1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-17 10:26:15 +00:00
freebsd/sys/vm/vm_pageout.c

1513 lines
40 KiB
C
Raw Normal View History

These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
1994-05-24 10:09:53 +00:00
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
1994-05-24 10:09:53 +00:00
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-08-02 07:55:43 +00:00
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
1994-05-24 10:09:53 +00:00
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
1994-05-24 10:09:53 +00:00
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
1994-05-24 10:09:53 +00:00
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*
1994-05-24 10:09:53 +00:00
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
1994-05-24 10:09:53 +00:00
*/
/*
* The proverbial page-out daemon.
*/
#include "opt_vm.h"
1994-05-24 10:09:53 +00:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/ktr.h>
#include <sys/resourcevar.h>
1995-02-14 06:14:28 +00:00
#include <sys/signalvar.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_object.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm_page.h>
#include <vm/vm_map.h>
1994-05-24 10:09:53 +00:00
#include <vm/vm_pageout.h>
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
#include <vm/vm_pager.h>
#include <vm/vm_zone.h>
#include <vm/swap_pager.h>
#include <vm/vm_extern.h>
1994-05-24 10:09:53 +00:00
#include <machine/mutex.h>
/*
* System initialization
*/
/* the kernel process "vm_pageout"*/
static void vm_pageout __P((void));
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
static int vm_pageout_clean __P((vm_page_t));
static void vm_pageout_scan __P((int pass));
static int vm_pageout_free_page_calc __P((vm_size_t count));
struct proc *pageproc;
static struct kproc_desc page_kp = {
"pagedaemon",
vm_pageout,
&pageproc
};
SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
#if !defined(NO_SWAPPING)
/* the kernel process "vm_daemon"*/
static void vm_daemon __P((void));
static struct proc *vmproc;
static struct kproc_desc vm_kp = {
"vmdaemon",
vm_daemon,
&vmproc
};
SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
#endif
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
int vm_pages_needed=0; /* Event on which pageout daemon sleeps */
int vm_pageout_deficit=0; /* Estimated number of pages deficit */
int vm_pageout_pages_needed=0; /* flag saying that the pageout daemon needs pages */
1994-05-24 10:09:53 +00:00
#if !defined(NO_SWAPPING)
static int vm_pageout_req_swapout; /* XXX */
static int vm_daemon_needed;
#endif
extern int vm_swap_size;
static int vm_max_launder = 32;
1998-02-09 06:11:36 +00:00
static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
static int vm_pageout_full_stats_interval = 0;
static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
1998-02-09 06:11:36 +00:00
static int defer_swap_pageouts=0;
static int disable_swap_pageouts=0;
#if defined(NO_SWAPPING)
1998-02-09 06:11:36 +00:00
static int vm_swap_enabled=0;
static int vm_swap_idle_enabled=0;
#else
1998-02-09 06:11:36 +00:00
static int vm_swap_enabled=1;
static int vm_swap_idle_enabled=0;
#endif
SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
SYSCTL_INT(_vm, OID_AUTO, max_launder,
CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
#if defined(NO_SWAPPING)
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
CTLFLAG_RD, &vm_swap_enabled, 0, "");
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
#else
SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
#endif
1994-05-24 10:09:53 +00:00
SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
#define VM_PAGEOUT_PAGE_COUNT 16
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
1994-05-24 10:09:53 +00:00
int vm_page_max_wired; /* XXX max # of wired pages system-wide */
1994-05-24 10:09:53 +00:00
#if !defined(NO_SWAPPING)
typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
static freeer_fcn_t vm_pageout_object_deactivate_pages;
static void vm_req_vmdaemon __P((void));
#endif
static void vm_pageout_page_stats(void);
1994-05-24 10:09:53 +00:00
/*
* vm_pageout_clean:
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
*
* Clean the page and remove it from the laundry.
*
* We set the busy bit to cause potential page faults on this page to
* block. Note the careful timing, however, the busy bit isn't set till
* late and we cannot do anything that will mess with the page.
1994-05-24 10:09:53 +00:00
*/
static int
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
vm_pageout_clean(m)
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
vm_page_t m;
1994-05-24 10:09:53 +00:00
{
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
register vm_object_t object;
vm_page_t mc[2*vm_pageout_page_count];
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
int pageout_count;
int ib, is, page_base;
vm_pindex_t pindex = m->pindex;
object = m->object;
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
/*
* It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
* with the new swapper, but we could have serious problems paging
* out other object types if there is insufficient memory.
*
* Unfortunately, checking free memory here is far too late, so the
* check has been moved up a procedural level.
*/
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
/*
* Don't mess with the page if it's busy, held, or special
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
*/
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
if ((m->hold_count != 0) ||
((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
return 0;
}
1994-05-24 10:09:53 +00:00
mc[vm_pageout_page_count] = m;
pageout_count = 1;
page_base = vm_pageout_page_count;
ib = 1;
is = 1;
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
/*
* Scan object for clusterable pages.
*
* We can cluster ONLY if: ->> the page is NOT
* clean, wired, busy, held, or mapped into a
* buffer, and one of the following:
* 1) The page is inactive, or a seldom used
* active page.
* -or-
* 2) we force the issue.
*
* During heavy mmap/modification loads the pageout
* daemon can really fragment the underlying file
* due to flushing pages out of order and not trying
* align the clusters (which leave sporatic out-of-order
* holes). To solve this problem we do the reverse scan
* first and attempt to align our cluster, then do a
* forward scan if room remains.
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
*/
more:
while (ib && pageout_count < vm_pageout_page_count) {
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
vm_page_t p;
if (ib > pindex) {
ib = 0;
break;
}
if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
ib = 0;
break;
}
if (((p->queue - p->pc) == PQ_CACHE) ||
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
ib = 0;
break;
}
vm_page_test_dirty(p);
if ((p->dirty & p->valid) == 0 ||
p->queue != PQ_INACTIVE ||
p->wire_count != 0 ||
p->hold_count != 0) {
ib = 0;
break;
}
mc[--page_base] = p;
++pageout_count;
++ib;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* alignment boundry, stop here and switch directions. Do
* not clear ib.
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
*/
if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
break;
}
while (pageout_count < vm_pageout_page_count &&
pindex + is < object->size) {
vm_page_t p;
if ((p = vm_page_lookup(object, pindex + is)) == NULL)
break;
if (((p->queue - p->pc) == PQ_CACHE) ||
(p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
break;
}
vm_page_test_dirty(p);
if ((p->dirty & p->valid) == 0 ||
p->queue != PQ_INACTIVE ||
p->wire_count != 0 ||
p->hold_count != 0) {
break;
}
mc[page_base + pageout_count] = p;
++pageout_count;
++is;
1994-05-24 10:09:53 +00:00
}
/*
* If we exhausted our forward scan, continue with the reverse scan
* when possible, even past a page boundry. This catches boundry
* conditions.
*/
if (ib && pageout_count < vm_pageout_page_count)
goto more;
/*
* we allow reads during pageouts...
*/
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
return vm_pageout_flush(&mc[page_base], pageout_count, 0);
}
/*
* vm_pageout_flush() - launder the given pages
*
* The given pages are laundered. Note that we setup for the start of
* I/O ( i.e. busy the page ), mark it read-only, and bump the object
* reference count all in here rather then in the parent. If we want
* the parent to do more sophisticated things we may have to change
* the ordering.
*/
int
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
vm_pageout_flush(mc, count, flags)
vm_page_t *mc;
int count;
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
int flags;
{
register vm_object_t object;
int pageout_status[count];
int numpagedout = 0;
int i;
/*
* Initiate I/O. Bump the vm_page_t->busy counter and
* mark the pages read-only.
*
* We do not have to fixup the clean/dirty bits here... we can
* allow the pager to do it after the I/O completes.
*
* NOTE! mc[i]->dirty may be partial or fragmented due to an
* edge case with file fragments.
*/
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
for (i = 0; i < count; i++) {
KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
vm_page_io_start(mc[i]);
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
vm_page_protect(mc[i], VM_PROT_READ);
}
object = mc[0]->object;
vm_object_pip_add(object, count);
vm_pager_put_pages(object, mc, count,
This mega-commit is meant to fix numerous interrelated problems. There has been some bitrot and incorrect assumptions in the vfs_bio code. These problems have manifest themselves worse on NFS type filesystems, but can still affect local filesystems under certain circumstances. Most of the problems have involved mmap consistancy, and as a side-effect broke the vfs.ioopt code. This code might have been committed seperately, but almost everything is interrelated. 1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that are fully valid. 2) Rather than deactivating erroneously read initial (header) pages in kern_exec, we now free them. 3) Fix the rundown of non-VMIO buffers that are in an inconsistent (missing vp) state. 4) Fix the disassociation of pages from buffers in brelse. The previous code had rotted and was faulty in a couple of important circumstances. 5) Remove a gratuitious buffer wakeup in vfs_vmio_release. 6) Remove a crufty and currently unused cluster mechanism for VBLK files in vfs_bio_awrite. When the code is functional, I'll add back a cleaner version. 7) The page busy count wakeups assocated with the buffer cache usage were incorrectly cleaned up in a previous commit by me. Revert to the original, correct version, but with a cleaner implementation. 8) The cluster read code now tries to keep data associated with buffers more aggressively (without breaking the heuristics) when it is presumed that the read data (buffers) will be soon needed. 9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The delay loop waiting is not useful for filesystem locks, due to the length of the time intervals. 10) Correct and clean-up spec_getpages. 11) Implement a fully functional nfs_getpages, nfs_putpages. 12) Fix nfs_write so that modifications are coherent with the NFS data on the server disk (at least as well as NFS seems to allow.) 13) Properly support MS_INVALIDATE on NFS. 14) Properly pass down MS_INVALIDATE to lower levels of the VM code from vm_map_clean. 15) Better support the notion of pages being busy but valid, so that fewer in-transit waits occur. (use p->busy more for pageouts instead of PG_BUSY.) Since the page is fully valid, it is still usable for reads. 16) It is possible (in error) for cached pages to be busy. Make the page allocation code handle that case correctly. (It should probably be a printf or panic, but I want the system to handle coding errors robustly. I'll probably add a printf.) 17) Correct the design and usage of vm_page_sleep. It didn't handle consistancy problems very well, so make the design a little less lofty. After vm_page_sleep, if it ever blocked, it is still important to relookup the page (if the object generation count changed), and verify it's status (always.) 18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up. 19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush. 20) Fix vm_pager_put_pages and it's descendents to support an int flag instead of a boolean, so that we can pass down the invalidate bit.
1998-03-07 21:37:31 +00:00
(flags | ((object == kernel_object) ? OBJPC_SYNC : 0)),
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
pageout_status);
1994-05-24 10:09:53 +00:00
for (i = 0; i < count; i++) {
vm_page_t mt = mc[i];
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
switch (pageout_status[i]) {
case VM_PAGER_OK:
numpagedout++;
break;
case VM_PAGER_PEND:
numpagedout++;
break;
case VM_PAGER_BAD:
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Page outside of range of object. Right now we
* essentially lose the changes by pretending it
* worked.
*/
pmap_clear_modify(mt);
vm_page_undirty(mt);
break;
case VM_PAGER_ERROR:
case VM_PAGER_FAIL:
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If page couldn't be paged out, then reactivate the
* page so it doesn't clog the inactive list. (We
* will try paging out it again later).
*/
vm_page_activate(mt);
break;
case VM_PAGER_AGAIN:
1994-05-24 10:09:53 +00:00
break;
}
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If the operation is still going, leave the page busy to
* block all other accesses. Also, leave the paging in
* progress indicator set so that we don't attempt an object
* collapse.
1994-05-24 10:09:53 +00:00
*/
if (pageout_status[i] != VM_PAGER_PEND) {
vm_object_pip_wakeup(object);
vm_page_io_finish(mt);
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
vm_page_protect(mt, VM_PROT_READ);
1994-05-24 10:09:53 +00:00
}
}
return numpagedout;
}
1994-05-24 10:09:53 +00:00
#if !defined(NO_SWAPPING)
/*
* vm_pageout_object_deactivate_pages
*
* deactivate enough pages to satisfy the inactive target
* requirements or if vm_page_proc_limit is set, then
* deactivate all of the pages in the object and its
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
* backing_objects.
*
* The object and map must be locked.
*/
static void
vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
vm_map_t map;
vm_object_t object;
vm_pindex_t desired;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
int map_remove_only;
{
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
register vm_page_t p, next;
int rcount;
int remove_mode;
int s;
if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
return;
while (object) {
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
return;
if (object->paging_in_progress)
return;
remove_mode = map_remove_only;
if (object->shadow_count > 1)
remove_mode = 1;
/*
* scan the objects entire memory queue
*/
rcount = object->resident_page_count;
p = TAILQ_FIRST(&object->memq);
while (p && (rcount-- > 0)) {
int actcount;
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
return;
next = TAILQ_NEXT(p, listq);
cnt.v_pdpages++;
if (p->wire_count != 0 ||
p->hold_count != 0 ||
p->busy != 0 ||
(p->flags & (PG_BUSY|PG_UNMANAGED)) ||
!pmap_page_exists(vm_map_pmap(map), p)) {
p = next;
continue;
}
actcount = pmap_ts_referenced(p);
if (actcount) {
vm_page_flag_set(p, PG_REFERENCED);
} else if (p->flags & PG_REFERENCED) {
actcount = 1;
1994-05-24 10:09:53 +00:00
}
if ((p->queue != PQ_ACTIVE) &&
(p->flags & PG_REFERENCED)) {
vm_page_activate(p);
p->act_count += actcount;
vm_page_flag_clear(p, PG_REFERENCED);
} else if (p->queue == PQ_ACTIVE) {
if ((p->flags & PG_REFERENCED) == 0) {
p->act_count -= min(p->act_count, ACT_DECLINE);
if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
vm_page_protect(p, VM_PROT_NONE);
vm_page_deactivate(p);
} else {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
splx(s);
}
} else {
vm_page_activate(p);
vm_page_flag_clear(p, PG_REFERENCED);
if (p->act_count < (ACT_MAX - ACT_ADVANCE))
p->act_count += ACT_ADVANCE;
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
splx(s);
}
} else if (p->queue == PQ_INACTIVE) {
vm_page_protect(p, VM_PROT_NONE);
}
p = next;
1994-05-24 10:09:53 +00:00
}
object = object->backing_object;
}
return;
}
/*
* deactivate some number of pages in a map, try to do it fairly, but
* that is really hard to do.
*/
static void
vm_pageout_map_deactivate_pages(map, desired)
vm_map_t map;
vm_pindex_t desired;
{
vm_map_entry_t tmpe;
vm_object_t obj, bigobj;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
return;
}
bigobj = NULL;
/*
* first, search out the biggest object, and try to free pages from
* that.
*/
tmpe = map->header.next;
while (tmpe != &map->header) {
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
obj = tmpe->object.vm_object;
if ((obj != NULL) && (obj->shadow_count <= 1) &&
((bigobj == NULL) ||
(bigobj->resident_page_count < obj->resident_page_count))) {
bigobj = obj;
}
}
tmpe = tmpe->next;
}
if (bigobj)
vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
/*
* Next, hunt around for other pages to deactivate. We actually
* do this search sort of wrong -- .text first is not the best idea.
*/
tmpe = map->header.next;
while (tmpe != &map->header) {
if (pmap_resident_count(vm_map_pmap(map)) <= desired)
break;
if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
obj = tmpe->object.vm_object;
if (obj)
vm_pageout_object_deactivate_pages(map, obj, desired, 0);
}
tmpe = tmpe->next;
};
/*
* Remove all mappings if a process is swapped out, this will free page
* table pages.
*/
if (desired == 0)
pmap_remove(vm_map_pmap(map),
VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
vm_map_unlock(map);
return;
}
#endif
/*
* Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
* to vnode deadlocks. We only do it for OBJT_DEFAULT and OBJT_SWAP objects
* which we know can be trivially freed.
*/
void
vm_pageout_page_free(vm_page_t m) {
vm_object_t object = m->object;
int type = object->type;
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
vm_object_reference(object);
vm_page_busy(m);
vm_page_protect(m, VM_PROT_NONE);
vm_page_free(m);
if (type == OBJT_SWAP || type == OBJT_DEFAULT)
vm_object_deallocate(object);
}
/*
* vm_pageout_scan does the dirty work for the pageout daemon.
*/
static void
vm_pageout_scan(int pass)
{
vm_page_t m, next;
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
struct vm_page marker;
int save_page_shortage;
int save_inactive_count;
int page_shortage, maxscan, pcount;
int addl_page_shortage, addl_page_shortage_init;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
struct proc *p, *bigproc;
vm_offset_t size, bigsize;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
vm_object_t object;
int actcount;
int vnodes_skipped = 0;
int maxlaunder;
int s;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* Do whatever cleanup that the pmap code can.
*/
pmap_collect();
addl_page_shortage_init = vm_pageout_deficit;
vm_pageout_deficit = 0;
/*
* Calculate the number of pages we want to either free or move
* to the cache.
*/
page_shortage = vm_paging_target() + addl_page_shortage_init;
save_page_shortage = page_shortage;
save_inactive_count = cnt.v_inactive_count;
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
/*
* Initialize our marker
*/
bzero(&marker, sizeof(marker));
marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
marker.queue = PQ_INACTIVE;
marker.wire_count = 1;
/*
* Start scanning the inactive queue for pages we can move to the
* cache or free. The scan will stop when the target is reached or
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* we have scanned the entire inactive queue. Note that m->act_count
* is not used to form decisions for the inactive queue, only for the
* active queue.
*
* maxlaunder limits the number of dirty pages we flush per scan.
* For most systems a smaller value (16 or 32) is more robust under
* extreme memory and disk pressure because any unnecessary writes
* to disk can result in extreme performance degredation. However,
* systems with excessive dirty pages (especially when MAP_NOSYNC is
* used) will die horribly with limited laundering. If the pageout
* daemon cannot clean enough pages in the first pass, we let it go
* all out in succeeding passes.
*/
if ((maxlaunder = vm_max_launder) <= 1)
maxlaunder = 1;
if (pass)
maxlaunder = 10000;
rescan0:
addl_page_shortage = addl_page_shortage_init;
maxscan = cnt.v_inactive_count;
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
The buffer queue mechanism has been reformulated. Instead of having QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN, QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean and dirty buffers have been separated. Empty buffers with KVM assignments have been separated from truely empty buffers. getnewbuf() has been rewritten and now operates in a 100% optimal fashion. That is, it is able to find precisely the right kind of buffer it needs to allocate a new buffer, defragment KVM, or to free-up an existing buffer when the buffer cache is full (which is a steady-state situation for the buffer cache). Buffer flushing has been reorganized. Previously buffers were flushed in the context of whatever process hit the conditions forcing buffer flushing to occur. This resulted in processes blocking on conditions unrelated to what they were doing. This also resulted in inappropriate VFS stacking chains due to multiple processes getting stuck trying to flush dirty buffers or due to a single process getting into a situation where it might attempt to flush buffers recursively - a situation that was only partially fixed in prior commits. We have added a new daemon called the buf_daemon which is responsible for flushing dirty buffers when the number of dirty buffers exceeds the vfs.hidirtybuffers limit. This daemon attempts to dynamically adjust the rate at which dirty buffers are flushed such that getnewbuf() calls (almost) never block. The number of nbufs and amount of buffer space is now scaled past the 8MB limit that was previously imposed for systems with over 64MB of memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed somewhat. The number of physical buffers has been increased with the intention that we will manage physical I/O differently in the future. reassignbuf previously attempted to keep the dirtyblkhd list sorted which could result in non-deterministic operation under certain conditions, such as when a large number of dirty buffers are being managed. This algorithm has been changed. reassignbuf now keeps buffers locally sorted if it can do so cheaply, and otherwise gives up and adds buffers to the head of the dirtyblkhd list. The new algorithm is deterministic but not perfect. The new algorithm greatly reduces problems that previously occured when write_behind was turned off in the system. The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive P_BUFEXHAUST bit. This bit allows processes working with filesystem buffers to use available emergency reserves. Normal processes do not set this bit and are not allowed to dig into emergency reserves. The purpose of this bit is to avoid low-memory deadlocks. A small race condition was fixed in getpbuf() in vm/vm_pager.c. Submitted by: Matthew Dillon <dillon@apollo.backplane.com> Reviewed by: Kirk McKusick <mckusick@mckusick.com>
1999-07-04 00:25:38 +00:00
m != NULL && maxscan-- > 0 && page_shortage > 0;
m = next) {
1994-05-24 10:09:53 +00:00
cnt.v_pdpages++;
if (m->queue != PQ_INACTIVE) {
goto rescan0;
}
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
next = TAILQ_NEXT(m, pageq);
1994-05-24 10:09:53 +00:00
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
/*
* skip marker pages
*/
if (m->flags & PG_MARKER)
continue;
if (m->hold_count) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
splx(s);
addl_page_shortage++;
continue;
}
1994-05-24 10:09:53 +00:00
/*
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
* Dont mess with busy pages, keep in the front of the
* queue, most likely are being paged out.
1994-05-24 10:09:53 +00:00
*/
if (m->busy || (m->flags & PG_BUSY)) {
addl_page_shortage++;
continue;
}
/*
* If the object is not being used, we ignore previous
* references.
*/
if (m->object->ref_count == 0) {
vm_page_flag_clear(m, PG_REFERENCED);
pmap_clear_reference(m);
/*
* Otherwise, if the page has been referenced while in the
* inactive queue, we bump the "activation count" upwards,
* making it less likely that the page will be added back to
* the inactive queue prematurely again. Here we check the
* page tables (or emulated bits, if any), given the upper
* level VM system not knowing anything about existing
* references.
*/
} else if (((m->flags & PG_REFERENCED) == 0) &&
(actcount = pmap_ts_referenced(m))) {
vm_page_activate(m);
m->act_count += (actcount + ACT_ADVANCE);
continue;
}
/*
* If the upper level VM system knows about any page
* references, we activate the page. We also set the
* "activation count" higher than normal so that we will less
* likely place pages back onto the inactive queue again.
*/
if ((m->flags & PG_REFERENCED) != 0) {
vm_page_flag_clear(m, PG_REFERENCED);
actcount = pmap_ts_referenced(m);
vm_page_activate(m);
m->act_count += (actcount + ACT_ADVANCE + 1);
continue;
}
/*
* If the upper level VM system doesn't know anything about
* the page being dirty, we have to check for it again. As
* far as the VM code knows, any partially dirty pages are
* fully dirty.
*/
if (m->dirty == 0) {
vm_page_test_dirty(m);
} else {
vm_page_dirty(m);
}
/*
* Invalid pages can be easily freed
*/
if (m->valid == 0) {
vm_pageout_page_free(m);
cnt.v_dfree++;
--page_shortage;
/*
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* Clean pages can be placed onto the cache queue. This
* effectively frees them.
*/
} else if (m->dirty == 0) {
vm_page_cache(m);
--page_shortage;
} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
/*
* Dirty pages need to be paged out, but flushing
* a page is extremely expensive verses freeing
* a clean page. Rather then artificially limiting
* the number of pages we can flush, we instead give
* dirty pages extra priority on the inactive queue
* by forcing them to be cycled through the queue
* twice before being flushed, after which the
* (now clean) page will cycle through once more
* before being freed. This significantly extends
* the thrash point for a heavily loaded machine.
*/
s = splvm();
vm_page_flag_set(m, PG_WINATCFLS);
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
splx(s);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
} else if (maxlaunder > 0) {
/*
* We always want to try to flush some dirty pages if
* we encounter them, to keep the system stable.
* Normally this number is small, but under extreme
* pressure where there are insufficient clean pages
* on the inactive queue, we may have to go all out.
*/
int swap_pageouts_ok;
struct vnode *vp = NULL;
struct mount *mp;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
object = m->object;
if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
swap_pageouts_ok = 1;
} else {
swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
vm_page_count_min());
}
/*
* We don't bother paging objects that are "dead".
* Those objects are in a "rundown" state.
*/
if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
splx(s);
continue;
}
/*
* The object is already known NOT to be dead. It
* is possible for the vget() to block the whole
* pageout daemon, but the new low-memory handling
* code should prevent it.
*
* The previous code skipped locked vnodes and, worse,
* reordered pages in the queue. This results in
* completely non-deterministic operation and, on a
* busy system, can lead to extremely non-optimal
* pageouts. For example, it can cause clean pages
* to be freed and dirty pages to be moved to the end
* of the queue. Since dirty pages are also moved to
* the end of the queue once-cleaned, this gives
* way too large a weighting to defering the freeing
* of dirty pages.
*
* XXX we need to be able to apply a timeout to the
* vget() lock attempt.
*/
if (object->type == OBJT_VNODE) {
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
vp = object->handle;
mp = NULL;
if (vp->v_type == VREG)
vn_start_write(vp, &mp, V_NOWAIT);
if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ, curproc)) {
vn_finished_write(mp);
if (object->flags & OBJ_MIGHTBEDIRTY)
vnodes_skipped++;
continue;
}
/*
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* The page might have been moved to another
* queue during potential blocking in vget()
* above. The page might have been freed and
* reused for another vnode. The object might
* have been reused for another vnode.
*/
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
if (m->queue != PQ_INACTIVE ||
m->object != object ||
object->handle != vp) {
if (object->flags & OBJ_MIGHTBEDIRTY)
vnodes_skipped++;
vput(vp);
vn_finished_write(mp);
continue;
}
/*
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* The page may have been busied during the
* blocking in vput(); We don't move the
* page back onto the end of the queue so that
* statistics are more correct if we don't.
*/
if (m->busy || (m->flags & PG_BUSY)) {
vput(vp);
vn_finished_write(mp);
continue;
}
/*
* If the page has become held, then skip it
*/
if (m->hold_count) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
splx(s);
if (object->flags & OBJ_MIGHTBEDIRTY)
vnodes_skipped++;
vput(vp);
vn_finished_write(mp);
continue;
}
}
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* If a page is dirty, then it is either being washed
* (but not yet cleaned) or it is still in the
* laundry. If it is still in the laundry, then we
* start the cleaning operation.
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
*
* This operation may cluster, invalidating the 'next'
* pointer. To prevent an inordinate number of
* restarts we use our marker to remember our place.
*
* decrement page_shortage on success to account for
* the (future) cleaned page. Otherwise we could wind
* up laundering or cleaning too many pages.
*/
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
s = splvm();
TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
splx(s);
if (vm_pageout_clean(m) != 0) {
--page_shortage;
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
--maxlaunder;
}
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
s = splvm();
next = TAILQ_NEXT(&marker, pageq);
TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
splx(s);
if (vp) {
vput(vp);
vn_finished_write(mp);
}
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
}
}
1994-05-24 10:09:53 +00:00
/*
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* Compute the number of pages we want to try to move from the
* active queue to the inactive queue.
1994-05-24 10:09:53 +00:00
*/
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
page_shortage = vm_paging_target() +
cnt.v_inactive_target - cnt.v_inactive_count;
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
page_shortage += addl_page_shortage;
/*
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
* Scan the active queue for things we can deactivate. We nominally
* track the per-page activity counter and use it to locate
* deactivation candidates.
*/
1994-05-24 10:09:53 +00:00
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
pcount = cnt.v_active_count;
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
/*
2000-03-26 15:20:23 +00:00
* This is a consistency check, and should likely be a panic
* or warning.
*/
if (m->queue != PQ_ACTIVE) {
break;
}
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
next = TAILQ_NEXT(m, pageq);
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Don't deactivate pages that are busy.
*/
if ((m->busy != 0) ||
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
(m->flags & PG_BUSY) ||
(m->hold_count != 0)) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
m = next;
continue;
}
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
/*
* The count for pagedaemon pages is done after checking the
2000-03-26 15:20:23 +00:00
* page for eligibility...
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
*/
cnt.v_pdpages++;
/*
* Check to see "how much" the page has been used.
*/
actcount = 0;
if (m->object->ref_count != 0) {
if (m->flags & PG_REFERENCED) {
actcount += 1;
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
}
actcount += pmap_ts_referenced(m);
if (actcount) {
m->act_count += ACT_ADVANCE + actcount;
if (m->act_count > ACT_MAX)
m->act_count = ACT_MAX;
}
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
}
/*
* Since we have "tested" this bit, we need to clear it now.
*/
vm_page_flag_clear(m, PG_REFERENCED);
/*
* Only if an object is currently being used, do we use the
* page activation count stats.
*/
if (actcount && (m->object->ref_count != 0)) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
} else {
m->act_count -= min(m->act_count, ACT_DECLINE);
if (vm_pageout_algorithm ||
m->object->ref_count == 0 ||
m->act_count == 0) {
page_shortage--;
if (m->object->ref_count == 0) {
vm_page_protect(m, VM_PROT_NONE);
if (m->dirty == 0)
vm_page_cache(m);
else
vm_page_deactivate(m);
} else {
vm_page_deactivate(m);
}
} else {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
}
}
m = next;
1994-05-24 10:09:53 +00:00
}
s = splvm();
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* We try to maintain some *really* free pages, this allows interrupt
* code to be guaranteed space. Since both cache and free queues
* are considered basically 'free', moving pages from cache to free
* does not effect other calculations.
1994-05-24 10:09:53 +00:00
*/
swap_pager.c: Fixed long standing bug in freeing swap space during object collapses. Fixed 'out of space' messages from printing out too often. Modified to use new kmem_malloc() calling convention. Implemented an additional stat in the swap pager struct to count the amount of space allocated to that pager. This may be removed at some point in the future. Minimized unnecessary wakeups. vm_fault.c: Don't try to collect fault stats on 'swapped' processes - there aren't any upages to store the stats in. Changed read-ahead policy (again!). vm_glue.c: Be sure to gain a reference to the process's map before swapping. Be sure to lose it when done. kern_malloc.c: Added the ability to specify if allocations are at interrupt time or are 'safe'; this affects what types of pages can be allocated. vm_map.c: Fixed a variety of map lock problems; there's still a lurking bug that will eventually bite. vm_object.c: Explicitly initialize the object fields rather than bzeroing the struct. Eliminated the 'rcollapse' code and folded it's functionality into the "real" collapse routine. Moved an object_unlock() so that the backing_object is protected in the qcollapse routine. Make sure nobody fools with the backing_object when we're destroying it. Added some diagnostic code which can be called from the debugger that looks through all the internal objects and makes certain that they all belong to someone. vm_page.c: Fixed a rather serious logic bug that would result in random system crashes. Changed pagedaemon wakeup policy (again!). vm_pageout.c: Removed unnecessary page rotations on the inactive queue. Changed the number of pages to explicitly free to just free_reserved level. Submitted by: John Dyson
1995-02-02 09:09:15 +00:00
while (cnt.v_free_count < cnt.v_free_reserved) {
static int cache_rover = 0;
m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
if (!m)
break;
if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
m->busy ||
m->hold_count ||
m->wire_count) {
#ifdef INVARIANTS
printf("Warning: busy page %p found in cache\n", m);
#endif
vm_page_deactivate(m);
continue;
}
cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
vm_pageout_page_free(m);
cnt.v_dfree++;
1994-05-24 10:09:53 +00:00
}
splx(s);
#if !defined(NO_SWAPPING)
/*
* Idle process swapout -- run once per second.
*/
if (vm_swap_idle_enabled) {
static long lsec;
if (time_second != lsec) {
vm_pageout_req_swapout |= VM_SWAP_IDLE;
vm_req_vmdaemon();
lsec = time_second;
}
}
#endif
/*
* If we didn't get enough free pages, and we have skipped a vnode
* in a writeable object, wakeup the sync daemon. And kick swapout
* if we did not get enough free pages.
*/
if (vm_paging_target() > 0) {
if (vnodes_skipped && vm_page_count_min())
(void) speedup_syncer();
#if !defined(NO_SWAPPING)
if (vm_swap_enabled && vm_page_count_target()) {
vm_req_vmdaemon();
vm_pageout_req_swapout |= VM_SWAP_NORMAL;
}
#endif
}
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* make sure that we have swap space -- if we are low on memory and
* swap -- then kill the biggest process.
*/
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
bigproc = NULL;
bigsize = 0;
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
/*
* if this is a system process, skip it
*/
PROC_LOCK(p);
if ((p->p_flag & P_SYSTEM) || (p->p_lock > 0) ||
(p->p_pid == 1) ||
((p->p_pid < 48) && (vm_swap_size != 0))) {
PROC_UNLOCK(p);
continue;
}
PROC_UNLOCK(p);
/*
* if the process is in a non-running type state,
* don't touch it.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
continue;
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
/*
* get the process size
*/
size = vmspace_resident_count(p->p_vmspace);
/*
* if the this process is bigger than the biggest one
* remember it.
*/
if (size > bigsize) {
bigproc = p;
bigsize = size;
}
}
sx_sunlock(&allproc_lock);
if (bigproc != NULL) {
killproc(bigproc, "out of swap space");
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
bigproc->p_estcpu = 0;
bigproc->p_nice = PRIO_MIN;
resetpriority(bigproc);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
wakeup(&cnt.v_free_count);
}
}
}
1994-05-24 10:09:53 +00:00
/*
* This routine tries to maintain the pseudo LRU active queue,
* so that during long periods of time where there is no paging,
2000-03-26 15:20:23 +00:00
* that some statistic accumulation still occurs. This code
* helps the situation where paging just starts to occur.
*/
static void
vm_pageout_page_stats()
{
int s;
vm_page_t m,next;
int pcount,tpcount; /* Number of pages to check */
static int fullintervalcount = 0;
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
int page_shortage;
int s0;
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
page_shortage =
(cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
(cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
if (page_shortage <= 0)
return;
s0 = splvm();
pcount = cnt.v_active_count;
fullintervalcount += vm_pageout_stats_interval;
if (fullintervalcount < vm_pageout_full_stats_interval) {
tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
if (pcount > tpcount)
pcount = tpcount;
} else {
fullintervalcount = 0;
}
m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
while ((m != NULL) && (pcount-- > 0)) {
int actcount;
if (m->queue != PQ_ACTIVE) {
break;
}
next = TAILQ_NEXT(m, pageq);
/*
* Don't deactivate pages that are busy.
*/
if ((m->busy != 0) ||
(m->flags & PG_BUSY) ||
(m->hold_count != 0)) {
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
m = next;
continue;
}
actcount = 0;
if (m->flags & PG_REFERENCED) {
vm_page_flag_clear(m, PG_REFERENCED);
actcount += 1;
}
actcount += pmap_ts_referenced(m);
if (actcount) {
m->act_count += ACT_ADVANCE + actcount;
if (m->act_count > ACT_MAX)
m->act_count = ACT_MAX;
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
} else {
if (m->act_count == 0) {
/*
* We turn off page access, so that we have
* more accurate RSS stats. We don't do this
* in the normal page deactivation when the
* system is loaded VM wise, because the
* cost of the large number of page protect
* operations would be higher than the value
* of doing the operation.
*/
vm_page_protect(m, VM_PROT_NONE);
vm_page_deactivate(m);
} else {
m->act_count -= min(m->act_count, ACT_DECLINE);
s = splvm();
TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
splx(s);
}
}
m = next;
}
splx(s0);
}
static int
vm_pageout_free_page_calc(count)
vm_size_t count;
{
if (count < cnt.v_page_count)
return 0;
/*
* free_reserved needs to include enough for the largest swap pager
* structures plus enough for any pv_entry structs when paging.
*/
if (cnt.v_page_count > 1024)
cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
else
cnt.v_free_min = 4;
cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
cnt.v_interrupt_free_min;
cnt.v_free_reserved = vm_pageout_page_count +
cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
cnt.v_free_severe = cnt.v_free_min / 2;
cnt.v_free_min += cnt.v_free_reserved;
cnt.v_free_severe += cnt.v_free_reserved;
return 1;
}
1994-05-24 10:09:53 +00:00
/*
* vm_pageout is the high level pageout daemon.
*/
static void
vm_pageout()
1994-05-24 10:09:53 +00:00
{
int pass;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&Giant);
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* Initialize some paging parameters.
1994-05-24 10:09:53 +00:00
*/
cnt.v_interrupt_free_min = 2;
if (cnt.v_page_count < 2000)
vm_pageout_page_count = 8;
vm_pageout_free_page_calc(cnt.v_page_count);
/*
* v_free_target and v_cache_min control pageout hysteresis. Note
* that these are more a measure of the VM cache queue hysteresis
* then the VM free queue. Specifically, v_free_target is the
* high water mark (free+cache pages).
*
* v_free_reserved + v_cache_min (mostly means v_cache_min) is the
* low water mark, while v_free_min is the stop. v_cache_min must
* be big enough to handle memory needs while the pageout daemon
* is signalled and run to free more pages.
*/
if (cnt.v_free_count > 6144)
cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
else
cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
if (cnt.v_free_count > 2048) {
cnt.v_cache_min = cnt.v_free_target;
cnt.v_cache_max = 2 * cnt.v_cache_min;
cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
} else {
cnt.v_cache_min = 0;
cnt.v_cache_max = 0;
cnt.v_inactive_target = cnt.v_free_count / 4;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
}
if (cnt.v_inactive_target > cnt.v_free_count / 3)
cnt.v_inactive_target = cnt.v_free_count / 3;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/* XXX does not really belong here */
1994-05-24 10:09:53 +00:00
if (vm_page_max_wired == 0)
vm_page_max_wired = cnt.v_free_count / 3;
if (vm_pageout_stats_max == 0)
vm_pageout_stats_max = cnt.v_free_target;
/*
* Set interval in seconds for stats scan.
*/
if (vm_pageout_stats_interval == 0)
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
vm_pageout_stats_interval = 5;
if (vm_pageout_full_stats_interval == 0)
vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
/*
* Set maximum free per pass
*/
if (vm_pageout_stats_free_max == 0)
Some VM improvements, including elimination of alot of Sig-11 problems. Tor Egge and others have helped with various VM bugs lately, but don't blame him -- blame me!!! pmap.c: 1) Create an object for kernel page table allocations. This fixes a bogus allocation method previously used for such, by grabbing pages from the kernel object, using bogus pindexes. (This was a code cleanup, and perhaps a minor system stability issue.) pmap.c: 2) Pre-set the modify and accessed bits when prudent. This will decrease bus traffic under certain circumstances. vfs_bio.c, vfs_cluster.c: 3) Rather than calculating the beginning virtual byte offset multiple times, stick the offset into the buffer header, so that the calculated offset can be reused. (Long long multiplies are often expensive, and this is a probably unmeasurable performance improvement, and code cleanup.) vfs_bio.c: 4) Handle write recursion more intelligently (but not perfectly) so that it is less likely to cause a system panic, and is also much more robust. vfs_bio.c: 5) getblk incorrectly wrote out blocks that are incorrectly sized. The problem is fixed, and writes blocks out ONLY when B_DELWRI is true. vfs_bio.c: 6) Check that already constituted buffers have fully valid pages. If not, then make sure that the B_CACHE bit is not set. (This was a major source of Sig-11 type problems.) vfs_bio.c: 7) Fix a potential system deadlock due to an incorrectly specified sleep priority while waiting for a buffer write operation. The change that I made opens the system up to serious problems, and we need to examine the issue of process sleep priorities. vfs_cluster.c, vfs_bio.c: 8) Make clustered reads work more correctly (and more completely) when buffers are already constituted, but not fully valid. (This was another system reliability issue.) vfs_subr.c, ffs_inode.c: 9) Create a vtruncbuf function, which is used by filesystems that can truncate files. The vinvalbuf forced a file sync type operation, while vtruncbuf only invalidates the buffers past the new end of file, and also invalidates the appropriate pages. (This was a system reliabiliy and performance issue.) 10) Modify FFS to use vtruncbuf. vm_object.c: 11) Make the object rundown mechanism for OBJT_VNODE type objects work more correctly. Included in that fix, create pager entries for the OBJT_DEAD pager type, so that paging requests that might slip in during race conditions are properly handled. (This was a system reliability issue.) vm_page.c: 12) Make some of the page validation routines be a little less picky about arguments passed to them. Also, support page invalidation change the object generation count so that we handle generation counts a little more robustly. vm_pageout.c: 13) Further reduce pageout daemon activity when the system doesn't need help from it. There should be no additional performance decrease even when the pageout daemon is running. (This was a significant performance issue.) vnode_pager.c: 14) Teach the vnode pager to handle race conditions during vnode deallocations.
1998-03-16 01:56:03 +00:00
vm_pageout_stats_free_max = 5;
The buffer queue mechanism has been reformulated. Instead of having QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN, QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean and dirty buffers have been separated. Empty buffers with KVM assignments have been separated from truely empty buffers. getnewbuf() has been rewritten and now operates in a 100% optimal fashion. That is, it is able to find precisely the right kind of buffer it needs to allocate a new buffer, defragment KVM, or to free-up an existing buffer when the buffer cache is full (which is a steady-state situation for the buffer cache). Buffer flushing has been reorganized. Previously buffers were flushed in the context of whatever process hit the conditions forcing buffer flushing to occur. This resulted in processes blocking on conditions unrelated to what they were doing. This also resulted in inappropriate VFS stacking chains due to multiple processes getting stuck trying to flush dirty buffers or due to a single process getting into a situation where it might attempt to flush buffers recursively - a situation that was only partially fixed in prior commits. We have added a new daemon called the buf_daemon which is responsible for flushing dirty buffers when the number of dirty buffers exceeds the vfs.hidirtybuffers limit. This daemon attempts to dynamically adjust the rate at which dirty buffers are flushed such that getnewbuf() calls (almost) never block. The number of nbufs and amount of buffer space is now scaled past the 8MB limit that was previously imposed for systems with over 64MB of memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed somewhat. The number of physical buffers has been increased with the intention that we will manage physical I/O differently in the future. reassignbuf previously attempted to keep the dirtyblkhd list sorted which could result in non-deterministic operation under certain conditions, such as when a large number of dirty buffers are being managed. This algorithm has been changed. reassignbuf now keeps buffers locally sorted if it can do so cheaply, and otherwise gives up and adds buffers to the head of the dirtyblkhd list. The new algorithm is deterministic but not perfect. The new algorithm greatly reduces problems that previously occured when write_behind was turned off in the system. The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive P_BUFEXHAUST bit. This bit allows processes working with filesystem buffers to use available emergency reserves. Normal processes do not set this bit and are not allowed to dig into emergency reserves. The purpose of this bit is to avoid low-memory deadlocks. A small race condition was fixed in getpbuf() in vm/vm_pager.c. Submitted by: Matthew Dillon <dillon@apollo.backplane.com> Reviewed by: Kirk McKusick <mckusick@mckusick.com>
1999-07-04 00:25:38 +00:00
curproc->p_flag |= P_BUFEXHAUST;
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
swap_pager_swap_init();
pass = 0;
1994-05-24 10:09:53 +00:00
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* The pageout daemon is never done, so loop forever.
1994-05-24 10:09:53 +00:00
*/
while (TRUE) {
int error;
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
int s = splvm();
Implement a low-memory deadlock solution. Removed most of the hacks that were trying to deal with low-memory situations prior to now. The new code is based on the concept that I/O must be able to function in a low memory situation. All major modules related to I/O (except networking) have been adjusted to allow allocation out of the system reserve memory pool. These modules now detect a low memory situation but rather then block they instead continue to operate, then return resources to the memory pool instead of cache them or leave them wired. Code has been added to stall in a low-memory situation prior to a vnode being locked. Thus situations where a process blocks in a low-memory condition while holding a locked vnode have been reduced to near nothing. Not only will I/O continue to operate, but many prior deadlock conditions simply no longer exist. Implement a number of VFS/BIO fixes (found by Ian): in biodone(), bogus-page replacement code, the loop was not properly incrementing loop variables prior to a continue statement. We do not believe this code can be hit anyway but we aren't taking any chances. We'll turn the whole section into a panic (as it already is in brelse()) after the release is rolled. In biodone(), the foff calculation was incorrectly clamped to the iosize, causing the wrong foff to be calculated for pages in the case of an I/O error or biodone() called without initiating I/O. The problem always caused a panic before. Now it doesn't. The problem is mainly an issue with NFS. Fixed casts for ~PAGE_MASK. This code worked properly before only because the calculations use signed arithmatic. Better to properly extend PAGE_MASK first before inverting it for the 64 bit masking op. In brelse(), the bogus_page fixup code was improperly throwing away the original contents of 'm' when it did the j-loop to fix the bogus pages. The result was that it would potentially invalidate parts of the *WRONG* page(!), leading to corruption. There may still be cases where a background bitmap write is being duplicated, causing potential corruption. We have identified a potentially serious bug related to this but the fix is still TBD. So instead this patch contains a KASSERT to detect the problem and panic the machine rather then continue to corrupt the filesystem. The problem does not occur very often.. it is very hard to reproduce, and it may or may not be the cause of the corruption people have reported. Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>) Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
2000-11-18 23:06:26 +00:00
/*
* If we have enough free memory, wakeup waiters. Do
* not clear vm_pages_needed until we reach our target,
* otherwise we may be woken up over and over again and
* waste a lot of cpu.
*/
if (vm_pages_needed && !vm_page_count_min()) {
if (vm_paging_needed() <= 0)
vm_pages_needed = 0;
wakeup(&cnt.v_free_count);
}
if (vm_pages_needed) {
/*
* Still not done, take a second pass without waiting
* (unlimited dirty cleaning), otherwise sleep a bit
* and try again.
*/
++pass;
if (pass > 1)
tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
} else {
/*
* Good enough, sleep & handle stats. Prime the pass
* for the next run.
*/
if (pass > 1)
pass = 1;
else
pass = 0;
error = tsleep(&vm_pages_needed,
PVM, "psleep", vm_pageout_stats_interval * hz);
if (error && !vm_pages_needed) {
splx(s);
pass = 0;
vm_pageout_page_stats();
continue;
}
}
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
if (vm_pages_needed)
cnt.v_pdwakeups++;
splx(s);
vm_pageout_scan(pass);
VM level code cleanups. 1) Start using TSM. Struct procs continue to point to upages structure, after being freed. Struct vmspace continues to point to pte object and kva space for kstack. u_map is now superfluous. 2) vm_map's don't need to be reference counted. They always exist either in the kernel or in a vmspace. The vmspaces are managed by reference counts. 3) Remove the "wired" vm_map nonsense. 4) No need to keep a cache of kernel stack kva's. 5) Get rid of strange looking ++var, and change to var++. 6) Change more data structures to use our "zone" allocator. Added struct proc, struct vmspace and struct vnode. This saves a significant amount of kva space and physical memory. Additionally, this enables TSM for the zone managed memory. 7) Keep ioopt disabled for now. 8) Remove the now bogus "single use" map concept. 9) Use generation counts or id's for data structures residing in TSM, where it allows us to avoid unneeded restart overhead during traversals, where blocking might occur. 10) Account better for memory deficits, so the pageout daemon will be able to make enough memory available (experimental.) 11) Fix some vnode locking problems. (From Tor, I think.) 12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp. (experimental.) 13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c code. Use generation counts, get rid of unneded collpase operations, and clean up the cluster code. 14) Make vm_zone more suitable for TSM. This commit is partially as a result of discussions and contributions from other people, including DG, Tor Egge, PHK, and probably others that I have forgotten to attribute (so let me know, if I forgot.) This is not the infamous, final cleanup of the vnode stuff, but a necessary step. Vnode mgmt should be correct, but things might still change, and there is still some missing stuff (like ioopt, and physical backing of non-merged cache files, debugging of layering concepts.)
1998-01-22 17:30:44 +00:00
vm_pageout_deficit = 0;
1994-05-24 10:09:53 +00:00
}
}
void
pagedaemon_wakeup()
{
if (!vm_pages_needed && curproc != pageproc) {
vm_pages_needed++;
wakeup(&vm_pages_needed);
}
}
#if !defined(NO_SWAPPING)
static void
vm_req_vmdaemon()
{
static int lastrun = 0;
This set of commits to the VM system does the following, and contain contributions or ideas from Stephen McKay <syssgm@devetir.qld.gov.au>, Alan Cox <alc@cs.rice.edu>, David Greenman <davidg@freebsd.org> and me: More usage of the TAILQ macros. Additional minor fix to queue.h. Performance enhancements to the pageout daemon. Addition of a wait in the case that the pageout daemon has to run immediately. Slightly modify the pageout algorithm. Significant revamp of the pmap/fork code: 1) PTE's and UPAGES's are NO LONGER in the process's map. 2) PTE's and UPAGES's reside in their own objects. 3) TOTAL elimination of recursive page table pagefaults. 4) The page directory now resides in the PTE object. 5) Implemented pmap_copy, thereby speeding up fork time. 6) Changed the pv entries so that the head is a pointer and not an entire entry. 7) Significant cleanup of pmap_protect, and pmap_remove. 8) Removed significant amounts of machine dependent fork code from vm_glue. Pushed much of that code into the machine dependent pmap module. 9) Support more completely the reuse of already zeroed pages (Page table pages and page directories) as being already zeroed. Performance and code cleanups in vm_map: 1) Improved and simplified allocation of map entries. 2) Improved vm_map_copy code. 3) Corrected some minor problems in the simplify code. Implemented splvm (combo of splbio and splimp.) The VM code now seldom uses splhigh. Improved the speed of and simplified kmem_malloc. Minor mod to vm_fault to avoid using pre-zeroed pages in the case of objects with backing objects along with the already existant condition of having a vnode. (If there is a backing object, there will likely be a COW... With a COW, it isn't necessary to start with a pre-zeroed page.) Minor reorg of source to perhaps improve locality of ref.
1996-05-18 03:38:05 +00:00
if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
wakeup(&vm_daemon_needed);
lastrun = ticks;
}
}
static void
vm_daemon()
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
{
struct proc *p;
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&Giant);
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
while (TRUE) {
1998-06-02 05:39:13 +00:00
tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
NOTE: libkvm, w, ps, 'top', and any other utility which depends on struct proc or any VM system structure will have to be rebuilt!!! Much needed overhaul of the VM system. Included in this first round of changes: 1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages, haspage, and sync operations are supported. The haspage interface now provides information about clusterability. All pager routines now take struct vm_object's instead of "pagers". 2) Improved data structures. In the previous paradigm, there is constant confusion caused by pagers being both a data structure ("allocate a pager") and a collection of routines. The idea of a pager structure has escentially been eliminated. Objects now have types, and this type is used to index the appropriate pager. In most cases, items in the pager structure were duplicated in the object data structure and thus were unnecessary. In the few cases that remained, a un_pager structure union was created in the object to contain these items. 3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now be removed. For instance, vm_object_enter(), vm_object_lookup(), vm_object_remove(), and the associated object hash list were some of the things that were removed. 4) simple_lock's removed. Discussion with several people reveals that the SMP locking primitives used in the VM system aren't likely the mechanism that we'll be adopting. Even if it were, the locking that was in the code was very inadequate and would have to be mostly re-done anyway. The locking in a uni-processor kernel was a no-op but went a long way toward making the code difficult to read and debug. 5) Places that attempted to kludge-up the fact that we don't have kernel thread support have been fixed to reflect the reality that we are really dealing with processes, not threads. The VM system didn't have complete thread support, so the comments and mis-named routines were just wrong. We now use tsleep and wakeup directly in the lock routines, for instance. 6) Where appropriate, the pagers have been improved, especially in the pager_alloc routines. Most of the pager_allocs have been rewritten and are now faster and easier to maintain. 7) The pagedaemon pageout clustering algorithm has been rewritten and now tries harder to output an even number of pages before and after the requested page. This is sort of the reverse of the ideal pagein algorithm and should provide better overall performance. 8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup have been removed. Some other unnecessary casts have also been removed. 9) Some almost useless debugging code removed. 10) Terminology of shadow objects vs. backing objects straightened out. The fact that the vm_object data structure escentially had this backwards really confused things. The use of "shadow" and "backing object" throughout the code is now internally consistent and correct in the Mach terminology. 11) Several minor bug fixes, including one in the vm daemon that caused 0 RSS objects to not get purged as intended. 12) A "default pager" has now been created which cleans up the transition of objects to the "swap" type. The previous checks throughout the code for swp->pg_data != NULL were really ugly. This change also provides the rudiments for future backing of "anonymous" memory by something other than the swap pager (via the vnode pager, for example), and it allows the decision about which of these pagers to use to be made dynamically (although will need some additional decision code to do this, of course). 13) (dyson) MAP_COPY has been deprecated and the corresponding "copy object" code has been removed. MAP_COPY was undocumented and non- standard. It was furthermore broken in several ways which caused its behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will continue to work correctly, but via the slightly different semantics of MAP_PRIVATE. 14) (dyson) Sharing maps have been removed. It's marginal usefulness in a threads design can be worked around in other ways. Both #12 and #13 were done to simplify the code and improve readability and maintain- ability. (As were most all of these changes) TODO: 1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing this will reduce the vnode pager to a mere fraction of its current size. 2) Rewrite vm_fault and the swap/vnode pagers to use the clustering information provided by the new haspage pager interface. This will substantially reduce the overhead by eliminating a large number of VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be improved to provide both a "behind" and "ahead" indication of contiguousness. 3) Implement the extended features of pager_haspage in swap_pager_haspage(). It currently just says 0 pages ahead/behind. 4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps via a much more general mechanism that could also be used for disk striping of regular filesystems. 5) Do something to improve the architecture of vm_object_collapse(). The fact that it makes calls into the swap pager and knows too much about how the swap pager operates really bothers me. It also doesn't allow for collapsing of non-swap pager objects ("unnamed" objects backed by other pagers).
1995-07-13 08:48:48 +00:00
if (vm_pageout_req_swapout) {
swapout_procs(vm_pageout_req_swapout);
vm_pageout_req_swapout = 0;
}
/*
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
* scan the processes for exceeding their rlimits or if
* process is swapped out -- deactivate pages
*/
sx_slock(&allproc_lock);
LIST_FOREACH(p, &allproc, p_list) {
vm_pindex_t limit, size;
/*
* if this is a system process or if we have already
* looked at this process, skip it.
*/
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
continue;
}
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* if the process is in a non-running type state,
* don't touch it.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
continue;
}
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* get a limit
*/
limit = OFF_TO_IDX(
qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
p->p_rlimit[RLIMIT_RSS].rlim_max));
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
/*
* let processes that are swapped out really be
* swapped out set the limit to nothing (will force a
* swap-out.)
*/
if ((p->p_sflag & PS_INMEM) == 0)
These changes embody the support of the fully coherent merged VM buffer cache, much higher filesystem I/O performance, and much better paging performance. It represents the culmination of over 6 months of R&D. The majority of the merged VM/cache work is by John Dyson. The following highlights the most significant changes. Additionally, there are (mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to support the new VM/buffer scheme. vfs_bio.c: Significant rewrite of most of vfs_bio to support the merged VM buffer cache scheme. The scheme is almost fully compatible with the old filesystem interface. Significant improvement in the number of opportunities for write clustering. vfs_cluster.c, vfs_subr.c Upgrade and performance enhancements in vfs layer code to support merged VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff. vm_object.c: Yet more improvements in the collapse code. Elimination of some windows that can cause list corruption. vm_pageout.c: Fixed it, it really works better now. Somehow in 2.0, some "enhancements" broke the code. This code has been reworked from the ground-up. vm_fault.c, vm_page.c, pmap.c, vm_object.c Support for small-block filesystems with merged VM/buffer cache scheme. pmap.c vm_map.c Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of kernel PTs. vm_glue.c Much simpler and more effective swapping code. No more gratuitous swapping. proc.h Fixed the problem that the p_lock flag was not being cleared on a fork. swap_pager.c, vnode_pager.c Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the code doesn't need it anymore. machdep.c Changes to better support the parameter values for the merged VM/buffer cache scheme. machdep.c, kern_exec.c, vm_glue.c Implemented a seperate submap for temporary exec string space and another one to contain process upages. This eliminates all map fragmentation problems that previously existed. ffs_inode.c, ufs_inode.c, ufs_readwrite.c Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on busy buffers. Submitted by: John Dyson and David Greenman
1995-01-09 16:06:02 +00:00
limit = 0; /* XXX */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
size = vmspace_resident_count(p->p_vmspace);
if (limit >= 0 && size >= limit) {
vm_pageout_map_deactivate_pages(
&p->p_vmspace->vm_map, limit);
}
}
sx_sunlock(&allproc_lock);
}
}
#endif