mirror of
https://git.FreeBSD.org/ports.git
synced 2024-12-26 05:02:18 +00:00
- science/liblr is moved to science/liblinear (project renamed)
This commit is contained in:
parent
a649a6476d
commit
6229775fac
Notes:
svn2git
2021-03-31 03:12:20 +00:00
svn path=/head/; revision=196441
1
MOVED
1
MOVED
@ -3108,3 +3108,4 @@ french/fr-py-qt4-eric4|french/eric4|2007-07-25|Moved to french/eric4
|
||||
german/de-py-qt4-eric4|german/eric4|2007-07-25|Moved to german/eric4
|
||||
russian/ru-py-qt4-eric4|russian/eric4|2007-07-25|Moved to russian/eric4
|
||||
devel/py-qt4-eric4|devel/eric4|2007-07-25|Moved to devel/eric4
|
||||
science/liblr|science/liblinear|2007-07-28|Project renamed
|
||||
|
@ -66,7 +66,7 @@
|
||||
SUBDIR += libctl
|
||||
SUBDIR += libghemical
|
||||
SUBDIR += libint
|
||||
SUBDIR += liblr
|
||||
SUBDIR += liblinear
|
||||
SUBDIR += libsvm
|
||||
SUBDIR += libsvm-python
|
||||
SUBDIR += linsmith
|
||||
|
@ -1,50 +0,0 @@
|
||||
# New ports collection Makefile for: liblr
|
||||
# Date created: May 14 2007
|
||||
# Whom: Rong-En Fan <rafan@FreeBSD.org>
|
||||
#
|
||||
# $FreeBSD$
|
||||
#
|
||||
|
||||
PORTNAME= liblr
|
||||
PORTVERSION= 1.00
|
||||
CATEGORIES= science math
|
||||
MASTER_SITES= http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/
|
||||
DISTNAME= ${PORTNAME}-${PORTVERSION:C/0$//}
|
||||
|
||||
MAINTAINER= rafan@FreeBSD.org
|
||||
COMMENT= A library for Large Regularized Logistic Regression
|
||||
|
||||
OPTIONS= OCFLAGS "Use optimized CFLAGS" On
|
||||
|
||||
USE_ZIP= yes
|
||||
|
||||
MAKE_ENV= CC="${CC}" CXXC="${CXX}"
|
||||
|
||||
TXT_DOCS= COPYRIGHT README
|
||||
|
||||
.if !defined(NOPORTDOCS)
|
||||
PORTDOCS= ${TXT_DOCS}
|
||||
.endif
|
||||
|
||||
PLIST_FILES= bin/lr-train bin/lr-predict
|
||||
|
||||
.include <bsd.port.pre.mk>
|
||||
|
||||
.if !defined(WITHOUT_OCFLAGS)
|
||||
# same as LIBIR itself
|
||||
CFLAGS= -Wall -O3
|
||||
.endif
|
||||
|
||||
do-install:
|
||||
${INSTALL_PROGRAM} ${WRKSRC}/lr-train ${TARGETDIR}/bin/
|
||||
${INSTALL_PROGRAM} ${WRKSRC}/lr-predict ${TARGETDIR}/bin/
|
||||
|
||||
post-install:
|
||||
.if !defined(NOPORTDOCS)
|
||||
@${MKDIR} ${DOCSDIR}
|
||||
for f in ${TXT_DOCS}; do \
|
||||
${INSTALL_DATA} ${WRKSRC}/$$f ${DOCSDIR}; \
|
||||
done
|
||||
.endif
|
||||
|
||||
.include <bsd.port.post.mk>
|
@ -1,3 +0,0 @@
|
||||
MD5 (liblr-1.0.zip) = 6407b44f889c1465df341d5242f30480
|
||||
SHA256 (liblr-1.0.zip) = 1435e9dd96f9723872dc624d0ea3a12b0b6ab5d7240f41765c3fd69677bcbed3
|
||||
SIZE (liblr-1.0.zip) = 153199
|
@ -1,16 +0,0 @@
|
||||
LIBLR is a linear classifier for data with millions of instances and
|
||||
features. It implement a trust region Newton method in
|
||||
|
||||
C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method
|
||||
for large-scale regularized logistic regression. Technical report, 2007.
|
||||
A short version appears in ICML 2007.
|
||||
|
||||
Main features of LIBLR include
|
||||
|
||||
Same data format as LIBSVM and similar usage
|
||||
One-vs-the rest multi-class classification
|
||||
Cross validation for model selection
|
||||
Probability estimates
|
||||
Weights for unbalanced data
|
||||
|
||||
WWW: http://www.csie.ntu.edu.tw/~cjlin/liblr/
|
Loading…
Reference in New Issue
Block a user