1
0
mirror of https://git.FreeBSD.org/ports.git synced 2025-01-17 08:01:36 +00:00
freebsd-ports/graphics/ipe/files/patch-ipelib__ipedct.cpp
Martin Wilke cc45666f84 - Update to 7.1.5
PR:		190899
2014-06-18 07:40:41 +00:00

1469 lines
36 KiB
C++

--- ipelib/ipedct.cpp.orig
+++ ipelib/ipedct.cpp
@@ -0,0 +1,1465 @@
+//------------------------------------------------------------------------
+// Decoding a DCT stream (JPEG image)
+// This code has been taken from Xpdf,
+// Copyright 1996-2002 Glyph & Cog, LLC
+//------------------------------------------------------------------------
+/*
+
+ This file is part of the extensible drawing editor Ipe.
+ Copyright (C) 1993-2013 Otfried Cheong
+
+ Ipe is free software; you can redistribute it and/or modify it
+ under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ As a special exception, you have permission to link Ipe with the
+ CGAL library and distribute executables, as long as you follow the
+ requirements of the Gnu General Public License in regard to all of
+ the software in the executable aside from CGAL.
+
+ Ipe is distributed in the hope that it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+ License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with Ipe; if not, you can find it at
+ "http://www.gnu.org/copyleft/gpl.html", or write to the Free
+ Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+*/
+
+#include "ipebase.h"
+
+using namespace ipe;
+
+// --------------------------------------------------------------------
+
+// DCT component info
+struct DCTCompInfo {
+ int id; // component ID
+ int hSample, vSample; // horiz/vert sampling resolutions
+ int quantTable; // quantization table number
+ int prevDC; // DC coefficient accumulator
+};
+
+struct DCTScanInfo {
+ bool comp[4]; // comp[i] is set if component i is
+ // included in this scan
+ int numComps; // number of components in the scan
+ int dcHuffTable[4]; // DC Huffman table numbers
+ int acHuffTable[4]; // AC Huffman table numbers
+ int firstCoeff, lastCoeff; // first and last DCT coefficient
+ int ah, al; // successive approximation parameters
+};
+
+// DCT Huffman decoding table
+struct DCTHuffTable {
+ uchar firstSym[17]; // first symbol for this bit length
+ ushort firstCode[17]; // first code for this bit length
+ ushort numCodes[17]; // number of codes of this bit length
+ uchar sym[256]; // symbols
+};
+
+// --------------------------------------------------------------------
+
+class DCTStream {
+public:
+
+ DCTStream(DataSource &source);
+ ~DCTStream();
+ void reset();
+ int getChar();
+
+private:
+ DataSource &iSource;
+
+ bool progressive; // set if in progressive mode
+ bool interleaved; // set if in interleaved mode
+ int width, height; // image size
+ int mcuWidth, mcuHeight; // size of min coding unit, in data units
+ int bufWidth, bufHeight; // frameBuf size
+ DCTCompInfo compInfo[4]; // info for each component
+ DCTScanInfo scanInfo; // info for the current scan
+ int numComps; // number of components in image
+ int colorXform; // need YCbCr-to-RGB transform?
+ bool gotAdobeMarker; // set if APP14 Adobe marker was present
+ int restartInterval; // restart interval, in MCUs
+ uchar quantTables[4][64]; // quantization tables
+ int numQuantTables; // number of quantization tables
+ DCTHuffTable dcHuffTables[4]; // DC Huffman tables
+ DCTHuffTable acHuffTables[4]; // AC Huffman tables
+ int numDCHuffTables; // number of DC Huffman tables
+ int numACHuffTables; // number of AC Huffman tables
+ uchar *rowBuf[4][32]; // buffer for one MCU (non-progressive mode)
+ int *frameBuf[4]; // buffer for frame (progressive mode)
+ int comp, x, y, dy; // current position within image/MCU
+ int restartCtr; // MCUs left until restart
+ int restartMarker; // next restart marker
+ int eobRun; // number of EOBs left in the current run
+ int inputBuf; // input buffer for variable length codes
+ int inputBits; // number of valid bits in input buffer
+
+ void restart();
+ bool readMCURow();
+ void readScan();
+ bool readDataUnit(DCTHuffTable *dcHuffTable,
+ DCTHuffTable *acHuffTable,
+ int *prevDC, int data[64]);
+ bool readProgressiveDataUnit(DCTHuffTable *dcHuffTable,
+ DCTHuffTable *acHuffTable,
+ int *prevDC, int data[64]);
+ void decodeImage();
+ void transformDataUnit(uchar *quantTable,
+ int dataIn[64], uchar dataOut[64]);
+ int readHuffSym(DCTHuffTable *table);
+ int readAmp(int size);
+ int readBit();
+ bool readHeader();
+ bool readBaselineSOF();
+ bool readProgressiveSOF();
+ bool readScanInfo();
+ bool readQuantTables();
+ bool readHuffmanTables();
+ bool readRestartInterval();
+ bool readAdobeMarker();
+ bool readTrailer();
+ int readMarker();
+ int read16();
+};
+
+// --------------------------------------------------------------------
+
+// IDCT constants (20.12 fixed point format)
+#define dctCos1 4017 // cos(pi/16)
+#define dctSin1 799 // sin(pi/16)
+#define dctCos3 3406 // cos(3*pi/16)
+#define dctSin3 2276 // sin(3*pi/16)
+#define dctCos6 1567 // cos(6*pi/16)
+#define dctSin6 3784 // sin(6*pi/16)
+#define dctSqrt2 5793 // sqrt(2)
+#define dctSqrt1d2 2896 // sqrt(2) / 2
+
+// color conversion parameters (16.16 fixed point format)
+#define dctCrToR 91881 // 1.4020
+#define dctCbToG -22553 // -0.3441363
+#define dctCrToG -46802 // -0.71413636
+#define dctCbToB 116130 // 1.772
+
+// clip [-256,511] --> [0,255]
+#define dctClipOffset 256
+static uchar dctClip[768];
+static int dctClipInit = 0;
+
+// zig zag decode map
+static int dctZigZag[64] = {
+ 0,
+ 1, 8,
+ 16, 9, 2,
+ 3, 10, 17, 24,
+ 32, 25, 18, 11, 4,
+ 5, 12, 19, 26, 33, 40,
+ 48, 41, 34, 27, 20, 13, 6,
+ 7, 14, 21, 28, 35, 42, 49, 56,
+ 57, 50, 43, 36, 29, 22, 15,
+ 23, 30, 37, 44, 51, 58,
+ 59, 52, 45, 38, 31,
+ 39, 46, 53, 60,
+ 61, 54, 47,
+ 55, 62,
+ 63
+};
+
+// --------------------------------------------------------------------
+
+DCTStream::DCTStream(DataSource &source)
+ : iSource(source)
+{
+ int i, j;
+
+ progressive = interleaved = false;
+ width = height = 0;
+ mcuWidth = mcuHeight = 0;
+ numComps = 0;
+ comp = 0;
+ x = y = dy = 0;
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 32; ++j) {
+ rowBuf[i][j] = 0;
+ }
+ frameBuf[i] = 0;
+ }
+
+ if (!dctClipInit) {
+ for (i = -256; i < 0; ++i)
+ dctClip[dctClipOffset + i] = 0;
+ for (i = 0; i < 256; ++i)
+ dctClip[dctClipOffset + i] = uchar(i);
+ for (i = 256; i < 512; ++i)
+ dctClip[dctClipOffset + i] = 255;
+ dctClipInit = 1;
+ }
+}
+
+DCTStream::~DCTStream()
+{
+ int i, j;
+ if (progressive || !interleaved) {
+ for (i = 0; i < numComps; ++i) {
+ delete [] frameBuf[i];
+ }
+ } else {
+ for (i = 0; i < numComps; ++i) {
+ for (j = 0; j < mcuHeight; ++j) {
+ delete [] rowBuf[i][j];
+ }
+ }
+ }
+}
+
+void DCTStream::reset()
+{
+ int minHSample, minVSample;
+ int i, j;
+
+ progressive = interleaved = false;
+ width = height = 0;
+ numComps = 0;
+ numQuantTables = 0;
+ numDCHuffTables = 0;
+ numACHuffTables = 0;
+ colorXform = 0;
+ gotAdobeMarker = false;
+ restartInterval = 0;
+
+ if (!readHeader()) {
+ y = height;
+ return;
+ }
+
+ // compute MCU size
+ mcuWidth = minHSample = compInfo[0].hSample;
+ mcuHeight = minVSample = compInfo[0].vSample;
+ for (i = 1; i < numComps; ++i) {
+ if (compInfo[i].hSample < minHSample)
+ minHSample = compInfo[i].hSample;
+ if (compInfo[i].vSample < minVSample)
+ minVSample = compInfo[i].vSample;
+ if (compInfo[i].hSample > mcuWidth)
+ mcuWidth = compInfo[i].hSample;
+ if (compInfo[i].vSample > mcuHeight)
+ mcuHeight = compInfo[i].vSample;
+ }
+ for (i = 0; i < numComps; ++i) {
+ compInfo[i].hSample /= minHSample;
+ compInfo[i].vSample /= minVSample;
+ }
+ mcuWidth = (mcuWidth / minHSample) * 8;
+ mcuHeight = (mcuHeight / minVSample) * 8;
+
+ // figure out color transform
+ if (!gotAdobeMarker && numComps == 3) {
+ if (compInfo[0].id == 1 && compInfo[1].id == 2 && compInfo[2].id == 3) {
+ colorXform = 1;
+ }
+ }
+
+ if (progressive || !interleaved) {
+
+ // allocate a buffer for the whole image
+ bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
+ bufHeight = ((height + mcuHeight - 1) / mcuHeight) * mcuHeight;
+ for (i = 0; i < numComps; ++i) {
+ frameBuf[i] = new int[bufWidth * bufHeight];
+ memset(frameBuf[i], 0, bufWidth * bufHeight * sizeof(int));
+ }
+
+ // read the image data
+ do {
+ restartMarker = 0xd0;
+ restart();
+ readScan();
+ } while (readHeader());
+
+ // decode
+ decodeImage();
+
+ // initialize counters
+ comp = 0;
+ x = 0;
+ y = 0;
+
+ } else {
+
+ // allocate a buffer for one row of MCUs
+ bufWidth = ((width + mcuWidth - 1) / mcuWidth) * mcuWidth;
+ for (i = 0; i < numComps; ++i) {
+ for (j = 0; j < mcuHeight; ++j) {
+ rowBuf[i][j] = new uchar[bufWidth];
+ }
+ }
+
+ // initialize counters
+ comp = 0;
+ x = 0;
+ y = 0;
+ dy = mcuHeight;
+
+ restartMarker = 0xd0;
+ restart();
+ }
+}
+
+int DCTStream::getChar()
+{
+ int c;
+
+ if (y >= height) {
+ return EOF;
+ }
+ if (progressive || !interleaved) {
+ c = frameBuf[comp][y * bufWidth + x];
+ if (++comp == numComps) {
+ comp = 0;
+ if (++x == width) {
+ x = 0;
+ ++y;
+ }
+ }
+ } else {
+ if (dy >= mcuHeight) {
+ if (!readMCURow()) {
+ y = height;
+ return EOF;
+ }
+ comp = 0;
+ x = 0;
+ dy = 0;
+ }
+ c = rowBuf[comp][dy][x];
+ if (++comp == numComps) {
+ comp = 0;
+ if (++x == width) {
+ x = 0;
+ ++y;
+ ++dy;
+ if (y == height) {
+ readTrailer();
+ }
+ }
+ }
+ }
+ return c;
+}
+
+void DCTStream::restart()
+{
+ int i;
+
+ inputBits = 0;
+ restartCtr = restartInterval;
+ for (i = 0; i < numComps; ++i) {
+ compInfo[i].prevDC = 0;
+ }
+ eobRun = 0;
+}
+
+// Read one row of MCUs from a sequential JPEG stream.
+bool DCTStream::readMCURow()
+{
+ int data1[64];
+ uchar data2[64];
+ uchar *p1, *p2;
+ int pY, pCb, pCr, pR, pG, pB;
+ int h, v, horiz, vert, hSub, vSub;
+ int x1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
+ int c;
+
+ for (x1 = 0; x1 < width; x1 += mcuWidth) {
+
+ // deal with restart marker
+ if (restartInterval > 0 && restartCtr == 0) {
+ c = readMarker();
+ if (c != restartMarker) {
+ ipeDebug("Bad DCT data: incorrect restart marker");
+ return false;
+ }
+ if (++restartMarker == 0xd8)
+ restartMarker = 0xd0;
+ restart();
+ }
+
+ // read one MCU
+ for (cc = 0; cc < numComps; ++cc) {
+ h = compInfo[cc].hSample;
+ v = compInfo[cc].vSample;
+ horiz = mcuWidth / h;
+ vert = mcuHeight / v;
+ hSub = horiz / 8;
+ vSub = vert / 8;
+ for (y2 = 0; y2 < mcuHeight; y2 += vert) {
+ for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
+ if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]],
+ &acHuffTables[scanInfo.acHuffTable[cc]],
+ &compInfo[cc].prevDC,
+ data1)) {
+ return false;
+ }
+ transformDataUnit(quantTables[compInfo[cc].quantTable],
+ data1, data2);
+ if (hSub == 1 && vSub == 1) {
+ for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
+ p1 = &rowBuf[cc][y2+y3][x1+x2];
+ p1[0] = data2[i];
+ p1[1] = data2[i+1];
+ p1[2] = data2[i+2];
+ p1[3] = data2[i+3];
+ p1[4] = data2[i+4];
+ p1[5] = data2[i+5];
+ p1[6] = data2[i+6];
+ p1[7] = data2[i+7];
+ }
+ } else if (hSub == 2 && vSub == 2) {
+ for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
+ p1 = &rowBuf[cc][y2+y3][x1+x2];
+ p2 = &rowBuf[cc][y2+y3+1][x1+x2];
+ p1[0] = p1[1] = p2[0] = p2[1] = data2[i];
+ p1[2] = p1[3] = p2[2] = p2[3] = data2[i+1];
+ p1[4] = p1[5] = p2[4] = p2[5] = data2[i+2];
+ p1[6] = p1[7] = p2[6] = p2[7] = data2[i+3];
+ p1[8] = p1[9] = p2[8] = p2[9] = data2[i+4];
+ p1[10] = p1[11] = p2[10] = p2[11] = data2[i+5];
+ p1[12] = p1[13] = p2[12] = p2[13] = data2[i+6];
+ p1[14] = p1[15] = p2[14] = p2[15] = data2[i+7];
+ }
+ } else {
+ i = 0;
+ for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
+ for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
+ for (y5 = 0; y5 < vSub; ++y5)
+ for (x5 = 0; x5 < hSub; ++x5)
+ rowBuf[cc][y2+y4+y5][x1+x2+x4+x5] = data2[i];
+ ++i;
+ }
+ }
+ }
+ }
+ }
+ }
+ --restartCtr;
+
+ // color space conversion
+ if (colorXform) {
+ // convert YCbCr to RGB
+ if (numComps == 3) {
+ for (y2 = 0; y2 < mcuHeight; ++y2) {
+ for (x2 = 0; x2 < mcuWidth; ++x2) {
+ pY = rowBuf[0][y2][x1+x2];
+ pCb = rowBuf[1][y2][x1+x2] - 128;
+ pCr = rowBuf[2][y2][x1+x2] - 128;
+ pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
+ rowBuf[0][y2][x1+x2] = dctClip[dctClipOffset + pR];
+ pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
+ rowBuf[1][y2][x1+x2] = dctClip[dctClipOffset + pG];
+ pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
+ rowBuf[2][y2][x1+x2] = dctClip[dctClipOffset + pB];
+ }
+ }
+ // convert YCbCrK to CMYK (K is passed through unchanged)
+ } else if (numComps == 4) {
+ for (y2 = 0; y2 < mcuHeight; ++y2) {
+ for (x2 = 0; x2 < mcuWidth; ++x2) {
+ pY = rowBuf[0][y2][x1+x2];
+ pCb = rowBuf[1][y2][x1+x2] - 128;
+ pCr = rowBuf[2][y2][x1+x2] - 128;
+ pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
+ rowBuf[0][y2][x1+x2] = uchar(255 - dctClip[dctClipOffset + pR]);
+ pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr + 32768) >> 16;
+ rowBuf[1][y2][x1+x2] = uchar(255 - dctClip[dctClipOffset + pG]);
+ pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
+ rowBuf[2][y2][x1+x2] = uchar(255 - dctClip[dctClipOffset + pB]);
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+// Read one scan from a progressive or non-interleaved JPEG stream.
+void DCTStream::readScan()
+{
+ int data[64];
+ int x1, y1, dy1, x2, y2, y3, cc, i;
+ int h, v, horiz, vert, vSub;
+ int *p1;
+ int c;
+
+ if (scanInfo.numComps == 1) {
+ for (cc = 0; cc < numComps; ++cc) {
+ if (scanInfo.comp[cc]) {
+ break;
+ }
+ }
+ dy1 = mcuHeight / compInfo[cc].vSample;
+ } else {
+ dy1 = mcuHeight;
+ }
+
+ for (y1 = 0; y1 < bufHeight; y1 += dy1) {
+ for (x1 = 0; x1 < bufWidth; x1 += mcuWidth) {
+
+ // deal with restart marker
+ if (restartInterval > 0 && restartCtr == 0) {
+ c = readMarker();
+ if (c != restartMarker) {
+ ipeDebug("Bad DCT data: incorrect restart marker");
+ return;
+ }
+ if (++restartMarker == 0xd8) {
+ restartMarker = 0xd0;
+ }
+ restart();
+ }
+
+ // read one MCU
+ for (cc = 0; cc < numComps; ++cc) {
+ if (!scanInfo.comp[cc]) {
+ continue;
+ }
+
+ h = compInfo[cc].hSample;
+ v = compInfo[cc].vSample;
+ horiz = mcuWidth / h;
+ vert = mcuHeight / v;
+ // hSub = horiz / 8;
+ vSub = vert / 8;
+ for (y2 = 0; y2 < dy1; y2 += vert) {
+ for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
+
+ // pull out the current values
+ p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
+ for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
+ data[i] = p1[0];
+ data[i+1] = p1[1];
+ data[i+2] = p1[2];
+ data[i+3] = p1[3];
+ data[i+4] = p1[4];
+ data[i+5] = p1[5];
+ data[i+6] = p1[6];
+ data[i+7] = p1[7];
+ p1 += bufWidth * vSub;
+ }
+
+ // read one data unit
+ if (progressive) {
+ if (!readProgressiveDataUnit(
+ &dcHuffTables[scanInfo.dcHuffTable[cc]],
+ &acHuffTables[scanInfo.acHuffTable[cc]],
+ &compInfo[cc].prevDC,
+ data)) {
+ return;
+ }
+ } else {
+ if (!readDataUnit(&dcHuffTables[scanInfo.dcHuffTable[cc]],
+ &acHuffTables[scanInfo.acHuffTable[cc]],
+ &compInfo[cc].prevDC,
+ data)) {
+ return;
+ }
+ }
+
+ // add the data unit into frameBuf
+ p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
+ for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
+ p1[0] = data[i];
+ p1[1] = data[i+1];
+ p1[2] = data[i+2];
+ p1[3] = data[i+3];
+ p1[4] = data[i+4];
+ p1[5] = data[i+5];
+ p1[6] = data[i+6];
+ p1[7] = data[i+7];
+ p1 += bufWidth * vSub;
+ }
+ }
+ }
+ }
+ --restartCtr;
+ }
+ }
+}
+
+// Read one data unit from a sequential JPEG stream.
+bool DCTStream::readDataUnit(DCTHuffTable *dcHuffTable,
+ DCTHuffTable *acHuffTable,
+ int *prevDC, int data[64])
+{
+ int run, size, amp;
+ int c;
+ int i, j;
+
+ if ((size = readHuffSym(dcHuffTable)) == 9999) {
+ return false;
+ }
+ if (size > 0) {
+ if ((amp = readAmp(size)) == 9999) {
+ return false;
+ }
+ } else {
+ amp = 0;
+ }
+ data[0] = *prevDC += amp;
+ for (i = 1; i < 64; ++i) {
+ data[i] = 0;
+ }
+ i = 1;
+ while (i < 64) {
+ run = 0;
+ while ((c = readHuffSym(acHuffTable)) == 0xf0 && run < 0x30) {
+ run += 0x10;
+ }
+ if (c == 9999) {
+ return false;
+ }
+ if (c == 0x00) {
+ break;
+ } else {
+ run += (c >> 4) & 0x0f;
+ size = c & 0x0f;
+ amp = readAmp(size);
+ if (amp == 9999) {
+ return false;
+ }
+ i += run;
+ j = dctZigZag[i++];
+ data[j] = amp;
+ }
+ }
+ return true;
+}
+
+// Read one data unit from a sequential JPEG stream.
+bool DCTStream::readProgressiveDataUnit(DCTHuffTable *dcHuffTable,
+ DCTHuffTable *acHuffTable,
+ int *prevDC, int data[64])
+{
+ int run, size, amp, bit, c;
+ int i, j, k;
+
+ // get the DC coefficient
+ i = scanInfo.firstCoeff;
+ if (i == 0) {
+ if (scanInfo.ah == 0) {
+ if ((size = readHuffSym(dcHuffTable)) == 9999) {
+ return false;
+ }
+ if (size > 0) {
+ if ((amp = readAmp(size)) == 9999) {
+ return false;
+ }
+ } else {
+ amp = 0;
+ }
+ data[0] += (*prevDC += amp) << scanInfo.al;
+ } else {
+ if ((bit = readBit()) == 9999) {
+ return false;
+ }
+ data[0] += bit << scanInfo.al;
+ }
+ ++i;
+ }
+ if (scanInfo.lastCoeff == 0) {
+ return true;
+ }
+
+ // check for an EOB run
+ if (eobRun > 0) {
+ while (i <= scanInfo.lastCoeff) {
+ j = dctZigZag[i++];
+ if (data[j] != 0) {
+ if ((bit = readBit()) == EOF) {
+ return false;
+ }
+ if (bit) {
+ data[j] += 1 << scanInfo.al;
+ }
+ }
+ }
+ --eobRun;
+ return true;
+ }
+
+ // read the AC coefficients
+ while (i <= scanInfo.lastCoeff) {
+ if ((c = readHuffSym(acHuffTable)) == 9999) {
+ return false;
+ }
+
+ // ZRL
+ if (c == 0xf0) {
+ k = 0;
+ while (k < 16) {
+ j = dctZigZag[i++];
+ if (data[j] == 0) {
+ ++k;
+ } else {
+ if ((bit = readBit()) == EOF) {
+ return false;
+ }
+ if (bit) {
+ data[j] += 1 << scanInfo.al;
+ }
+ }
+ }
+
+ // EOB run
+ } else if ((c & 0x0f) == 0x00) {
+ j = c >> 4;
+ eobRun = 0;
+ for (k = 0; k < j; ++k) {
+ if ((bit = readBit()) == EOF) {
+ return 9999;
+ }
+ eobRun = (eobRun << 1) | bit;
+ }
+ eobRun += 1 << j;
+ while (i <= scanInfo.lastCoeff) {
+ j = dctZigZag[i++];
+ if (data[j] != 0) {
+ if ((bit = readBit()) == EOF) {
+ return false;
+ }
+ if (bit) {
+ data[j] += 1 << scanInfo.al;
+ }
+ }
+ }
+ --eobRun;
+ break;
+
+ // zero run and one AC coefficient
+ } else {
+ run = (c >> 4) & 0x0f;
+ size = c & 0x0f;
+ if ((amp = readAmp(size)) == 9999) {
+ return false;
+ }
+ k = 0;
+ do {
+ j = dctZigZag[i++];
+ while (data[j] != 0) {
+ if ((bit = readBit()) == EOF) {
+ return false;
+ }
+ if (bit) {
+ data[j] += 1 << scanInfo.al;
+ }
+ j = dctZigZag[i++];
+ }
+ ++k;
+ } while (k <= run);
+ data[j] = amp << scanInfo.al;
+ }
+ }
+
+ return true;
+}
+
+// Decode a progressive JPEG image.
+void DCTStream::decodeImage()
+{
+ int dataIn[64];
+ uchar dataOut[64];
+ uchar *quantTable;
+ int pY, pCb, pCr, pR, pG, pB;
+ int x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, cc, i;
+ int h, v, horiz, vert, hSub, vSub;
+ int *p0, *p1, *p2;
+
+ for (y1 = 0; y1 < bufHeight; y1 += mcuHeight) {
+ for (x1 = 0; x1 < bufWidth; x1 += mcuWidth) {
+ for (cc = 0; cc < numComps; ++cc) {
+ quantTable = quantTables[compInfo[cc].quantTable];
+ h = compInfo[cc].hSample;
+ v = compInfo[cc].vSample;
+ horiz = mcuWidth / h;
+ vert = mcuHeight / v;
+ hSub = horiz / 8;
+ vSub = vert / 8;
+ for (y2 = 0; y2 < mcuHeight; y2 += vert) {
+ for (x2 = 0; x2 < mcuWidth; x2 += horiz) {
+
+ // pull out the coded data unit
+ p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
+ for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
+ dataIn[i] = p1[0];
+ dataIn[i+1] = p1[1];
+ dataIn[i+2] = p1[2];
+ dataIn[i+3] = p1[3];
+ dataIn[i+4] = p1[4];
+ dataIn[i+5] = p1[5];
+ dataIn[i+6] = p1[6];
+ dataIn[i+7] = p1[7];
+ p1 += bufWidth * vSub;
+ }
+
+ // transform
+ transformDataUnit(quantTable, dataIn, dataOut);
+
+ // store back into frameBuf, doing replication for
+ // subsampled components
+ p1 = &frameBuf[cc][(y1+y2) * bufWidth + (x1+x2)];
+ if (hSub == 1 && vSub == 1) {
+ for (y3 = 0, i = 0; y3 < 8; ++y3, i += 8) {
+ p1[0] = dataOut[i] & 0xff;
+ p1[1] = dataOut[i+1] & 0xff;
+ p1[2] = dataOut[i+2] & 0xff;
+ p1[3] = dataOut[i+3] & 0xff;
+ p1[4] = dataOut[i+4] & 0xff;
+ p1[5] = dataOut[i+5] & 0xff;
+ p1[6] = dataOut[i+6] & 0xff;
+ p1[7] = dataOut[i+7] & 0xff;
+ p1 += bufWidth;
+ }
+ } else if (hSub == 2 && vSub == 2) {
+ p2 = p1 + bufWidth;
+ for (y3 = 0, i = 0; y3 < 16; y3 += 2, i += 8) {
+ p1[0] = p1[1] = p2[0] = p2[1] = dataOut[i] & 0xff;
+ p1[2] = p1[3] = p2[2] = p2[3] = dataOut[i+1] & 0xff;
+ p1[4] = p1[5] = p2[4] = p2[5] = dataOut[i+2] & 0xff;
+ p1[6] = p1[7] = p2[6] = p2[7] = dataOut[i+3] & 0xff;
+ p1[8] = p1[9] = p2[8] = p2[9] = dataOut[i+4] & 0xff;
+ p1[10] = p1[11] = p2[10] = p2[11] = dataOut[i+5] & 0xff;
+ p1[12] = p1[13] = p2[12] = p2[13] = dataOut[i+6] & 0xff;
+ p1[14] = p1[15] = p2[14] = p2[15] = dataOut[i+7] & 0xff;
+ p1 += bufWidth * 2;
+ p2 += bufWidth * 2;
+ }
+ } else {
+ i = 0;
+ for (y3 = 0, y4 = 0; y3 < 8; ++y3, y4 += vSub) {
+ for (x3 = 0, x4 = 0; x3 < 8; ++x3, x4 += hSub) {
+ p2 = p1 + x4;
+ for (y5 = 0; y5 < vSub; ++y5) {
+ for (x5 = 0; x5 < hSub; ++x5) {
+ p2[x5] = dataOut[i] & 0xff;
+ }
+ p2 += bufWidth;
+ }
+ ++i;
+ }
+ p1 += bufWidth * vSub;
+ }
+ }
+ }
+ }
+ }
+
+ // color space conversion
+ if (colorXform) {
+ // convert YCbCr to RGB
+ if (numComps == 3) {
+ for (y2 = 0; y2 < mcuHeight; ++y2) {
+ p0 = &frameBuf[0][(y1+y2) * bufWidth + x1];
+ p1 = &frameBuf[1][(y1+y2) * bufWidth + x1];
+ p2 = &frameBuf[2][(y1+y2) * bufWidth + x1];
+ for (x2 = 0; x2 < mcuWidth; ++x2) {
+ pY = *p0;
+ pCb = *p1 - 128;
+ pCr = *p2 - 128;
+ pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
+ *p0++ = dctClip[dctClipOffset + pR];
+ pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr +
+ 32768) >> 16;
+ *p1++ = dctClip[dctClipOffset + pG];
+ pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
+ *p2++ = dctClip[dctClipOffset + pB];
+ }
+ }
+ // convert YCbCrK to CMYK (K is passed through unchanged)
+ } else if (numComps == 4) {
+ for (y2 = 0; y2 < mcuHeight; ++y2) {
+ p0 = &frameBuf[0][(y1+y2) * bufWidth + x1];
+ p1 = &frameBuf[1][(y1+y2) * bufWidth + x1];
+ p2 = &frameBuf[2][(y1+y2) * bufWidth + x1];
+ for (x2 = 0; x2 < mcuWidth; ++x2) {
+ pY = *p0;
+ pCb = *p1 - 128;
+ pCr = *p2 - 128;
+ pR = ((pY << 16) + dctCrToR * pCr + 32768) >> 16;
+ *p0++ = 255 - dctClip[dctClipOffset + pR];
+ pG = ((pY << 16) + dctCbToG * pCb + dctCrToG * pCr +
+ 32768) >> 16;
+ *p1++ = 255 - dctClip[dctClipOffset + pG];
+ pB = ((pY << 16) + dctCbToB * pCb + 32768) >> 16;
+ *p2++ = 255 - dctClip[dctClipOffset + pB];
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+// Transform one data unit -- this performs the dequantization and
+// IDCT steps. This IDCT algorithm is taken from:
+// Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz,
+// "Practical Fast 1-D DCT Algorithms with 11 Multiplications",
+// IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989,
+// 988-991.
+// The stage numbers mentioned in the comments refer to Figure 1 in this
+// paper.
+void DCTStream::transformDataUnit(uchar *quantTable,
+ int dataIn[64], uchar dataOut[64])
+{
+ int v0, v1, v2, v3, v4, v5, v6, v7, t;
+ int *p;
+ int i;
+
+ // dequant
+ for (i = 0; i < 64; ++i) {
+ dataIn[i] *= quantTable[i];
+ }
+
+ // inverse DCT on rows
+ for (i = 0; i < 64; i += 8) {
+ p = dataIn + i;
+
+ // check for all-zero AC coefficients
+ if (p[1] == 0 && p[2] == 0 && p[3] == 0 &&
+ p[4] == 0 && p[5] == 0 && p[6] == 0 && p[7] == 0) {
+ t = (dctSqrt2 * p[0] + 512) >> 10;
+ p[0] = t;
+ p[1] = t;
+ p[2] = t;
+ p[3] = t;
+ p[4] = t;
+ p[5] = t;
+ p[6] = t;
+ p[7] = t;
+ continue;
+ }
+
+ // stage 4
+ v0 = (dctSqrt2 * p[0] + 128) >> 8;
+ v1 = (dctSqrt2 * p[4] + 128) >> 8;
+ v2 = p[2];
+ v3 = p[6];
+ v4 = (dctSqrt1d2 * (p[1] - p[7]) + 128) >> 8;
+ v7 = (dctSqrt1d2 * (p[1] + p[7]) + 128) >> 8;
+ v5 = p[3] << 4;
+ v6 = p[5] << 4;
+
+ // stage 3
+ t = (v0 - v1+ 1) >> 1;
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = t;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
+ v3 = t;
+ t = (v4 - v6 + 1) >> 1;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = t;
+ t = (v7 + v5 + 1) >> 1;
+ v5 = (v7 - v5 + 1) >> 1;
+ v7 = t;
+
+ // stage 2
+ t = (v0 - v3 + 1) >> 1;
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = t;
+ t = (v1 - v2 + 1) >> 1;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = t;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p[0] = v0 + v7;
+ p[7] = v0 - v7;
+ p[1] = v1 + v6;
+ p[6] = v1 - v6;
+ p[2] = v2 + v5;
+ p[5] = v2 - v5;
+ p[3] = v3 + v4;
+ p[4] = v3 - v4;
+ }
+
+ // inverse DCT on columns
+ for (i = 0; i < 8; ++i) {
+ p = dataIn + i;
+
+ // check for all-zero AC coefficients
+ if (p[1*8] == 0 && p[2*8] == 0 && p[3*8] == 0 &&
+ p[4*8] == 0 && p[5*8] == 0 && p[6*8] == 0 && p[7*8] == 0) {
+ t = (dctSqrt2 * dataIn[i+0] + 8192) >> 14;
+ p[0*8] = t;
+ p[1*8] = t;
+ p[2*8] = t;
+ p[3*8] = t;
+ p[4*8] = t;
+ p[5*8] = t;
+ p[6*8] = t;
+ p[7*8] = t;
+ continue;
+ }
+
+ // stage 4
+ v0 = (dctSqrt2 * p[0*8] + 2048) >> 12;
+ v1 = (dctSqrt2 * p[4*8] + 2048) >> 12;
+ v2 = p[2*8];
+ v3 = p[6*8];
+ v4 = (dctSqrt1d2 * (p[1*8] - p[7*8]) + 2048) >> 12;
+ v7 = (dctSqrt1d2 * (p[1*8] + p[7*8]) + 2048) >> 12;
+ v5 = p[3*8];
+ v6 = p[5*8];
+
+ // stage 3
+ t = (v0 - v1 + 1) >> 1;
+ v0 = (v0 + v1 + 1) >> 1;
+ v1 = t;
+ t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
+ v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
+ v3 = t;
+ t = (v4 - v6 + 1) >> 1;
+ v4 = (v4 + v6 + 1) >> 1;
+ v6 = t;
+ t = (v7 + v5 + 1) >> 1;
+ v5 = (v7 - v5 + 1) >> 1;
+ v7 = t;
+
+ // stage 2
+ t = (v0 - v3 + 1) >> 1;
+ v0 = (v0 + v3 + 1) >> 1;
+ v3 = t;
+ t = (v1 - v2 + 1) >> 1;
+ v1 = (v1 + v2 + 1) >> 1;
+ v2 = t;
+ t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
+ v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
+ v7 = t;
+ t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
+ v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
+ v6 = t;
+
+ // stage 1
+ p[0*8] = v0 + v7;
+ p[7*8] = v0 - v7;
+ p[1*8] = v1 + v6;
+ p[6*8] = v1 - v6;
+ p[2*8] = v2 + v5;
+ p[5*8] = v2 - v5;
+ p[3*8] = v3 + v4;
+ p[4*8] = v3 - v4;
+ }
+
+ // convert to 8-bit integers
+ for (i = 0; i < 64; ++i) {
+ dataOut[i] = dctClip[dctClipOffset + 128 + ((dataIn[i] + 8) >> 4)];
+ }
+}
+
+int DCTStream::readHuffSym(DCTHuffTable *table)
+{
+ ushort code;
+ int bit;
+ int codeBits;
+
+ code = 0;
+ codeBits = 0;
+ do {
+ // add a bit to the code
+ if ((bit = readBit()) == EOF)
+ return 9999;
+ code = ushort((code << 1) + bit);
+ ++codeBits;
+
+ // look up code
+ if (code - table->firstCode[codeBits] < table->numCodes[codeBits]) {
+ code -= table->firstCode[codeBits];
+ return table->sym[table->firstSym[codeBits] + code];
+ }
+ } while (codeBits < 16);
+
+ ipeDebug("Bad Huffman code in DCT stream");
+ return 9999;
+}
+
+int DCTStream::readAmp(int size)
+{
+ int amp, bit;
+ int bits;
+
+ amp = 0;
+ for (bits = 0; bits < size; ++bits) {
+ if ((bit = readBit()) == EOF)
+ return 9999;
+ amp = (amp << 1) + bit;
+ }
+ if (amp < (1 << (size - 1)))
+ amp -= (1 << size) - 1;
+ return amp;
+}
+
+int DCTStream::readBit()
+{
+ int bit;
+ int c, c2;
+
+ if (inputBits == 0) {
+ if ((c = iSource.getChar()) == EOF)
+ return EOF;
+ if (c == 0xff) {
+ do {
+ c2 = iSource.getChar();
+ } while (c2 == 0xff);
+ if (c2 != 0x00) {
+ ipeDebug("Bad DCT data: missing 00 after ff");
+ return EOF;
+ }
+ }
+ inputBuf = c;
+ inputBits = 8;
+ }
+ bit = (inputBuf >> (inputBits - 1)) & 1;
+ --inputBits;
+ return bit;
+}
+
+bool DCTStream::readHeader()
+{
+ bool doScan;
+ int n;
+ int c;
+ int i;
+
+ // read headers
+ doScan = false;
+ while (!doScan) {
+ c = readMarker();
+ switch (c) {
+ case 0xc0: // SOF0
+ if (!readBaselineSOF()) {
+ return false;
+ }
+ break;
+ case 0xc2: // SOF2
+ if (!readProgressiveSOF()) {
+ return false;
+ }
+ break;
+ case 0xc4: // DHT
+ if (!readHuffmanTables()) {
+ return false;
+ }
+ break;
+ case 0xd8: // SOI
+ break;
+ case 0xd9: // EOI
+ return false;
+ case 0xda: // SOS
+ if (!readScanInfo()) {
+ return false;
+ }
+ doScan = true;
+ break;
+ case 0xdb: // DQT
+ if (!readQuantTables()) {
+ return false;
+ }
+ break;
+ case 0xdd: // DRI
+ if (!readRestartInterval()) {
+ return false;
+ }
+ break;
+ case 0xee: // APP14
+ if (!readAdobeMarker()) {
+ return false;
+ }
+ break;
+ case EOF:
+ ipeDebug("Bad DCT header");
+ return false;
+ default:
+ // skip APPn / COM / etc.
+ if (c >= 0xe0) {
+ n = read16() - 2;
+ for (i = 0; i < n; ++i) {
+ iSource.getChar();
+ }
+ } else {
+ ipeDebug("Unknown DCT marker <%02x>", c);
+ return false;
+ }
+ break;
+ }
+ }
+
+ return true;
+}
+
+bool DCTStream::readBaselineSOF()
+{
+ (void) read16(); // length
+ int prec = iSource.getChar();
+ height = read16();
+ width = read16();
+ numComps = iSource.getChar();
+ if (prec != 8) {
+ ipeDebug("Bad DCT precision %d", prec);
+ return false;
+ }
+ for (int i = 0; i < numComps; ++i) {
+ compInfo[i].id = iSource.getChar();
+ int c = iSource.getChar();
+ compInfo[i].hSample = (c >> 4) & 0x0f;
+ compInfo[i].vSample = c & 0x0f;
+ compInfo[i].quantTable = iSource.getChar();
+ }
+ progressive = false;
+ return true;
+}
+
+bool DCTStream::readProgressiveSOF()
+{
+ (void) read16(); // length
+ int prec = iSource.getChar();
+ height = read16();
+ width = read16();
+ numComps = iSource.getChar();
+ if (prec != 8) {
+ ipeDebug("Bad DCT precision %d", prec);
+ return false;
+ }
+ for (int i = 0; i < numComps; ++i) {
+ compInfo[i].id = iSource.getChar();
+ int c = iSource.getChar();
+ compInfo[i].hSample = (c >> 4) & 0x0f;
+ compInfo[i].vSample = c & 0x0f;
+ compInfo[i].quantTable = iSource.getChar();
+ }
+ progressive = true;
+ return true;
+}
+
+bool DCTStream::readScanInfo()
+{
+ int length;
+ int id, c;
+ int i, j;
+
+ length = read16() - 2;
+ scanInfo.numComps = iSource.getChar();
+ --length;
+ if (length != 2 * scanInfo.numComps + 3) {
+ ipeDebug("Bad DCT scan info block");
+ return false;
+ }
+ interleaved = scanInfo.numComps == numComps;
+ for (j = 0; j < numComps; ++j) {
+ scanInfo.comp[j] = false;
+ }
+ for (i = 0; i < scanInfo.numComps; ++i) {
+ id = iSource.getChar();
+ for (j = 0; j < numComps; ++j) {
+ if (id == compInfo[j].id) {
+ break;
+ }
+ }
+ if (j == numComps) {
+ ipeDebug("Bad DCT component ID in scan info block");
+ return false;
+ }
+ scanInfo.comp[j] = true;
+ c = iSource.getChar();
+ scanInfo.dcHuffTable[j] = (c >> 4) & 0x0f;
+ scanInfo.acHuffTable[j] = c & 0x0f;
+ }
+ scanInfo.firstCoeff = iSource.getChar();
+ scanInfo.lastCoeff = iSource.getChar();
+ c = iSource.getChar();
+ scanInfo.ah = (c >> 4) & 0x0f;
+ scanInfo.al = c & 0x0f;
+ return true;
+}
+
+bool DCTStream::readQuantTables()
+{
+ int length;
+ int i;
+ int index;
+
+ length = read16() - 2;
+ while (length > 0) {
+ index = iSource.getChar();
+ if ((index & 0xf0) || index >= 4) {
+ ipeDebug("Bad DCT quantization table");
+ return false;
+ }
+ if (index == numQuantTables)
+ numQuantTables = index + 1;
+ for (i = 0; i < 64; ++i)
+ quantTables[index][dctZigZag[i]] = uchar(iSource.getChar());
+ length -= 65;
+ }
+ return true;
+}
+
+bool DCTStream::readHuffmanTables()
+{
+ DCTHuffTable *tbl;
+ int length;
+ int index;
+ ushort code;
+ uchar sym;
+ int i;
+ int c;
+
+ length = read16() - 2;
+ while (length > 0) {
+ index = iSource.getChar();
+ --length;
+ if ((index & 0x0f) >= 4) {
+ ipeDebug("Bad DCT Huffman table");
+ return false;
+ }
+ if (index & 0x10) {
+ index &= 0x0f;
+ if (index >= numACHuffTables)
+ numACHuffTables = index+1;
+ tbl = &acHuffTables[index];
+ } else {
+ if (index >= numDCHuffTables)
+ numDCHuffTables = index+1;
+ tbl = &dcHuffTables[index];
+ }
+ sym = 0;
+ code = 0;
+ for (i = 1; i <= 16; ++i) {
+ c = iSource.getChar();
+ tbl->firstSym[i] = sym;
+ tbl->firstCode[i] = code;
+ tbl->numCodes[i] = ushort(c);
+ sym += uchar(c);
+ code = ushort((code + c) << 1);
+ }
+ length -= 16;
+ for (i = 0; i < sym; ++i)
+ tbl->sym[i] = uchar(iSource.getChar());
+ length -= sym;
+ }
+ return true;
+}
+
+bool DCTStream::readRestartInterval()
+{
+ int length;
+
+ length = read16();
+ if (length != 4) {
+ ipeDebug("Bad DCT restart interval");
+ return false;
+ }
+ restartInterval = read16();
+ return true;
+}
+
+bool DCTStream::readAdobeMarker()
+{
+ int length, i;
+ char buf[12];
+ int c;
+
+ length = read16();
+ if (length < 14) {
+ goto err;
+ }
+ for (i = 0; i < 12; ++i) {
+ if ((c = iSource.getChar()) == EOF) {
+ goto err;
+ }
+ buf[i] = char(c);
+ }
+ if (::strncmp(buf, "Adobe", 5)) {
+ goto err;
+ }
+ colorXform = buf[11];
+ gotAdobeMarker = true;
+ for (i = 14; i < length; ++i) {
+ if (iSource.getChar() == EOF) {
+ goto err;
+ }
+ }
+ return true;
+
+ err:
+ ipeDebug("Bad DCT Adobe APP14 marker");
+ return false;
+}
+
+bool DCTStream::readTrailer()
+{
+ int c;
+
+ c = readMarker();
+ if (c != 0xd9) { // EOI
+ ipeDebug("Bad DCT trailer");
+ return false;
+ }
+ return true;
+}
+
+int DCTStream::readMarker()
+{
+ int c;
+
+ do {
+ do {
+ c = iSource.getChar();
+ } while (c != 0xff);
+ do {
+ c = iSource.getChar();
+ } while (c == 0xff);
+ } while (c == 0x00);
+ return c;
+}
+
+int DCTStream::read16()
+{
+ int c1, c2;
+
+ if ((c1 = iSource.getChar()) == EOF)
+ return EOF;
+ if ((c2 = iSource.getChar()) == EOF)
+ return EOF;
+ return (c1 << 8) + c2;
+}
+
+// --------------------------------------------------------------------
+
+bool dctDecode(Buffer dctData, Buffer pixelData)
+{
+ // ipeDebug("dctDecode %d, %d", dctData.size(), pixelData.size());
+ BufferSource source(dctData);
+ DCTStream dct(source);
+ dct.reset();
+ char *p = pixelData.data();
+ int n = pixelData.size();
+ while (n--) {
+ int c = dct.getChar();
+ if (c == EOF)
+ return false;
+ *p++ = char(c);
+ }
+ return true;
+}
+
+// --------------------------------------------------------------------