1
0
mirror of https://git.FreeBSD.org/ports.git synced 2025-01-24 09:25:01 +00:00

Amberfish is general purpose text retrieval software, developed at Etymon

by Nassib Nassar and distributed as open source software under the terms
of version 2 of the GNU General Public License (GPL). Its distinguishing
features are indexing/search of semi-structured text (i.e. both free tex
and multiply nested fields), built-in support for XML documents using the
Xerces library, structured queries allowing generalized field/tag paths,
hierarchical result sets (XML only), automatic searching across multiple
databases (allowing modular indexing), TREC format results, efficient
indexing, and relatively low memory requirements during indexing (and the
ability to index documents larger than available memory). Z39.50 support
is available. Other features include Boolean queries, right truncation,
phrase searching, relevance ranking, support for multiple documents per
file, incremental indexing, and easy integration with other UNIX tools,
The architecture is also designed to permit proximity queries; however,
they are not fully implemented at present.

WWW: http://www.etymon.com/tr.html

This port also includes the Porter stemming algorithm for suffix
stripping, available at:
     http://www.tartarus.org/~martin/PorterStemmer

PR:		ports/127580
Submitted by:	Pedro Giffuni
This commit is contained in:
Martin Wilke 2008-09-30 14:19:57 +00:00
parent 9a06760193
commit a022fa80ec
Notes: svn2git 2021-03-31 03:12:20 +00:00
svn path=/head/; revision=221052
7 changed files with 528 additions and 0 deletions

View File

@ -13,6 +13,7 @@
SUBDIR += aiksaurus-gtk
SUBDIR += align
SUBDIR += am-aspell
SUBDIR += amberfish
SUBDIR += ansifilter
SUBDIR += ant-xinclude-task
SUBDIR += antiword

View File

@ -0,0 +1,37 @@
# New ports collection makefile for: amberfish
# Date created: 21 Aug 2008
# Whom: Pedro Giffuni
#
# $FreeBSD$
#
PORTNAME= amberfish
PORTVERSION= 1.6.4
CATEGORIES= textproc databases
MASTER_SITES= SF \
http://etymon.com/software/amberfish/stable/
MAINTAINER= giffunip@tutopia.com
COMMENT= General purpose text retrieval Software
LIB_DEPENDS= xerces-c.27:${PORTSDIR}/textproc/xerces-c2
GNU_CONFIGURE= yes
USE_GMAKE= yes
MAN1= af.1
post-extract:
${INSTALL_DATA} ${FILESDIR}/porter.cc ${WRKSRC}/src
.if !defined(NOPORTDOCS)
post-build:
@(cd ${WRKSRC} && ${SETENV} ${MAKE_ENV} ${GMAKE} html)
post-install:
${MKDIR} ${DOCSDIR}
${INSTALL_DATA} ${WRKSRC}/amberfish.png ${DOCSDIR}
${INSTALL_MAN} ${WRKSRC}/doc/html/*.html ${DOCSDIR}
.endif
.include <bsd.port.mk>

View File

@ -0,0 +1,3 @@
MD5 (amberfish-1.6.4.tar.gz) = 8eb3f1e26da9d0317719822539c3b932
SHA256 (amberfish-1.6.4.tar.gz) = 155ac6e6b9b76fb7cbd94952548f718ab6add72c3b4fd2482d89abb39d96ce76
SIZE (amberfish-1.6.4.tar.gz) = 127198

View File

@ -0,0 +1,11 @@
--- src/Makefile.in.orig 2008-08-12 11:45:08.000000000 -0500
+++ src/Makefile.in 2008-08-12 11:46:07.000000000 -0500
@@ -66,7 +66,7 @@
strip af
install: all
- make strip
+ ${MAKE} strip
mkdir -p ${PREFIXBIN}
cp ${BIN} ${PREFIXBIN}/.

View File

@ -0,0 +1,438 @@
/* This is the Porter stemming algorithm, coded up in ANSI C by the
author. It may be be regarded as cononical, in that it follows the
algorithm presented in
Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
no. 3, pp 130-137,
only differing from it at the points maked --DEPARTURE-- below.
See also http://www.tartarus.org/~martin/PorterStemmer
The algorithm as described in the paper could be exactly replicated
by adjusting the points of DEPARTURE, but this is barely necessary,
because (a) the points of DEPARTURE are definitely improvements, and
(b) no encoding of the Porter stemmer I have seen is anything like
as exact as this version, even with the points of DEPARTURE!
You can compile it on Unix with 'gcc -O3 -o stem stem.c' after which
'stem' takes a list of inputs and sends the stemmed equivalent to
stdout.
The algorithm as encoded here is particularly fast.
Release 1
*/
#include <string.h> /* for memmove */
#define TRUE 1
#define FALSE 0
/* The main part of the stemming algorithm starts here. b is a buffer
holding a word to be stemmed. The letters are in b[k0], b[k0+1] ...
ending at b[k]. In fact k0 = 0 in this demo program. k is readjusted
downwards as the stemming progresses. Zero termination is not in fact
used in the algorithm.
Note that only lower case sequences are stemmed. Forcing to lower case
should be done before stem(...) is called.
*/
static char * b; /* buffer for word to be stemmed */
static int k,k0,j; /* j is a general offset into the string */
/* cons(i) is TRUE <=> b[i] is a consonant. */
static int cons(int i)
{
switch (b[i])
{
case 'a': case 'e': case 'i': case 'o': case 'u': return FALSE;
case 'y': return (i==k0) ? TRUE : !cons(i-1);
default: return TRUE;
}
}
/* m() measures the number of consonant sequences between k0 and j. if c is
a consonant sequence and v a vowel sequence, and <..> indicates arbitrary
presence,
<c><v> gives 0
<c>vc<v> gives 1
<c>vcvc<v> gives 2
<c>vcvcvc<v> gives 3
....
*/
static int m()
{
int n = 0;
int i = k0;
while(TRUE)
{
if (i > j) return n;
if (! cons(i)) break; i++;
}
i++;
while(TRUE)
{
while(TRUE)
{
if (i > j) return n;
if (cons(i)) break;
i++;
}
i++;
n++;
while(TRUE)
{
if (i > j) return n;
if (! cons(i)) break;
i++;
}
i++;
}
}
/* vowelinstem() is TRUE <=> k0,...j contains a vowel */
static int vowelinstem()
{
int i; for (i = k0; i <= j; i++) if (! cons(i)) return TRUE;
return FALSE;
}
/* doublec(j) is TRUE <=> j,(j-1) contain a double consonant. */
static int doublec(int j)
{
if (j < k0+1) return FALSE;
if (b[j] != b[j-1]) return FALSE;
return cons(j);
}
/* cvc(i) is TRUE <=> i-2,i-1,i has the form consonant - vowel - consonant
and also if the second c is not w,x or y. this is used when trying to
restore an e at the end of a short word. e.g.
cav(e), lov(e), hop(e), crim(e), but
snow, box, tray.
*/
static int cvc(int i)
{
if (i < k0+2 || !cons(i) || cons(i-1) || !cons(i-2)) return FALSE;
{
int ch = b[i];
if (ch == 'w' || ch == 'x' || ch == 'y') return FALSE;
}
return TRUE;
}
/* ends(s) is TRUE <=> k0,...k ends with the string s. */
static int ends(char * s)
{
int length = s[0];
if (s[length] != b[k]) return FALSE; /* tiny speed-up */
if (length > k-k0+1) return FALSE;
if (memcmp(b+k-length+1,s+1,length) != 0) return FALSE;
j = k-length;
return TRUE;
}
/* setto(s) sets (j+1),...k to the characters in the string s, readjusting
k. */
static void setto(char * s)
{
int length = s[0];
memmove(b+j+1,s+1,length);
k = j+length;
}
/* r(s) is used further down. */
static void r(char * s) { if (m() > 0) setto(s); }
/* step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
ties -> ti
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet
*/
static void step1ab()
{
if (b[k] == 's')
{
if (ends("\04" "sses")) k -= 2; else
if (ends("\03" "ies")) setto("\01" "i"); else
if (b[k-1] != 's') k--;
}
if (ends("\03" "eed")) { if (m() > 0) k--; }
else
if ((ends("\02" "ed") || ends("\03" "ing")) && vowelinstem())
{
k = j;
if (ends("\02" "at")) setto("\03" "ate"); else
if (ends("\02" "bl")) setto("\03" "ble"); else
if (ends("\02" "iz")) setto("\03" "ize"); else
if (doublec(k))
{
k--;
{
int ch = b[k];
if (ch == 'l' || ch == 's' || ch == 'z') k++;
}
}
else if (m() == 1 && cvc(k)) setto("\01" "e");
}
}
/* step1c() turns terminal y to i when there is another vowel in the stem. */
static void step1c() { if (ends("\01" "y") && vowelinstem()) b[k] = 'i'; }
/* step2() maps double suffices to single ones. so -ization ( = -ize plus
-ation) maps to -ize etc. note that the string before the suffix must give
m() > 0. */
static void step2()
{
switch (b[k-1])
{
case 'a': if (ends("\07" "ational")) { r("\03" "ate"); break; }
if (ends("\06" "tional")) { r("\04" "tion"); break; }
break;
case 'c': if (ends("\04" "enci")) { r("\04" "ence"); break; }
if (ends("\04" "anci")) { r("\04" "ance"); break; }
break;
case 'e': if (ends("\04" "izer")) { r("\03" "ize"); break; }
break;
case 'l': if (ends("\03" "bli")) /*-DEPARTURE-*/
{
r("\03" "ble"); break;
}
/* To match the published algorithm, replace this line with
case 'l': if (ends("\04" "abli")) { r("\04" "able"); break; } */
if (ends("\04" "alli")) { r("\02" "al"); break; }
if (ends("\05" "entli")) { r("\03" "ent"); break; }
if (ends("\03" "eli")) { r("\01" "e"); break; }
if (ends("\05" "ousli")) { r("\03" "ous"); break; }
break;
case 'o': if (ends("\07" "ization")) { r("\03" "ize"); break; }
if (ends("\05" "ation")) { r("\03" "ate"); break; }
if (ends("\04" "ator")) { r("\03" "ate"); break; }
break;
case 's': if (ends("\05" "alism")) { r("\02" "al"); break; }
if (ends("\07" "iveness")) { r("\03" "ive"); break; }
if (ends("\07" "fulness")) { r("\03" "ful"); break; }
if (ends("\07" "ousness")) { r("\03" "ous"); break; }
break;
case 't': if (ends("\05" "aliti")) { r("\02" "al"); break; }
if (ends("\05" "iviti")) { r("\03" "ive"); break; }
if (ends("\06" "biliti")) { r("\03" "ble"); break; }
break;
case 'g': if (ends("\04" "logi")) /*-DEPARTURE-*/
{
r("\03" "log"); break;
}
/* To match the published algorithm, delete this line */
}
}
/* step3() deals with -ic-, -full, -ness etc. similar strategy to step2. */
static void step3()
{
switch (b[k])
{
case 'e': if (ends("\05" "icate")) { r("\02" "ic"); break; }
if (ends("\05" "ative")) { r("\00" ""); break; }
if (ends("\05" "alize")) { r("\02" "al"); break; }
break;
case 'i': if (ends("\05" "iciti")) { r("\02" "ic"); break; }
break;
case 'l': if (ends("\04" "ical")) { r("\02" "ic"); break; }
if (ends("\03" "ful")) { r("\00" ""); break; }
break;
case 's': if (ends("\04" "ness")) { r("\00" ""); break; }
break;
}
}
/* step4() takes off -ant, -ence etc., in context <c>vcvc<v>. */
static void step4()
{
switch (b[k-1])
{
case 'a': if (ends("\02" "al")) break; return;
case 'c': if (ends("\04" "ance")) break;
if (ends("\04" "ence")) break; return;
case 'e': if (ends("\02" "er")) break; return;
case 'i': if (ends("\02" "ic")) break; return;
case 'l': if (ends("\04" "able")) break;
if (ends("\04" "ible")) break; return;
case 'n': if (ends("\03" "ant")) break;
if (ends("\05" "ement")) break;
if (ends("\04" "ment")) break;
if (ends("\03" "ent")) break; return;
case 'o': if (ends("\03" "ion") && (b[j] == 's' || b[j] == 't')) break;
if (ends("\02" "ou")) break; return;
/* takes care of -ous */
case 's': if (ends("\03" "ism")) break; return;
case 't': if (ends("\03" "ate")) break;
if (ends("\03" "iti")) break; return;
case 'u': if (ends("\03" "ous")) break; return;
case 'v': if (ends("\03" "ive")) break; return;
case 'z': if (ends("\03" "ize")) break; return;
default: return;
}
if (m() > 1) k = j;
}
/* step5() removes a final -e if m() > 1, and changes -ll to -l if
m() > 1. */
static void step5()
{
j = k;
if (b[k] == 'e')
{
int a = m();
if (a > 1 || a == 1 && !cvc(k-1)) k--;
}
if (b[k] == 'l' && doublec(k) && m() > 1) k--;
}
/* In stem(p,i,j), p is a char pointer, and the string to be stemmed is from
p[i] to p[j] inclusive. Typically i is zero and j is the offset to the last
character of a string, (p[j+1] == '\0'). The stemmer adjusts the
characters p[i] ... p[j] and returns the new end-point of the string, k.
Stemming never increases word length, so i <= k <= j. To turn the stemmer
into a module, declare 'stem' as extern, and delete the remainder of this
file.
*/
int stem(char * p, int i, int j)
{ /* copy the parameters into statics */
b = p; k = j; k0 = i;
if (k <= k0+1) return k; /*-DEPARTURE-*/
/* With this line, strings of length 1 or 2 don't go through the
stemming process, although no mention is made of this in the
published algorithm. Remove the line to match the published
algorithm. */
step1ab(); step1c(); step2(); step3(); step4(); step5();
return k;
}
/*--------------------stemmer definition ends here------------------------*/
#include <stdio.h>
#include <stdlib.h> /* for malloc, free */
#include <ctype.h> /* for isupper, islower, tolower */
static char * s; /* a char * (=string) pointer; passed into b above */
#define INC 50 /* size units in which s is increased */
static int i_max = INC; /* maximum offset in s */
void increase_s()
{
i_max += INC;
{
char * new_s = (char *) malloc(i_max+1);
{ /* copy across */
int i; for (i = 0; i < i_max; i++) new_s[i] = s[i];
}
free(s); s = new_s;
}
}
#define LETTER(ch) (isupper(ch) || islower(ch))
static void stemfile(FILE * f)
{
while(TRUE)
{
int ch = getc(f);
if (ch == EOF) return;
if (LETTER(ch))
{
int i = 0;
while(TRUE)
{
if (i == i_max) increase_s();
ch = tolower(ch); /* forces lower case */
s[i] = ch; i++;
ch = getc(f);
if (!LETTER(ch)) { ungetc(ch,f); break; }
}
s[stem(s,0,i-1)+1] = 0;
/* the previous line calls the stemmer and uses its result to
zero-terminate the string in s */
printf("%s",s);
}
else putchar(ch);
}
}
/*
* Commented out as required by amberfish's INSTALL file
*
int main(int argc, char * argv[])
{
int i;
s = (char *) malloc(i_max+1);
for (i = 1; i < argc; i++)
{
FILE * f = fopen(argv[i],"r");
if (f == 0) { fprintf(stderr,"File %s not found\n",argv[i]); exit(1); }
stemfile(f);
}
free(s);
return 0;
}
*/

View File

@ -0,0 +1,21 @@
Amberfish is general purpose text retrieval software, developed at Etymon
by Nassib Nassar and distributed as open source software under the terms
of version 2 of the GNU General Public License (GPL). Its distinguishing
features are indexing/search of semi-structured text (i.e. both free tex
and multiply nested fields), built-in support for XML documents using the
Xerces library, structured queries allowing generalized field/tag paths,
hierarchical result sets (XML only), automatic searching across multiple
databases (allowing modular indexing), TREC format results, efficient
indexing, and relatively low memory requirements during indexing (and the
ability to index documents larger than available memory). Z39.50 support
is available. Other features include Boolean queries, right truncation,
phrase searching, relevance ranking, support for multiple documents per
file, incremental indexing, and easy integration with other UNIX tools,
The architecture is also designed to permit proximity queries; however,
they are not fully implemented at present.
WWW: http://www.etymon.com/tr.html
This port also includes the Porter stemming algorithm for suffix
stripping, available at:
http://www.tartarus.org/~martin/PorterStemmer

View File

@ -0,0 +1,17 @@
bin/af
%%PORTDOCS%%%%DOCSDIR%%/Fields-and-XML.html
%%PORTDOCS%%%%DOCSDIR%%/Fields.html
%%PORTDOCS%%%%DOCSDIR%%/Indexing.html
%%PORTDOCS%%%%DOCSDIR%%/Introduction.html
%%PORTDOCS%%%%DOCSDIR%%/Listing-database-information.html
%%PORTDOCS%%%%DOCSDIR%%/More-about-XML.html
%%PORTDOCS%%%%DOCSDIR%%/Multiple-databases.html
%%PORTDOCS%%%%DOCSDIR%%/Multiple-documents-in-a-file.html
%%PORTDOCS%%%%DOCSDIR%%/Phrases.html
%%PORTDOCS%%%%DOCSDIR%%/Relevance-ranking.html
%%PORTDOCS%%%%DOCSDIR%%/Right-truncation.html
%%PORTDOCS%%%%DOCSDIR%%/Searching.html
%%PORTDOCS%%%%DOCSDIR%%/Tutorial.html
%%PORTDOCS%%%%DOCSDIR%%/amberfish.png
%%PORTDOCS%%%%DOCSDIR%%/index.html
%%PORTDOCS%%@dirrm %%DOCSDIR%%