1
0
mirror of https://git.FreeBSD.org/ports.git synced 2024-12-11 02:50:24 +00:00

misc/py-xgboost: Fix build with setuptools 58.0.0+

With hat:	python
This commit is contained in:
Po-Chuan Hsieh 2022-03-25 21:33:00 +08:00
parent 40c11ec8ef
commit 331d3b8ebe
No known key found for this signature in database
GPG Key ID: 9A4BD10F002DD04B
2 changed files with 378 additions and 0 deletions

View File

@ -35,6 +35,9 @@ POST_PLIST= fix-plist
fix-plist: # https://github.com/dmlc/xgboost/issues/5705
@${REINPLACE_CMD} 's|.*libxgboost${PYTHON_EXT_SUFFIX}.so$$||' ${TMPPLIST}
post-install:
${PYTHON_CMD} -m compileall -d ${PYTHON_SITELIBDIR} ${STAGEDIR}${PYTHON_SITELIBDIR}
do-test: # tests fail w/out CUDA: https://github.com/dmlc/xgboost/issues/6881
@cd ${WRKSRC}/.. && ${PYTHON_CMD} -m pytest

View File

@ -0,0 +1,375 @@
--- xgboost/callback.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/callback.py
@@ -319,7 +319,7 @@ def _aggcv(rlist):
cvmap[(metric_idx, k)].append(float(v))
msg = idx
results = []
- for (metric_idx, k), v in sorted(cvmap.items(), key=lambda x: x[0][0]):
+ for (metric_idx, k), v in sorted(list(cvmap.items()), key=lambda x: x[0][0]):
v = numpy.array(v)
if not isinstance(msg, STRING_TYPES):
msg = msg.decode()
@@ -595,10 +595,10 @@ class EarlyStopping(TrainingCallback):
evals_log: TrainingCallback.EvalsLog) -> bool:
epoch += self.starting_round # training continuation
msg = 'Must have at least 1 validation dataset for early stopping.'
- assert len(evals_log.keys()) >= 1, msg
+ assert len(list(evals_log.keys())) >= 1, msg
data_name = ''
if self.data:
- for d, _ in evals_log.items():
+ for d, _ in list(evals_log.items()):
if d == self.data:
data_name = d
if not data_name:
@@ -672,8 +672,8 @@ class EvaluationMonitor(TrainingCallback):
msg: str = f'[{epoch}]'
if rabit.get_rank() == self.printer_rank:
- for data, metric in evals_log.items():
- for metric_name, log in metric.items():
+ for data, metric in list(evals_log.items()):
+ for metric_name, log in list(metric.items()):
stdv: Optional[float] = None
if isinstance(log[-1], tuple):
score = log[-1][0]
--- xgboost/compat.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/compat.py
@@ -48,14 +48,14 @@ except ImportError:
# sklearn
try:
- from sklearn.base import BaseEstimator
- from sklearn.base import RegressorMixin, ClassifierMixin
- from sklearn.preprocessing import LabelEncoder
+ from .sklearn.base import BaseEstimator
+ from .sklearn.base import RegressorMixin, ClassifierMixin
+ from .sklearn.preprocessing import LabelEncoder
try:
- from sklearn.model_selection import KFold, StratifiedKFold
+ from .sklearn.model_selection import KFold, StratifiedKFold
except ImportError:
- from sklearn.cross_validation import KFold, StratifiedKFold
+ from .sklearn.cross_validation import KFold, StratifiedKFold
SKLEARN_INSTALLED = True
@@ -71,7 +71,7 @@ try:
def to_json(self):
'''Returns a JSON compatible dictionary'''
meta = {}
- for k, v in self.__dict__.items():
+ for k, v in list(self.__dict__.items()):
if isinstance(v, np.ndarray):
meta[k] = v.tolist()
else:
@@ -82,7 +82,7 @@ try:
# pylint: disable=attribute-defined-outside-init
'''Load the encoder back from a JSON compatible dict.'''
meta = {}
- for k, v in doc.items():
+ for k, v in list(doc.items()):
if k == 'classes_':
self.classes_ = np.array(v)
continue
--- xgboost/core.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/core.py
@@ -142,7 +142,7 @@ def _expect(expectations, got):
def _log_callback(msg: bytes) -> None:
"""Redirect logs from native library into Python console"""
- print(py_str(msg))
+ print((py_str(msg)))
def _get_log_callback_func():
@@ -479,7 +479,7 @@ def _deprecate_positional_args(f):
kwonly_args = []
all_args = []
- for name, param in sig.parameters.items():
+ for name, param in list(sig.parameters.items()):
if param.kind == Parameter.POSITIONAL_OR_KEYWORD:
all_args.append(name)
elif param.kind == Parameter.KEYWORD_ONLY:
@@ -1346,7 +1346,7 @@ class Booster(object):
def _configure_metrics(self, params: Union[Dict, List]) -> Union[Dict, List]:
if isinstance(params, dict) and 'eval_metric' in params \
and isinstance(params['eval_metric'], list):
- params = dict((k, v) for k, v in params.items())
+ params = dict((k, v) for k, v in list(params.items()))
eval_metrics = params['eval_metric']
params.pop("eval_metric", None)
params = list(params.items())
@@ -1577,7 +1577,7 @@ class Booster(object):
**kwargs
The attributes to set. Setting a value to None deletes an attribute.
"""
- for key, value in kwargs.items():
+ for key, value in list(kwargs.items()):
if value is not None:
if not isinstance(value, STRING_TYPES):
raise ValueError("Set Attr only accepts string values")
@@ -1650,7 +1650,7 @@ class Booster(object):
value of the specified parameter, when params is str key
"""
if isinstance(params, Mapping):
- params = params.items()
+ params = list(params.items())
elif isinstance(params, STRING_TYPES) and value is not None:
params = [(params, value)]
for key, val in params:
--- xgboost/dask.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/dask.py
@@ -49,9 +49,9 @@ from .sklearn import _cls_predict_proba
from .sklearn import XGBRanker
if TYPE_CHECKING:
- from dask import dataframe as dd
- from dask import array as da
- import dask
+ from .dask import dataframe as dd
+ from .dask import array as da
+ from . import dask
import distributed
else:
dd = LazyLoader('dd', globals(), 'dask.dataframe')
@@ -152,7 +152,7 @@ def _start_tracker(n_workers: int) -> Dict[str, Any]:
def _assert_dask_support() -> None:
try:
- import dask # pylint: disable=W0621,W0611
+ from . import dask # pylint: disable=W0621,W0611
except ImportError as e:
raise ImportError(
"Dask needs to be installed in order to use this module"
@@ -394,7 +394,7 @@ class DaskDMatrix:
# [(x0, x1, ..), (y0, y1, ..), ..] in delayed form
# delay the zipped result
- parts = list(map(dask.delayed, zip(*parts))) # pylint: disable=no-member
+ parts = list(map(dask.delayed, list(zip(*parts)))) # pylint: disable=no-member
# At this point, the mental model should look like:
# [(x0, y0, ..), (x1, y1, ..), ..] in delayed form
@@ -414,7 +414,7 @@ class DaskDMatrix:
worker_map: Dict[str, "distributed.Future"] = defaultdict(list)
- for key, workers in who_has.items():
+ for key, workers in list(who_has.items()):
worker_map[next(iter(workers))].append(key_to_partition[key])
self.worker_map = worker_map
@@ -803,7 +803,7 @@ def _dmatrix_from_list_of_parts(
async def _get_rabit_args(n_workers: int, client: "distributed.Client") -> List[bytes]:
'''Get rabit context arguments from data distribution in DaskDMatrix.'''
env = await client.run_on_scheduler(_start_tracker, n_workers)
- rabit_args = [f"{k}={v}".encode() for k, v in env.items()]
+ rabit_args = [f"{k}={v}".encode() for k, v in list(env.items())]
return rabit_args
# train and predict methods are supposed to be "functional", which meets the
@@ -930,7 +930,7 @@ async def _train_async(
results = await client.gather(futures, asynchronous=True)
- return list(filter(lambda ret: ret is not None, results))[0]
+ return list([ret for ret in results if ret is not None])[0]
def train( # pylint: disable=unused-argument
@@ -1579,7 +1579,7 @@ class DaskScikitLearnBase(XGBModel):
def __getstate__(self) -> Dict:
this = self.__dict__.copy()
- if "_client" in this.keys():
+ if "_client" in list(this.keys()):
del this["_client"]
return this
@@ -1711,7 +1711,7 @@ class DaskXGBRegressor(DaskScikitLearnBase, XGBRegress
callbacks: Optional[List[TrainingCallback]] = None,
) -> "DaskXGBRegressor":
_assert_dask_support()
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
return self._client_sync(self._fit_async, **args)
@@ -1814,7 +1814,7 @@ class DaskXGBClassifier(DaskScikitLearnBase, XGBClassi
callbacks: Optional[List[TrainingCallback]] = None
) -> "DaskXGBClassifier":
_assert_dask_support()
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
return self._client_sync(self._fit_async, **args)
async def _predict_proba_async(
@@ -2002,7 +2002,7 @@ class DaskXGBRanker(DaskScikitLearnBase, XGBRankerMixI
callbacks: Optional[List[TrainingCallback]] = None
) -> "DaskXGBRanker":
_assert_dask_support()
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
return self._client_sync(self._fit_async, **args)
# FIXME(trivialfis): arguments differ due to additional parameters like group and qid.
@@ -2067,7 +2067,7 @@ class DaskXGBRFRegressor(DaskXGBRegressor):
callbacks: Optional[List[TrainingCallback]] = None
) -> "DaskXGBRFRegressor":
_assert_dask_support()
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
_check_rf_callback(early_stopping_rounds, callbacks)
super().fit(**args)
return self
@@ -2131,7 +2131,7 @@ class DaskXGBRFClassifier(DaskXGBClassifier):
callbacks: Optional[List[TrainingCallback]] = None
) -> "DaskXGBRFClassifier":
_assert_dask_support()
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
_check_rf_callback(early_stopping_rounds, callbacks)
super().fit(**args)
return self
--- xgboost/plotting.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/plotting.py
@@ -81,7 +81,7 @@ def plot_importance(booster, ax=None, height=0.2,
tuples = sorted(tuples, key=lambda x: x[1])[-max_num_features:]
else:
tuples = sorted(tuples, key=lambda x: x[1])
- labels, values = zip(*tuples)
+ labels, values = list(zip(*tuples))
if ax is None:
_, ax = plt.subplots(1, 1)
@@ -177,13 +177,13 @@ def to_graphviz(booster, fmap='', num_trees=0, rankdir
# squash everything back into kwargs again for compatibility
parameters = 'dot'
extra = {}
- for key, value in kwargs.items():
+ for key, value in list(kwargs.items()):
extra[key] = value
if rankdir is not None:
kwargs['graph_attrs'] = {}
kwargs['graph_attrs']['rankdir'] = rankdir
- for key, value in extra.items():
+ for key, value in list(extra.items()):
if kwargs.get("graph_attrs", None) is not None:
kwargs['graph_attrs'][key] = value
else:
--- xgboost/sklearn.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/sklearn.py
@@ -455,7 +455,7 @@ class XGBModel(XGBModelBase):
booster : a xgboost booster of underlying model
"""
if not self.__sklearn_is_fitted__():
- from sklearn.exceptions import NotFittedError
+ from .sklearn.exceptions import NotFittedError
raise NotFittedError('need to call fit or load_model beforehand')
return self._Booster
@@ -476,7 +476,7 @@ class XGBModel(XGBModelBase):
# this concatenates kwargs into parameters, enabling `get_params` for
# obtaining parameters from keyword parameters.
- for key, value in params.items():
+ for key, value in list(params.items()):
if hasattr(self, key):
setattr(self, key, value)
else:
@@ -526,14 +526,14 @@ class XGBModel(XGBModelBase):
internal = {}
while stack:
obj = stack.pop()
- for k, v in obj.items():
+ for k, v in list(obj.items()):
if k.endswith('_param'):
- for p_k, p_v in v.items():
+ for p_k, p_v in list(v.items()):
internal[p_k] = p_v
elif isinstance(v, dict):
stack.append(v)
- for k, v in internal.items():
+ for k, v in list(internal.items()):
if k in params and params[k] is None:
params[k] = parse_parameter(v)
except ValueError:
@@ -549,7 +549,7 @@ class XGBModel(XGBModelBase):
"enable_categorical"
}
filtered = {}
- for k, v in params.items():
+ for k, v in list(params.items()):
if k not in wrapper_specific and not callable(v):
filtered[k] = v
return filtered
@@ -568,7 +568,7 @@ class XGBModel(XGBModelBase):
def save_model(self, fname: Union[str, os.PathLike]) -> None:
meta = {}
- for k, v in self.__dict__.items():
+ for k, v in list(self.__dict__.items()):
if k == '_le':
meta['_le'] = self._le.to_json()
continue
@@ -607,7 +607,7 @@ class XGBModel(XGBModelBase):
return
meta = json.loads(meta_str)
states = {}
- for k, v in meta.items():
+ for k, v in list(meta.items()):
if k == '_le':
self._le = XGBoostLabelEncoder()
self._le.from_json(v)
@@ -660,7 +660,7 @@ class XGBModel(XGBModelBase):
def _set_evaluation_result(self, evals_result: TrainingCallback.EvalsLog) -> None:
if evals_result:
- for val in evals_result.items():
+ for val in list(evals_result.items()):
evals_result_key = list(val[1].keys())[0]
evals_result[val[0]][evals_result_key] = val[1][evals_result_key]
self.evals_result_ = evals_result
@@ -1455,7 +1455,7 @@ class XGBRFClassifier(XGBClassifier):
feature_weights: Optional[array_like] = None,
callbacks: Optional[List[TrainingCallback]] = None
) -> "XGBRFClassifier":
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
_check_rf_callback(early_stopping_rounds, callbacks)
super().fit(**args)
return self
@@ -1526,7 +1526,7 @@ class XGBRFRegressor(XGBRegressor):
feature_weights: Optional[array_like] = None,
callbacks: Optional[List[TrainingCallback]] = None
) -> "XGBRFRegressor":
- args = {k: v for k, v in locals().items() if k not in ("self", "__class__")}
+ args = {k: v for k, v in list(locals().items()) if k not in ("self", "__class__")}
_check_rf_callback(early_stopping_rounds, callbacks)
super().fit(**args)
return self
--- xgboost/training.py.orig 2022-01-17 08:52:31 UTC
+++ xgboost/training.py
@@ -452,7 +452,7 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, st
if 'eval_metric' in params:
params['eval_metric'] = _metrics
else:
- params = dict((k, v) for k, v in params.items())
+ params = dict((k, v) for k, v in list(params.items()))
if (not metrics) and 'eval_metric' in params:
if isinstance(params['eval_metric'], list):
@@ -506,7 +506,7 @@ def cv(params, dtrain, num_boost_round=10, nfold=3, st
results[key + '-std'].append(std)
if should_break:
- for k in results.keys(): # pylint: disable=consider-iterating-dictionary
+ for k in list(results.keys()): # pylint: disable=consider-iterating-dictionary
results[k] = results[k][:(booster.best_iteration + 1)]
break
if as_pandas: