutex_lock"));
end Write_Lock;
procedure Write_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_lock (L);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_lock"));
end Write_Lock;
procedure Write_Lock (T : Task_ID) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_lock (T.LL.L'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_lock"));
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_unlock (L);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_unlock"));
end Unlock;
procedure Unlock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_unlock (L);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_unlock"));
end Unlock;
procedure Unlock (T : Task_ID) is
Result : Interfaces.C.int;
begin
Result := pthread_mutex_unlock (T.LL.L'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_unlock"));
end Unlock;
-------------
-- Sleep --
-------------
procedure Sleep (Self_ID : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (Self_ID = Self
or else Shutdown ("GNULLI failure---Self in Sleep"));
Result := pthread_cond_wait (Self_ID.LL.CV'Access, Self_ID.LL.L'Access);
-- EINTR is not considered a failure.
pragma Assert (Result = 0 or else Result = EINTR
or else Shutdown ("GNULLI failure---Sleep"));
end Sleep;
---------------
-- Sleep_For --
---------------
procedure Sleep_For
(Self_ID : Task_ID;
Rel_Time : Duration;
Timedout : out Boolean)
is
begin
Sleep_Until (Self_ID, Rel_Time + Clock, Timedout);
end Sleep_For;
-----------------
-- Sleep_Until --
-----------------
procedure Sleep_Until
(Self_ID : Task_ID;
Abs_Time : Duration;
Timedout : out Boolean)
is
Request : aliased timespec;
Result : Interfaces.C.int;
begin
pragma Assert (Self_ID = Self
or else Shutdown ("GNULLI failure---Self in Sleep_Until"));
if Abs_Time <= Clock then
Timedout := True;
Result := sched_yield;
return;
end if;
Request := To_Timespec (Abs_Time);
-- We loop until the requested delay is serviced. For early wakeups,
-- we check the Clock again and re-request delays until we sleep
-- at least for the specified amount.
loop
-- Perform delays until one of the following conditions is true:
-- 1) cond_timedwait wakes up due to time expiration.
-- 2) We were interrupted by an abort signal (abortion is pending).
-- 3) We received a wakeup, via cond_signal to our CV.
-- 4) An error has occurred in the OS-provided delay primitive.
-- Conditions (1), (2), and (3) are normal.
-- Condition (4) should never happen unless the OS is broken,
-- or there is an error in our own runtime system code.
loop
Result := pthread_cond_timedwait
(Self_ID.LL.CV'Access, Self_ID.LL.L'Access, Request'Access);
if Result = 0 or else
(Self_ID.Pending_Action and then
Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level)
then
Timedout := False;
return;
else
-- As of 11/25/97, FreeBSD-3.0 returns the correct
-- (POSIX specified) code (ETIMEDOUT) for a timed-out
-- operation. Previous versions of FreeBSD would
-- return -1, and set the thread-safe errno to EAGAIN.
if Result < 0 and then Errno = EAGAIN then
Result := ETIMEDOUT;
end if;
end if;
if Result = ETIMEDOUT then
exit;
end if;
pragma Assert (Result /= EINVAL or else
Shutdown ("GNULLI failure---Sleep_Until (cond_timedwait)"));
end loop;
-- Make sure we delayed long enough. If we did, give up the
-- CPU. Otherwise, request a delay again with unserviced amount
-- of time.
if (Abs_Time <= Clock) then
Timedout := True;
Result := sched_yield;
exit;
else
Request := To_Timespec (Abs_Time);
end if;
end loop;
end Sleep_Until;
-----------
-- Clock --
-----------
function Clock return Duration is
TS : aliased timespec;
Result : Interfaces.C.int;
begin
Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---clock_gettime"));
return To_Duration (TS);
exception
when others =>
pragma Assert (Shutdown ("exception in Clock"));
return 0.0;
end Clock;
------------
-- Wakeup --
------------
procedure Wakeup (T : Task_ID) is
Result : Interfaces.C.int;
begin
Result := pthread_cond_signal (T.LL.CV'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Wakeup"));
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield is
Result : Interfaces.C.int;
begin
Result := sched_yield;
end Yield;
------------------
-- Set_Priority --
------------------
-- FreeBSD doesn't have the correct pthread_setschedparam routine
-- yet. Instead, pthread_setschedparam is imported from pthread_setprio
-- which only takes a pthread_t and integer as arguments.
-- procedure Set_Priority (T : Task_ID; Prio : System.Any_Priority) is
-- Result : Interfaces.C.int;
-- Param : aliased struct_sched_param;
-- begin
-- T.LL.Current_Priority := Interfaces.C.int (Prio);
-- Param.prio := Interfaces.C.int (Prio);
--
-- Result := pthread_setschedparam (T.LL.Thread, SCHED_FIFO,
-- Param'Access);
-- pragma Assert (Result = 0
-- or else Shutdown ("GNULLI failure---Set_Priority"));
--
-- end Set_Priority;
procedure Set_Priority (T : Task_ID; Prio : System.Any_Priority) is
Result : Interfaces.C.int;
begin
T.LL.Current_Priority := Interfaces.C.int (Prio);
Result := pthread_setschedparam (T.LL.Thread, Interfaces.C.int (Prio));
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Set_Priority"));
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_ID) return System.Any_Priority is
begin
return System.Any_Priority (T.LL.Current_Priority);
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_ID) is
Result : Interfaces.C.int;
begin
Self_ID.LL.Thread := pthread_self;
Result := pthread_setspecific (ATCB_Key, To_Address (Self_ID));
pragma Assert (Result = 0 or else
Shutdown ("GNULLI failure---Enter_Task (pthread_setspecific)"));
end Enter_Task;
----------------------
-- Initialize_TCB --
----------------------
procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
Mutex_Attr : aliased pthread_mutexattr_t;
Result : Interfaces.C.int;
Cond_Attr : aliased pthread_condattr_t;
begin
Result := pthread_mutexattr_init (Mutex_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutexattr_init"));
if Result /= 0 then
Succeeded := False;
return;
end if;
Result := pthread_mutex_init (Self_ID.LL.L'Access, Mutex_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_mutex_init"));
if Result /= 0 then
Succeeded := False;
return;
end if;
Result := pthread_condattr_init (Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_condattr_init"));
if Result /= 0 then
Result := pthread_mutex_destroy (Self_ID.LL.L'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_destory"));
Succeeded := False;
return;
end if;
Result := pthread_cond_init (Self_ID.LL.CV'Access, Cond_Attr'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_cond_init"));
if Result /= 0 then
Result := pthread_mutex_destroy (Self_ID.LL.L'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_mutex_destory"));
Succeeded := False;
return;
end if;
Succeeded := True;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_ID;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Attributes : aliased pthread_attr_t;
Adjusted_Stack_Size : Interfaces.C.size_t;
Result : Interfaces.C.int;
function Thread_Body_Access is new
Unchecked_Conversion (System.Address, Thread_Body);
begin
if Stack_Size = System.Parameters.Unspecified_Size then
Adjusted_Stack_Size := Interfaces.C.size_t (2 * Default_Stack_Size);
-- Let's change the s-parame.adb to give a larger Stack_Size ?????
else
if Stack_Size < Size_Type (Minimum_Stack_Size) then
Adjusted_Stack_Size :=
Interfaces.C.size_t (Stack_Size + Minimum_Stack_Size);
-- sum, instead of max: may be overkill, but should be safe
-- thr_min_stack is a function call.
-- Actually, we want to get the Default_Stack_Size and
-- Minimum_Stack_Size from the file System.Parameters.
-- Right now the package is not made target specific.
-- We use our own local definitions for now ???
else
Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
end if;
-- Ask for 4 extra bytes of stack space so that the ATCB
-- pointer can be stored below the stack limit, plus extra
-- space for the frame of Task_Wrapper. This is so the user
-- gets the amount of stack requested exclusive of the needs
-- of the runtime.
end if;
Adjusted_Stack_Size := Adjusted_Stack_Size + 4;
-- Since the initial signal mask of a thread is inherited from the
-- creator, we need to set our local signal mask mask all signals
-- during the creation operation, to make sure the new thread is
-- not disturbed by signals before it has set its own Task_ID.
Result := pthread_attr_init (Attributes'Access);
pragma Assert (Result = 0 or else Result = ENOMEM
or else Shutdown ("GNULLI failure---pthread_attr_init"));
if Result /= 0 then
Succeeded := False;
return;
end if;
-- Create threads detached following email to report@gnat.com
-- confirming this is correct (should be fixed for GNAT after 3.09).
-- (Peter Burwood)
Result := pthread_attr_setdetachstate
(Attributes'Access, PTHREAD_CREATE_DETACHED);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_setdetachstate"));
Result := pthread_attr_setstacksize
(Attributes'Access, Interfaces.C.size_t (Adjusted_Stack_Size));
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---pthread_attr_setstacksize"));
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
Result := pthread_create
(T.LL.Thread'Access,
Attributes'Access,
Thread_Body_Access (Wrapper),
To_Address (T));
pragma Assert (Result = 0 or else Result = EAGAIN
or else Shutdown ("GNULLI failure---Create_Task (pthread_create)"));
Succeeded := Result = 0;
Set_Priority (T, Priority);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_ID) is
Result : Interfaces.C.int;
Tmp : Task_ID := T;
procedure Free is new Unchecked_Deallocation
(Ada_Task_Control_Block, Task_ID);
begin
Result := pthread_mutex_destroy (T.LL.L'Access);
pragma Assert (Result = 0 or else
Shutdown ("GNULLI failure---Finalize_TCB (pthread_mutex_destroy)"));
Result := pthread_cond_destroy (T.LL.CV'Access);
pragma Assert (Result = 0 or else
Shutdown ("GNULLI failure---Finalize_TCB (pthread_cond_destroy)"));
-- Following report to report@gnat.com regarding ATCB memory leak
-- this Free is now called. The answer back from ACT didn't give
-- the source for a fix, but I calling this Free is sufficient.
-- (Peter Burwood)
Free (Tmp);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
begin
pthread_exit (System.Null_Address);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_ID) is
Result : Interfaces.C.int;
begin
Result := pthread_kill (T.LL.Thread,
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Abort_Task"));
end Abort_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_ID) is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : Interfaces.C.int;
begin
Enter_Task (Environment_Task);
-- Install the abort-signal handler
act.sa_flags := 0;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Initialize (sigemptyset)"));
act.sa_mask := Tmp_Set;
Result :=
sigaction (
Signal (System.Interrupt_Management.Abort_Task_Interrupt),
act'Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Initialize (sigaction)"));
end Initialize;
begin
declare
Result : Interfaces.C.int;
begin
-- pthread_init;
-- This call is needed for MIT thread library. We wish
-- we could move this to s-osinte.adb and be executed during
-- the package elaboration. However, in doing so we get an
-- elaboration problem.
-- It doesn't appear necessary to call it because pthread_init is
-- called before any Ada elaboration occurs.
-- Mask Environment task for all signals. The original mask of the
-- Environment task will be recovered by Interrupt_Server task
-- during the elaboration of s-interr.adb.
System.Interrupt_Management.Operations.Set_Interrupt_Mask
(System.Interrupt_Management.Operations.All_Tasks_Mask'Access);
-- Prepare the set of signals that should unblocked in all tasks
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Initialize (sigemptyset)"));
for J in Interrupt_Management.Interrupt_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Initialize (sigaddset)"));
end if;
end loop;
Result := pthread_key_create (ATCB_Key'Access, null);
pragma Assert (Result = 0
or else Shutdown ("GNULLI failure---Initialize (pthread_keycreate)"));
end;
end System.Task_Primitives.Operations;