1
0
mirror of https://git.FreeBSD.org/ports.git synced 2024-11-23 00:43:28 +00:00

Move: biology/py-fastTSNE -> math/py-openTSNE

Project was renamed and reimplemented.
This commit is contained in:
Yuri Victorovich 2021-03-13 23:37:12 +00:00
parent 7539c9ee2a
commit 2fdb4f61f6
Notes: svn2git 2021-03-31 03:12:20 +00:00
svn path=/head/; revision=568296
10 changed files with 33 additions and 29 deletions

1
MOVED
View File

@ -16193,3 +16193,4 @@ devel/llvm60|devel/llvm80|2021-03-06|Has expired: Uses Python 2.7 which is EOLed
audio/fplib||2021-03-07|Dead service since 2015
sysutils/prelink||2021-03-11|Has expired: Have no users in the ports tree
x11-fonts/vtfontcvt-ng||2021-03-12|no longer useful on any supported releases; use vtfontcvt(8) instead
biology/py-fastTSNE|math/py-openTSNE|2021-03-13|project renamed/reimplemented under a different name

View File

@ -131,7 +131,6 @@
SUBDIR += py-cutadapt
SUBDIR += py-dnaio
SUBDIR += py-ete3
SUBDIR += py-fastTSNE
SUBDIR += py-gffutils
SUBDIR += py-gtfparse
SUBDIR += py-hits

View File

@ -1,3 +0,0 @@
TIMESTAMP = 1544862153
SHA256 (fastTSNE-0.2.13.tar.gz) = c602acf5e61f80bdda1bdfe91838ec89d7fdbdbb072e54c0d8da31c35fc964a0
SIZE (fastTSNE-0.2.13.tar.gz) = 687321

View File

@ -1,12 +0,0 @@
--- setup.py.orig 2018-12-15 08:37:12 UTC
+++ setup.py
@@ -87,7 +87,8 @@ extensions = [
]
# Check if we have access to FFTW3 and if so, use that implementation
-if has_c_library('fftw3'):
+# has_c_library fails to use CFLAGS: https://github.com/pavlin-policar/fastTSNE/issues/43
+if True or has_c_library('fftw3'):
lm_opt = '/lm' if IS_WINDOWS else '-lm'
fftw3_opt = '/lfftw3' if IS_WINDOWS else '-lfftw3'
extensions.append(

View File

@ -1,6 +0,0 @@
Fast, parallel implementations of t-SNE allows, for example, in one case
to visualize 160,796 single cell transcriptomes from the mouse nervous system
computed in under 2 minutes using FFT accelerated interpolation and approximate
nearest neighbors.
WWW: https://github.com/pavlin-policar/fastTSNE

View File

@ -817,6 +817,7 @@
SUBDIR += py-numpoly
SUBDIR += py-numpy
SUBDIR += py-numpy-stl
SUBDIR += py-openTSNE
SUBDIR += py-opt-einsum
SUBDIR += py-optuna
SUBDIR += py-or-tools

View File

@ -1,9 +1,8 @@
# $FreeBSD$
PORTNAME= fastTSNE
DISTVERSION= 0.2.13
PORTREVISION= 4
CATEGORIES= biology python
PORTNAME= openTSNE
DISTVERSION= 0.5.1
CATEGORIES= math python # statistics
MASTER_SITES= CHEESESHOP
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}
@ -15,13 +14,13 @@ LICENSE= BSD3CLAUSE
BUILD_DEPENDS= ${PYNUMPY}
LIB_DEPENDS= libfftw3.so:math/fftw3
RUN_DEPENDS= ${PYNUMPY} \
${PYTHON_PKGNAMEPREFIX}numba>=0.38.1:devel/py-numba@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}scipy>0:science/py-scipy@${PY_FLAVOR} \
${PYTHON_PKGNAMEPREFIX}scikit-learn>=0.20.0:science/py-scikit-learn@${PY_FLAVOR}
USES= localbase:ldflags python:3.5+
USES= localbase:ldflags python:3.6+
USE_PYTHON= distutils autoplist
PORTSCOUT= skipv:0.2.14 # no such version, not sure where does portscout see it
post-install:
@${FIND} ${STAGEDIR}${PREFIX} -name "*.so" | ${XARGS} ${STRIP_CMD}
.include <bsd.port.mk>

View File

@ -0,0 +1,3 @@
TIMESTAMP = 1615668058
SHA256 (openTSNE-0.5.1.tar.gz) = 755a54ca10c1300e78181e24144fc24481cb8ab4379d27d4c8782a0a1ee37db9
SIZE (openTSNE-0.5.1.tar.gz) = 878691

View File

@ -0,0 +1,13 @@
- see https://github.com/pavlin-policar/openTSNE/issues/165
--- openTSNE/dependencies/annoy/annoymodule.cc.orig 2021-03-13 20:45:35 UTC
+++ openTSNE/dependencies/annoy/annoymodule.cc
@@ -177,7 +177,7 @@ py_an_init(py_annoy *self, PyObject *args, PyObject *k
int f;
static char const * kwlist[] = {"f", "metric", NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "i|s", (char**)kwlist, &f, &metric))
- return (int) NULL;
+ return 0;
return 0;
}

View File

@ -0,0 +1,9 @@
openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor
Embedding (t-SNE), a popular dimensionality-reduction algorithm for visualizing
high-dimensional data sets. openTSNE incorporates the latest improvements to the
t-SNE algorithm, including the ability to add new data points to existing
embeddings, massive speed improvements, enabling t-SNE to scale to millions of
data points and various tricks to improve global alignment of the resulting
visualizations.
WWW: https://github.com/pavlin-policar/openTSNE