1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/net80211/ieee80211_ioctl.c

2490 lines
67 KiB
C
Raw Normal View History

/*-
* Copyright (c) 2001 Atsushi Onoe
2004-12-31 22:42:38 +00:00
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* IEEE 802.11 ioctl support (FreeBSD-specific)
*/
#include "opt_inet.h"
#include "opt_ipx.h"
#include <sys/endian.h>
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/ethernet.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#include <dev/wi/if_wavelan_ieee.h>
#define IS_UP(_ic) \
(((_ic)->ic_ifp->if_flags & IFF_UP) && \
((_ic)->ic_ifp->if_drv_flags & IFF_DRV_RUNNING))
#define IS_UP_AUTO(_ic) \
(IS_UP(_ic) && (_ic)->ic_roaming == IEEE80211_ROAMING_AUTO)
/*
* XXX
* Wireless LAN specific configuration interface, which is compatible
* with wicontrol(8).
*/
struct wi_read_ap_args {
int i; /* result count */
struct wi_apinfo *ap; /* current entry in result buffer */
caddr_t max; /* result buffer bound */
};
static void
wi_read_ap_result(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct wi_read_ap_args *sa = arg;
struct wi_apinfo *ap = sa->ap;
struct ieee80211_rateset *rs;
int j;
if ((caddr_t)(ap + 1) > sa->max)
return;
memset(ap, 0, sizeof(struct wi_apinfo));
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
IEEE80211_ADDR_COPY(ap->bssid, ni->ni_macaddr);
ap->namelen = ic->ic_des_esslen;
if (ic->ic_des_esslen)
memcpy(ap->name, ic->ic_des_essid,
ic->ic_des_esslen);
} else {
IEEE80211_ADDR_COPY(ap->bssid, ni->ni_bssid);
ap->namelen = ni->ni_esslen;
if (ni->ni_esslen)
memcpy(ap->name, ni->ni_essid,
ni->ni_esslen);
}
ap->channel = ieee80211_chan2ieee(ic, ni->ni_chan);
ap->signal = ic->ic_node_getrssi(ni);
ap->capinfo = ni->ni_capinfo;
ap->interval = ni->ni_intval;
rs = &ni->ni_rates;
for (j = 0; j < rs->rs_nrates; j++) {
if (rs->rs_rates[j] & IEEE80211_RATE_BASIC) {
ap->rate = (rs->rs_rates[j] &
IEEE80211_RATE_VAL) * 5; /* XXX */
}
}
sa->i++;
sa->ap++;
}
struct wi_read_prism2_args {
int i; /* result count */
struct wi_scan_res *res;/* current entry in result buffer */
caddr_t max; /* result buffer bound */
};
static void
wi_read_prism2_result(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct wi_read_prism2_args *sa = arg;
struct wi_scan_res *res = sa->res;
if ((caddr_t)(res + 1) > sa->max)
return;
res->wi_chan = ieee80211_chan2ieee(ic, ni->ni_chan);
res->wi_noise = 0;
res->wi_signal = ic->ic_node_getrssi(ni);
IEEE80211_ADDR_COPY(res->wi_bssid, ni->ni_bssid);
res->wi_interval = ni->ni_intval;
res->wi_capinfo = ni->ni_capinfo;
res->wi_ssid_len = ni->ni_esslen;
memcpy(res->wi_ssid, ni->ni_essid, IEEE80211_NWID_LEN);
/* NB: assumes wi_srates holds <= ni->ni_rates */
memcpy(res->wi_srates, ni->ni_rates.rs_rates,
sizeof(res->wi_srates));
if (ni->ni_rates.rs_nrates < 10)
res->wi_srates[ni->ni_rates.rs_nrates] = 0;
res->wi_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
res->wi_rsvd = 0;
sa->i++;
sa->res++;
}
struct wi_read_sigcache_args {
int i; /* result count */
struct wi_sigcache *wsc;/* current entry in result buffer */
caddr_t max; /* result buffer bound */
};
static void
wi_read_sigcache(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct wi_read_sigcache_args *sa = arg;
struct wi_sigcache *wsc = sa->wsc;
if ((caddr_t)(wsc + 1) > sa->max)
return;
memset(wsc, 0, sizeof(struct wi_sigcache));
IEEE80211_ADDR_COPY(wsc->macsrc, ni->ni_macaddr);
wsc->signal = ic->ic_node_getrssi(ni);
sa->wsc++;
sa->i++;
}
int
ieee80211_cfgget(struct ieee80211com *ic, u_long cmd, caddr_t data)
{
struct ifnet *ifp = ic->ic_ifp;
int i, j, error;
struct ifreq *ifr = (struct ifreq *)data;
struct wi_req wreq;
struct wi_ltv_keys *keys;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
wreq.wi_len = 0;
switch (wreq.wi_type) {
case WI_RID_SERIALNO:
/* nothing appropriate */
break;
case WI_RID_NODENAME:
strcpy((char *)&wreq.wi_val[1], hostname);
wreq.wi_val[0] = htole16(strlen(hostname));
wreq.wi_len = (1 + strlen(hostname) + 1) / 2;
break;
case WI_RID_CURRENT_SSID:
if (ic->ic_state != IEEE80211_S_RUN) {
wreq.wi_val[0] = 0;
wreq.wi_len = 1;
break;
}
wreq.wi_val[0] = htole16(ic->ic_bss->ni_esslen);
memcpy(&wreq.wi_val[1], ic->ic_bss->ni_essid,
ic->ic_bss->ni_esslen);
wreq.wi_len = (1 + ic->ic_bss->ni_esslen + 1) / 2;
break;
case WI_RID_OWN_SSID:
case WI_RID_DESIRED_SSID:
wreq.wi_val[0] = htole16(ic->ic_des_esslen);
memcpy(&wreq.wi_val[1], ic->ic_des_essid, ic->ic_des_esslen);
wreq.wi_len = (1 + ic->ic_des_esslen + 1) / 2;
break;
case WI_RID_CURRENT_BSSID:
if (ic->ic_state == IEEE80211_S_RUN)
IEEE80211_ADDR_COPY(wreq.wi_val, ic->ic_bss->ni_bssid);
else
memset(wreq.wi_val, 0, IEEE80211_ADDR_LEN);
wreq.wi_len = IEEE80211_ADDR_LEN / 2;
break;
case WI_RID_CHANNEL_LIST:
memset(wreq.wi_val, 0, sizeof(wreq.wi_val));
/*
* Since channel 0 is not available for DS, channel 1
* is assigned to LSB on WaveLAN.
*/
if (ic->ic_phytype == IEEE80211_T_DS)
i = 1;
else
i = 0;
for (j = 0; i <= IEEE80211_CHAN_MAX; i++, j++)
if (isset(ic->ic_chan_active, i)) {
setbit((u_int8_t *)wreq.wi_val, j);
wreq.wi_len = j / 16 + 1;
}
break;
case WI_RID_OWN_CHNL:
wreq.wi_val[0] = htole16(
ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
wreq.wi_len = 1;
break;
case WI_RID_CURRENT_CHAN:
wreq.wi_val[0] = htole16(
ieee80211_chan2ieee(ic, ic->ic_curchan));
wreq.wi_len = 1;
break;
case WI_RID_COMMS_QUALITY:
wreq.wi_val[0] = 0; /* quality */
wreq.wi_val[1] = htole16(ic->ic_node_getrssi(ic->ic_bss));
wreq.wi_val[2] = 0; /* noise */
wreq.wi_len = 3;
break;
case WI_RID_PROMISC:
wreq.wi_val[0] = htole16((ifp->if_flags & IFF_PROMISC) ? 1 : 0);
wreq.wi_len = 1;
break;
case WI_RID_PORTTYPE:
wreq.wi_val[0] = htole16(ic->ic_opmode);
wreq.wi_len = 1;
break;
case WI_RID_MAC_NODE:
IEEE80211_ADDR_COPY(wreq.wi_val, ic->ic_myaddr);
wreq.wi_len = IEEE80211_ADDR_LEN / 2;
break;
case WI_RID_TX_RATE:
if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
wreq.wi_val[0] = 0; /* auto */
else
wreq.wi_val[0] = htole16(
(ic->ic_sup_rates[ic->ic_curmode].rs_rates[ic->ic_fixed_rate] &
IEEE80211_RATE_VAL) / 2);
wreq.wi_len = 1;
break;
case WI_RID_CUR_TX_RATE:
wreq.wi_val[0] = htole16(
(ic->ic_bss->ni_rates.rs_rates[ic->ic_bss->ni_txrate] &
IEEE80211_RATE_VAL) / 2);
wreq.wi_len = 1;
break;
case WI_RID_RTS_THRESH:
wreq.wi_val[0] = htole16(ic->ic_rtsthreshold);
wreq.wi_len = 1;
break;
case WI_RID_CREATE_IBSS:
wreq.wi_val[0] =
htole16((ic->ic_flags & IEEE80211_F_IBSSON) ? 1 : 0);
wreq.wi_len = 1;
break;
case WI_RID_MICROWAVE_OVEN:
wreq.wi_val[0] = 0; /* no ... not supported */
wreq.wi_len = 1;
break;
case WI_RID_ROAMING_MODE:
wreq.wi_val[0] = htole16(ic->ic_roaming); /* XXX map */
wreq.wi_len = 1;
break;
case WI_RID_SYSTEM_SCALE:
wreq.wi_val[0] = htole16(1); /* low density ... not supp */
wreq.wi_len = 1;
break;
case WI_RID_PM_ENABLED:
wreq.wi_val[0] =
htole16((ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
wreq.wi_len = 1;
break;
case WI_RID_MAX_SLEEP:
wreq.wi_val[0] = htole16(ic->ic_lintval);
wreq.wi_len = 1;
break;
case WI_RID_CUR_BEACON_INT:
wreq.wi_val[0] = htole16(ic->ic_bss->ni_intval);
wreq.wi_len = 1;
break;
case WI_RID_WEP_AVAIL:
wreq.wi_val[0] = htole16(1); /* always available */
wreq.wi_len = 1;
break;
case WI_RID_CNFAUTHMODE:
wreq.wi_val[0] = htole16(1); /* TODO: open system only */
wreq.wi_len = 1;
break;
case WI_RID_ENCRYPTION:
wreq.wi_val[0] =
htole16((ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0);
wreq.wi_len = 1;
break;
case WI_RID_TX_CRYPT_KEY:
wreq.wi_val[0] = htole16(ic->ic_def_txkey);
wreq.wi_len = 1;
break;
case WI_RID_DEFLT_CRYPT_KEYS:
keys = (struct wi_ltv_keys *)&wreq;
/* do not show keys to non-root user */
error = suser(curthread);
if (error) {
memset(keys, 0, sizeof(*keys));
error = 0;
break;
}
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
keys->wi_keys[i].wi_keylen =
htole16(ic->ic_nw_keys[i].wk_keylen);
memcpy(keys->wi_keys[i].wi_keydat,
ic->ic_nw_keys[i].wk_key,
ic->ic_nw_keys[i].wk_keylen);
}
wreq.wi_len = sizeof(*keys) / 2;
break;
case WI_RID_MAX_DATALEN:
wreq.wi_val[0] = htole16(ic->ic_fragthreshold);
wreq.wi_len = 1;
break;
case WI_RID_IFACE_STATS:
/* XXX: should be implemented in lower drivers */
break;
case WI_RID_READ_APS:
/*
* Don't return results until active scan completes.
*/
if ((ic->ic_flags & (IEEE80211_F_SCAN|IEEE80211_F_ASCAN)) == 0) {
struct wi_read_ap_args args;
args.i = 0;
args.ap = (void *)((char *)wreq.wi_val + sizeof(i));
args.max = (void *)(&wreq + 1);
ieee80211_iterate_nodes(&ic->ic_scan,
wi_read_ap_result, &args);
memcpy(wreq.wi_val, &args.i, sizeof(args.i));
wreq.wi_len = (sizeof(int) +
sizeof(struct wi_apinfo) * args.i) / 2;
} else
error = EINPROGRESS;
break;
case WI_RID_PRISM2:
/* NB: we lie so WI_RID_SCAN_RES can include rates */
wreq.wi_val[0] = 1;
wreq.wi_len = sizeof(u_int16_t) / 2;
break;
case WI_RID_SCAN_RES: /* compatibility interface */
if ((ic->ic_flags & (IEEE80211_F_SCAN|IEEE80211_F_ASCAN)) == 0) {
struct wi_read_prism2_args args;
struct wi_scan_p2_hdr *p2;
/* NB: use Prism2 format so we can include rate info */
p2 = (struct wi_scan_p2_hdr *)wreq.wi_val;
args.i = 0;
args.res = (void *)&p2[1];
args.max = (void *)(&wreq + 1);
ieee80211_iterate_nodes(&ic->ic_scan,
wi_read_prism2_result, &args);
p2->wi_rsvd = 0;
p2->wi_reason = args.i;
wreq.wi_len = (sizeof(*p2) +
sizeof(struct wi_scan_res) * args.i) / 2;
} else
error = EINPROGRESS;
break;
case WI_RID_READ_CACHE: {
struct wi_read_sigcache_args args;
args.i = 0;
args.wsc = (struct wi_sigcache *) wreq.wi_val;
args.max = (void *)(&wreq + 1);
ieee80211_iterate_nodes(&ic->ic_scan, wi_read_sigcache, &args);
wreq.wi_len = sizeof(struct wi_sigcache) * args.i / 2;
break;
}
default:
error = EINVAL;
break;
}
if (error == 0) {
wreq.wi_len++;
error = copyout(&wreq, ifr->ifr_data, sizeof(wreq));
}
return error;
}
static int
findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate)
{
#define IEEERATE(_ic,_m,_i) \
((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
for (i = 0; i < nrates; i++)
if (IEEERATE(ic, mode, i) == rate)
return i;
return -1;
#undef IEEERATE
}
/*
* Prepare to do a user-initiated scan for AP's. If no
* current/default channel is setup or the current channel
* is invalid then pick the first available channel from
* the active list as the place to start the scan.
*/
static int
ieee80211_setupscan(struct ieee80211com *ic, const u_int8_t chanlist[])
{
/*
* XXX don't permit a scan to be started unless we
* know the device is ready. For the moment this means
* the device is marked up as this is the required to
* initialize the hardware. It would be better to permit
* scanning prior to being up but that'll require some
* changes to the infrastructure.
*/
if (!IS_UP(ic))
return EINVAL;
memcpy(ic->ic_chan_active, chanlist, sizeof(ic->ic_chan_active));
/*
* We force the state to INIT before calling ieee80211_new_state
* to get ieee80211_begin_scan called. We really want to scan w/o
* altering the current state but that's not possible right now.
*/
/* XXX handle proberequest case */
ic->ic_state = IEEE80211_S_INIT; /* XXX bypass state machine */
return 0;
}
int
ieee80211_cfgset(struct ieee80211com *ic, u_long cmd, caddr_t data)
{
struct ifnet *ifp = ic->ic_ifp;
int i, j, len, error, rate;
struct ifreq *ifr = (struct ifreq *)data;
struct wi_ltv_keys *keys;
struct wi_req wreq;
u_char chanlist[roundup(IEEE80211_CHAN_MAX, NBBY)];
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
len = wreq.wi_len ? (wreq.wi_len - 1) * 2 : 0;
switch (wreq.wi_type) {
case WI_RID_SERIALNO:
case WI_RID_NODENAME:
return EPERM;
case WI_RID_CURRENT_SSID:
return EPERM;
case WI_RID_OWN_SSID:
case WI_RID_DESIRED_SSID:
if (le16toh(wreq.wi_val[0]) * 2 > len ||
le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) {
error = ENOSPC;
break;
}
memset(ic->ic_des_essid, 0, sizeof(ic->ic_des_essid));
ic->ic_des_esslen = le16toh(wreq.wi_val[0]) * 2;
memcpy(ic->ic_des_essid, &wreq.wi_val[1], ic->ic_des_esslen);
error = ENETRESET;
break;
case WI_RID_CURRENT_BSSID:
return EPERM;
case WI_RID_OWN_CHNL:
if (len != 2)
return EINVAL;
i = le16toh(wreq.wi_val[0]);
if (i < 0 ||
i > IEEE80211_CHAN_MAX ||
isclr(ic->ic_chan_active, i))
return EINVAL;
ic->ic_ibss_chan = &ic->ic_channels[i];
if (ic->ic_opmode == IEEE80211_M_MONITOR)
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
else
error = ENETRESET;
break;
case WI_RID_CURRENT_CHAN:
return EPERM;
case WI_RID_COMMS_QUALITY:
return EPERM;
case WI_RID_PROMISC:
if (len != 2)
return EINVAL;
if (ifp->if_flags & IFF_PROMISC) {
if (wreq.wi_val[0] == 0) {
ifp->if_flags &= ~IFF_PROMISC;
error = ENETRESET;
}
} else {
if (wreq.wi_val[0] != 0) {
ifp->if_flags |= IFF_PROMISC;
error = ENETRESET;
}
}
break;
case WI_RID_PORTTYPE:
if (len != 2)
return EINVAL;
switch (le16toh(wreq.wi_val[0])) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
if (!(ic->ic_caps & IEEE80211_C_IBSS))
return EINVAL;
break;
case IEEE80211_M_AHDEMO:
if (ic->ic_phytype != IEEE80211_T_DS ||
!(ic->ic_caps & IEEE80211_C_AHDEMO))
return EINVAL;
break;
case IEEE80211_M_HOSTAP:
if (!(ic->ic_caps & IEEE80211_C_HOSTAP))
return EINVAL;
break;
default:
return EINVAL;
}
if (le16toh(wreq.wi_val[0]) != ic->ic_opmode) {
ic->ic_opmode = le16toh(wreq.wi_val[0]);
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
}
break;
#if 0
case WI_RID_MAC_NODE:
if (len != IEEE80211_ADDR_LEN)
return EINVAL;
IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), wreq.wi_val);
/* if_init will copy lladdr into ic_myaddr */
error = ENETRESET;
break;
#endif
case WI_RID_TX_RATE:
if (len != 2)
return EINVAL;
if (wreq.wi_val[0] == 0) {
/* auto */
ic->ic_fixed_rate = IEEE80211_FIXED_RATE_NONE;
break;
}
rate = 2 * le16toh(wreq.wi_val[0]);
if (ic->ic_curmode == IEEE80211_MODE_AUTO) {
/*
* In autoselect mode search for the rate. We take
* the first instance which may not be right, but we
* are limited by the interface. Note that we also
* lock the mode to insure the rate is meaningful
* when it is used.
*/
for (j = IEEE80211_MODE_11A;
j < IEEE80211_MODE_MAX; j++) {
if ((ic->ic_modecaps & (1<<j)) == 0)
continue;
i = findrate(ic, j, rate);
if (i != -1) {
/* lock mode too */
ic->ic_curmode = j;
goto setrate;
}
}
} else {
i = findrate(ic, ic->ic_curmode, rate);
if (i != -1)
goto setrate;
}
return EINVAL;
setrate:
ic->ic_fixed_rate = i;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case WI_RID_CUR_TX_RATE:
return EPERM;
case WI_RID_RTS_THRESH:
if (len != 2)
return EINVAL;
if (le16toh(wreq.wi_val[0]) != IEEE80211_MAX_LEN)
return EINVAL; /* TODO: RTS */
break;
case WI_RID_CREATE_IBSS:
if (len != 2)
return EINVAL;
if (wreq.wi_val[0] != 0) {
if ((ic->ic_caps & IEEE80211_C_IBSS) == 0)
return EINVAL;
if ((ic->ic_flags & IEEE80211_F_IBSSON) == 0) {
ic->ic_flags |= IEEE80211_F_IBSSON;
if (ic->ic_opmode == IEEE80211_M_IBSS &&
ic->ic_state == IEEE80211_S_SCAN)
error = IS_UP_AUTO(ic) ? ENETRESET : 0;
}
} else {
if (ic->ic_flags & IEEE80211_F_IBSSON) {
ic->ic_flags &= ~IEEE80211_F_IBSSON;
if (ic->ic_flags & IEEE80211_F_SIBSS) {
ic->ic_flags &= ~IEEE80211_F_SIBSS;
error = IS_UP_AUTO(ic) ? ENETRESET : 0;
}
}
}
break;
case WI_RID_MICROWAVE_OVEN:
if (len != 2)
return EINVAL;
if (wreq.wi_val[0] != 0)
return EINVAL; /* not supported */
break;
case WI_RID_ROAMING_MODE:
if (len != 2)
return EINVAL;
i = le16toh(wreq.wi_val[0]);
if (i > IEEE80211_ROAMING_MANUAL)
return EINVAL; /* not supported */
ic->ic_roaming = i;
break;
case WI_RID_SYSTEM_SCALE:
if (len != 2)
return EINVAL;
if (le16toh(wreq.wi_val[0]) != 1)
return EINVAL; /* not supported */
break;
case WI_RID_PM_ENABLED:
if (len != 2)
return EINVAL;
if (wreq.wi_val[0] != 0) {
if ((ic->ic_caps & IEEE80211_C_PMGT) == 0)
return EINVAL;
if ((ic->ic_flags & IEEE80211_F_PMGTON) == 0) {
ic->ic_flags |= IEEE80211_F_PMGTON;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
}
} else {
if (ic->ic_flags & IEEE80211_F_PMGTON) {
ic->ic_flags &= ~IEEE80211_F_PMGTON;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
}
}
break;
case WI_RID_MAX_SLEEP:
if (len != 2)
return EINVAL;
ic->ic_lintval = le16toh(wreq.wi_val[0]);
if (ic->ic_flags & IEEE80211_F_PMGTON)
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case WI_RID_CUR_BEACON_INT:
return EPERM;
case WI_RID_WEP_AVAIL:
return EPERM;
case WI_RID_CNFAUTHMODE:
if (len != 2)
return EINVAL;
i = le16toh(wreq.wi_val[0]);
if (i > IEEE80211_AUTH_WPA)
return EINVAL;
ic->ic_bss->ni_authmode = i; /* XXX ENETRESET? */
error = ENETRESET;
break;
case WI_RID_ENCRYPTION:
if (len != 2)
return EINVAL;
if (wreq.wi_val[0] != 0) {
if ((ic->ic_caps & IEEE80211_C_WEP) == 0)
return EINVAL;
if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0) {
ic->ic_flags |= IEEE80211_F_PRIVACY;
error = ENETRESET;
}
} else {
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
ic->ic_flags &= ~IEEE80211_F_PRIVACY;
error = ENETRESET;
}
}
break;
case WI_RID_TX_CRYPT_KEY:
if (len != 2)
return EINVAL;
i = le16toh(wreq.wi_val[0]);
if (i >= IEEE80211_WEP_NKID)
return EINVAL;
ic->ic_def_txkey = i;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case WI_RID_DEFLT_CRYPT_KEYS:
if (len != sizeof(struct wi_ltv_keys))
return EINVAL;
keys = (struct wi_ltv_keys *)&wreq;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
len = le16toh(keys->wi_keys[i].wi_keylen);
if (len != 0 && len < IEEE80211_WEP_KEYLEN)
return EINVAL;
if (len > IEEE80211_KEYBUF_SIZE)
return EINVAL;
}
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
struct ieee80211_key *k = &ic->ic_nw_keys[i];
len = le16toh(keys->wi_keys[i].wi_keylen);
k->wk_keylen = len;
k->wk_flags = IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV;
memset(k->wk_key, 0, sizeof(k->wk_key));
memcpy(k->wk_key, keys->wi_keys[i].wi_keydat, len);
#if 0
k->wk_type = IEEE80211_CIPHER_WEP;
#endif
}
error = ENETRESET;
break;
case WI_RID_MAX_DATALEN:
if (len != 2)
return EINVAL;
len = le16toh(wreq.wi_val[0]);
if (len < 350 /* ? */ || len > IEEE80211_MAX_LEN)
return EINVAL;
ic->ic_fragthreshold = len;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case WI_RID_IFACE_STATS:
error = EPERM;
break;
case WI_RID_SCAN_REQ: /* XXX wicontrol */
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
break;
error = ieee80211_setupscan(ic, ic->ic_chan_avail);
if (error == 0)
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
case WI_RID_SCAN_APS:
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
break;
len--; /* XXX: tx rate? */
/* FALLTHRU */
case WI_RID_CHANNEL_LIST:
memset(chanlist, 0, sizeof(chanlist));
/*
* Since channel 0 is not available for DS, channel 1
* is assigned to LSB on WaveLAN.
*/
if (ic->ic_phytype == IEEE80211_T_DS)
i = 1;
else
i = 0;
for (j = 0; i <= IEEE80211_CHAN_MAX; i++, j++) {
if ((j / 8) >= len)
break;
if (isclr((u_int8_t *)wreq.wi_val, j))
continue;
if (isclr(ic->ic_chan_active, i)) {
if (wreq.wi_type != WI_RID_CHANNEL_LIST)
continue;
if (isclr(ic->ic_chan_avail, i))
return EPERM;
}
setbit(chanlist, i);
}
error = ieee80211_setupscan(ic, chanlist);
if (wreq.wi_type == WI_RID_CHANNEL_LIST) {
/* NB: ignore error from ieee80211_setupscan */
error = ENETRESET;
} else if (error == 0)
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
default:
error = EINVAL;
break;
}
if (error == ENETRESET && !IS_UP_AUTO(ic))
error = 0;
return error;
}
static int
cap2cipher(int flag)
{
switch (flag) {
case IEEE80211_C_WEP: return IEEE80211_CIPHER_WEP;
case IEEE80211_C_AES: return IEEE80211_CIPHER_AES_OCB;
case IEEE80211_C_AES_CCM: return IEEE80211_CIPHER_AES_CCM;
case IEEE80211_C_CKIP: return IEEE80211_CIPHER_CKIP;
case IEEE80211_C_TKIP: return IEEE80211_CIPHER_TKIP;
}
return -1;
}
static int
ieee80211_ioctl_getkey(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_node *ni;
struct ieee80211req_key ik;
struct ieee80211_key *wk;
const struct ieee80211_cipher *cip;
u_int kid;
int error;
if (ireq->i_len != sizeof(ik))
return EINVAL;
error = copyin(ireq->i_data, &ik, sizeof(ik));
if (error)
return error;
kid = ik.ik_keyix;
if (kid == IEEE80211_KEYIX_NONE) {
ni = ieee80211_find_node(&ic->ic_sta, ik.ik_macaddr);
if (ni == NULL)
return EINVAL; /* XXX */
wk = &ni->ni_ucastkey;
} else {
if (kid >= IEEE80211_WEP_NKID)
return EINVAL;
wk = &ic->ic_nw_keys[kid];
IEEE80211_ADDR_COPY(&ik.ik_macaddr, ic->ic_bss->ni_macaddr);
ni = NULL;
}
cip = wk->wk_cipher;
ik.ik_type = cip->ic_cipher;
ik.ik_keylen = wk->wk_keylen;
ik.ik_flags = wk->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV);
if (wk->wk_keyix == ic->ic_def_txkey)
ik.ik_flags |= IEEE80211_KEY_DEFAULT;
if (suser(curthread) == 0) {
/* NB: only root can read key data */
ik.ik_keyrsc = wk->wk_keyrsc;
ik.ik_keytsc = wk->wk_keytsc;
memcpy(ik.ik_keydata, wk->wk_key, wk->wk_keylen);
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP) {
memcpy(ik.ik_keydata+wk->wk_keylen,
wk->wk_key + IEEE80211_KEYBUF_SIZE,
IEEE80211_MICBUF_SIZE);
ik.ik_keylen += IEEE80211_MICBUF_SIZE;
}
} else {
ik.ik_keyrsc = 0;
ik.ik_keytsc = 0;
memset(ik.ik_keydata, 0, sizeof(ik.ik_keydata));
}
if (ni != NULL)
ieee80211_free_node(ni);
return copyout(&ik, ireq->i_data, sizeof(ik));
}
static int
ieee80211_ioctl_getchanlist(struct ieee80211com *ic, struct ieee80211req *ireq)
{
if (sizeof(ic->ic_chan_active) < ireq->i_len)
ireq->i_len = sizeof(ic->ic_chan_active);
return copyout(&ic->ic_chan_active, ireq->i_data, ireq->i_len);
}
static int
ieee80211_ioctl_getchaninfo(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211req_chaninfo chans; /* XXX off stack? */
int i, space;
/*
* Since channel 0 is not available for DS, channel 1
* is assigned to LSB on WaveLAN.
*/
if (ic->ic_phytype == IEEE80211_T_DS)
i = 1;
else
i = 0;
memset(&chans, 0, sizeof(chans));
for (; i <= IEEE80211_CHAN_MAX; i++)
if (isset(ic->ic_chan_avail, i)) {
struct ieee80211_channel *c = &ic->ic_channels[i];
chans.ic_chans[chans.ic_nchans].ic_freq = c->ic_freq;
chans.ic_chans[chans.ic_nchans].ic_flags = c->ic_flags;
chans.ic_nchans++;
}
space = __offsetof(struct ieee80211req_chaninfo,
ic_chans[chans.ic_nchans]);
if (space > ireq->i_len)
space = ireq->i_len;
return copyout(&chans, ireq->i_data, space);
}
static int
ieee80211_ioctl_getwpaie(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_node *ni;
struct ieee80211req_wpaie wpaie;
int error;
if (ireq->i_len < IEEE80211_ADDR_LEN)
return EINVAL;
error = copyin(ireq->i_data, wpaie.wpa_macaddr, IEEE80211_ADDR_LEN);
if (error != 0)
return error;
ni = ieee80211_find_node(&ic->ic_sta, wpaie.wpa_macaddr);
if (ni == NULL)
return EINVAL; /* XXX */
memset(wpaie.wpa_ie, 0, sizeof(wpaie.wpa_ie));
if (ni->ni_wpa_ie != NULL) {
int ielen = ni->ni_wpa_ie[1] + 2;
if (ielen > sizeof(wpaie.wpa_ie))
ielen = sizeof(wpaie.wpa_ie);
memcpy(wpaie.wpa_ie, ni->ni_wpa_ie, ielen);
}
ieee80211_free_node(ni);
if (ireq->i_len > sizeof(wpaie))
ireq->i_len = sizeof(wpaie);
return copyout(&wpaie, ireq->i_data, ireq->i_len);
}
static int
ieee80211_ioctl_getstastats(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_node *ni;
u_int8_t macaddr[IEEE80211_ADDR_LEN];
const int off = __offsetof(struct ieee80211req_sta_stats, is_stats);
int error;
if (ireq->i_len < off)
return EINVAL;
error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN);
if (error != 0)
return error;
ni = ieee80211_find_node(&ic->ic_sta, macaddr);
if (ni == NULL)
return EINVAL; /* XXX */
if (ireq->i_len > sizeof(struct ieee80211req_sta_stats))
ireq->i_len = sizeof(struct ieee80211req_sta_stats);
/* NB: copy out only the statistics */
error = copyout(&ni->ni_stats, (u_int8_t *) ireq->i_data + off,
ireq->i_len - off);
ieee80211_free_node(ni);
return error;
}
static void
get_scan_result(struct ieee80211req_scan_result *sr,
const struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
memset(sr, 0, sizeof(*sr));
sr->isr_ssid_len = ni->ni_esslen;
if (ni->ni_wpa_ie != NULL)
sr->isr_ie_len += 2+ni->ni_wpa_ie[1];
if (ni->ni_wme_ie != NULL)
sr->isr_ie_len += 2+ni->ni_wme_ie[1];
sr->isr_len = sizeof(*sr) + sr->isr_ssid_len + sr->isr_ie_len;
sr->isr_len = roundup(sr->isr_len, sizeof(u_int32_t));
if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
sr->isr_freq = ni->ni_chan->ic_freq;
sr->isr_flags = ni->ni_chan->ic_flags;
}
sr->isr_rssi = ic->ic_node_getrssi(ni);
sr->isr_intval = ni->ni_intval;
sr->isr_capinfo = ni->ni_capinfo;
sr->isr_erp = ni->ni_erp;
IEEE80211_ADDR_COPY(sr->isr_bssid, ni->ni_bssid);
sr->isr_nrates = ni->ni_rates.rs_nrates;
if (sr->isr_nrates > 15)
sr->isr_nrates = 15;
memcpy(sr->isr_rates, ni->ni_rates.rs_rates, sr->isr_nrates);
}
static int
ieee80211_ioctl_getscanresults(struct ieee80211com *ic, struct ieee80211req *ireq)
{
union {
struct ieee80211req_scan_result res;
char data[512]; /* XXX shrink? */
} u;
struct ieee80211req_scan_result *sr = &u.res;
struct ieee80211_node_table *nt;
struct ieee80211_node *ni;
int error, space;
u_int8_t *p, *cp;
p = ireq->i_data;
space = ireq->i_len;
error = 0;
/* XXX locking */
nt = &ic->ic_scan;
TAILQ_FOREACH(ni, &nt->nt_node, ni_list) {
/* NB: skip pre-scan node state */
if (ni->ni_chan == IEEE80211_CHAN_ANYC)
continue;
get_scan_result(sr, ni);
if (sr->isr_len > sizeof(u))
continue; /* XXX */
if (space < sr->isr_len)
break;
cp = (u_int8_t *)(sr+1);
memcpy(cp, ni->ni_essid, ni->ni_esslen);
cp += ni->ni_esslen;
if (ni->ni_wpa_ie != NULL) {
memcpy(cp, ni->ni_wpa_ie, 2+ni->ni_wpa_ie[1]);
cp += 2+ni->ni_wpa_ie[1];
}
if (ni->ni_wme_ie != NULL) {
memcpy(cp, ni->ni_wme_ie, 2+ni->ni_wme_ie[1]);
cp += 2+ni->ni_wme_ie[1];
}
error = copyout(sr, p, sr->isr_len);
if (error)
break;
p += sr->isr_len;
space -= sr->isr_len;
}
ireq->i_len -= space;
return error;
}
struct stainforeq {
struct ieee80211com *ic;
struct ieee80211req_sta_info *si;
size_t space;
};
static size_t
sta_space(const struct ieee80211_node *ni, size_t *ielen)
{
*ielen = 0;
if (ni->ni_wpa_ie != NULL)
*ielen += 2+ni->ni_wpa_ie[1];
if (ni->ni_wme_ie != NULL)
*ielen += 2+ni->ni_wme_ie[1];
return roundup(sizeof(struct ieee80211req_sta_info) + *ielen,
sizeof(u_int32_t));
}
static void
get_sta_space(void *arg, struct ieee80211_node *ni)
{
struct stainforeq *req = arg;
struct ieee80211com *ic = ni->ni_ic;
size_t ielen;
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
ni->ni_associd == 0) /* only associated stations */
return;
req->space += sta_space(ni, &ielen);
}
static void
get_sta_info(void *arg, struct ieee80211_node *ni)
{
struct stainforeq *req = arg;
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211req_sta_info *si;
size_t ielen, len;
u_int8_t *cp;
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
ni->ni_associd == 0) /* only associated stations */
return;
if (ni->ni_chan == IEEE80211_CHAN_ANYC) /* XXX bogus entry */
return;
len = sta_space(ni, &ielen);
if (len > req->space)
return;
si = req->si;
si->isi_len = len;
si->isi_ie_len = ielen;
si->isi_freq = ni->ni_chan->ic_freq;
si->isi_flags = ni->ni_chan->ic_flags;
si->isi_state = ni->ni_flags;
si->isi_authmode = ni->ni_authmode;
si->isi_rssi = ic->ic_node_getrssi(ni);
si->isi_capinfo = ni->ni_capinfo;
si->isi_erp = ni->ni_erp;
IEEE80211_ADDR_COPY(si->isi_macaddr, ni->ni_macaddr);
si->isi_nrates = ni->ni_rates.rs_nrates;
if (si->isi_nrates > 15)
si->isi_nrates = 15;
memcpy(si->isi_rates, ni->ni_rates.rs_rates, si->isi_nrates);
si->isi_txrate = ni->ni_txrate;
si->isi_associd = ni->ni_associd;
si->isi_txpower = ni->ni_txpower;
si->isi_vlan = ni->ni_vlan;
if (ni->ni_flags & IEEE80211_NODE_QOS) {
memcpy(si->isi_txseqs, ni->ni_txseqs, sizeof(ni->ni_txseqs));
memcpy(si->isi_rxseqs, ni->ni_rxseqs, sizeof(ni->ni_rxseqs));
} else {
si->isi_txseqs[0] = ni->ni_txseqs[0];
si->isi_rxseqs[0] = ni->ni_rxseqs[0];
}
/* NB: leave all cases in case we relax ni_associd == 0 check */
if (ieee80211_node_is_authorized(ni))
si->isi_inact = ic->ic_inact_run;
else if (ni->ni_associd != 0)
si->isi_inact = ic->ic_inact_auth;
else
si->isi_inact = ic->ic_inact_init;
si->isi_inact = (si->isi_inact - ni->ni_inact) * IEEE80211_INACT_WAIT;
cp = (u_int8_t *)(si+1);
if (ni->ni_wpa_ie != NULL) {
memcpy(cp, ni->ni_wpa_ie, 2+ni->ni_wpa_ie[1]);
cp += 2+ni->ni_wpa_ie[1];
}
if (ni->ni_wme_ie != NULL) {
memcpy(cp, ni->ni_wme_ie, 2+ni->ni_wme_ie[1]);
cp += 2+ni->ni_wme_ie[1];
}
req->si = (struct ieee80211req_sta_info *)(((u_int8_t *)si) + len);
req->space -= len;
}
static int
ieee80211_ioctl_getstainfo(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct stainforeq req;
int error;
if (ireq->i_len < sizeof(struct stainforeq))
return EFAULT;
error = 0;
req.space = 0;
ieee80211_iterate_nodes(&ic->ic_sta, get_sta_space, &req);
if (req.space > ireq->i_len)
req.space = ireq->i_len;
if (req.space > 0) {
size_t space;
void *p;
space = req.space;
/* XXX M_WAITOK after driver lock released */
MALLOC(p, void *, space, M_TEMP, M_NOWAIT);
if (p == NULL)
return ENOMEM;
req.si = p;
ieee80211_iterate_nodes(&ic->ic_sta, get_sta_info, &req);
ireq->i_len = space - req.space;
error = copyout(p, ireq->i_data, ireq->i_len);
FREE(p, M_TEMP);
} else
ireq->i_len = 0;
return error;
}
static int
ieee80211_ioctl_getstatxpow(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_node *ni;
struct ieee80211req_sta_txpow txpow;
int error;
if (ireq->i_len != sizeof(txpow))
return EINVAL;
error = copyin(ireq->i_data, &txpow, sizeof(txpow));
if (error != 0)
return error;
ni = ieee80211_find_node(&ic->ic_sta, txpow.it_macaddr);
if (ni == NULL)
return EINVAL; /* XXX */
txpow.it_txpow = ni->ni_txpower;
error = copyout(&txpow, ireq->i_data, sizeof(txpow));
ieee80211_free_node(ni);
return error;
}
static int
ieee80211_ioctl_getwmeparam(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_wme_state *wme = &ic->ic_wme;
struct wmeParams *wmep;
int ac;
if ((ic->ic_caps & IEEE80211_C_WME) == 0)
return EINVAL;
ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL);
if (ac >= WME_NUM_AC)
ac = WME_AC_BE;
if (ireq->i_len & IEEE80211_WMEPARAM_BSS)
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac];
else
wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac];
switch (ireq->i_type) {
case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */
ireq->i_val = wmep->wmep_logcwmin;
break;
case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */
ireq->i_val = wmep->wmep_logcwmax;
break;
case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */
ireq->i_val = wmep->wmep_aifsn;
break;
case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */
ireq->i_val = wmep->wmep_txopLimit;
break;
case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac];
ireq->i_val = wmep->wmep_acm;
break;
case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/
wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac];
ireq->i_val = !wmep->wmep_noackPolicy;
break;
}
return 0;
}
static int
ieee80211_ioctl_getmaccmd(struct ieee80211com *ic, struct ieee80211req *ireq)
{
const struct ieee80211_aclator *acl = ic->ic_acl;
return (acl == NULL ? EINVAL : acl->iac_getioctl(ic, ireq));
}
/*
* When building the kernel with -O2 on the i386 architecture, gcc
* seems to want to inline this function into ieee80211_ioctl()
* (which is the only routine that calls it). When this happens,
* ieee80211_ioctl() ends up consuming an additional 2K of stack
* space. (Exactly why it needs so much is unclear.) The problem
* is that it's possible for ieee80211_ioctl() to invoke other
* routines (including driver init functions) which could then find
* themselves perilously close to exhausting the stack.
*
* To avoid this, we deliberately prevent gcc from inlining this
* routine. Another way to avoid this is to use less agressive
* optimization when compiling this file (i.e. -O instead of -O2)
* but special-casing the compilation of this one module in the
* build system would be awkward.
*/
#ifdef __GNUC__
__attribute__ ((noinline))
#endif
static int
ieee80211_ioctl_get80211(struct ieee80211com *ic, u_long cmd, struct ieee80211req *ireq)
{
const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
int error = 0;
u_int kid, len, m;
u_int8_t tmpkey[IEEE80211_KEYBUF_SIZE];
char tmpssid[IEEE80211_NWID_LEN];
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
switch (ic->ic_state) {
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
ireq->i_len = ic->ic_des_esslen;
memcpy(tmpssid, ic->ic_des_essid, ireq->i_len);
break;
default:
ireq->i_len = ic->ic_bss->ni_esslen;
memcpy(tmpssid, ic->ic_bss->ni_essid,
ireq->i_len);
break;
}
error = copyout(tmpssid, ireq->i_data, ireq->i_len);
break;
case IEEE80211_IOC_NUMSSIDS:
ireq->i_val = 1;
break;
case IEEE80211_IOC_WEP:
if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0)
ireq->i_val = IEEE80211_WEP_OFF;
else if (ic->ic_flags & IEEE80211_F_DROPUNENC)
ireq->i_val = IEEE80211_WEP_ON;
else
ireq->i_val = IEEE80211_WEP_MIXED;
break;
case IEEE80211_IOC_WEPKEY:
kid = (u_int) ireq->i_val;
if (kid >= IEEE80211_WEP_NKID)
return EINVAL;
len = (u_int) ic->ic_nw_keys[kid].wk_keylen;
/* NB: only root can read WEP keys */
if (suser(curthread) == 0) {
bcopy(ic->ic_nw_keys[kid].wk_key, tmpkey, len);
} else {
bzero(tmpkey, len);
}
ireq->i_len = len;
error = copyout(tmpkey, ireq->i_data, len);
break;
case IEEE80211_IOC_NUMWEPKEYS:
ireq->i_val = IEEE80211_WEP_NKID;
break;
case IEEE80211_IOC_WEPTXKEY:
ireq->i_val = ic->ic_def_txkey;
break;
case IEEE80211_IOC_AUTHMODE:
if (ic->ic_flags & IEEE80211_F_WPA)
ireq->i_val = IEEE80211_AUTH_WPA;
else
ireq->i_val = ic->ic_bss->ni_authmode;
break;
case IEEE80211_IOC_CHANNEL:
ireq->i_val = ieee80211_chan2ieee(ic, ic->ic_curchan);
break;
case IEEE80211_IOC_POWERSAVE:
if (ic->ic_flags & IEEE80211_F_PMGTON)
ireq->i_val = IEEE80211_POWERSAVE_ON;
else
ireq->i_val = IEEE80211_POWERSAVE_OFF;
break;
case IEEE80211_IOC_POWERSAVESLEEP:
ireq->i_val = ic->ic_lintval;
break;
case IEEE80211_IOC_RTSTHRESHOLD:
ireq->i_val = ic->ic_rtsthreshold;
break;
case IEEE80211_IOC_PROTMODE:
ireq->i_val = ic->ic_protmode;
break;
case IEEE80211_IOC_TXPOWER:
if ((ic->ic_caps & IEEE80211_C_TXPMGT) == 0)
return EINVAL;
ireq->i_val = ic->ic_txpowlimit;
break;
case IEEE80211_IOC_MCASTCIPHER:
ireq->i_val = rsn->rsn_mcastcipher;
break;
case IEEE80211_IOC_MCASTKEYLEN:
ireq->i_val = rsn->rsn_mcastkeylen;
break;
case IEEE80211_IOC_UCASTCIPHERS:
ireq->i_val = 0;
for (m = 0x1; m != 0; m <<= 1)
if (rsn->rsn_ucastcipherset & m)
ireq->i_val |= 1<<cap2cipher(m);
break;
case IEEE80211_IOC_UCASTCIPHER:
ireq->i_val = rsn->rsn_ucastcipher;
break;
case IEEE80211_IOC_UCASTKEYLEN:
ireq->i_val = rsn->rsn_ucastkeylen;
break;
case IEEE80211_IOC_KEYMGTALGS:
ireq->i_val = rsn->rsn_keymgmtset;
break;
case IEEE80211_IOC_RSNCAPS:
ireq->i_val = rsn->rsn_caps;
break;
case IEEE80211_IOC_WPA:
switch (ic->ic_flags & IEEE80211_F_WPA) {
case IEEE80211_F_WPA1:
ireq->i_val = 1;
break;
case IEEE80211_F_WPA2:
ireq->i_val = 2;
break;
case IEEE80211_F_WPA1 | IEEE80211_F_WPA2:
ireq->i_val = 3;
break;
default:
ireq->i_val = 0;
break;
}
break;
case IEEE80211_IOC_CHANLIST:
error = ieee80211_ioctl_getchanlist(ic, ireq);
break;
case IEEE80211_IOC_ROAMING:
ireq->i_val = ic->ic_roaming;
break;
case IEEE80211_IOC_PRIVACY:
ireq->i_val = (ic->ic_flags & IEEE80211_F_PRIVACY) != 0;
break;
case IEEE80211_IOC_DROPUNENCRYPTED:
ireq->i_val = (ic->ic_flags & IEEE80211_F_DROPUNENC) != 0;
break;
case IEEE80211_IOC_COUNTERMEASURES:
ireq->i_val = (ic->ic_flags & IEEE80211_F_COUNTERM) != 0;
break;
case IEEE80211_IOC_DRIVER_CAPS:
ireq->i_val = ic->ic_caps>>16;
ireq->i_len = ic->ic_caps&0xffff;
break;
case IEEE80211_IOC_WME:
ireq->i_val = (ic->ic_flags & IEEE80211_F_WME) != 0;
break;
case IEEE80211_IOC_HIDESSID:
ireq->i_val = (ic->ic_flags & IEEE80211_F_HIDESSID) != 0;
break;
case IEEE80211_IOC_APBRIDGE:
ireq->i_val = (ic->ic_flags & IEEE80211_F_NOBRIDGE) == 0;
break;
case IEEE80211_IOC_OPTIE:
if (ic->ic_opt_ie == NULL)
return EINVAL;
/* NB: truncate, caller can check length */
if (ireq->i_len > ic->ic_opt_ie_len)
ireq->i_len = ic->ic_opt_ie_len;
error = copyout(ic->ic_opt_ie, ireq->i_data, ireq->i_len);
break;
case IEEE80211_IOC_WPAKEY:
error = ieee80211_ioctl_getkey(ic, ireq);
break;
case IEEE80211_IOC_CHANINFO:
error = ieee80211_ioctl_getchaninfo(ic, ireq);
break;
case IEEE80211_IOC_BSSID:
if (ireq->i_len != IEEE80211_ADDR_LEN)
return EINVAL;
error = copyout(ic->ic_state == IEEE80211_S_RUN ?
ic->ic_bss->ni_bssid :
ic->ic_des_bssid,
ireq->i_data, ireq->i_len);
break;
case IEEE80211_IOC_WPAIE:
error = ieee80211_ioctl_getwpaie(ic, ireq);
break;
case IEEE80211_IOC_SCAN_RESULTS:
error = ieee80211_ioctl_getscanresults(ic, ireq);
break;
case IEEE80211_IOC_STA_STATS:
error = ieee80211_ioctl_getstastats(ic, ireq);
break;
case IEEE80211_IOC_TXPOWMAX:
ireq->i_val = ic->ic_bss->ni_txpower;
break;
case IEEE80211_IOC_STA_TXPOW:
error = ieee80211_ioctl_getstatxpow(ic, ireq);
break;
case IEEE80211_IOC_STA_INFO:
error = ieee80211_ioctl_getstainfo(ic, ireq);
break;
case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */
case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */
case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */
case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */
case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */
case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (bss only) */
error = ieee80211_ioctl_getwmeparam(ic, ireq);
break;
case IEEE80211_IOC_DTIM_PERIOD:
ireq->i_val = ic->ic_dtim_period;
break;
case IEEE80211_IOC_BEACON_INTERVAL:
/* NB: get from ic_bss for station mode */
ireq->i_val = ic->ic_bss->ni_intval;
break;
case IEEE80211_IOC_PUREG:
ireq->i_val = (ic->ic_flags & IEEE80211_F_PUREG) != 0;
break;
case IEEE80211_IOC_MCAST_RATE:
ireq->i_val = ic->ic_mcast_rate;
break;
case IEEE80211_IOC_FRAGTHRESHOLD:
ireq->i_val = ic->ic_fragthreshold;
break;
case IEEE80211_IOC_MACCMD:
error = ieee80211_ioctl_getmaccmd(ic, ireq);
break;
default:
error = EINVAL;
break;
}
return error;
}
static int
ieee80211_ioctl_setoptie(struct ieee80211com *ic, struct ieee80211req *ireq)
{
int error;
void *ie;
/*
* NB: Doing this for ap operation could be useful (e.g. for
* WPA and/or WME) except that it typically is worthless
* without being able to intervene when processing
* association response frames--so disallow it for now.
*/
if (ic->ic_opmode != IEEE80211_M_STA)
return EINVAL;
if (ireq->i_len > IEEE80211_MAX_OPT_IE)
return EINVAL;
MALLOC(ie, void *, ireq->i_len, M_DEVBUF, M_NOWAIT);
if (ie == NULL)
return ENOMEM;
error = copyin(ireq->i_data, ie, ireq->i_len);
/* XXX sanity check data? */
if (ic->ic_opt_ie != NULL)
FREE(ic->ic_opt_ie, M_DEVBUF);
ic->ic_opt_ie = ie;
ic->ic_opt_ie_len = ireq->i_len;
return 0;
}
static int
ieee80211_ioctl_setkey(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211req_key ik;
struct ieee80211_node *ni;
struct ieee80211_key *wk;
u_int16_t kid;
int error;
if (ireq->i_len != sizeof(ik))
return EINVAL;
error = copyin(ireq->i_data, &ik, sizeof(ik));
if (error)
return error;
/* NB: cipher support is verified by ieee80211_crypt_newkey */
/* NB: this also checks ik->ik_keylen > sizeof(wk->wk_key) */
if (ik.ik_keylen > sizeof(ik.ik_keydata))
return E2BIG;
kid = ik.ik_keyix;
if (kid == IEEE80211_KEYIX_NONE) {
/* XXX unicast keys currently must be tx/rx */
if (ik.ik_flags != (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))
return EINVAL;
if (ic->ic_opmode == IEEE80211_M_STA) {
ni = ieee80211_ref_node(ic->ic_bss);
if (!IEEE80211_ADDR_EQ(ik.ik_macaddr, ni->ni_bssid)) {
ieee80211_free_node(ni);
return EADDRNOTAVAIL;
}
} else {
ni = ieee80211_find_node(&ic->ic_sta, ik.ik_macaddr);
if (ni == NULL)
return ENOENT;
}
wk = &ni->ni_ucastkey;
} else {
if (kid >= IEEE80211_WEP_NKID)
return EINVAL;
wk = &ic->ic_nw_keys[kid];
ni = NULL;
}
error = 0;
ieee80211_key_update_begin(ic);
if (ieee80211_crypto_newkey(ic, ik.ik_type, ik.ik_flags, wk)) {
wk->wk_keylen = ik.ik_keylen;
/* NB: MIC presence is implied by cipher type */
if (wk->wk_keylen > IEEE80211_KEYBUF_SIZE)
wk->wk_keylen = IEEE80211_KEYBUF_SIZE;
wk->wk_keyrsc = ik.ik_keyrsc;
wk->wk_keytsc = 0; /* new key, reset */
memset(wk->wk_key, 0, sizeof(wk->wk_key));
memcpy(wk->wk_key, ik.ik_keydata, ik.ik_keylen);
if (!ieee80211_crypto_setkey(ic, wk,
ni != NULL ? ni->ni_macaddr : ik.ik_macaddr))
error = EIO;
else if ((ik.ik_flags & IEEE80211_KEY_DEFAULT))
ic->ic_def_txkey = kid;
} else
error = ENXIO;
ieee80211_key_update_end(ic);
if (ni != NULL)
ieee80211_free_node(ni);
return error;
}
static int
ieee80211_ioctl_delkey(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211req_del_key dk;
int kid, error;
if (ireq->i_len != sizeof(dk))
return EINVAL;
error = copyin(ireq->i_data, &dk, sizeof(dk));
if (error)
return error;
kid = dk.idk_keyix;
/* XXX u_int8_t -> u_int16_t */
if (dk.idk_keyix == (u_int8_t) IEEE80211_KEYIX_NONE) {
struct ieee80211_node *ni;
if (ic->ic_opmode == IEEE80211_M_STA) {
ni = ieee80211_ref_node(ic->ic_bss);
if (!IEEE80211_ADDR_EQ(dk.idk_macaddr, ni->ni_bssid)) {
ieee80211_free_node(ni);
return EADDRNOTAVAIL;
}
} else {
ni = ieee80211_find_node(&ic->ic_sta, dk.idk_macaddr);
if (ni == NULL)
return ENOENT;
}
/* XXX error return */
Split crypto tx+rx key indices and add a key index -> node mapping table: Crypto changes: o change driver/net80211 key_alloc api to return tx+rx key indices; a driver can leave the rx key index set to IEEE80211_KEYIX_NONE or set it to be the same as the tx key index (the former disables use of the key index in building the keyix->node mapping table and is the default setup for naive drivers by null_key_alloc) o add cs_max_keyid to crypto state to specify the max h/w key index a driver will return; this is used to allocate the key index mapping table and to bounds check table loookups o while here introduce ieee80211_keyix (finally) for the type of a h/w key index o change crypto notifiers for rx failures to pass the rx key index up as appropriate (michael failure, replay, etc.) Node table changes: o optionally allocate a h/w key index to node mapping table for the station table using the max key index setting supplied by drivers (note the scan table does not get a map) o defer node table allocation to lateattach so the driver has a chance to set the max key id to size the key index map o while here also defer the aid bitmap allocation o add new ieee80211_find_rxnode_withkey api to find a sta/node entry on frame receive with an optional h/w key index to use in checking mapping table; also updates the map if it does a hash lookup and the found node has a rx key index set in the unicast key; note this work is separated from the old ieee80211_find_rxnode call so drivers do not need to be aware of the new mechanism o move some node table manipulation under the node table lock to close a race on node delete o add ieee80211_node_delucastkey to do the dirty work of deleting unicast key state for a node (deletes any key and handles key map references) Ath driver: o nuke private sc_keyixmap mechansim in favor of net80211 support o update key alloc api These changes close several race conditions for the ath driver operating in ap mode. Other drivers should see no change. Station mode operation for ath no longer uses the key index map but performance tests show no noticeable change and this will be fixed when the scan table is eliminated with the new scanning support. Tested by: Michal Mertl, avatar, others Reviewed by: avatar, others MFC after: 2 weeks
2005-08-08 18:46:36 +00:00
ieee80211_node_delucastkey(ni);
ieee80211_free_node(ni);
} else {
if (kid >= IEEE80211_WEP_NKID)
return EINVAL;
/* XXX error return */
ieee80211_crypto_delkey(ic, &ic->ic_nw_keys[kid]);
}
return 0;
}
static void
domlme(void *arg, struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct ieee80211req_mlme *mlme = arg;
if (ni->ni_associd != 0) {
IEEE80211_SEND_MGMT(ic, ni,
mlme->im_op == IEEE80211_MLME_DEAUTH ?
IEEE80211_FC0_SUBTYPE_DEAUTH :
IEEE80211_FC0_SUBTYPE_DISASSOC,
mlme->im_reason);
}
ieee80211_node_leave(ic, ni);
}
static int
ieee80211_ioctl_setmlme(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211req_mlme mlme;
struct ieee80211_node *ni;
int error;
if (ireq->i_len != sizeof(mlme))
return EINVAL;
error = copyin(ireq->i_data, &mlme, sizeof(mlme));
if (error)
return error;
switch (mlme.im_op) {
case IEEE80211_MLME_ASSOC:
if (ic->ic_opmode != IEEE80211_M_STA)
return EINVAL;
/* XXX must be in S_SCAN state? */
if (mlme.im_ssid_len != 0) {
/*
* Desired ssid specified; must match both bssid and
* ssid to distinguish ap advertising multiple ssid's.
*/
ni = ieee80211_find_node_with_ssid(&ic->ic_scan,
mlme.im_macaddr,
mlme.im_ssid_len, mlme.im_ssid);
} else {
/*
* Normal case; just match bssid.
*/
ni = ieee80211_find_node(&ic->ic_scan, mlme.im_macaddr);
}
if (ni == NULL)
return EINVAL;
if (!ieee80211_sta_join(ic, ni)) {
ieee80211_free_node(ni);
return EINVAL;
}
break;
case IEEE80211_MLME_DISASSOC:
case IEEE80211_MLME_DEAUTH:
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
/* XXX not quite right */
ieee80211_new_state(ic, IEEE80211_S_INIT,
mlme.im_reason);
break;
case IEEE80211_M_HOSTAP:
/* NB: the broadcast address means do 'em all */
if (!IEEE80211_ADDR_EQ(mlme.im_macaddr, ic->ic_ifp->if_broadcastaddr)) {
if ((ni = ieee80211_find_node(&ic->ic_sta,
mlme.im_macaddr)) == NULL)
return EINVAL;
domlme(&mlme, ni);
ieee80211_free_node(ni);
} else {
ieee80211_iterate_nodes(&ic->ic_sta,
domlme, &mlme);
}
break;
default:
return EINVAL;
}
break;
case IEEE80211_MLME_AUTHORIZE:
case IEEE80211_MLME_UNAUTHORIZE:
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
return EINVAL;
ni = ieee80211_find_node(&ic->ic_sta, mlme.im_macaddr);
if (ni == NULL)
return EINVAL;
if (mlme.im_op == IEEE80211_MLME_AUTHORIZE)
ieee80211_node_authorize(ni);
else
ieee80211_node_unauthorize(ni);
ieee80211_free_node(ni);
break;
default:
return EINVAL;
}
return 0;
}
static int
ieee80211_ioctl_macmac(struct ieee80211com *ic, struct ieee80211req *ireq)
{
u_int8_t mac[IEEE80211_ADDR_LEN];
const struct ieee80211_aclator *acl = ic->ic_acl;
int error;
if (ireq->i_len != sizeof(mac))
return EINVAL;
error = copyin(ireq->i_data, mac, ireq->i_len);
if (error)
return error;
if (acl == NULL) {
acl = ieee80211_aclator_get("mac");
if (acl == NULL || !acl->iac_attach(ic))
return EINVAL;
ic->ic_acl = acl;
}
if (ireq->i_type == IEEE80211_IOC_ADDMAC)
acl->iac_add(ic, mac);
else
acl->iac_remove(ic, mac);
return 0;
}
static int
ieee80211_ioctl_setmaccmd(struct ieee80211com *ic, struct ieee80211req *ireq)
{
const struct ieee80211_aclator *acl = ic->ic_acl;
switch (ireq->i_val) {
case IEEE80211_MACCMD_POLICY_OPEN:
case IEEE80211_MACCMD_POLICY_ALLOW:
case IEEE80211_MACCMD_POLICY_DENY:
if (acl == NULL) {
acl = ieee80211_aclator_get("mac");
if (acl == NULL || !acl->iac_attach(ic))
return EINVAL;
ic->ic_acl = acl;
}
acl->iac_setpolicy(ic, ireq->i_val);
break;
case IEEE80211_MACCMD_FLUSH:
if (acl != NULL)
acl->iac_flush(ic);
/* NB: silently ignore when not in use */
break;
case IEEE80211_MACCMD_DETACH:
if (acl != NULL) {
ic->ic_acl = NULL;
acl->iac_detach(ic);
}
break;
default:
if (acl == NULL)
return EINVAL;
else
return acl->iac_setioctl(ic, ireq);
}
return 0;
}
static int
ieee80211_ioctl_setchanlist(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211req_chanlist list;
u_char chanlist[IEEE80211_CHAN_BYTES];
int i, j, error;
if (ireq->i_len != sizeof(list))
return EINVAL;
error = copyin(ireq->i_data, &list, sizeof(list));
if (error)
return error;
memset(chanlist, 0, sizeof(chanlist));
/*
* Since channel 0 is not available for DS, channel 1
* is assigned to LSB on WaveLAN.
*/
if (ic->ic_phytype == IEEE80211_T_DS)
i = 1;
else
i = 0;
for (j = 0; i <= IEEE80211_CHAN_MAX; i++, j++) {
/*
* NB: silently discard unavailable channels so users
* can specify 1-255 to get all available channels.
*/
if (isset(list.ic_channels, j) && isset(ic->ic_chan_avail, i))
setbit(chanlist, i);
}
if (ic->ic_ibss_chan == NULL ||
isclr(chanlist, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) {
for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
if (isset(chanlist, i)) {
ic->ic_ibss_chan = &ic->ic_channels[i];
goto found;
}
return EINVAL; /* no active channels */
found:
;
}
memcpy(ic->ic_chan_active, chanlist, sizeof(ic->ic_chan_active));
return IS_UP_AUTO(ic) ? ENETRESET : 0;
}
static int
ieee80211_ioctl_setstatxpow(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_node *ni;
struct ieee80211req_sta_txpow txpow;
int error;
if (ireq->i_len != sizeof(txpow))
return EINVAL;
error = copyin(ireq->i_data, &txpow, sizeof(txpow));
if (error != 0)
return error;
ni = ieee80211_find_node(&ic->ic_sta, txpow.it_macaddr);
if (ni == NULL)
return EINVAL; /* XXX */
ni->ni_txpower = txpow.it_txpow;
ieee80211_free_node(ni);
return error;
}
static int
ieee80211_ioctl_setwmeparam(struct ieee80211com *ic, struct ieee80211req *ireq)
{
struct ieee80211_wme_state *wme = &ic->ic_wme;
struct wmeParams *wmep, *chanp;
int isbss, ac;
if ((ic->ic_caps & IEEE80211_C_WME) == 0)
return EINVAL;
isbss = (ireq->i_len & IEEE80211_WMEPARAM_BSS);
ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL);
if (ac >= WME_NUM_AC)
ac = WME_AC_BE;
if (isbss) {
chanp = &wme->wme_bssChanParams.cap_wmeParams[ac];
wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac];
} else {
chanp = &wme->wme_chanParams.cap_wmeParams[ac];
wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac];
}
switch (ireq->i_type) {
case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */
if (isbss) {
wmep->wmep_logcwmin = ireq->i_val;
if ((wme->wme_flags & WME_F_AGGRMODE) == 0)
chanp->wmep_logcwmin = ireq->i_val;
} else {
wmep->wmep_logcwmin = chanp->wmep_logcwmin =
ireq->i_val;
}
break;
case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */
if (isbss) {
wmep->wmep_logcwmax = ireq->i_val;
if ((wme->wme_flags & WME_F_AGGRMODE) == 0)
chanp->wmep_logcwmax = ireq->i_val;
} else {
wmep->wmep_logcwmax = chanp->wmep_logcwmax =
ireq->i_val;
}
break;
case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */
if (isbss) {
wmep->wmep_aifsn = ireq->i_val;
if ((wme->wme_flags & WME_F_AGGRMODE) == 0)
chanp->wmep_aifsn = ireq->i_val;
} else {
wmep->wmep_aifsn = chanp->wmep_aifsn = ireq->i_val;
}
break;
case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */
if (isbss) {
wmep->wmep_txopLimit = ireq->i_val;
if ((wme->wme_flags & WME_F_AGGRMODE) == 0)
chanp->wmep_txopLimit = ireq->i_val;
} else {
wmep->wmep_txopLimit = chanp->wmep_txopLimit =
ireq->i_val;
}
break;
case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */
wmep->wmep_acm = ireq->i_val;
if ((wme->wme_flags & WME_F_AGGRMODE) == 0)
chanp->wmep_acm = ireq->i_val;
break;
case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/
wmep->wmep_noackPolicy = chanp->wmep_noackPolicy =
(ireq->i_val) == 0;
break;
}
ieee80211_wme_updateparams(ic);
return 0;
}
static int
cipher2cap(int cipher)
{
switch (cipher) {
case IEEE80211_CIPHER_WEP: return IEEE80211_C_WEP;
case IEEE80211_CIPHER_AES_OCB: return IEEE80211_C_AES;
case IEEE80211_CIPHER_AES_CCM: return IEEE80211_C_AES_CCM;
case IEEE80211_CIPHER_CKIP: return IEEE80211_C_CKIP;
case IEEE80211_CIPHER_TKIP: return IEEE80211_C_TKIP;
}
return 0;
}
static int
ieee80211_ioctl_set80211(struct ieee80211com *ic, u_long cmd, struct ieee80211req *ireq)
{
static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
int error;
const struct ieee80211_authenticator *auth;
u_int8_t tmpkey[IEEE80211_KEYBUF_SIZE];
char tmpssid[IEEE80211_NWID_LEN];
u_int8_t tmpbssid[IEEE80211_ADDR_LEN];
struct ieee80211_key *k;
int j, caps;
u_int kid;
error = 0;
switch (ireq->i_type) {
case IEEE80211_IOC_SSID:
if (ireq->i_val != 0 ||
ireq->i_len > IEEE80211_NWID_LEN)
return EINVAL;
error = copyin(ireq->i_data, tmpssid, ireq->i_len);
if (error)
break;
memset(ic->ic_des_essid, 0, IEEE80211_NWID_LEN);
ic->ic_des_esslen = ireq->i_len;
memcpy(ic->ic_des_essid, tmpssid, ireq->i_len);
error = ENETRESET;
break;
case IEEE80211_IOC_WEP:
switch (ireq->i_val) {
case IEEE80211_WEP_OFF:
ic->ic_flags &= ~IEEE80211_F_PRIVACY;
ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
break;
case IEEE80211_WEP_ON:
ic->ic_flags |= IEEE80211_F_PRIVACY;
ic->ic_flags |= IEEE80211_F_DROPUNENC;
break;
case IEEE80211_WEP_MIXED:
ic->ic_flags |= IEEE80211_F_PRIVACY;
ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
break;
}
error = ENETRESET;
break;
case IEEE80211_IOC_WEPKEY:
kid = (u_int) ireq->i_val;
if (kid >= IEEE80211_WEP_NKID)
return EINVAL;
k = &ic->ic_nw_keys[kid];
if (ireq->i_len == 0) {
/* zero-len =>'s delete any existing key */
(void) ieee80211_crypto_delkey(ic, k);
break;
}
if (ireq->i_len > sizeof(tmpkey))
return EINVAL;
memset(tmpkey, 0, sizeof(tmpkey));
error = copyin(ireq->i_data, tmpkey, ireq->i_len);
if (error)
break;
ieee80211_key_update_begin(ic);
k->wk_keyix = kid; /* NB: force fixed key id */
if (ieee80211_crypto_newkey(ic, IEEE80211_CIPHER_WEP,
IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV, k)) {
k->wk_keylen = ireq->i_len;
memcpy(k->wk_key, tmpkey, sizeof(tmpkey));
if (!ieee80211_crypto_setkey(ic, k, ic->ic_myaddr))
error = EINVAL;
} else
error = EINVAL;
ieee80211_key_update_end(ic);
if (!error) /* NB: for compatibility */
error = ENETRESET;
break;
case IEEE80211_IOC_WEPTXKEY:
kid = (u_int) ireq->i_val;
if (kid >= IEEE80211_WEP_NKID &&
(u_int16_t) kid != IEEE80211_KEYIX_NONE)
return EINVAL;
ic->ic_def_txkey = kid;
error = ENETRESET; /* push to hardware */
break;
case IEEE80211_IOC_AUTHMODE:
switch (ireq->i_val) {
case IEEE80211_AUTH_WPA:
case IEEE80211_AUTH_8021X: /* 802.1x */
case IEEE80211_AUTH_OPEN: /* open */
case IEEE80211_AUTH_SHARED: /* shared-key */
case IEEE80211_AUTH_AUTO: /* auto */
auth = ieee80211_authenticator_get(ireq->i_val);
if (auth == NULL)
return EINVAL;
break;
default:
return EINVAL;
}
switch (ireq->i_val) {
case IEEE80211_AUTH_WPA: /* WPA w/ 802.1x */
ic->ic_flags |= IEEE80211_F_PRIVACY;
ireq->i_val = IEEE80211_AUTH_8021X;
break;
case IEEE80211_AUTH_OPEN: /* open */
ic->ic_flags &= ~(IEEE80211_F_WPA|IEEE80211_F_PRIVACY);
break;
case IEEE80211_AUTH_SHARED: /* shared-key */
case IEEE80211_AUTH_8021X: /* 802.1x */
ic->ic_flags &= ~IEEE80211_F_WPA;
/* both require a key so mark the PRIVACY capability */
ic->ic_flags |= IEEE80211_F_PRIVACY;
break;
case IEEE80211_AUTH_AUTO: /* auto */
ic->ic_flags &= ~IEEE80211_F_WPA;
/* XXX PRIVACY handling? */
/* XXX what's the right way to do this? */
break;
}
/* NB: authenticator attach/detach happens on state change */
ic->ic_bss->ni_authmode = ireq->i_val;
/* XXX mixed/mode/usage? */
ic->ic_auth = auth;
error = ENETRESET;
break;
case IEEE80211_IOC_CHANNEL:
/* XXX 0xffff overflows 16-bit signed */
if (ireq->i_val == 0 ||
ireq->i_val == (int16_t) IEEE80211_CHAN_ANY)
ic->ic_des_chan = IEEE80211_CHAN_ANYC;
else if ((u_int) ireq->i_val > IEEE80211_CHAN_MAX ||
isclr(ic->ic_chan_active, ireq->i_val)) {
return EINVAL;
} else
ic->ic_ibss_chan = ic->ic_des_chan =
&ic->ic_channels[ireq->i_val];
switch (ic->ic_state) {
case IEEE80211_S_INIT:
case IEEE80211_S_SCAN:
error = ENETRESET;
break;
default:
/*
* If the desired channel has changed (to something
* other than any) and we're not already scanning,
* then kick the state machine.
*/
if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
ic->ic_bss->ni_chan != ic->ic_des_chan &&
(ic->ic_flags & IEEE80211_F_SCAN) == 0)
error = ENETRESET;
break;
}
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if (IS_UP(ic)) {
/*
* Monitor mode can switch directly.
*/
if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
ic->ic_curchan = ic->ic_des_chan;
error = ic->ic_reset(ic->ic_ifp);
} else
error = 0;
}
break;
case IEEE80211_IOC_POWERSAVE:
switch (ireq->i_val) {
case IEEE80211_POWERSAVE_OFF:
if (ic->ic_flags & IEEE80211_F_PMGTON) {
ic->ic_flags &= ~IEEE80211_F_PMGTON;
error = ENETRESET;
}
break;
case IEEE80211_POWERSAVE_ON:
if ((ic->ic_caps & IEEE80211_C_PMGT) == 0)
error = EINVAL;
else if ((ic->ic_flags & IEEE80211_F_PMGTON) == 0) {
ic->ic_flags |= IEEE80211_F_PMGTON;
error = ENETRESET;
}
break;
default:
error = EINVAL;
break;
}
break;
case IEEE80211_IOC_POWERSAVESLEEP:
if (ireq->i_val < 0)
return EINVAL;
ic->ic_lintval = ireq->i_val;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case IEEE80211_IOC_RTSTHRESHOLD:
if (!(IEEE80211_RTS_MIN <= ireq->i_val &&
ireq->i_val <= IEEE80211_RTS_MAX))
return EINVAL;
ic->ic_rtsthreshold = ireq->i_val;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case IEEE80211_IOC_PROTMODE:
if (ireq->i_val > IEEE80211_PROT_RTSCTS)
return EINVAL;
ic->ic_protmode = ireq->i_val;
/* NB: if not operating in 11g this can wait */
if (ic->ic_curmode == IEEE80211_MODE_11G)
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case IEEE80211_IOC_TXPOWER:
if ((ic->ic_caps & IEEE80211_C_TXPMGT) == 0)
return EINVAL;
if (!(IEEE80211_TXPOWER_MIN < ireq->i_val &&
ireq->i_val < IEEE80211_TXPOWER_MAX))
return EINVAL;
ic->ic_txpowlimit = ireq->i_val;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
case IEEE80211_IOC_ROAMING:
if (!(IEEE80211_ROAMING_DEVICE <= ireq->i_val &&
ireq->i_val <= IEEE80211_ROAMING_MANUAL))
return EINVAL;
ic->ic_roaming = ireq->i_val;
/* XXXX reset? */
break;
case IEEE80211_IOC_PRIVACY:
if (ireq->i_val) {
/* XXX check for key state? */
ic->ic_flags |= IEEE80211_F_PRIVACY;
} else
ic->ic_flags &= ~IEEE80211_F_PRIVACY;
break;
case IEEE80211_IOC_DROPUNENCRYPTED:
if (ireq->i_val)
ic->ic_flags |= IEEE80211_F_DROPUNENC;
else
ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
break;
case IEEE80211_IOC_WPAKEY:
error = ieee80211_ioctl_setkey(ic, ireq);
break;
case IEEE80211_IOC_DELKEY:
error = ieee80211_ioctl_delkey(ic, ireq);
break;
case IEEE80211_IOC_MLME:
error = ieee80211_ioctl_setmlme(ic, ireq);
break;
case IEEE80211_IOC_OPTIE:
error = ieee80211_ioctl_setoptie(ic, ireq);
break;
case IEEE80211_IOC_COUNTERMEASURES:
if (ireq->i_val) {
if ((ic->ic_flags & IEEE80211_F_WPA) == 0)
return EINVAL;
ic->ic_flags |= IEEE80211_F_COUNTERM;
} else
ic->ic_flags &= ~IEEE80211_F_COUNTERM;
break;
case IEEE80211_IOC_WPA:
if (ireq->i_val > 3)
return EINVAL;
/* XXX verify ciphers available */
ic->ic_flags &= ~IEEE80211_F_WPA;
switch (ireq->i_val) {
case 1:
ic->ic_flags |= IEEE80211_F_WPA1;
break;
case 2:
ic->ic_flags |= IEEE80211_F_WPA2;
break;
case 3:
ic->ic_flags |= IEEE80211_F_WPA1 | IEEE80211_F_WPA2;
break;
}
error = ENETRESET; /* XXX? */
break;
case IEEE80211_IOC_WME:
if (ireq->i_val) {
if ((ic->ic_caps & IEEE80211_C_WME) == 0)
return EINVAL;
ic->ic_flags |= IEEE80211_F_WME;
} else
ic->ic_flags &= ~IEEE80211_F_WME;
error = ENETRESET; /* XXX maybe not for station? */
break;
case IEEE80211_IOC_HIDESSID:
if (ireq->i_val)
ic->ic_flags |= IEEE80211_F_HIDESSID;
else
ic->ic_flags &= ~IEEE80211_F_HIDESSID;
error = ENETRESET;
break;
case IEEE80211_IOC_APBRIDGE:
if (ireq->i_val == 0)
ic->ic_flags |= IEEE80211_F_NOBRIDGE;
else
ic->ic_flags &= ~IEEE80211_F_NOBRIDGE;
break;
case IEEE80211_IOC_MCASTCIPHER:
if ((ic->ic_caps & cipher2cap(ireq->i_val)) == 0 &&
!ieee80211_crypto_available(ireq->i_val))
return EINVAL;
rsn->rsn_mcastcipher = ireq->i_val;
error = (ic->ic_flags & IEEE80211_F_WPA) ? ENETRESET : 0;
break;
case IEEE80211_IOC_MCASTKEYLEN:
if (!(0 < ireq->i_val && ireq->i_val < IEEE80211_KEYBUF_SIZE))
return EINVAL;
/* XXX no way to verify driver capability */
rsn->rsn_mcastkeylen = ireq->i_val;
error = (ic->ic_flags & IEEE80211_F_WPA) ? ENETRESET : 0;
break;
case IEEE80211_IOC_UCASTCIPHERS:
/*
* Convert user-specified cipher set to the set
* we can support (via hardware or software).
* NB: this logic intentionally ignores unknown and
* unsupported ciphers so folks can specify 0xff or
* similar and get all available ciphers.
*/
caps = 0;
for (j = 1; j < 32; j++) /* NB: skip WEP */
if ((ireq->i_val & (1<<j)) &&
((ic->ic_caps & cipher2cap(j)) ||
ieee80211_crypto_available(j)))
caps |= 1<<j;
if (caps == 0) /* nothing available */
return EINVAL;
/* XXX verify ciphers ok for unicast use? */
/* XXX disallow if running as it'll have no effect */
rsn->rsn_ucastcipherset = caps;
error = (ic->ic_flags & IEEE80211_F_WPA) ? ENETRESET : 0;
break;
case IEEE80211_IOC_UCASTCIPHER:
if ((rsn->rsn_ucastcipherset & cipher2cap(ireq->i_val)) == 0)
return EINVAL;
rsn->rsn_ucastcipher = ireq->i_val;
break;
case IEEE80211_IOC_UCASTKEYLEN:
if (!(0 < ireq->i_val && ireq->i_val < IEEE80211_KEYBUF_SIZE))
return EINVAL;
/* XXX no way to verify driver capability */
rsn->rsn_ucastkeylen = ireq->i_val;
break;
case IEEE80211_IOC_DRIVER_CAPS:
/* NB: for testing */
ic->ic_caps = (((u_int16_t) ireq->i_val) << 16) |
((u_int16_t) ireq->i_len);
break;
case IEEE80211_IOC_KEYMGTALGS:
/* XXX check */
rsn->rsn_keymgmtset = ireq->i_val;
error = (ic->ic_flags & IEEE80211_F_WPA) ? ENETRESET : 0;
break;
case IEEE80211_IOC_RSNCAPS:
/* XXX check */
rsn->rsn_caps = ireq->i_val;
error = (ic->ic_flags & IEEE80211_F_WPA) ? ENETRESET : 0;
break;
case IEEE80211_IOC_BSSID:
if (ireq->i_len != sizeof(tmpbssid))
return EINVAL;
error = copyin(ireq->i_data, tmpbssid, ireq->i_len);
if (error)
break;
IEEE80211_ADDR_COPY(ic->ic_des_bssid, tmpbssid);
if (IEEE80211_ADDR_EQ(ic->ic_des_bssid, zerobssid))
ic->ic_flags &= ~IEEE80211_F_DESBSSID;
else
ic->ic_flags |= IEEE80211_F_DESBSSID;
error = ENETRESET;
break;
case IEEE80211_IOC_CHANLIST:
error = ieee80211_ioctl_setchanlist(ic, ireq);
break;
case IEEE80211_IOC_SCAN_REQ:
if (ic->ic_opmode == IEEE80211_M_HOSTAP) /* XXX ignore */
break;
error = ieee80211_setupscan(ic, ic->ic_chan_avail);
if (error == 0) /* XXX background scan */
error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
case IEEE80211_IOC_ADDMAC:
case IEEE80211_IOC_DELMAC:
error = ieee80211_ioctl_macmac(ic, ireq);
break;
case IEEE80211_IOC_MACCMD:
error = ieee80211_ioctl_setmaccmd(ic, ireq);
break;
case IEEE80211_IOC_STA_TXPOW:
error = ieee80211_ioctl_setstatxpow(ic, ireq);
break;
case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */
case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */
case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */
case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */
case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */
case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (bss only) */
error = ieee80211_ioctl_setwmeparam(ic, ireq);
break;
case IEEE80211_IOC_DTIM_PERIOD:
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_IBSS)
return EINVAL;
if (IEEE80211_DTIM_MIN <= ireq->i_val &&
ireq->i_val <= IEEE80211_DTIM_MAX) {
ic->ic_dtim_period = ireq->i_val;
error = ENETRESET; /* requires restart */
} else
error = EINVAL;
break;
case IEEE80211_IOC_BEACON_INTERVAL:
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
ic->ic_opmode != IEEE80211_M_IBSS)
return EINVAL;
if (IEEE80211_BINTVAL_MIN <= ireq->i_val &&
ireq->i_val <= IEEE80211_BINTVAL_MAX) {
ic->ic_bintval = ireq->i_val;
error = ENETRESET; /* requires restart */
} else
error = EINVAL;
break;
case IEEE80211_IOC_PUREG:
if (ireq->i_val)
ic->ic_flags |= IEEE80211_F_PUREG;
else
ic->ic_flags &= ~IEEE80211_F_PUREG;
/* NB: reset only if we're operating on an 11g channel */
if (ic->ic_curmode == IEEE80211_MODE_11G)
error = ENETRESET;
break;
case IEEE80211_IOC_MCAST_RATE:
ic->ic_mcast_rate = ireq->i_val & IEEE80211_RATE_VAL;
break;
case IEEE80211_IOC_FRAGTHRESHOLD:
if ((ic->ic_caps & IEEE80211_C_TXFRAG) == 0 &&
ireq->i_val != IEEE80211_FRAG_MAX)
return EINVAL;
if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
ireq->i_val <= IEEE80211_FRAG_MAX))
return EINVAL;
ic->ic_fragthreshold = ireq->i_val;
error = IS_UP(ic) ? ic->ic_reset(ic->ic_ifp) : 0;
break;
default:
error = EINVAL;
break;
}
if (error == ENETRESET && !IS_UP_AUTO(ic))
error = 0;
return error;
}
int
ieee80211_ioctl(struct ieee80211com *ic, u_long cmd, caddr_t data)
{
struct ifnet *ifp = ic->ic_ifp;
int error = 0;
struct ifreq *ifr;
struct ifaddr *ifa; /* XXX */
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, (struct ifreq *) data,
&ic->ic_media, cmd);
break;
case SIOCG80211:
error = ieee80211_ioctl_get80211(ic, cmd,
(struct ieee80211req *) data);
break;
case SIOCS80211:
error = suser(curthread);
if (error == 0)
error = ieee80211_ioctl_set80211(ic, cmd,
(struct ieee80211req *) data);
break;
case SIOCGIFGENERIC:
error = ieee80211_cfgget(ic, cmd, data);
break;
case SIOCSIFGENERIC:
error = suser(curthread);
if (error)
break;
error = ieee80211_cfgset(ic, cmd, data);
break;
case SIOCG80211STATS:
ifr = (struct ifreq *)data;
copyout(&ic->ic_stats, ifr->ifr_data, sizeof (ic->ic_stats));
break;
case SIOCSIFMTU:
ifr = (struct ifreq *)data;
if (!(IEEE80211_MTU_MIN <= ifr->ifr_mtu &&
ifr->ifr_mtu <= IEEE80211_MTU_MAX))
error = EINVAL;
else
ifp->if_mtu = ifr->ifr_mtu;
break;
case SIOCSIFADDR:
/*
* XXX Handle this directly so we can supress if_init calls.
* XXX This should be done in ether_ioctl but for the moment
* XXX there are too many other parts of the system that
* XXX set IFF_UP and so supress if_init being called when
* XXX it should be.
*/
ifa = (struct ifaddr *) data;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
if ((ifp->if_flags & IFF_UP) == 0) {
ifp->if_flags |= IFF_UP;
ifp->if_init(ifp->if_softc);
}
arp_ifinit(ifp, ifa);
break;
#endif
#ifdef IPX
/*
* XXX - This code is probably wrong,
* but has been copied many times.
*/
case AF_IPX: {
struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host = *(union ipx_host *)
IF_LLADDR(ifp);
else
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) IF_LLADDR(ifp),
ETHER_ADDR_LEN);
/* fall thru... */
}
#endif
default:
if ((ifp->if_flags & IFF_UP) == 0) {
ifp->if_flags |= IFF_UP;
ifp->if_init(ifp->if_softc);
}
break;
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return error;
}