1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-23 11:18:54 +00:00
freebsd/sys/i386/isa/if_ed.c

2882 lines
71 KiB
C
Raw Normal View History

/*
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by David Greenman.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: if_ed.c,v 1.90 1995/12/10 13:38:37 phk Exp $
*/
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters. By David Greenman, 29-April-1993
*
* Currently supports the Western Digital/SMC 8003 and 8013 series,
* the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
* and a variety of similar clones.
*
*/
#include "ed.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/devconf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef IPX
#include <netipx/ipx.h>
#include <netipx/ipx_if.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/clock.h>
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include <i386/isa/if_edreg.h>
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct arpcom arpcom; /* ethernet common */
char *type_str; /* pointer to type string */
u_char vendor; /* interface vendor */
u_char type; /* interface type code */
1995-10-10 09:52:55 +00:00
u_char gone; /* HW missing, presumed having a good time */
u_short asic_addr; /* ASIC I/O bus address */
u_short nic_addr; /* NIC (DS8390) I/O bus address */
/*
* The following 'proto' variable is part of a work-around for 8013EBT asics
* being write-only. It's sort of a prototype/shadow of the real thing.
*/
u_char wd_laar_proto;
u_char cr_proto;
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
int is790; /* set by the probe code if the card is 790
* based */
caddr_t bpf; /* BPF "magic cookie" */
caddr_t mem_start; /* NIC memory start address */
caddr_t mem_end; /* NIC memory end address */
u_long mem_size; /* total NIC memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
u_char mem_shared; /* NIC memory is shared with host */
u_char xmit_busy; /* transmitter is busy */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of TX buffers currently in-use */
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
struct kern_devconf kdc; /* kernel configuration database info */
};
static struct ed_softc ed_softc[NED];
static int ed_attach __P((struct isa_device *));
static void ed_init __P((struct ifnet *));
static int ed_ioctl __P((struct ifnet *, int, caddr_t));
static int ed_probe __P((struct isa_device *));
static void ed_start __P((struct ifnet *));
static void ed_reset __P((struct ifnet *));
static void ed_watchdog __P((struct ifnet *));
static void ed_stop __P((struct ed_softc *));
static int ed_probe_generic8390 __P((struct ed_softc *));
static int ed_probe_WD80x3 __P((struct isa_device *));
static int ed_probe_3Com __P((struct isa_device *));
static int ed_probe_Novell __P((struct isa_device *));
static int ed_probe_pccard __P((struct isa_device *, u_char *));
1995-10-31 18:41:49 +00:00
static void ds_getmcaf __P((struct ed_softc *, u_long *));
static void ed_get_packet(struct ed_softc *, char *, /* u_short */ int, int);
static void ed_rint __P((struct ed_softc *));
static void ed_xmit __P((struct ed_softc *));
static char * ed_ring_copy __P((struct ed_softc *, char *, char *,
/* u_short */ int));
static void ed_pio_readmem __P((struct ed_softc *, /* u_short */ int,
unsigned char *, /* u_short */ int));
static void ed_pio_writemem __P((struct ed_softc *, char *,
/* u_short */ int, /* u_short */ int));
static u_short ed_pio_write_mbufs __P((struct ed_softc *, struct mbuf *,
/* u_short */ int));
static void ed_setrcr(struct ed_softc *);
1995-10-31 18:41:49 +00:00
static u_long ds_crc(u_char *ep);
1995-10-10 09:52:55 +00:00
#include "crd.h"
#if NCRD > 0
#include <sys/select.h>
#include <pccard/card.h>
#include <pccard/driver.h>
1995-10-10 09:52:55 +00:00
#include <pccard/slot.h>
/*
* PC-Card (PCMCIA) specific code.
*/
static int card_intr(struct pccard_dev *); /* Interrupt handler */
1995-10-31 18:41:49 +00:00
static void edunload(struct pccard_dev *); /* Disable driver */
static void edsuspend(struct pccard_dev *); /* Suspend driver */
1995-10-10 09:52:55 +00:00
static int edinit(struct pccard_dev *, int); /* init device */
static struct pccard_drv ed_info =
{
"ed",
card_intr,
edunload,
edsuspend,
edinit,
0, /* Attributes - presently unused */
&net_imask /* Interrupt mask for device */
/* This should also include net_imask?? */
};
/*
* Called when a power down is wanted. Shuts down the
* device and configures the device as unavailable (but
* still loaded...). A resume is done by calling
* edinit with first=0. This is called when the user suspends
* the system, or the APM code suspends the system.
*/
1995-10-31 18:41:49 +00:00
static void
1995-10-10 09:52:55 +00:00
edsuspend(struct pccard_dev *dp)
{
printf("ed%d: suspending\n", dp->isahd.id_unit);
}
/*
* Initialize the device - called from Slot manager.
* if first is set, then initially check for
* the device's existence before initialising it.
* Once initialised, the device table may be set up.
*/
1995-10-31 18:41:49 +00:00
static int
1995-10-10 09:52:55 +00:00
edinit(struct pccard_dev *dp, int first)
{
struct ed_softc *sc = &ed_softc[dp->isahd.id_unit];
/*
* validate unit number.
*/
if (first) {
if (dp->isahd.id_unit >= NED)
return(ENODEV);
/*
* Probe the device. If a value is returned, the
* device was found at the location.
*/
sc->gone = 0;
if (ed_probe_pccard(&dp->isahd,dp->misc)==0) {
return(ENXIO);
}
if (ed_attach(&dp->isahd)==0) {
return(ENXIO);
}
}
/*
* XXX TODO:
* If it was already inited before, the device structure
* should be already initialised. Here we should
* reset (and possibly restart) the hardware, but
* I am not sure of the best way to do this...
*/
return(0);
}
/*
* edunload - unload the driver and clear the table.
* XXX TODO:
* This is called usually when the card is ejected, but
* can be caused by the modunload of a controller driver.
* The idea is reset the driver's view of the device
* and ensure that any driver entry points such as
* read and write do not hang.
*/
1995-10-31 18:41:49 +00:00
static void
1995-10-10 09:52:55 +00:00
edunload(struct pccard_dev *dp)
{
struct ed_softc *sc = &ed_softc[dp->isahd.id_unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
if (sc->kdc.kdc_state == DC_UNCONFIGURED) {
printf("ed%d: already unloaded\n", dp->isahd.id_unit);
return;
}
1995-10-10 09:52:55 +00:00
sc->kdc.kdc_state = DC_UNCONFIGURED;
ifp->if_flags &= ~IFF_RUNNING;
if_down(ifp);
1995-10-10 09:52:55 +00:00
sc->gone = 1;
printf("ed%d: unload\n", dp->isahd.id_unit);
}
/*
* card_intr - Shared interrupt called from
* front end of PC-Card handler.
*/
static int
card_intr(struct pccard_dev *dp)
{
edintr(dp->isahd.id_unit);
return(1);
}
#endif /* NCRD > 0 */
struct isa_driver eddriver = {
ed_probe,
ed_attach,
"ed",
1 /* We are ultra sensitive */
};
/*
* Interrupt conversion table for WD/SMC ASIC/83C584
* (IRQ* are defined in icu.h)
*/
static unsigned short ed_intr_mask[] = {
IRQ9,
IRQ3,
IRQ5,
IRQ7,
IRQ10,
IRQ11,
IRQ15,
IRQ4
};
/*
* Interrupt conversion table for 83C790
*/
static unsigned short ed_790_intr_mask[] = {
0,
IRQ9,
IRQ3,
IRQ5,
IRQ7,
IRQ10,
IRQ11,
IRQ15
};
#define ETHER_MIN_LEN 60
#define ETHER_MAX_LEN 1514
#define ETHER_ADDR_LEN 6
#define ETHER_HDR_SIZE 14
static struct kern_devconf kdc_ed_template = {
0, 0, 0, /* filled in by dev_attach */
"ed", 0, { MDDT_ISA, 0, "net" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* parent */
0, /* parentdata */
DC_UNCONFIGURED, /* state */
"", /* description */
DC_CLS_NETIF /* class */
};
static inline void
ed_registerdev(struct isa_device *id, const char *descr)
{
struct kern_devconf *kdc = &ed_softc[id->id_unit].kdc;
*kdc = kdc_ed_template;
kdc->kdc_unit = id->id_unit;
kdc->kdc_parentdata = id;
kdc->kdc_description = descr;
dev_attach(kdc);
}
/*
* Determine if the device is present
*
* on entry:
* a pointer to an isa_device struct
* on exit:
* NULL if device not found
* or # of i/o addresses used (if found)
*/
static int
ed_probe(isa_dev)
struct isa_device *isa_dev;
{
int nports;
1995-10-10 09:52:55 +00:00
#if NCRD > 0
/*
* If PC-Card probe required, then register driver with
* slot manager.
*/
pccard_add_driver(&ed_info);
#endif /* NCRD > 0 */
#ifndef DEV_LKM
ed_registerdev(isa_dev, "Ethernet adapter");
#endif /* not DEV_LKM */
nports = ed_probe_WD80x3(isa_dev);
if (nports)
return (nports);
nports = ed_probe_3Com(isa_dev);
if (nports)
return (nports);
nports = ed_probe_Novell(isa_dev);
if (nports)
return (nports);
return (0);
}
/*
* Generic probe routine for testing for the existance of a DS8390.
* Must be called after the NIC has just been reset. This routine
* works by looking at certain register values that are guaranteed
* to be initialized a certain way after power-up or reset. Seems
* not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at
* the others would require changing register pages (which would be
* intrusive if this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
static int
ed_probe_generic8390(sc)
struct ed_softc *sc;
{
if ((inb(sc->nic_addr + ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
/*
* Probe and vendor-specific initialization routine for SMC/WD80x3 boards
*/
static int
ed_probe_WD80x3(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
int i;
u_int memsize;
u_char iptr, isa16bit, sum;
sc->asic_addr = isa_dev->id_iobase;
sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET;
sc->is790 = 0;
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW);
DELAY(10000);
#endif
/*
* Attempt to do a checksum over the station address PROM. If it
* fails, it's probably not a SMC/WD board. There is a problem with
* this, though: some clone WD boards don't pass the checksum test.
* Danpex boards for one.
*/
for (sum = 0, i = 0; i < 8; ++i)
sum += inb(sc->asic_addr + ED_WD_PROM + i);
if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
/*
* Checksum is invalid. This often happens with cheap WD8003E
* clones. In this case, the checksum byte (the eighth byte)
* seems to always be zero.
*/
if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
inb(sc->asic_addr + ED_WD_PROM + 7) != 0)
return (0);
}
/* reset card to force it into a known state. */
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
#else
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST);
#endif
DELAY(100);
outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST);
/* wait in the case this card is reading it's EEROM */
DELAY(5000);
sc->vendor = ED_VENDOR_WD_SMC;
sc->type = inb(sc->asic_addr + ED_WD_CARD_ID);
/*
* Set initial values for width/size.
*/
memsize = 8192;
isa16bit = 0;
switch (sc->type) {
case ED_TYPE_WD8003S:
sc->type_str = "WD8003S";
sc->kdc.kdc_description = "Ethernet adapter: WD 8003S";
break;
case ED_TYPE_WD8003E:
sc->type_str = "WD8003E";
sc->kdc.kdc_description = "Ethernet adapter: WD 8003E";
break;
case ED_TYPE_WD8003EB:
sc->type_str = "WD8003EB";
sc->kdc.kdc_description = "Ethernet adapter: WD 8003EB";
break;
1994-02-02 02:24:42 +00:00
case ED_TYPE_WD8003W:
sc->type_str = "WD8003W";
sc->kdc.kdc_description = "Ethernet adapter: WD 8003W";
1994-02-02 02:24:42 +00:00
break;
case ED_TYPE_WD8013EBT:
sc->type_str = "WD8013EBT";
sc->kdc.kdc_description = "Ethernet adapter: WD 8013EBT";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013W:
sc->type_str = "WD8013W";
sc->kdc.kdc_description = "Ethernet adapter: WD 8013W";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EP: /* also WD8003EP */
if (inb(sc->asic_addr + ED_WD_ICR)
& ED_WD_ICR_16BIT) {
isa16bit = 1;
memsize = 16384;
sc->type_str = "WD8013EP";
1995-05-30 08:16:23 +00:00
sc->kdc.kdc_description =
"Ethernet adapter: WD 8013EP";
} else {
sc->type_str = "WD8003EP";
1995-05-30 08:16:23 +00:00
sc->kdc.kdc_description =
"Ethernet adapter: WD 8003EP";
}
break;
case ED_TYPE_WD8013WC:
sc->type_str = "WD8013WC";
sc->kdc.kdc_description = "Ethernet adapter: WD 8013WC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EBP:
sc->type_str = "WD8013EBP";
sc->kdc.kdc_description = "Ethernet adapter: WD 8013EBP";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EPC:
sc->type_str = "WD8013EPC";
sc->kdc.kdc_description = "Ethernet adapter: WD 8013EPC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_SMC8216C: /* 8216 has 16K shared mem -- 8416 has 8K */
case ED_TYPE_SMC8216T:
if (sc->type == ED_TYPE_SMC8216C) {
sc->type_str = "SMC8216/SMC8216C";
sc->kdc.kdc_description =
"Ethernet adapter: SMC 8216 or 8216C";
} else {
sc->type_str = "SMC8216T";
sc->kdc.kdc_description =
"Ethernet adapter: SMC 8216T";
}
outb(sc->asic_addr + ED_WD790_HWR,
inb(sc->asic_addr + ED_WD790_HWR) | ED_WD790_HWR_SWH);
switch (inb(sc->asic_addr + ED_WD790_RAR) & ED_WD790_RAR_SZ64) {
case ED_WD790_RAR_SZ64:
memsize = 65536;
break;
case ED_WD790_RAR_SZ32:
memsize = 32768;
break;
case ED_WD790_RAR_SZ16:
memsize = 16384;
break;
case ED_WD790_RAR_SZ8:
/* 8216 has 16K shared mem -- 8416 has 8K */
if (sc->type == ED_TYPE_SMC8216C) {
sc->type_str = "SMC8416C/SMC8416BT";
sc->kdc.kdc_description =
"Ethernet adapter: SMC 8416C or 8416BT";
} else {
sc->type_str = "SMC8416T";
sc->kdc.kdc_description =
"Ethernet adapter: SMC 8416T";
}
memsize = 8192;
break;
}
outb(sc->asic_addr + ED_WD790_HWR,
inb(sc->asic_addr + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
isa16bit = 1;
sc->is790 = 1;
break;
#ifdef TOSH_ETHER
case ED_TYPE_TOSHIBA1:
sc->type_str = "Toshiba1";
sc->kdc.kdc_description = "Ethernet adapter: Toshiba1";
memsize = 32768;
isa16bit = 1;
break;
case ED_TYPE_TOSHIBA4:
sc->type_str = "Toshiba4";
sc->kdc.kdc_description = "Ethernet adapter: Toshiba4";
memsize = 32768;
isa16bit = 1;
break;
#endif
default:
sc->type_str = "";
break;
}
/*
* Make some adjustments to initial values depending on what is found
* in the ICR.
*/
if (isa16bit && (sc->type != ED_TYPE_WD8013EBT)
#ifdef TOSH_ETHER
&& (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4)
#endif
&& ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
isa16bit = 0;
memsize = 8192;
}
#if ED_DEBUG
printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
sc->type, sc->type_str, isa16bit, memsize, isa_dev->id_msize);
for (i = 0; i < 8; i++)
printf("%x -> %x\n", i, inb(sc->asic_addr + i));
#endif
/*
* Allow the user to override the autoconfiguration
*/
if (isa_dev->id_msize)
memsize = isa_dev->id_msize;
/*
* (note that if the user specifies both of the following flags that
* '8bit' mode intentionally has precedence)
*/
if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE)
isa16bit = 1;
if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE)
isa16bit = 0;
/*
* If possible, get the assigned interrupt number from the card and
* use it.
*/
if ((sc->type & ED_WD_SOFTCONFIG) && (!sc->is790)) {
/*
* Assemble together the encoded interrupt number.
*/
iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) |
((inb(isa_dev->id_iobase + ED_WD_IRR) &
(ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
/*
* If no interrupt specified (or "?"), use what the board tells us.
*/
if (isa_dev->id_irq <= 0)
isa_dev->id_irq = ed_intr_mask[iptr];
/*
* Enable the interrupt.
*/
outb(isa_dev->id_iobase + ED_WD_IRR,
inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN);
}
if (sc->is790) {
outb(isa_dev->id_iobase + ED_WD790_HWR,
inb(isa_dev->id_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH);
iptr = (((inb(isa_dev->id_iobase + ED_WD790_GCR) & ED_WD790_GCR_IR2) >> 4) |
(inb(isa_dev->id_iobase + ED_WD790_GCR) &
(ED_WD790_GCR_IR1 | ED_WD790_GCR_IR0)) >> 2);
outb(isa_dev->id_iobase + ED_WD790_HWR,
inb(isa_dev->id_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
/*
* If no interrupt specified (or "?"), use what the board tells us.
*/
if (isa_dev->id_irq <= 0)
isa_dev->id_irq = ed_790_intr_mask[iptr];
/*
* Enable interrupts.
*/
outb(isa_dev->id_iobase + ED_WD790_ICR,
inb(isa_dev->id_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL);
}
if (isa_dev->id_irq <= 0) {
printf("ed%d: %s cards don't support auto-detected/assigned interrupts.\n",
isa_dev->id_unit, sc->type_str);
return (0);
}
sc->isa16bit = isa16bit;
sc->mem_shared = 1;
isa_dev->id_msize = memsize;
sc->mem_start = (caddr_t) isa_dev->id_maddr;
/*
* allocate one xmit buffer if < 16k, two buffers otherwise
*/
1995-10-10 09:52:55 +00:00
if ((memsize < 16384) ||
(isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) {
sc->txb_cnt = 1;
} else {
sc->txb_cnt = 2;
}
1995-10-10 09:52:55 +00:00
sc->tx_page_start = ED_WD_PAGE_OFFSET;
sc->rec_page_start = ED_WD_PAGE_OFFSET + ED_TXBUF_SIZE * sc->txb_cnt;
sc->rec_page_stop = ED_WD_PAGE_OFFSET + memsize / ED_PAGE_SIZE;
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * sc->rec_page_start);
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* Get station address from on-board ROM
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i);
/*
* Set upper address bits and 8/16 bit access to shared memory
*/
if (isa16bit) {
if (sc->is790) {
sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR);
outb(sc->asic_addr + ED_WD_LAAR, ED_WD_LAAR_M16EN);
} else {
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto =
ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN |
((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI)));
}
} else {
if (((sc->type & ED_WD_SOFTCONFIG) ||
#ifdef TOSH_ETHER
(sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) ||
#endif
(sc->type == ED_TYPE_WD8013EBT)) && (!sc->is790)) {
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto =
((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI)));
}
}
/*
* Set address and enable interface shared memory.
*/
if (!sc->is790) {
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f));
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW);
#else
outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) &
ED_WD_MSR_ADDR) | ED_WD_MSR_MENB);
#endif
sc->cr_proto = ED_CR_RD2;
} else {
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
outb(sc->asic_addr + ED_WD790_HWR, (inb(sc->asic_addr + ED_WD790_HWR) | ED_WD790_HWR_SWH));
outb(sc->asic_addr + ED_WD790_RAR, ((kvtop(sc->mem_start) >> 13) & 0x0f) |
((kvtop(sc->mem_start) >> 11) & 0x40) |
(inb(sc->asic_addr + ED_WD790_RAR) & 0xb0));
outb(sc->asic_addr + ED_WD790_HWR, (inb(sc->asic_addr + ED_WD790_HWR) & ~ED_WD790_HWR_SWH));
sc->cr_proto = 0;
}
#if 0
printf("starting memory performance test at 0x%x, size %d...\n",
sc->mem_start, memsize*16384);
for (i = 0; i < 16384; i++)
bzero(sc->mem_start, memsize);
printf("***DONE***\n");
#endif
/*
* Now zero memory and verify that it is clear
*/
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i) {
if (sc->mem_start[i]) {
printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i));
/*
* Disable 16 bit access to shared memory
*/
if (isa16bit) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
return (0);
}
}
/*
* Disable 16bit access to shared memory - we leave it
* disabled so that 1) machines reboot properly when the board
* is set 16 bit mode and there are conflicting 8bit
* devices/ROMS in the same 128k address space as this boards
* shared memory. and 2) so that other 8 bit devices with
* shared memory can be used in this 128k region, too.
*/
if (isa16bit) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
return (ED_WD_IO_PORTS);
}
/*
* Probe and vendor-specific initialization routine for 3Com 3c503 boards
*/
static int
ed_probe_3Com(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
int i;
u_int memsize;
u_char isa16bit;
sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET;
sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET;
/*
* Verify that the kernel configured I/O address matches the board
* configured address
*/
switch (inb(sc->asic_addr + ED_3COM_BCFR)) {
case ED_3COM_BCFR_300:
if (isa_dev->id_iobase != 0x300)
return (0);
break;
case ED_3COM_BCFR_310:
if (isa_dev->id_iobase != 0x310)
return (0);
break;
case ED_3COM_BCFR_330:
if (isa_dev->id_iobase != 0x330)
return (0);
break;
case ED_3COM_BCFR_350:
if (isa_dev->id_iobase != 0x350)
return (0);
break;
case ED_3COM_BCFR_250:
if (isa_dev->id_iobase != 0x250)
return (0);
break;
case ED_3COM_BCFR_280:
if (isa_dev->id_iobase != 0x280)
return (0);
break;
case ED_3COM_BCFR_2A0:
if (isa_dev->id_iobase != 0x2a0)
return (0);
break;
case ED_3COM_BCFR_2E0:
if (isa_dev->id_iobase != 0x2e0)
return (0);
break;
default:
return (0);
}
/*
* Verify that the kernel shared memory address matches the board
* configured address.
*/
switch (inb(sc->asic_addr + ED_3COM_PCFR)) {
case ED_3COM_PCFR_DC000:
if (kvtop(isa_dev->id_maddr) != 0xdc000)
return (0);
break;
case ED_3COM_PCFR_D8000:
if (kvtop(isa_dev->id_maddr) != 0xd8000)
return (0);
break;
case ED_3COM_PCFR_CC000:
if (kvtop(isa_dev->id_maddr) != 0xcc000)
return (0);
break;
case ED_3COM_PCFR_C8000:
if (kvtop(isa_dev->id_maddr) != 0xc8000)
return (0);
break;
default:
return (0);
}
/*
* Reset NIC and ASIC. Enable on-board transceiver throughout reset
* sequence because it'll lock up if the cable isn't connected if we
* don't.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
/*
* Wait for a while, then un-reset it
*/
DELAY(50);
/*
* The 3Com ASIC defaults to rather strange settings for the CR after
* a reset - it's important to set it again after the following outb
* (this is done when we map the PROM below).
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/*
* Wait a bit for the NIC to recover from the reset
*/
DELAY(5000);
sc->vendor = ED_VENDOR_3COM;
sc->type_str = "3c503";
sc->kdc.kdc_description = "Ethernet adapter: 3c503";
sc->mem_shared = 1;
sc->cr_proto = ED_CR_RD2;
/*
* Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
* to it.
*/
memsize = 8192;
/*
* Get station address from on-board ROM
*/
/*
* First, map ethernet address PROM over the top of where the NIC
* registers normally appear.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->arpcom.ac_enaddr[i] = inb(sc->nic_addr + i);
/*
* Unmap PROM - select NIC registers. The proper setting of the
* tranceiver is set in ed_init so that the attach code is given a
* chance to set the default based on a compile-time config option
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/*
* Determine if this is an 8bit or 16bit board
*/
/*
* select page 0 registers
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
/*
* Attempt to clear WTS bit. If it doesn't clear, then this is a 16bit
* board.
*/
outb(sc->nic_addr + ED_P0_DCR, 0);
/*
* select page 2 registers
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP);
/*
* The 3c503 forces the WTS bit to a one if this is a 16bit board
*/
if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS)
isa16bit = 1;
else
isa16bit = 0;
/*
* select page 0 registers
*/
outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP);
sc->mem_start = (caddr_t) isa_dev->id_maddr;
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* We have an entire 8k window to put the transmit buffers on the
* 16bit boards. But since the 16bit 3c503's shared memory is only
* fast enough to overlap the loading of one full-size packet, trying
* to load more than 2 buffers can actually leave the transmitter idle
* during the load. So 2 seems the best value. (Although a mix of
* variable-sized packets might change this assumption. Nonetheless,
* we optimize for linear transfers of same-size packets.)
*/
if (isa16bit) {
if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->rec_page_stop = memsize / ED_PAGE_SIZE +
ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->mem_ring = sc->mem_start;
} else {
sc->txb_cnt = 1;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_stop = memsize / ED_PAGE_SIZE +
ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE);
}
sc->isa16bit = isa16bit;
/*
* Initialize GA page start/stop registers. Probably only needed if
* doing DMA, but what the hell.
*/
outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start);
outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop);
/*
* Set IRQ. 3c503 only allows a choice of irq 2-5.
*/
switch (isa_dev->id_irq) {
case IRQ2:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
break;
case IRQ3:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
break;
case IRQ4:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
break;
case IRQ5:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
break;
default:
printf("ed%d: Invalid irq configuration (%d) must be 2-5 for 3c503\n",
isa_dev->id_unit, ffs(isa_dev->id_irq) - 1);
return (0);
}
/*
* Initialize GA configuration register. Set bank and enable shared
* mem.
*/
outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL |
ED_3COM_GACFR_MBS0);
/*
* Initialize "Vector Pointer" registers. These gawd-awful things are
* compared to 20 bits of the address on ISA, and if they match, the
* shared memory is disabled. We set them to 0xffff0...allegedly the
* reset vector.
*/
outb(sc->asic_addr + ED_3COM_VPTR2, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR1, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR0, 0x00);
/*
* Zero memory and verify that it is clear
*/
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i)
if (sc->mem_start[i]) {
printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i));
return (0);
}
isa_dev->id_msize = memsize;
return (ED_3COM_IO_PORTS);
}
/*
* Probe and vendor-specific initialization routine for NE1000/2000 boards
*/
static int
ed_probe_Novell(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
u_int memsize, n;
u_char romdata[16], tmp;
static char test_pattern[32] = "THIS is A memory TEST pattern";
char test_buffer[32];
sc->asic_addr = isa_dev->id_iobase + ED_NOVELL_ASIC_OFFSET;
sc->nic_addr = isa_dev->id_iobase + ED_NOVELL_NIC_OFFSET;
/* XXX - do Novell-specific probe here */
/* Reset the board */
#ifdef GWETHER
outb(sc->asic_addr + ED_NOVELL_RESET, 0);
DELAY(200);
#endif /* GWETHER */
tmp = inb(sc->asic_addr + ED_NOVELL_RESET);
/*
* I don't know if this is necessary; probably cruft leftover from
* Clarkson packet driver code. Doesn't do a thing on the boards I've
* tested. -DG [note that a outb(0x84, 0) seems to work here, and is
* non-invasive...but some boards don't seem to reset and I don't have
* complete documentation on what the 'right' thing to do is...so we
* do the invasive thing for now. Yuck.]
*/
outb(sc->asic_addr + ED_NOVELL_RESET, tmp);
DELAY(5000);
/*
* This is needed because some NE clones apparently don't reset the
* NIC properly (or the NIC chip doesn't reset fully on power-up) XXX
* - this makes the probe invasive! ...Done against my better
* judgement. -DLG
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP);
DELAY(5000);
/* Make sure that we really have an 8390 based board */
if (!ed_probe_generic8390(sc))
return (0);
sc->vendor = ED_VENDOR_NOVELL;
sc->mem_shared = 0;
sc->cr_proto = ED_CR_RD2;
isa_dev->id_maddr = 0;
/*
* Test the ability to read and write to the NIC memory. This has the
* side affect of determining if this is an NE1000 or an NE2000.
*/
/*
* This prevents packets from being stored in the NIC memory when the
* readmem routine turns on the start bit in the CR.
*/
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/* Temporarily initialize DCR for byte operations */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE);
outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE);
sc->isa16bit = 0;
/*
* Write a test pattern in byte mode. If this fails, then there
* probably isn't any memory at 8k - which likely means that the board
* is an NE2000.
*/
ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
/* not an NE1000 - try NE2000 */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE);
outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE);
sc->isa16bit = 1;
/*
* Write a test pattern in word mode. If this also fails, then
* we don't know what this board is.
*/
ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)))
return (0); /* not an NE2000 either */
sc->type = ED_TYPE_NE2000;
sc->type_str = "NE2000";
sc->kdc.kdc_description = "Ethernet adapter: NE2000";
} else {
sc->type = ED_TYPE_NE1000;
sc->type_str = "NE1000";
sc->kdc.kdc_description = "Ethernet adapter: NE1000";
}
/* 8k of memory plus an additional 8k if 16bit */
memsize = 8192 + sc->isa16bit * 8192;
#if 0 /* probably not useful - NE boards only come two ways */
/* allow kernel config file overrides */
if (isa_dev->id_msize)
memsize = isa_dev->id_msize;
#endif
sc->mem_size = memsize;
/* NIC memory doesn't start at zero on an NE board */
/* The start address is tied to the bus width */
sc->mem_start = (char *) 8192 + sc->isa16bit * 8192;
sc->mem_end = sc->mem_start + memsize;
sc->tx_page_start = memsize / ED_PAGE_SIZE;
#ifdef GWETHER
{
int x, i, mstart = 0, msize = 0;
char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf0[i] = 0;
/* Clear all the memory. */
for (x = 1; x < 256; x++)
ed_pio_writemem(sc, pbuf0, x * 256, ED_PAGE_SIZE);
/* Search for the start of RAM. */
for (x = 1; x < 256; x++) {
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0) {
mstart = x * ED_PAGE_SIZE;
msize = ED_PAGE_SIZE;
break;
}
}
}
if (mstart == 0) {
printf("ed%d: Cannot find start of RAM.\n", isa_dev->id_unit);
return 0;
}
/* Search for the start of RAM. */
for (x = (mstart / ED_PAGE_SIZE) + 1; x < 256; x++) {
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (bcmp(pbuf0, tbuf, ED_PAGE_SIZE) == 0) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x * 256, ED_PAGE_SIZE);
ed_pio_readmem(sc, x * 256, tbuf, ED_PAGE_SIZE);
if (bcmp(pbuf, tbuf, ED_PAGE_SIZE) == 0)
msize += ED_PAGE_SIZE;
else {
break;
}
} else {
break;
}
}
if (msize == 0) {
printf("ed%d: Cannot find any RAM, start : %d, x = %d.\n", isa_dev->id_unit, mstart, x);
return 0;
}
printf("ed%d: RAM start at %d, size : %d.\n", isa_dev->id_unit, mstart, msize);
sc->mem_size = msize;
sc->mem_start = (char *) mstart;
sc->mem_end = (char *) (msize + mstart);
sc->tx_page_start = mstart / ED_PAGE_SIZE;
}
#endif /* GWETHER */
/*
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
* otherwise).
*/
if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
ed_pio_readmem(sc, 0, romdata, 16);
for (n = 0; n < ETHER_ADDR_LEN; n++)
sc->arpcom.ac_enaddr[n] = romdata[n * (sc->isa16bit + 1)];
#ifdef GWETHER
if (sc->arpcom.ac_enaddr[2] == 0x86) {
sc->type_str = "Gateway AT";
sc->kdc.kdc_description = "Ethernet adapter: Gateway AT";
}
#endif /* GWETHER */
/* clear any pending interrupts that might have occurred above */
outb(sc->nic_addr + ED_P0_ISR, 0xff);
return (ED_NOVELL_IO_PORTS);
}
1995-10-10 09:52:55 +00:00
/*
* Probe and vendor-specific initialization routine for PCCARDs
*/
static int
1995-10-10 09:52:55 +00:00
ed_probe_pccard(isa_dev, ether)
struct isa_device *isa_dev;
u_char *ether;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
int i;
u_int memsize;
u_char isa16bit;
1995-10-10 09:52:55 +00:00
sc->nic_addr = isa_dev->id_iobase;
sc->gone = 0;
sc->is790 = 0;
sc->cr_proto = ED_CR_RD2;
sc->vendor = ED_VENDOR_PCCARD;
sc->type = 0;
sc->type_str = "PCCARD";
sc->kdc.kdc_description = "PCCARD Ethernet";
sc->mem_size = isa_dev->id_msize = memsize = 16384;
sc->isa16bit = isa16bit = 1;
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->arpcom.ac_enaddr[i] = ether[i];
#if ED_DEBUG
printf("type = %x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
sc->type, sc->type_str, isa16bit, memsize, isa_dev->id_msize);
#endif
i = inb(sc->nic_addr + ED_PC_RESET);
DELAY(100000);
outb(sc->nic_addr + ED_PC_RESET,i);
DELAY(100000);
i = inb(sc->nic_addr + ED_PC_MISC);
if (!i) {
int j;
printf("ed_probe_pccard: possible failure\n");
for (j=0;j<20 && !i;j++) {
printf(".");
DELAY(100000);
i = inb(sc->nic_addr + ED_PC_MISC);
}
if (!i) {
printf("dead :-(\n");
return 0;
}
printf("\n");
}
/*
* Set initial values for width/size.
*/
/* Make sure that we really have an 8390 based board */
if (!ed_probe_generic8390(sc)) {
printf("ed_probe_generic8390 failed\n");
return (0);
}
sc->txb_cnt = 2;
sc->tx_page_start = ED_PC_PAGE_OFFSET;
sc->rec_page_start = sc->tx_page_start + ED_TXBUF_SIZE * sc->txb_cnt;
sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE;
sc->mem_shared = 1;
sc->mem_start = (caddr_t) isa_dev->id_maddr;
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
sc->mem_ring = sc->mem_start +
sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
/*
* Now zero memory and verify that it is clear
*/
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i) {
if (sc->mem_start[i]) {
printf("ed%d: failed to clear shared memory at %lx - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i));
return (0);
}
sc->mem_start[i] = (i - 5) & 0xff;
}
for (i = 0; i < memsize; ++i) {
if ((sc->mem_start[i] & 0xff) != ((i - 5) & 0xff)) {
printf("ed%d: shared memory failed at %lx (%x != %x) - check configuration\n",
isa_dev->id_unit, kvtop(sc->mem_start + i),
sc->mem_start[i], (i-5) & 0xff);
return (0);
}
}
i = inb(sc->nic_addr + ED_PC_MISC);
if (!i) {
printf("ed_probe_pccard: possible failure(2)\n");
}
/* clear any pending interupts that we may have caused */
outb(sc->nic_addr + ED_P0_ISR, 0xff);
return (ED_PC_IO_PORTS);
}
/*
* Install interface into kernel networking data structures
*/
static int
ed_attach(isa_dev)
struct isa_device *isa_dev;
{
struct ed_softc *sc = &ed_softc[isa_dev->id_unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
/*
* Set interface to stopped condition (reset)
*/
ed_stop(sc);
1995-10-10 09:52:55 +00:00
if (!ifp->if_name) {
/*
* Initialize ifnet structure
*/
ifp->if_unit = isa_dev->id_unit;
ifp->if_name = "ed";
ifp->if_output = ether_output;
ifp->if_start = ed_start;
ifp->if_ioctl = ed_ioctl;
ifp->if_watchdog = ed_watchdog;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
1995-10-10 09:52:55 +00:00
/*
* Set default state for ALTPHYS flag (used to disable the
* tranceiver for AUI operation), based on compile-time
* config option.
*/
if (isa_dev->id_flags & ED_FLAGS_DISABLE_TRANCEIVER)
ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX |
IFF_MULTICAST | IFF_ALTPHYS);
1995-10-10 09:52:55 +00:00
else
ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX |
IFF_MULTICAST);
1995-10-10 09:52:55 +00:00
/*
* Attach the interface
*/
if_attach(ifp);
}
/* device attach does transition from UNCONFIGURED to IDLE state */
sc->kdc.kdc_state = DC_IDLE;
/*
* Print additional info when attached
*/
printf("ed%d: address %s, ", isa_dev->id_unit,
ether_sprintf(sc->arpcom.ac_enaddr));
if (sc->type_str && (*sc->type_str != 0))
printf("type %s ", sc->type_str);
else
printf("type unknown (0x%x) ", sc->type);
printf("%s ", sc->isa16bit ? "(16 bit)" : "(8 bit)");
printf("%s\n", ((sc->vendor == ED_VENDOR_3COM) &&
(ifp->if_flags & IFF_ALTPHYS)) ? " tranceiver disabled" : "");
/*
* If BPF is in the kernel, call the attach for it
*/
#if NBPFILTER > 0
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
return 1;
}
/*
* Reset interface.
*/
static void
ed_reset(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = (struct ed_softc *)ifp;
int s;
if (sc->gone)
1995-10-10 09:52:55 +00:00
return;
s = splimp();
/*
* Stop interface and re-initialize.
*/
ed_stop(sc);
ed_init(ifp);
(void) splx(s);
}
/*
* Take interface offline.
*/
static void
ed_stop(sc)
struct ed_softc *sc;
{
int n = 5000;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
/*
* Stop everything on the interface, and select page 0 registers.
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
static void
ed_watchdog(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = (struct ed_softc *)ifp;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
log(LOG_ERR, "ed%d: device timeout\n", ifp->if_unit);
ifp->if_oerrors++;
ed_reset(ifp);
}
/*
* Initialize device.
*/
static void
ed_init(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = (struct ed_softc *)ifp;
int i, s;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
/* address not known */
if (ifp->if_addrlist == (struct ifaddr *) 0)
return;
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
s = splimp();
/* reset transmitter flags */
sc->xmit_busy = 0;
ifp->if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* This variable is used below - don't move this assignment */
sc->next_packet = sc->rec_page_start + 1;
/*
* Set interface for page 0, Remote DMA complete, Stopped
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
if (sc->isa16bit) {
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
} else {
/*
* Same as above, but byte-wide DMA xfers
*/
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
}
/*
* Clear Remote Byte Count Registers
*/
outb(sc->nic_addr + ED_P0_RBCR0, 0);
outb(sc->nic_addr + ED_P0_RBCR1, 0);
/*
* For the moment, don't store incoming packets in memory.
*/
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/*
* Place NIC in internal loopback mode
*/
outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0);
/*
* Initialize transmit/receive (ring-buffer) Page Start
*/
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start);
outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start);
/* Set lower bits of byte addressable framing to 0 */
if (sc->is790)
outb(sc->nic_addr + 0x09, 0);
/*
* Initialize Receiver (ring-buffer) Page Stop and Boundry
*/
outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop);
outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
outb(sc->nic_addr + ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
1995-05-30 08:16:23 +00:00
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
outb(sc->nic_addr + ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
/*
* Program Command Register for page 1
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/*
* Copy out our station address
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
outb(sc->nic_addr + ED_P1_PAR0 + i, sc->arpcom.ac_enaddr[i]);
/*
* Set Current Page pointer to next_packet (initialized above)
*/
outb(sc->nic_addr + ED_P1_CURR, sc->next_packet);
/*
* Program Receiver Configuration Register and multicast filter. CR is
* set to page 0 on return.
*/
ed_setrcr(sc);
/*
* Take interface out of loopback
*/
outb(sc->nic_addr + ED_P0_TCR, 0);
/*
* If this is a 3Com board, the tranceiver must be software enabled
* (there is no settable hardware default).
*/
if (sc->vendor == ED_VENDOR_3COM) {
if (ifp->if_flags & IFF_ALTPHYS) {
outb(sc->asic_addr + ED_3COM_CR, 0);
} else {
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
}
}
/*
* Set 'running' flag, and clear output active flag.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* ...and attempt to start output
*/
ed_start(ifp);
(void) splx(s);
}
/*
* This routine actually starts the transmission on the interface
*/
static inline void
ed_xmit(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = (struct ifnet *)sc;
unsigned short len;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
len = sc->txb_len[sc->txb_next_tx];
/*
* Set NIC for page 0 register access
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* Set TX buffer start page
*/
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/*
* Set TX length
*/
outb(sc->nic_addr + ED_P0_TBCR0, len);
outb(sc->nic_addr + ED_P0_TBCR1, len >> 8);
/*
* Set page 0, Remote DMA complete, Transmit Packet, and *Start*
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
sc->xmit_busy = 1;
/*
* Point to next transmit buffer slot and wrap if necessary.
*/
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/*
* Set a timer just in case we never hear from the board again
*/
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
static void
ed_start(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = (struct ed_softc *)ifp;
struct mbuf *m0, *m;
caddr_t buffer;
int len;
1995-10-10 09:52:55 +00:00
if (sc->gone) {
printf("ed_start(%p) GONE\n",ifp);
return;
}
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("ed: packets buffered, but transmitter idle\n");
ed_xmit(sc);
}
/*
* See if there is room to put another packet in the buffer.
*/
if (sc->txb_inuse == sc->txb_cnt) {
/*
* No room. Indicate this to the outside world and exit.
*/
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/*
* Copy the mbuf chain into the transmit buffer
*/
m0 = m;
/* txb_new points to next open buffer slot */
buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
if (sc->mem_shared) {
/*
* Special case setup for 16 bit boards...
*/
if (sc->isa16bit) {
switch (sc->vendor) {
/*
* For 16bit 3Com boards (which have 16k of
* memory), we have the xmit buffers in a
* different page of memory ('page 0') - so
* change pages.
*/
case ED_VENDOR_3COM:
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL);
break;
/*
* Enable 16bit access to shared memory on
* WD/SMC boards.
*/
case ED_VENDOR_WD_SMC:{
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto | ED_WD_LAAR_M16EN));
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB);
}
break;
}
}
}
for (len = 0; m != 0; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
/*
* Restore previous shared memory access
*/
if (sc->isa16bit) {
switch (sc->vendor) {
case ED_VENDOR_3COM:
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
break;
case ED_VENDOR_WD_SMC:{
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto);
break;
}
}
}
} else {
len = ed_pio_write_mbufs(sc, m, buffer);
if (len == 0)
goto outloop;
}
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
sc->txb_inuse++;
/*
* Point to next buffer slot and wrap if necessary.
*/
sc->txb_new++;
if (sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ed_xmit(sc);
/*
* Tap off here if there is a bpf listener.
*/
#if NBPFILTER > 0
if (sc->bpf) {
bpf_mtap(sc->bpf, m0);
}
#endif
m_freem(m0);
/*
* Loop back to the top to possibly buffer more packets
*/
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = (struct ifnet *)sc;
u_char boundry;
u_short len;
struct ed_ring packet_hdr;
char *packet_ptr;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
/*
* Set NIC to page 1 registers to get 'current' pointer
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer -
* i.e. it points to where new data has been buffered. The 'CURR'
* (current) register points to the logical end of the ring-buffer -
* i.e. it points to where additional new data will be added. We loop
* here until the logical beginning equals the logical end (or in
* other words, until the ring-buffer is empty).
*/
while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) {
/* get pointer to this buffer's header structure */
packet_ptr = sc->mem_ring +
(sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
if (sc->mem_shared)
packet_hdr = *(struct ed_ring *) packet_ptr;
else
ed_pio_readmem(sc, packet_ptr, (char *) &packet_hdr,
sizeof(packet_hdr));
len = packet_hdr.count;
if (len > (ETHER_MAX_LEN + sizeof(struct ed_ring)) ||
len < (ETHER_HDR_SIZE + sizeof(struct ed_ring))) {
/*
* Length is a wild value. There's a good chance that
* this was caused by the NIC being old and buggy.
* The bug is that the length low byte is duplicated in
* the high byte. Try to recalculate the length based on
* the pointer to the next packet.
*/
/*
* NOTE: sc->next_packet is pointing at the current packet.
*/
len &= ED_PAGE_SIZE - 1; /* preserve offset into page */
if (packet_hdr.next_packet >= sc->next_packet) {
len += (packet_hdr.next_packet - sc->next_packet) * ED_PAGE_SIZE;
} else {
len += ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
}
}
/*
* Be fairly liberal about what we allow as a "reasonable" length
* so that a [crufty] packet will make it to BPF (and can thus
* be analyzed). Note that all that is really important is that
* we have a length that will fit into one mbuf cluster or less;
* the upper layer protocols can then figure out the length from
* their own length field(s).
*/
if ((len > sizeof(struct ed_ring)) &&
(len <= MCLBYTES) &&
(packet_hdr.next_packet >= sc->rec_page_start) &&
(packet_hdr.next_packet < sc->rec_page_stop)) {
/*
* Go get packet.
*/
ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring), packet_hdr.rsr & ED_RSR_PHY);
ifp->if_ipackets++;
} else {
/*
* Really BAD. The ring pointers are corrupted.
*/
log(LOG_ERR,
"ed%d: NIC memory corrupt - invalid packet length %d\n",
ifp->if_unit, len);
ifp->if_ierrors++;
ed_reset(ifp);
return;
}
/*
* Update next packet pointer
*/
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundry pointer - being careful to keep it one
* buffer behind. (as recommended by NS databook)
*/
boundry = sc->next_packet - 1;
if (boundry < sc->rec_page_start)
boundry = sc->rec_page_stop - 1;
/*
* Set NIC to page 0 registers to update boundry register
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
outb(sc->nic_addr + ED_P0_BNRY, boundry);
/*
* Set NIC to page 1 registers before looping to top (prepare
* to get 'CURR' current pointer)
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
}
}
/*
* Ethernet interface interrupt processor
*/
void
edintr(unit)
int unit;
{
struct ed_softc *sc = &ed_softc[unit];
struct ifnet *ifp = (struct ifnet *)sc;
u_char isr;
1995-10-10 09:52:55 +00:00
if (sc->gone)
return;
/*
* Set NIC to page 0 registers
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* loop until there are no more new interrupts
*/
while ((isr = inb(sc->nic_addr + ED_P0_ISR)) != 0) {
/*
* reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set (writing a '1'
* *clears* the bit)
*/
outb(sc->nic_addr + ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = inb(sc->nic_addr + ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow
* the automatic mechanisms of TCP to backoff the
* flow. Of course, with UDP we're screwed, but this
* is expected when a network is heavily loaded.
*/
(void) inb(sc->nic_addr + ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16)
*/
if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the
* P0_NCR will indicate 0, and the
* TSR_ABT is set.
*/
collisions = 16;
}
/*
* update output errors counter
*/
ifp->if_oerrors++;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
ifp->if_opackets++;
}
/*
* reset tx busy and output active flags
*/
sc->xmit_busy = 0;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* clear watchdog timer
*/
ifp->if_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
ifp->if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while
* not actually transmitting). If data is ready to
* transmit, start it transmitting, otherwise defer
* until after handling receiver
*/
if (sc->txb_inuse && --sc->txb_inuse)
ed_xmit(sc);
}
/*
* Handle receiver interrupts
*/
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
ifp->if_ierrors++;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"ed%d: warning - receiver ring buffer overrun\n",
ifp->if_unit);
#endif
/*
* Stop/reset/re-init NIC
*/
ed_reset(ifp);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
ifp->if_ierrors++;
#ifdef ED_DEBUG
printf("ed%d: receive error %x\n", ifp->if_unit,
inb(sc->nic_addr + ED_P0_RSR));
#endif
}
/*
* Go get the packet(s) XXX - Doing this on an
* error is dubious because there shouldn't be
* any data to get (we've configured the
* interface to not accept packets with
* errors).
*/
/*
* Enable 16bit access to shared memory first
* on WD/SMC boards.
*/
if (sc->isa16bit &&
(sc->vendor == ED_VENDOR_WD_SMC)) {
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto |=
ED_WD_LAAR_M16EN));
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR,
ED_WD_MSR_MENB);
}
}
ed_rint(sc);
/* disable 16bit access */
if (sc->isa16bit &&
(sc->vendor == ED_VENDOR_WD_SMC)) {
if (sc->is790) {
outb(sc->asic_addr + ED_WD_MSR, 0x00);
}
outb(sc->asic_addr + ED_WD_LAAR,
(sc->wd_laar_proto &=
~ED_WD_LAAR_M16EN));
}
}
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver to give the receiver priority.
*/
if ((ifp->if_flags & IFF_OACTIVE) == 0)
ed_start(ifp);
/*
* return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high)
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) inb(sc->nic_addr + ED_P0_CNTR0);
(void) inb(sc->nic_addr + ED_P0_CNTR1);
(void) inb(sc->nic_addr + ED_P0_CNTR2);
}
}
}
/*
* Process an ioctl request. This code needs some work - it looks
* pretty ugly.
*/
static int
ed_ioctl(ifp, command, data)
register struct ifnet *ifp;
int command;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *) data;
struct ed_softc *sc = (struct ed_softc *)ifp;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
if (sc->gone) {
ifp->if_flags &= ~IFF_RUNNING;
return ENXIO;
}
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* netifs are BUSY when UP */
sc->kdc.kdc_state = DC_BUSY;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ed_init(ifp); /* before arpwhohas */
arp_ifinit((struct arpcom *)ifp, ifa);
break;
#endif
#ifdef IPX
/*
* XXX - This code is probably wrong
*/
case AF_IPX:
{
register struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr);
if (ipx_nullhost(*ina))
ina->x_host =
*(union ipx_host *) (sc->arpcom.ac_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
/*
* Set new address
*/
ed_init(ifp);
break;
}
#endif
#ifdef NS
/*
* XXX - This code is probably wrong
*/
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->arpcom.ac_enaddr);
else {
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
/*
* Set new address
*/
ed_init(ifp);
break;
}
#endif
default:
ed_init(ifp);
break;
}
break;
case SIOCGIFADDR:
{
struct sockaddr *sa;
sa = (struct sockaddr *) & ifr->ifr_data;
bcopy((caddr_t) sc->arpcom.ac_enaddr,
(caddr_t) sa->sa_data, ETHER_ADDR_LEN);
}
break;
case SIOCSIFFLAGS:
/*
* If the interface is marked up and stopped, then start it.
* If it is marked down and running, then stop it.
*/
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
ed_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING) {
ed_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
}
}
/* UP controls BUSY/IDLE */
1995-05-30 08:16:23 +00:00
sc->kdc.kdc_state = ((ifp->if_flags & IFF_UP)
? DC_BUSY
: DC_IDLE);
#if NBPFILTER > 0
/*
* Promiscuous flag may have changed, so reprogram the RCR.
*/
ed_setrcr(sc);
#endif
/*
* An unfortunate hack to provide the (required) software
* control of the tranceiver for 3Com boards. The ALTPHYS flag
* disables the tranceiver if set.
*/
if (sc->vendor == ED_VENDOR_3COM) {
if (ifp->if_flags & IFF_ALTPHYS) {
outb(sc->asic_addr + ED_3COM_CR, 0);
} else {
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
}
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update out multicast list.
*/
error = (command == SIOCADDMULTI) ?
1994-08-08 12:09:04 +00:00
ether_addmulti(ifr, &sc->arpcom) :
ether_delmulti(ifr, &sc->arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ed_setrcr(sc);
error = 0;
}
break;
1994-08-08 12:09:04 +00:00
case SIOCSIFMTU:
1994-08-08 12:09:04 +00:00
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Given a source and destination address, copy 'amount' of a packet from
* the ring buffer into a linear destination buffer. Takes into account
* ring-wrap.
*/
static inline char *
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
char *src;
char *dst;
u_short amount;
{
u_short tmp_amount;
/* does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* copy amount up to end of NIC memory */
if (sc->mem_shared)
bcopy(src, dst, tmp_amount);
else
ed_pio_readmem(sc, src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
if (sc->mem_shared)
bcopy(src, dst, amount);
else
ed_pio_readmem(sc, src, dst, amount);
return (src + amount);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
static void
ed_get_packet(sc, buf, len, multicast)
struct ed_softc *sc;
char *buf;
u_short len;
int multicast;
{
struct ether_header *eh;
struct mbuf *m;
/* Allocate a header mbuf */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return;
m->m_pkthdr.rcvif = &sc->arpcom.ac_if;
m->m_pkthdr.len = m->m_len = len;
/*
* We always put the received packet in a single buffer -
* either with just an mbuf header or in a cluster attached
* to the header. The +2 is to compensate for the alignment
* fixup below.
*/
if ((len + 2) > MHLEN) {
/* Attach an mbuf cluster */
MCLGET(m, M_DONTWAIT);
/* Insist on getting a cluster */
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return;
}
}
/*
* The +2 is to longword align the start of the real packet.
* This is important for NFS.
*/
m->m_data += 2;
eh = mtod(m, struct ether_header *);
/*
* Get packet, including link layer address, from interface.
*/
ed_ring_copy(sc, buf, (char *)eh, len);
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (sc->bpf) {
bpf_mtap(sc->bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0 && multicast == 0) {
m_freem(m);
return;
}
}
#endif
/*
* Remove link layer address.
*/
m->m_pkthdr.len = m->m_len = len - sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
ether_input(&sc->arpcom.ac_if, eh, m);
return;
}
/*
* Supporting routines
*/
/*
* Given a NIC memory source address and a host memory destination
* address, copy 'amount' from NIC to host using Programmed I/O.
* The 'amount' is rounded up to a word - okay as long as mbufs
* are word sized.
* This routine is currently Novell-specific.
*/
static void
ed_pio_readmem(sc, src, dst, amount)
struct ed_softc *sc;
unsigned short src;
unsigned char *dst;
unsigned short amount;
{
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* round up to a word */
if (amount & 1)
++amount;
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, amount);
outb(sc->nic_addr + ED_P0_RBCR1, amount >> 8);
/* set up source address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, src);
outb(sc->nic_addr + ED_P0_RSAR1, src >> 8);
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
if (sc->isa16bit) {
insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2);
} else
insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount);
}
/*
* Stripped down routine for writing a linear buffer to NIC memory.
* Only used in the probe routine to test the memory. 'len' must
* be even.
*/
static void
ed_pio_writemem(sc, src, dst, len)
struct ed_softc *sc;
char *src;
unsigned short dst;
unsigned short len;
{
int maxwait = 200; /* about 240us */
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* reset remote DMA complete flag */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, len);
outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
/* set up destination address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
if (sc->isa16bit)
outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2);
else
outsb(sc->asic_addr + ED_NOVELL_DATA, src, len);
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
}
/*
* Write an mbuf chain to the destination NIC memory address using
* programmed I/O.
*/
static u_short
ed_pio_write_mbufs(sc, m, dst)
struct ed_softc *sc;
struct mbuf *m;
unsigned short dst;
{
struct ifnet *ifp = (struct ifnet *)sc;
unsigned short total_len, dma_len;
struct mbuf *mp;
int maxwait = 200; /* about 240us */
/* First, count up the total number of bytes to copy */
for (total_len = 0, mp = m; mp; mp = mp->m_next)
total_len += mp->m_len;
dma_len = total_len;
if (sc->isa16bit && (dma_len & 1))
dma_len++;
/* select page 0 registers */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
/* reset remote DMA complete flag */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
outb(sc->nic_addr + ED_P0_RBCR0, dma_len);
outb(sc->nic_addr + ED_P0_RBCR1, dma_len >> 8);
/* set up destination address in NIC mem */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
/*
1995-05-30 08:16:23 +00:00
* Transfer the mbuf chain to the NIC memory.
* 16-bit cards require that data be transferred as words, and only words.
* So that case requires some extra code to patch over odd-length mbufs.
*/
if (!sc->isa16bit) {
/* NE1000s are easy */
while (m) {
if (m->m_len) {
1995-05-30 08:16:23 +00:00
outsb(sc->asic_addr + ED_NOVELL_DATA,
m->m_data, m->m_len);
}
m = m->m_next;
}
} else {
/* NE2000s are a pain */
unsigned char *data;
int len, wantbyte;
unsigned char savebyte[2];
1995-05-30 08:16:23 +00:00
wantbyte = 0;
while (m) {
len = m->m_len;
if (len) {
data = mtod(m, caddr_t);
/* finish the last word */
if (wantbyte) {
savebyte[1] = *data;
outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte);
data++;
len--;
wantbyte = 0;
}
/* output contiguous words */
if (len > 1) {
1995-05-30 08:16:23 +00:00
outsw(sc->asic_addr + ED_NOVELL_DATA,
data, len >> 1);
data += len & ~1;
len &= 1;
}
/* save last byte, if necessary */
if (len == 1) {
savebyte[0] = *data;
wantbyte = 1;
}
}
m = m->m_next;
}
/* spit last byte */
if (wantbyte) {
outw(sc->asic_addr + ED_NOVELL_DATA, *(u_short *)savebyte);
}
}
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
if (!maxwait) {
log(LOG_WARNING, "ed%d: remote transmit DMA failed to complete\n",
ifp->if_unit);
ed_reset(ifp);
return(0);
}
return (total_len);
}
static void
ed_setrcr(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = (struct ifnet *)sc;
int i;
/* set page 1 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
if (ifp->if_flags & IFF_PROMISC) {
/*
* Reconfigure the multicast filter.
*/
for (i = 0; i < 8; i++)
outb(sc->nic_addr + ED_P1_MAR0 + i, 0xff);
/*
* And turn on promiscuous mode. Also enable reception of
* runts and packets with CRC & alignment errors.
*/
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP);
} else {
/* set up multicast addresses and filter modes */
if (ifp->if_flags & IFF_MULTICAST) {
u_long mcaf[2];
if (ifp->if_flags & IFF_ALLMULTI) {
mcaf[0] = 0xffffffff;
mcaf[1] = 0xffffffff;
} else
ds_getmcaf(sc, mcaf);
/*
* Set multicast filter on chip.
*/
for (i = 0; i < 8; i++)
outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *) mcaf)[i]);
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AM | ED_RCR_AB);
} else {
/*
* Initialize multicast address hashing registers to
* not accept multicasts.
*/
for (i = 0; i < 8; ++i)
outb(sc->nic_addr + ED_P1_MAR0 + i, 0x00);
/* Set page 0 registers */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STP);
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_AB);
}
}
/*
* Start interface.
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_STA);
}
/*
* Compute crc for ethernet address
*/
1995-10-31 18:41:49 +00:00
static u_long
ds_crc(ep)
u_char *ep;
{
#define POLYNOMIAL 0x04c11db6
register u_long crc = 0xffffffffL;
register int carry, i, j;
register u_char b;
for (i = 6; --i >= 0;) {
b = *ep++;
for (j = 8; --j >= 0;) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return crc;
#undef POLYNOMIAL
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
static void
ds_getmcaf(sc, mcaf)
struct ed_softc *sc;
u_long *mcaf;
{
register u_int index;
register u_char *af = (u_char *) mcaf;
register struct ether_multi *enm;
register struct ether_multistep step;
mcaf[0] = 0;
mcaf[1] = 0;
ETHER_FIRST_MULTI(step, &sc->arpcom, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
mcaf[0] = 0xffffffff;
mcaf[1] = 0xffffffff;
return;
}
index = ds_crc(enm->enm_addrlo) >> 26;
af[index >> 3] |= 1 << (index & 7);
ETHER_NEXT_MULTI(step, enm);
}
}