decomposed into tasks which are assigned to different processors. Efficient use
of the machine requires that each processor have about the same amount of work
to do and that the quantity of interprocessor communication is kept small.
Finding an optimal decomposition is provably hard, but due to its practical
importance, a great deal of effort has been devoted to developing heuristics
for this problem.
The decomposition problem can be addressed in terms of graph partitioning. Rob
Leland and I have developed a variety of algorithms for graph partitioning and
implemented them into a package we call Chaco. The code is being used at most
of the major parallel computing centers around the world to simplify the
development of parallel applications, and to ensure that high performance is
obtained. Chaco has contributed to a wide variety of computational studies
including investigation of the molecular structure of liquid crystals,
evaluating the design of a chemical vapor deposition reactor and modeling
automobile collisions.
WWW: http://www.cs.sandia.gov/~bahendr/chaco.html
Note: this port includes a patch provided by Walter Landry for use within MBDyn
PR: ports/96699
Submitted by: Pedro Giffuni <giffunip (at) asme.org>
package.
Among other small changes, Elmer calls umfpack routines from f90 using
umf4_f77wrapper.c from umfpacks demo directory. The elmer-umfpack build
compiles this and includes it in the libumfpack.a.
Submitted by: Pedro F. Giffuni <giffunip@asme.org>
CGAL is a collaborative effort of several sites in Europe and Israel. The goal
is to make the most important of the solutions and methods developed in
computational geometry available to users in industry and academia in a C++
library. The goal is to provide easy access to useful, reliable geometric
algorithms.
The CGAL library contains:
* the Kernel with geometric primitives such as points, vectors, lines,
predicates for testing things such as relative positions of points, and
operations such as intersections and distance calculation.
* the Basic Library which is a collection of standard data structures and
geometric algorithms, such as convex hull in 2D/3D, (Delaunay)
triangulation in 2D/3D, planar map, polyhedron, smallest enclosing
circle, and multidimensional query structures.
* the Support Library which offers interfaces to other packages, e.g., for
visualisation, and I/O, and other support facilities.
WWW: http://www.cgal.org/