1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-01 12:19:28 +00:00
freebsd/usr.bin/mt/mt.1

626 lines
22 KiB
Groff
Raw Normal View History

1994-05-27 12:33:43 +00:00
.\" Copyright (c) 1981, 1990, 1993
.\" The Regents of the University of California. All rights reserved.
.\"
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\" 4. Neither the name of the University nor the names of its contributors
.\" may be used to endorse or promote products derived from this software
.\" without specific prior written permission.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.
.\"
.\" @(#)mt.1 8.1 (Berkeley) 6/6/93
1999-08-28 01:08:13 +00:00
.\" $FreeBSD$
1994-05-27 12:33:43 +00:00
.\"
.Dd March 3, 2014
1994-05-27 12:33:43 +00:00
.Dt MT 1
.Os
1994-05-27 12:33:43 +00:00
.Sh NAME
.Nm mt
.Nd magnetic tape manipulating program
.Sh SYNOPSIS
.Nm
1994-05-27 12:33:43 +00:00
.Op Fl f Ar tapename
.Ar command
.Op Ar count
.Nm
.Op Fl f Ar tapename
.Ar command
.Ar argument
1994-05-27 12:33:43 +00:00
.Sh DESCRIPTION
2002-04-20 12:18:28 +00:00
The
.Nm
utility is used to command a magnetic tape drive for operations
other than reading or writing data.
.Pp
The
.Fl f
option's
.Ar tapename
2005-11-18 10:36:29 +00:00
overrides the
.Ev TAPE
environment variable described below.
1994-05-27 12:33:43 +00:00
.Pp
The available commands are listed below.
Only as many
1994-05-27 12:33:43 +00:00
characters as are required to uniquely identify a command
need be specified.
.Pp
The following commands optionally take a
.Ar count ,
which defaults to 1.
2005-11-18 10:36:29 +00:00
.Bl -tag -width ".Cm erase"
.It Cm weof
1994-05-27 12:33:43 +00:00
Write
.Ar count
end-of-file (EOF) marks at the current position.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
This returns when the file mark has been written to the media.
.It Cm weofi
Write
.Ar count
end-of-file (EOF) marks at the current position.
This returns as soon as the command has been validated by the tape drive.
1999-02-05 02:45:08 +00:00
.It Cm smk
Write
.Ar count
setmarks at the current position (DDS drives only).
1994-05-27 12:33:43 +00:00
.It Cm fsf
Forward space
.Ar count
files.
.It Cm fsr
Forward space
.Ar count
records.
1999-02-05 02:45:08 +00:00
.It Cm fss
Forward space
.Ar count
setmarks (DDS drives only).
1994-05-27 12:33:43 +00:00
.It Cm bsf
1999-02-05 02:45:08 +00:00
Backward space
1994-05-27 12:33:43 +00:00
.Ar count
files.
.It Cm bsr
1999-02-05 02:45:08 +00:00
Backward space
1994-05-27 12:33:43 +00:00
.Ar count
records.
1999-02-05 02:45:08 +00:00
.It Cm bss
Backward space
.Ar count
setmarks (DDS drives only).
.It Cm erase
Erase the tape using a long (often very long) method.
With a
.Ar count
of 0, it will erase the tape using a quick method.
Operation is not guaranteed if the tape is not at its beginning.
The tape will be at its beginning upon completion.
.El
.Pp
The following commands ignore
.Ar count .
2005-11-18 10:36:29 +00:00
.Bl -tag -width ".Cm geteotmodel"
1999-02-05 02:45:08 +00:00
.It Cm rdhpos
Read the hardware block position.
The block
number reported is specific for that hardware only.
With drive data compression especially,
this position may have more to do with the amount of data
sent to the drive than the amount of data written to tape.
Some drives do not support this.
.It Cm rdspos
Read the SCSI logical block position.
This typically is greater than the hardware position
by the number of end-of-file marks.
Some drives do not support this.
1994-05-27 12:33:43 +00:00
.It Cm rewind
Rewind the tape.
1994-05-27 12:33:43 +00:00
.It Cm offline , rewoffl
Rewind the tape and place the drive off line.
Some drives are never off line.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.It Cm load
Load the tape into the drive.
.It Cm retension
Re-tension the tape.
This winds the tape from the current position to the end
and then to the beginning.
This sometimes improves subsequent reading and writing,
particularly for streaming drives.
Some drives do not support this.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.It Cm ostatus
Output status information about the drive.
For SCSI magnetic tape devices,
1999-02-05 02:45:08 +00:00
the current operating modes of density, blocksize, and whether compression
is enabled is reported.
The current state of the driver (what it thinks that
it is doing with the device) is reported.
If the driver knows the relative
position from BOT (in terms of filemarks and records), it outputs that.
Note
1999-02-05 02:45:08 +00:00
that this information is not definitive (only BOT, End of Recorded Media, and
hardware or SCSI logical block position (if the drive supports such) are
considered definitive tape positions).
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.Pp
Also note that this is the old status command, and will be eliminated in
favor of the new status command (see below) in a future release.
1999-02-05 02:45:08 +00:00
.It Cm errstat
Output (and clear) error status information about this device.
For every normal
1999-02-05 02:45:08 +00:00
operation (e.g., a read or a write) and every control operation (e.g,, a
2005-02-13 23:45:54 +00:00
rewind), the driver stores up the last command executed and it is associated
status and any residual counts (if any).
This command retrieves and outputs this
information.
If possible, this also clears any latched error information.
.It Cm geteotmodel
Output the current EOT filemark model.
The model states how
many filemarks will be written at close if a tape was being written.
.It Cm eod , eom
Wind the tape to the end of the recorded data,
typically after an EOF mark where another file may be written.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.It Cm rblim
Report the block limits of the tape drive, including the minimum and
maximum block size, and the block granularity if any.
.El
.Pp
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
The following commands may require an
.Ar argument .
2005-11-18 10:36:29 +00:00
.Bl -tag -width ".Cm seteotmodel"
.It Cm sethpos
Set the hardware block position.
The
.Ar argument
is a hardware block number to which to position the tape.
Some drives do not support this.
.It Cm setspos
Set the SCSI logical block position.
The
.Ar argument
is a SCSI logical block number to which to position the tape.
Some drives do not support this.
.It Cm blocksize
Set the block size for the drive.
The
.Ar argument
is the number of bytes per block,
except 0 commands the drive to use variable-length blocks.
.It Cm seteotmodel
Set the EOT filemark model to
.Ar argument
and output the old and new models.
Typically this will be 2
filemarks, but some devices (typically QIC cartridge drives) can
only write 1 filemark.
You may only choose a value of
.Ar 1
or
.Ar 2 .
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.It Cm status
Output status information about the drive.
For SCSI magnetic tape devices,
the current operating modes of density, blocksize, and whether compression
is enabled is reported.
The current state of the driver (what it thinks that
it is doing with the device) is reported.
.Pp
If the driver knows the relative
position from BOT (in terms of filemarks and records), it outputs that.
If the tape drive supports the long form report of the
.Tn SCSI
READ POSITION command, the Reported File Number and Reported Record Number
will be numbers other than -1, and there may be Flags reported as well.
.Pp
The BOP flag means that the logical position of the drive is at the
beginning of the partition.
.Pp
The EOP flag means that the logical position of the drive is between Early
Warning and End of Partition.
.Pp
The BPEW flag means that the logical position of the drive is in a
Programmable Early Warning Zone or on the EOP side of Early Warning.
.Pp
Note that the Reported Record Number is the tape block or object number
relative to the beginning of the partition.
The Calculated Record Number is the tape block or object number relative
to the previous file mark.
.Pp
Note
that the Calculated File and Record Numbers are not definitive.
The Reported File and Record Numbers are definitive, if they are numbers
other than -1.
.Bl -tag -width 6n
.It Fl v
Print additional status information, such as the maximum supported I/O
size.
.It Fl x
Print all available status data to stdout in XML format.
.El
.It Cm getdensity
Report density support information for the tape drive and any media that is
loaded.
Most drives will report at least basic density information similar to that
reported by
.Nm status
command.
Newer tape drives that conform to the T-10 SSC and newer tape
specifications may report more detailed information about the types of
tapes they support and the tape currently in the drive.
.Bl -tag -width 6n
.It Fl x
Print all available density data to stdout in XML format.
Because density information is currently included in the general status XML
report used for
.Nm
status command, this will be the same XML output via
.Do
.Nm
status
.Fl x
.Dc
.El
.It Cm param
Display or set parameters.
One of
.Fl l ,
.Fl s ,
or
.Fl x
must be specified to indicate which operation to perform.
.Bl -tag -width 8n
.It Fl l
List parameters, values and descriptions.
By default all parameters will be displayed.
To display a specific parameter, specify the parameter with
.Fl p .
.It Fl p Ar name
Specify the parameter name to list (with
.Fl l )
or set (with
.Fl s ) .
.It Fl q
Enable quiet mode for parameter listing.
This will suppress printing of parameter descriptions.
.It Fl s Ar value
Specify the parameter value to set.
The general type of this argument (integer, unsigned integer, string) is
determined by the type of the variable indicated by the
.Xr sa 4
driver.
More detailed argument checking is done by the
.Xr sa 4
driver.
.It Fl x
Print out all parameter information in XML format.
.El
.It Cm protect
Display or set drive protection parameters.
This is used to control checking and reporting a per-block checksum for
tape drives that support it.
Some drives may only support some parameters.
.Bl -tag -width 8n
.It Fl b Ar 0|1
Set the Recover Buffered Data Protected bit.
If set, this indicates that checksums are transferred with the logical
blocks transferred by the RECOVERED BUFFERED DATA
.Tn SCSI
command.
.It Fl d
Disable all protection information settings.
.It Fl e
Enable all protection information settings.
The default protection method used is Reed-Solomon CRC (protection method
1), as specified in ECMA-319.
The default protection information length used with Reed-Solomon CRC is
4 bytes.
To enable all settings except one more more settings, specify the
.Fl e
argument and then explicitly disable settings that you do not wish to
enable.
For example, specifying
.Fl e
.Fl w Ar 0
will enable all settings except for LBP_W.
.It Fl l
List available protection parmeters and their current settings.
.It Fl L Ar len
Set the length of the protection information in bytes.
For Reed-Solomon CRC, the protection information length should be 4 bytes.
.It Fl m Ar num
Specify the numeric value for the protection method.
The numeric value for Reed-Solomon CRC is 1.
.It Fl r Ar 0|1
Set the LBP_R parameter.
When set, this indicates that each block read from the tape drive will
have a checksum at the end.
.It Fl v
Enable verbose mode for parameter listing.
This will include descriptions of each parameter.
.It Fl w Ar 0|1
Set the LBP_W parameter.
When set, this indicates that each block written to the tape drive will have
a checksum at the end.
The drive will verify the checksum before writing the block to tape.
.El
.It Cm locate
Set the tape drive's logical position.
One of
.Fl b ,
.Fl e ,
.Fl f ,
or
.Fl s
must be specified to indicate the type of position.
If the partition number is specified, the drive will first relocate to the
given partition (if it exists) and then to the position indicated within
that partition.
If the partition number is not specified, the drive will relocate to the
given position within the current partition.
.Bl -tag -width 14n
.It Fl b Ar block_addr
Relocate to the given tape block or logical object identifier.
Note that the block number is the Reported Record Number that is relative
to the beginning of the partition (or beginning of tape).
.It Fl e
Relocate to the end of data.
.It Fl f Ar fileno
Relocate to the given file number.
.It Fl p Ar partition
Specify the partition to change to.
.It Fl s Ar setmark
Relocate to the given set mark.
.El
.It Cm comp
Set the drive's compression mode.
The non-numeric values of
.Ar argument
are:
.Pp
2000-12-19 16:00:12 +00:00
.Bl -tag -width 9n -compact
.It off
2000-03-26 14:45:38 +00:00
Turn compression off.
.It on
2000-03-26 14:45:38 +00:00
Turn compression on.
.It none
Same as
2000-03-26 14:45:38 +00:00
.Ar off .
.It enable
Same as
2000-03-26 14:45:38 +00:00
.Ar on .
.It IDRC
IBM Improved Data Recording Capability compression (0x10).
.It DCLZ
DCLZ compression algorithm (0x20).
.El
.Pp
In addition to the above recognized compression keywords, the user can
supply a numeric compression algorithm for the drive to use.
In most
cases, simply turning the compression
.Sq on
will have the desired effect of enabling the default compression algorithm
supported by the drive.
If this is not the case (see the
.Cm status
display to see which compression algorithm is currently in use), the user
can manually specify one of the supported compression keywords (above), or
supply a numeric compression value from the drive's specifications.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.Pp
Note that for some older tape drives (for example the Exabyte 8200 and 8500
series drives) it is necessary to switch to a different density to tell the
drive to record data in its compressed format.
If the user attempts to turn compression on while the uncompressed density
is selected, the drive will return an error.
This is generally not an issue for modern tape drives.
.It Cm density
Set the density for the drive.
For the density codes, see below.
The density value could be given either numerically, or as a string,
corresponding to the
.Dq Reference
field.
If the string is abbreviated, it will be resolved in the order
shown in the table, and the first matching entry will be used.
If the
given string and the resulting canonical density name do not match
exactly, an informational message is output about what the given
string has been taken for.
1994-05-27 12:33:43 +00:00
.El
.Pp
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
The initial version of the density table below was taken from the
.Sq Historical sequential access density codes
table (A-1) in Revision 11 of the SCSI-3 Stream Device Commands (SSC)
working draft, dated November 11, 1997.
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
Subsequent additions have come from a number of sources.
.Pp
The density codes are:
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.Bd -literal -offset 2n
0x0 default for device
0xE reserved for ECMA
2005-11-18 10:36:29 +00:00
Value Width Tracks Density Code Type Reference Note
mm in bpmm bpi
0x01 12.7 (0.5) 9 32 (800) NRZI R X3.22-1983 2
0x02 12.7 (0.5) 9 63 (1,600) PE R X3.39-1986 2
0x03 12.7 (0.5) 9 246 (6,250) GCR R X3.54-1986 2
0x05 6.3 (0.25) 4/9 315 (8,000) GCR C X3.136-1986 1
0x06 12.7 (0.5) 9 126 (3,200) PE R X3.157-1987 2
0x07 6.3 (0.25) 4 252 (6,400) IMFM C X3.116-1986 1
0x08 3.81 (0.15) 4 315 (8,000) GCR CS X3.158-1987 1
0x09 12.7 (0.5) 18 1,491 (37,871) GCR C X3.180 2
0x0A 12.7 (0.5) 22 262 (6,667) MFM C X3B5/86-199 1
0x0B 6.3 (0.25) 4 63 (1,600) PE C X3.56-1986 1
0x0C 12.7 (0.5) 24 500 (12,690) GCR C HI-TC1 1,6
0x0D 12.7 (0.5) 24 999 (25,380) GCR C HI-TC2 1,6
0x0F 6.3 (0.25) 15 394 (10,000) GCR C QIC-120 1,6
0x10 6.3 (0.25) 18 394 (10,000) GCR C QIC-150 1,6
0x11 6.3 (0.25) 26 630 (16,000) GCR C QIC-320 1,6
0x12 6.3 (0.25) 30 2,034 (51,667) RLL C QIC-1350 1,6
0x13 3.81 (0.15) 1 2,400 (61,000) DDS CS X3B5/88-185A 5
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
0x14 8.0 (0.315) 1 1,703 (43,245) RLL CS X3.202-1991 5,11
0x15 8.0 (0.315) 1 1,789 (45,434) RLL CS ECMA TC17 5,12
0x16 12.7 (0.5) 48 394 (10,000) MFM C X3.193-1990 1
0x17 12.7 (0.5) 48 1,673 (42,500) MFM C X3B5/91-174 1
0x18 12.7 (0.5) 112 1,673 (42,500) MFM C X3B5/92-50 1
0x19 12.7 (0.5) 128 2,460 (62,500) RLL C DLTapeIII 6,7
0x1A 12.7 (0.5) 128 3,214 (81,633) RLL C DLTapeIV(20) 6,7
0x1B 12.7 (0.5) 208 3,383 (85,937) RLL C DLTapeIV(35) 6,7
0x1C 6.3 (0.25) 34 1,654 (42,000) MFM C QIC-385M 1,6
0x1D 6.3 (0.25) 32 1,512 (38,400) GCR C QIC-410M 1,6
0x1E 6.3 (0.25) 30 1,385 (36,000) GCR C QIC-1000C 1,6
0x1F 6.3 (0.25) 30 2,666 (67,733) RLL C QIC-2100C 1,6
0x20 6.3 (0.25) 144 2,666 (67,733) RLL C QIC-6GB(M) 1,6
0x21 6.3 (0.25) 144 2,666 (67,733) RLL C QIC-20GB(C) 1,6
0x22 6.3 (0.25) 42 1,600 (40,640) GCR C QIC-2GB(C) ?
0x23 6.3 (0.25) 38 2,666 (67,733) RLL C QIC-875M ?
0x24 3.81 (0.15) 1 2,400 (61,000) CS DDS-2 5
0x25 3.81 (0.15) 1 3,816 (97,000) CS DDS-3 5
0x26 3.81 (0.15) 1 3,816 (97,000) CS DDS-4 5
0x27 8.0 (0.315) 1 3,056 (77,611) RLL CS Mammoth 5
0x28 12.7 (0.5) 36 1,491 (37,871) GCR C X3.224 1
0x29 12.7 (0.5)
0x2A
0x2B 12.7 (0.5) 3 ? ? ? C X3.267 5
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
0x40 12.7 (0.5) 384 4,800 (123,952) C LTO-1
0x41 12.7 (0.5) 208 3,868 (98,250) RLL C DLTapeIV(40) 6,7
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
0x42 12.7 (0.5) 512 7,398 (187,909) C LTO-2
0x44 12.7 (0.5) 704 9,638 (244,805) C LTO-3
0x46 12.7 (0.5) 896 12,725 (323,215) C LTO-4
0x47 3.81 (0.25) ? 6,417 (163,000) CS DAT-72
0x48 12.7 (0.5) 448 5,236 (133,000) PRML C SDLTapeI(110) 6,8,13
0x49 12.7 (0.5) 448 7,598 (193,000) PRML C SDLTapeI(160) 6,8
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
0x4A 12.7 (0.5) 768 ? C T10000A 10
0x4B 12.7 (0.5) 1152 ? C T10000B 10
0x4C 12.7 (0.5) 3584 ? C T10000C 10
0x4D 12.7 (0.5) 4608 ? C T10000D 10
0x51 12.7 (0.5) 512 11,800 (299,720) C 3592A1 (unencrypted)
0x52 12.7 (0.5) 896 11,800 (299,720) C 3592A2 (unencrypted)
0x53 12.7 (0.5) 1152 13,452 (341,681) C 3592A3 (unencrypted)
0x54 12.7 (0.5) 2560 19,686 (500,024) C 3592A4 (unencrypted)
0x55 12.7 (0.5) 5120 20,670 (525,018) C 3592A5 (unencrypted)
0x58 12.7 (0.5) 1280 15,142 (384,607) C LTO-5
0x5A 12.7 (0.5) 2176 15,142 (384,607) C LTO-6
0x71 12.7 (0.5) 512 11,800 (299,720) C 3592A1 (encrypted)
0x72 12.7 (0.5) 896 11,800 (299,720) C 3592A2 (encrypted)
0x73 12.7 (0.5) 1152 13,452 (341,681) C 3592A3 (encrypted)
0x74 12.7 (0.5) 2560 19,686 (500,024) C 3592A4 (encrypted)
0x75 12.7 (0.5) 5120 20,670 (525,018) C 3592A5 (encrypted)
0x8c 8.0 (0.315) 1 1,789 (45,434) RLL CS EXB-8500c 5,9
0x90 8.0 (0.315) 1 1,703 (43,245) RLL CS EXB-8200c 5,9
.Ed
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.Bd -literal -offset 2n
2005-11-18 10:36:29 +00:00
Code Description Type Description
---- -------------------------------------- ---- -----------
NRZI Non return to zero, change on ones R Reel-to-reel
GCR Group code recording C Cartridge
PE Phase encoded CS Cassette
IMFM Inverted modified frequency modulation
MFM Modified frequency modulation
DDS DAT data storage
RLL Run length limited
PRML Partial Response Maximum Likelihood
.Ed
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
.Bd -literal -offset 2n
NOTES
Significant upgrades to sa(4) and mt(1). The primary focus of these changes is to modernize FreeBSD's tape infrastructure so that we can take advantage of some of the features of modern tape drives and allow support for LTFS. Significant changes and new features include: o sa(4) driver status and parameter information is now exported via an XML structure. This will allow for changes and improvements later on that will not break userland applications. The old MTIOCGET status ioctl remains, so applications using the existing interface will not break. o 'mt status' now reports drive-reported tape position information as well as the previously available calculated tape position information. These numbers will be different at times, because the drive-reported block numbers are relative to BOP (Beginning of Partition), but the block numbers calculated previously via sa(4) (and still provided) are relative to the last filemark. Both numbers are now provided. 'mt status' now also shows the drive INQUIRY information, serial number and any position flags (BOP, EOT, etc.) provided with the tape position information. 'mt status -v' adds information on the maximum possible I/O size, and the underlying values used to calculate it. o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed. The extra devices were originally added as place holders for density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap and Solaris) have had device nodes that, when you write to them, will automatically select a given density for particular tape drives. This is a convenient way of switching densities, but it was never implemented in FreeBSD. Only the device nodes were there, and that sometimes confused users. For modern tape devices, the density is generally not selectable (e.g. with LTO) or defaults to the highest availble density when the tape is rewritten from BOT (e.g. TS11X0). So, for most users, density selection won't be necessary. If they do need to select the density, it is easy enough to use 'mt density' to change it. o Protection information is now supported. This is either a Reed-Solomon CRC or CRC32 that is included at the end of each block read and written. On write, the tape drive verifies the CRC, and on read, the tape drive provides a CRC for the userland application to verify. o New, extensible tape driver parameter get/set interface. o Density reporting information. For drives that support it, 'mt getdensity' will show detailed information on what formats the tape drive supports, and what formats the tape drive supports. o Some mt(1) functionality moved into a new mt(3) library so that external applications can reuse the code. o The new mt(3) library includes helper routines to aid in parsing the XML output of the sa(4) driver, and build a tree of driver metadata. o Support for the MTLOAD (load a tape in the drive) and MTWEOFI (write filemark immediate) ioctls needed by IBM's LTFS implementation. o Improve device departure behavior for the sa(4) driver. The previous implementation led to hangs when the device was open. o This has been tested on the following types of drives: IBM TS1150 IBM TS1140 IBM LTO-6 IBM LTO-5 HP LTO-2 Seagate DDS-4 Quantum DLT-4000 Exabyte 8505 Sony DDS-2 contrib/groff/tmac/doc-syms, share/mk/bsd.libnames.mk, lib/Makefile, Add libmt. lib/libmt/Makefile, lib/libmt/mt.3, lib/libmt/mtlib.c, lib/libmt/mtlib.h, New mt(3) library that contains functions moved from mt(1) and new functions needed to interact with the updated sa(4) driver. This includes XML parser helper functions that application writers can use when writing code to query tape parameters. rescue/rescue/Makefile: Add -lmt to CRUNCH_LIBS. src/share/man/man4/mtio.4 Clarify this man page a bit, and since it contains what is essentially the mtio.h header file, add new ioctls and structure definitions from mtio.h. src/share/man/man4/sa.4 Update BUGS and maintainer section. sys/cam/scsi/scsi_all.c, sys/cam/scsi/scsi_all.h: Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building functions. sys/cam/scsi/scsi_sa.c sys/cam/scsi/scsi_sa.h Many tape driver changes, largely outlined above. Increase the sa(4) driver read/write timeout from 4 to 32 minutes. This is based on the recommended values for IBM LTO 5/6 drives. This may also avoid timeouts for other tape hardware that can take a long time to do retries and error recovery. Longer term, a better way to handle this is to ask the drive for recommended timeout values using the REPORT SUPPORTED OPCODES command. Modern IBM and Oracle tape drives at least support that command, and it would allow for more accurate timeout values. Add XML status generation. This is done with a series of macros to eliminate as much duplicate code as possible. The new XML-based status values are reported through the new MTIOCEXTGET ioctl. Add XML driver parameter reporting, using the new MTIOCPARAMGET ioctl. Add a new driver parameter setting interface, using the new MTIOCPARAMSET and MTIOCSETLIST ioctls. Add a new MTIOCRBLIM ioctl to get block limits information. Add CCB/CDB building routines scsi_locate_16, scsi_locate_10, and scsi_read_position_10(). scsi_locate_10 implements the LOCATE command, as does the existing scsi_set_position() command. It just supports additional arguments and features. If/when we figure out a good way to provide backward compatibility for older applications using the old function API, we can just revamp scsi_set_position(). The same goes for scsi_read_position_10() and the existing scsi_read_position() function. Revamp sasetpos() to take the new mtlocate structure as an argument. It now will use either scsi_locate_10() or scsi_locate_16(), depending upon the arguments the user supplies. As before, once we change position we don't have a clear idea of what the current logical position of the tape drive is. For tape drives that support long form position data, we read the current position and store that for later reporting after changing the position. This should help applications like Bacula speed tape access under FreeBSD once they are modified to support the new ioctls. Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all drives that report SCSI-2 or older, as well as drives that report an Illegal Request type error for READ POSITION with the long format. So we should automatically detect drives that don't support the long form and stop asking for it after an initial try. Add a partition number to the sa(4) softc. Improve device departure handling. The previous implementation led to hangs when the device was open. If an application had the sa(4) driver open, and attempted to close it after it went away, the cam_periph_release() call in saclose() would cause the periph to get destroyed because that was the last reference to it. Because destroy_dev() was called from the sa(4) driver's cleanup routine (sacleanup()), and would block waiting for the close to happen, a deadlock would result. So instead of calling destroy_dev() from the cleanup routine, call destroy_dev_sched_cb() from saoninvalidate() and wait for the callback. Acquire a reference for devfs in saregister(), and release it in the new sadevgonecb() routine when all devfs devices for the particular sa(4) driver instance are gone. Add a new function, sasetupdev(), to centralize setting per-instance devfs device parameters instead of repeating the code in saregister(). Add an open count to the softc, so we know how many peripheral driver references are a result of open sessions. Add the D_TRACKCLOSE flag to the cdevsw flags so that we get a 1:1 mapping of open to close calls instead of a N:1 mapping. This should be a no-op for everything except the control device, since we don't allow more than one open on non-control devices. However, since we do allow multiple opens on the control device, the combination of the open count and the D_TRACKCLOSE flag should result in an accurate peripheral driver reference count, and an accurate open count. The accurate open count allows us to release all peripheral driver references that are the result of open contexts once we get the callback from devfs. sys/sys/mtio.h: Add a number of new mt(4) ioctls and the requisite data structures. None of the existing interfaces been removed or changed. This includes definitions for the following new ioctls: MTIOCRBLIM /* get block limits */ MTIOCEXTLOCATE /* seek to position */ MTIOCEXTGET /* get tape status */ MTIOCPARAMGET /* get tape params */ MTIOCPARAMSET /* set tape params */ MTIOCSETLIST /* set N params */ usr.bin/mt/Makefile: mt(1) now depends on libmt, libsbuf and libbsdxml. usr.bin/mt/mt.1: Document new mt(1) features and subcommands. usr.bin/mt/mt.c: Implement support for mt(1) subcommands that need to use getopt(3) for their arguments. Implement a new 'mt status' command to replace the old 'mt status' command. The old status command has been renamed 'ostatus'. The new status function uses the MTIOCEXTGET ioctl, and therefore parses the XML data to determine drive status. The -x argument to 'mt status' allows the user to dump out the raw XML reported by the kernel. The new status display is mostly the same as the old status display, except that it doesn't print the redundant density mode information, and it does print the current partition number and position flags. Add a new command, 'mt locate', that will supersede the old 'mt setspos' and 'mt sethpos' commands. 'mt locate' implements all of the functionality of the MTIOCEXTLOCATE ioctl, and allows the user to change the logical position of the tape drive in a number of ways. (Partition, block number, file number, set mark number, end of data.) The immediate bit and the explicit address bits are implemented, but not documented in the man page. Add a new 'mt weofi' command to use the new MTWEOFI ioctl. This allows the user to ask the drive to write a filemark without waiting around for the operation to complete. Add a new 'mt getdensity' command that gets the XML-based tape drive density report from the sa(4) driver and displays it. This uses the SCSI REPORT DENSITY SUPPORT command to get comprehensive information from the tape drive about what formats it is able to read and write. Add a new 'mt protect' command that allows getting and setting tape drive protection information. The protection information is a CRC tacked on to the end of every read/write from and to the tape drive. Sponsored by: Spectra Logic MFC after: 1 month
2015-02-23 21:59:30 +00:00
1. Serial recorded.
2. Parallel recorded.
3. Old format known as QIC-11.
5. Helical scan.
6. This is not an American National Standard. The reference is based
on an industry standard definition of the media format.
7. DLT recording: serially recorded track pairs (DLTapeIII and
DLTapeIV(20)), or track quads (DLTapeIV(35) and DLTapeIV(40)).
8. Super DLT (SDLT) recording: 56 serially recorded logical tracks
with 8 physical tracks each.
9. Vendor-specific Exabyte density code for compressed format.
10. bpi/bpmm values for the Oracle/StorageTek T10000 tape drives are
not listed in the manual. Someone with access to a drive can
supply the necessary values by running 'mt getdensity'.
11. This is Exabyte 8200 uncompressed format. The compressed format
density code is 0x90.
12. This is Exabyte 8500 uncompressed format. The compressed format
density code is 0x8c.
13. This density code (0x48) was also used for DAT-160.
.Ed
1994-05-27 12:33:43 +00:00
.Sh ENVIRONMENT
2005-11-18 10:36:29 +00:00
.Bl -tag -width ".Ev TAPE"
1994-05-27 12:33:43 +00:00
.It Ev TAPE
This is the pathname of the tape drive.
The default (if the variable is unset, but not if it is null) is
.Pa /dev/nsa0 .
It may be overridden with the
.Fl f
option.
2000-12-19 16:00:12 +00:00
.El
1994-05-27 12:33:43 +00:00
.Sh FILES
2005-11-18 10:36:29 +00:00
.Bl -tag -width ".Pa /dev/*sa[0-9]*" -compact
.It Pa /dev/*sa[0-9]*
SCSI magnetic tape interface
1994-05-27 12:33:43 +00:00
.El
.Sh DIAGNOSTICS
The exit status will be 0 when the drive operations were successful,
2 when the drive operations were unsuccessful, and 1 for other
problems like an unrecognized command or a missing drive device.
.Sh COMPATIBILITY
Some undocumented commands support old software.
1994-05-27 12:33:43 +00:00
.Sh SEE ALSO
.Xr dd 1 ,
.Xr ioctl 2 ,
.Xr mtio 4 ,
1999-02-05 02:45:08 +00:00
.Xr sa 4 ,
1994-05-27 12:33:43 +00:00
.Xr environ 7
.Sh HISTORY
The
.Nm
1994-05-27 12:33:43 +00:00
command appeared in
.Bx 4.3 .
.Pp
Extensions regarding the
.Xr st 4
driver appeared in
.Bx 386 0.1
2003-05-21 21:07:28 +00:00
as a separate
.Nm st
command, and have been merged into the
.Nm
1996-08-23 00:57:08 +00:00
command in
.Fx 2.1 .
.Pp
The former
.Cm eof
command that used to be a synonym for
.Cm weof
has been abandoned in
.Fx 2.1
since it was often confused with
.Cm eom ,
which is fairly dangerous.
.Sh BUGS
The utility cannot be interrupted or killed during a long erase
(which can be longer than an hour), and it is easy to forget
that the default erase is long.
.Pp
Hardware block numbers do not always correspond to blocks on the tape
when the drive uses internal compression.
.Pp
Erasure is not guaranteed if the tape is not at its beginning.
.Pp
Tape-related documentation is poor, here and elsewhere.