1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-10 14:02:43 +00:00
freebsd/sys/netinet/ip_fw2.c

2520 lines
63 KiB
C
Raw Normal View History

The new ipfw code. This code makes use of variable-size kernel representation of rules (exactly the same concept of BPF instructions, as used in the BSDI's firewall), which makes firewall operation a lot faster, and the code more readable and easier to extend and debug. The interface with the rest of the system is unchanged, as witnessed by this commit. The only extra kernel files that I am touching are if_fw.h and ip_dummynet.c, which is quite tied to ipfw. In userland I only had to touch those programs which manipulate the internal representation of firewall rules). The code is almost entirely new (and I believe I have written the vast majority of those sections which were taken from the former ip_fw.c), so rather than modifying the old ip_fw.c I decided to create a new file, sys/netinet/ip_fw2.c . Same for the user interface, which is in sbin/ipfw/ipfw2.c (it still compiles to /sbin/ipfw). The old files are still there, and will be removed in due time. I have not renamed the header file because it would have required touching a one-line change to a number of kernel files. In terms of user interface, the new "ipfw" is supposed to accepts the old syntax for ipfw rules (and produce the same output with "ipfw show". Only a couple of the old options (out of some 30 of them) has not been implemented, but they will be soon. On the other hand, the new code has some very powerful extensions. First, you can put "or" connectives between match fields (and soon also between options), and write things like ipfw add allow ip from { 1.2.3.4/27 or 5.6.7.8/30 } 10-23,25,1024-3000 to any This should make rulesets slightly more compact (and lines longer!), by condensing 2 or more of the old rules into single ones. Also, as an example of how easy the rules can be extended, I have implemented an 'address set' match pattern, where you can specify an IP address in a format like this: 10.20.30.0/26{18,44,33,22,9} which will match the set of hosts listed in braces belonging to the subnet 10.20.30.0/26 . The match is done using a bitmap, so it is essentially a constant time operation requiring a handful of CPU instructions (and a very small amount of memmory -- for a full /24 subnet, the instruction only consumes 40 bytes). Again, in this commit I have focused on functionality and tried to minimize changes to the other parts of the system. Some performance improvement can be achieved with minor changes to the interface of ip_fw_chk_t. This will be done later when this code is settled. The code is meant to compile unmodified on RELENG_4 (once the PACKET_TAG_* changes have been merged), for this reason you will see #ifdef __FreeBSD_version in a couple of places. This should minimize errors when (hopefully soon) it will be time to do the MFC.
2002-06-27 23:02:18 +00:00
/*
* Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#define DEB(x)
#define DDB(x) x
/*
* Implement IP packet firewall
*/
#if !defined(KLD_MODULE)
#include "opt_ipfw.h"
#include "opt_ipdn.h"
#include "opt_ipdivert.h"
#include "opt_inet.h"
#ifndef INET
#error IPFIREWALL requires INET.
#endif /* INET */
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/ucred.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <netinet/tcp.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
static int fw_verbose = 0;
static int verbose_limit = 0;
#define IPFW_DEFAULT_RULE 65535
/*
* list of rules for layer 3
*/
static struct ip_fw *layer3_chain;
MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
static int fw_debug = 1;
int fw_one_pass = 1;
static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
#ifdef SYSCTL_NODE
SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable, CTLFLAG_RW,
&fw_enable, 0, "Enable ipfw");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
&autoinc_step, 0, "Rule number autincrement step");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO,one_pass,CTLFLAG_RW,
&fw_one_pass, 0,
"Only do a single pass through ipfw when using dummynet(4)");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
&fw_debug, 0, "Enable printing of debug ip_fw statements");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose, CTLFLAG_RW,
&fw_verbose, 0, "Log matches to ipfw rules");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
&verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
/*
* Description of dynamic rules.
*
* Dynamic rules are stored in lists accessed through a hash table
* (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
* be modified through the sysctl variable dyn_buckets which is
* updated when the table becomes empty.
*
* XXX currently there is only one list, ipfw_dyn.
*
* When a packet is received, its address fields are first masked
* with the mask defined for the rule, then hashed, then matched
* against the entries in the corresponding list.
* Dynamic rules can be used for different purposes:
* + stateful rules;
* + enforcing limits on the number of sessions;
* + in-kernel NAT (not implemented yet)
*
* The lifetime of dynamic rules is regulated by dyn_*_lifetime,
* measured in seconds and depending on the flags.
*
* The total number of dynamic rules is stored in dyn_count.
* The max number of dynamic rules is dyn_max. When we reach
* the maximum number of rules we do not create anymore. This is
* done to avoid consuming too much memory, but also too much
* time when searching on each packet (ideally, we should try instead
* to put a limit on the length of the list on each bucket...).
*
* Each dynamic rule holds a pointer to the parent ipfw rule so
* we know what action to perform. Dynamic rules are removed when
* the parent rule is deleted. XXX we should make them survive.
*
* There are some limitations with dynamic rules -- we do not
* obey the 'randomized match', and we do not do multiple
* passes through the firewall. XXX check the latter!!!
*/
static ipfw_dyn_rule **ipfw_dyn_v = NULL;
static u_int32_t dyn_buckets = 256; /* must be power of 2 */
static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
/*
* Timeouts for various events in handing dynamic rules.
*/
static u_int32_t dyn_ack_lifetime = 300;
static u_int32_t dyn_syn_lifetime = 20;
static u_int32_t dyn_fin_lifetime = 1;
static u_int32_t dyn_rst_lifetime = 1;
static u_int32_t dyn_udp_lifetime = 10;
static u_int32_t dyn_short_lifetime = 5;
/*
* After reaching 0, dynamic rules are considered still valid for
* an additional grace time, unless there is lack of resources.
* XXX not implemented yet.
*/
static u_int32_t dyn_grace_time = 10;
static u_int32_t static_count = 0; /* # of static rules */
static u_int32_t static_len = 0; /* size in bytes of static rules */
static u_int32_t dyn_count = 0; /* # of dynamic rules */
static u_int32_t dyn_max = 1000; /* max # of dynamic rules */
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
&dyn_buckets, 0, "Number of dyn. buckets");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
&curr_dyn_buckets, 0, "Current Number of dyn. buckets");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
&dyn_count, 0, "Number of dyn. rules");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
&dyn_max, 0, "Max number of dyn. rules");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
&static_count, 0, "Number of static rules");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
&dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
&dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
&dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
&dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
&dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
&dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_grace_time, CTLFLAG_RD,
&dyn_grace_time, 0, "Grace time for dyn. rules");
#endif /* SYSCTL_NODE */
static ip_fw_chk_t ipfw_chk;
ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL; /* hook into dummynet */
/*
* This macro maps an ip pointer into a layer3 header pointer of type T
*/
#define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
static int
icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
{
int type = L3HDR(struct icmp,ip)->icmp_type;
return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
}
#define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
(1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
static int
is_icmp_query(struct ip *ip)
{
int type = L3HDR(struct icmp, ip)->icmp_type;
return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
}
#undef TT
/*
* The following checks use two arrays of 8 or 16 bits to store the
* bits that we want set or clear, respectively. They are in the
* low and high half of cmd->arg1 or cmd->d[0].
*
* We scan options and store the bits we find set. We succeed if
*
* (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
*
* The code is sometimes optimized not to store additional variables.
*/
static int
flags_match(ipfw_insn *cmd, u_int8_t bits)
{
u_char want_clear;
bits = ~bits;
if ( ((cmd->arg1 & 0xff) & bits) != 0)
return 0; /* some bits we want set were clear */
want_clear = (cmd->arg1 >> 8) & 0xff;
if ( (want_clear & bits) != want_clear)
return 0; /* some bits we want clear were set */
return 1;
}
static int
ipopts_match(struct ip *ip, ipfw_insn *cmd)
{
int optlen, bits = 0;
u_char *cp = (u_char *)(ip + 1);
int x = (ip->ip_hl << 2) - sizeof (struct ip);
for (; x > 0; x -= optlen, cp += optlen) {
int opt = cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP)
optlen = 1;
else {
optlen = cp[IPOPT_OLEN];
if (optlen <= 0 || optlen > x)
return 0; /* invalid or truncated */
}
switch (opt) {
default:
break;
case IPOPT_LSRR:
bits |= IP_FW_IPOPT_LSRR;
break;
case IPOPT_SSRR:
bits |= IP_FW_IPOPT_SSRR;
break;
case IPOPT_RR:
bits |= IP_FW_IPOPT_RR;
break;
case IPOPT_TS:
bits |= IP_FW_IPOPT_TS;
break;
}
}
return (flags_match(cmd, bits));
}
static int
tcpopts_match(struct ip *ip, ipfw_insn *cmd)
{
int optlen, bits = 0;
struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
u_char *cp = (u_char *)(tcp + 1);
int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
for (; x > 0; x -= optlen, cp += optlen) {
int opt = cp[0];
if (opt == TCPOPT_EOL)
break;
if (opt == TCPOPT_NOP)
optlen = 1;
else {
optlen = cp[1];
if (optlen <= 0)
break;
}
switch (opt) {
default:
break;
case TCPOPT_MAXSEG:
bits |= IP_FW_TCPOPT_MSS;
break;
case TCPOPT_WINDOW:
bits |= IP_FW_TCPOPT_WINDOW;
break;
case TCPOPT_SACK_PERMITTED:
case TCPOPT_SACK:
bits |= IP_FW_TCPOPT_SACK;
break;
case TCPOPT_TIMESTAMP:
bits |= IP_FW_TCPOPT_TS;
break;
case TCPOPT_CC:
case TCPOPT_CCNEW:
case TCPOPT_CCECHO:
bits |= IP_FW_TCPOPT_CC;
break;
}
}
return (flags_match(cmd, bits));
}
/*
* XXX done
*/
static int
iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
{
if (ifp == NULL) /* no iface with this packet, match fails */
return 0;
/* Check by name or by IP address */
if (cmd->name[0] != '\0') { /* XXX by name */
/* Check unit number (-1 is wildcard) */
if (cmd->p.unit != -1 && cmd->p.unit != ifp->if_unit)
return(0);
/* Check name */
if (!strncmp(ifp->if_name, cmd->name, IFNAMSIZ))
return(1);
} else {
struct ifaddr *ia;
TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
if (ia->ifa_addr == NULL)
continue;
if (ia->ifa_addr->sa_family != AF_INET)
continue;
if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
(ia->ifa_addr))->sin_addr.s_addr)
return(1); /* match */
}
}
return(0); /* no match, fail ... */
}
static u_int64_t norule_counter; /* counter for ipfw_log(NULL...) */
#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
/*
* We enter here when we have a rule with O_LOG.
*/
static void
ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
struct mbuf *m, struct ifnet *oif)
{
char *action;
char action2[32], proto[47], fragment[27];
int limit_reached = 0;
fragment[0] = '\0';
proto[0] = '\0';
if (f == NULL) { /* bogus pkt */
if (verbose_limit != 0 && norule_counter >= verbose_limit)
return;
norule_counter++;
if (norule_counter == verbose_limit)
limit_reached = verbose_limit;
action = "Refuse";
} else { /* O_LOG is the first action, find the real one */
ipfw_insn *cmd = ACTION_PTR(f);
ipfw_insn_log *l = (ipfw_insn_log *)cmd;
if (l->max_log != 0 && l->log_left == 0)
return;
l->log_left--;
if (l->log_left == 0)
limit_reached = l->max_log;
cmd += F_LEN(cmd); /* point to first action */
if (cmd->opcode == O_PROB)
cmd += F_LEN(cmd);
action = action2;
switch (cmd->opcode) {
case O_DENY:
action = "Deny";
break;
case O_REJECT:
action = (cmd->arg1==ICMP_REJECT_RST) ?
"Reset" : "Unreach";
break;
case O_ACCEPT:
action = "Accept";
break;
case O_COUNT:
action = "Count";
break;
case O_DIVERT:
snprintf(SNPARGS(action2, 0), "Divert %d",
cmd->arg1);
break;
case O_TEE:
snprintf(SNPARGS(action2, 0), "Tee %d",
cmd->arg1);
break;
case O_SKIPTO:
snprintf(SNPARGS(action2, 0), "SkipTo %d",
cmd->arg1);
break;
case O_PIPE:
snprintf(SNPARGS(action2, 0), "Pipe %d",
cmd->arg1);
break;
case O_QUEUE:
snprintf(SNPARGS(action2, 0), "Queue %d",
cmd->arg1);
break;
case O_FORWARD_IP: {
ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
if (sa->sa.sin_port)
snprintf(SNPARGS(action2, 0),
"Forward to %s:%d",
inet_ntoa(sa->sa.sin_addr),
sa->sa.sin_port);
else
snprintf(SNPARGS(action2, 0), "Forward to %s",
inet_ntoa(sa->sa.sin_addr));
}
break;
default:
action = "UNKNOWN";
break;
}
}
if (hlen == 0) { /* non-ip */
snprintf(SNPARGS(proto, 0), "MAC");
} else {
struct ip *ip = mtod(m, struct ip *);
/* these three are all aliases to the same thing */
struct icmp *const icmp = L3HDR(struct icmp, ip);
struct tcphdr *const tcp = (struct tcphdr *)icmp;
struct udphdr *const udp = (struct udphdr *)icmp;
int ip_off, offset, ip_len;
int len;
if (eh != NULL) { /* layer 2 packets are as on the wire */
ip_off = ntohs(ip->ip_off);
ip_len = ntohs(ip->ip_len);
} else {
ip_off = ip->ip_off;
ip_len = ip->ip_len;
}
offset = ip_off & IP_OFFMASK;
switch (ip->ip_p) {
case IPPROTO_TCP:
len = snprintf(SNPARGS(proto, 0), "TCP %s",
inet_ntoa(ip->ip_src));
if (offset == 0)
len += snprintf(SNPARGS(proto, len), ":%d ",
ntohs(tcp->th_sport));
else
len += snprintf(SNPARGS(proto, len), " ");
len += snprintf(SNPARGS(proto, len), "%s",
inet_ntoa(ip->ip_dst));
if (offset == 0)
snprintf(SNPARGS(proto, len), ":%d",
ntohs(tcp->th_dport));
break;
case IPPROTO_UDP:
len = snprintf(SNPARGS(proto, 0), "UDP %s",
inet_ntoa(ip->ip_src));
if (offset == 0)
len += snprintf(SNPARGS(proto, len), ":%d ",
ntohs(udp->uh_sport));
else
len += snprintf(SNPARGS(proto, len), " ");
len += snprintf(SNPARGS(proto, len), "%s",
inet_ntoa(ip->ip_dst));
if (offset == 0)
snprintf(SNPARGS(proto, len), ":%d",
ntohs(udp->uh_dport));
break;
case IPPROTO_ICMP:
if (offset == 0)
len = snprintf(SNPARGS(proto, 0),
"ICMP:%u.%u ",
icmp->icmp_type, icmp->icmp_code);
else
len = snprintf(SNPARGS(proto, 0), "ICMP ");
len += snprintf(SNPARGS(proto, len), "%s",
inet_ntoa(ip->ip_src));
snprintf(SNPARGS(proto, len), " %s",
inet_ntoa(ip->ip_dst));
break;
default:
len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
inet_ntoa(ip->ip_src));
snprintf(SNPARGS(proto, len), " %s",
inet_ntoa(ip->ip_dst));
break;
}
if (ip_off & (IP_MF | IP_OFFMASK))
snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
offset << 3,
(ip_off & IP_MF) ? "+" : "");
}
if (oif || m->m_pkthdr.rcvif)
log(LOG_SECURITY | LOG_INFO,
"ipfw: %d %s %s %s via %s%d%s\n",
f ? f->rulenum : -1,
action, proto, oif ? "out" : "in",
oif ? oif->if_name : m->m_pkthdr.rcvif->if_name,
oif ? oif->if_unit : m->m_pkthdr.rcvif->if_unit,
fragment);
else
log(LOG_SECURITY | LOG_INFO,
"ipfw: %d %s %s [no if info]%s\n",
f ? f->rulenum : -1,
action, proto, fragment);
if (limit_reached)
log(LOG_SECURITY | LOG_NOTICE,
"ipfw: limit %d reached on entry %d\n",
limit_reached, f ? f->rulenum : -1);
}
/*
* IMPORTANT: the hash function for dynamic rules must be commutative
* in * source and destination (ip,port), because rules are bidirectional
* and we want to find both in the same bucket.
*/
static __inline int
hash_packet(struct ipfw_flow_id *id)
{
u_int32_t i;
i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
i &= (curr_dyn_buckets - 1);
return i;
}
/**
* unlink a dynamic rule from a chain. prev is a pointer to
* the previous one, q is a pointer to the rule to delete,
* head is a pointer to the head of the queue.
* Modifies q and potentially also head.
*/
#define UNLINK_DYN_RULE(prev, head, q) { \
ipfw_dyn_rule *old_q = q; \
\
/* remove a refcount to the parent */ \
if (q->dyn_type == O_LIMIT) \
q->parent->count--; \
DEB(printf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n", \
(q->id.src_ip), (q->id.src_port), \
(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
if (prev != NULL) \
prev->next = q = q->next; \
else \
head = q = q->next; \
dyn_count--; \
free(old_q, M_IPFW); }
#define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
/**
* Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
*
* If keep_me == NULL, rules are deleted even if not expired,
* otherwise only expired rules are removed.
*
* The value of the second parameter is also used to point to identify
* a rule we absolutely do not want to remove (e.g. because we are
* holding a reference to it -- this is the case with O_LIMIT_PARENT
* rules). The pointer is only used for comparison, so any non-null
* value will do.
*/
static void
remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
{
static u_int32_t last_remove = 0;
#define FORCE (keep_me == NULL)
ipfw_dyn_rule *prev, *q;
int i, pass = 0, max_pass = 0;
if (ipfw_dyn_v == NULL || dyn_count == 0)
return;
/* do not expire more than once per second, it is useless */
if (!FORCE && last_remove == time_second)
return;
last_remove = time_second;
/*
* because O_LIMIT refer to parent rules, during the first pass only
* remove child and mark any pending LIMIT_PARENT, and remove
* them in a second pass.
*/
next_pass:
for (i = 0 ; i < curr_dyn_buckets ; i++) {
for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
/*
* Logic can become complex here, so we split tests.
*/
if (q == keep_me)
goto next;
if (rule != NULL && rule != q->rule)
goto next; /* not the one we are looking for */
if (q->dyn_type == O_LIMIT_PARENT) {
/*
* handle parent in the second pass,
* record we need one.
*/
max_pass = 1;
if (pass == 0)
goto next;
if (FORCE && q->count != 0 ) {
/* XXX should not happen! */
printf( "OUCH! cannot remove rule,"
" count %d\n", q->count);
}
} else {
if (!FORCE &&
!TIME_LEQ( q->expire, time_second ))
goto next;
}
UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
continue;
next:
prev=q;
q=q->next;
}
}
if (pass++ < max_pass)
goto next_pass;
}
/**
* lookup a dynamic rule.
*/
static ipfw_dyn_rule *
lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction)
{
/*
* stateful ipfw extensions.
* Lookup into dynamic session queue
*/
#define MATCH_REVERSE 0
#define MATCH_FORWARD 1
#define MATCH_NONE 2
#define MATCH_UNKNOWN 3
int i, dir = MATCH_NONE;
ipfw_dyn_rule *prev, *q=NULL;
if (ipfw_dyn_v == NULL)
goto done; /* not found */
i = hash_packet( pkt );
for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
if (q->dyn_type == O_LIMIT_PARENT)
goto next;
if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
continue;
}
if ( pkt->proto == q->id.proto) {
if (pkt->src_ip == q->id.src_ip &&
pkt->dst_ip == q->id.dst_ip &&
pkt->src_port == q->id.src_port &&
pkt->dst_port == q->id.dst_port ) {
dir = MATCH_FORWARD;
break;
}
if (pkt->src_ip == q->id.dst_ip &&
pkt->dst_ip == q->id.src_ip &&
pkt->src_port == q->id.dst_port &&
pkt->dst_port == q->id.src_port ) {
dir = MATCH_REVERSE;
break;
}
}
next:
prev = q;
q = q->next;
}
if (q == NULL)
goto done; /* q = NULL, not found */
if ( prev != NULL) { /* found and not in front */
prev->next = q->next;
q->next = ipfw_dyn_v[i];
ipfw_dyn_v[i] = q;
}
if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
#define BOTH_SYN (TH_SYN | (TH_SYN << 8))
#define BOTH_FIN (TH_FIN | (TH_FIN << 8))
q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
switch (q->state) {
case TH_SYN: /* opening */
q->expire = time_second + dyn_syn_lifetime;
break;
case BOTH_SYN: /* move to established */
q->expire = time_second + dyn_ack_lifetime;
break;
case BOTH_SYN | TH_FIN : /* one side tries to close */
case BOTH_SYN | (TH_FIN << 8) :
q->expire = time_second + dyn_ack_lifetime;
break;
case BOTH_SYN | BOTH_FIN: /* both sides closed */
q->expire = time_second + dyn_fin_lifetime;
break;
default:
#if 0
/*
* reset or some invalid combination, but can also
* occur if we use keep-state the wrong way.
*/
if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
printf("invalid state: 0x%x\n", q->state);
#endif
q->expire = time_second + dyn_rst_lifetime;
break;
}
} else if (pkt->proto == IPPROTO_UDP) {
q->expire = time_second + dyn_udp_lifetime;
} else {
/* other protocols */
q->expire = time_second + dyn_short_lifetime;
}
done:
if (match_direction)
*match_direction = dir;
return q;
}
static void
realloc_dynamic_table(void)
{
/* try reallocation, make sure we have a power of 2 */
if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
dyn_buckets = curr_dyn_buckets; /* reset */
return;
}
curr_dyn_buckets = dyn_buckets;
if (ipfw_dyn_v != NULL)
free(ipfw_dyn_v, M_IPFW);
ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
M_IPFW, M_DONTWAIT | M_ZERO);
}
/**
* Install state of type 'type' for a dynamic session.
* The hash table contains two type of rules:
* - regular rules (O_KEEP_STATE)
* - rules for sessions with limited number of sess per user
* (O_LIMIT). When they are created, the parent is
* increased by 1, and decreased on delete. In this case,
* the third parameter is the parent rule and not the chain.
* - "parent" rules for the above (O_LIMIT_PARENT).
*/
static ipfw_dyn_rule *
add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
{
ipfw_dyn_rule *r;
int i;
if (ipfw_dyn_v == NULL ||
(dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
realloc_dynamic_table();
if (ipfw_dyn_v == NULL)
return NULL; /* failed ! */
}
i = hash_packet(id);
r = malloc(sizeof *r, M_IPFW, M_DONTWAIT | M_ZERO);
if (r == NULL) {
printf ("sorry cannot allocate state\n");
return NULL;
}
/* increase refcount on parent, and set pointer */
if (dyn_type == O_LIMIT) {
ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
if ( parent->dyn_type != O_LIMIT_PARENT)
panic("invalid parent");
parent->count++;
r->parent = parent;
rule = parent->rule;
}
r->id = *id;
r->expire = time_second + dyn_syn_lifetime;
r->rule = rule;
r->dyn_type = dyn_type;
r->pcnt = r->bcnt = 0;
r->count = 0;
r->bucket = i;
r->next = ipfw_dyn_v[i];
ipfw_dyn_v[i] = r;
dyn_count++;
DEB(printf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
dyn_type,
(r->id.src_ip), (r->id.src_port),
(r->id.dst_ip), (r->id.dst_port),
dyn_count ); )
return r;
}
/**
* lookup dynamic parent rule using pkt and rule as search keys.
* If the lookup fails, then install one.
*/
static ipfw_dyn_rule *
lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
{
ipfw_dyn_rule *q;
int i;
if (ipfw_dyn_v) {
i = hash_packet( pkt );
for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
if (q->dyn_type == O_LIMIT_PARENT &&
rule== q->rule &&
pkt->proto == q->id.proto &&
pkt->src_ip == q->id.src_ip &&
pkt->dst_ip == q->id.dst_ip &&
pkt->src_port == q->id.src_port &&
pkt->dst_port == q->id.dst_port) {
q->expire = time_second + dyn_short_lifetime;
DEB(printf("lookup_dyn_parent found 0x%p\n",q);)
return q;
}
}
return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
}
/**
* Install dynamic state for rule type cmd->o.opcode
*
* Returns 1 (failure) if state is not installed because of errors or because
* session limitations are enforced.
*/
static int
install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
struct ip_fw_args *args)
{
static int last_log;
ipfw_dyn_rule *q;
DEB(printf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
cmd->o.opcode,
(args->f_id.src_ip), (args->f_id.src_port),
(args->f_id.dst_ip), (args->f_id.dst_port) );)
q = lookup_dyn_rule(&args->f_id, NULL);
if (q != NULL) { /* should never occur */
if (last_log != time_second) {
last_log = time_second;
printf(" install_state: entry already present, done\n");
}
return 0;
}
if (dyn_count >= dyn_max)
/*
* Run out of slots, try to remove any expired rule.
*/
remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
if (dyn_count >= dyn_max) {
if (last_log != time_second) {
last_log = time_second;
printf("install_state: Too many dynamic rules\n");
}
return 1; /* cannot install, notify caller */
}
switch (cmd->o.opcode) {
case O_KEEP_STATE: /* bidir rule */
add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
break;
case O_LIMIT: /* limit number of sessions */
{
u_int16_t limit_mask = cmd->limit_mask;
struct ipfw_flow_id id;
ipfw_dyn_rule *parent;
DEB(printf("installing dyn-limit rule %d\n", cmd->conn_limit);)
id.dst_ip = id.src_ip = 0;
id.dst_port = id.src_port = 0;
id.proto = args->f_id.proto;
if (limit_mask & DYN_SRC_ADDR)
id.src_ip = args->f_id.src_ip;
if (limit_mask & DYN_DST_ADDR)
id.dst_ip = args->f_id.dst_ip;
if (limit_mask & DYN_SRC_PORT)
id.src_port = args->f_id.src_port;
if (limit_mask & DYN_DST_PORT)
id.dst_port = args->f_id.dst_port;
parent = lookup_dyn_parent(&id, rule);
if (parent == NULL) {
printf("add parent failed\n");
return 1;
}
if (parent->count >= cmd->conn_limit) {
/*
* See if we can remove some expired rule.
*/
remove_dyn_rule(rule, parent);
if (parent->count >= cmd->conn_limit) {
if (fw_verbose && last_log != time_second) {
last_log = time_second;
printf(
"drop session, too many entries\n");
}
return 1;
}
}
add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
}
break;
default:
printf("unknown dynamic rule type %u\n", cmd->o.opcode);
return 1;
}
lookup_dyn_rule(&args->f_id, NULL); /* XXX just set the lifetime */
return 0;
}
/*
* sends a reject message, consuming the mbuf passed as an argument.
*/
static void
send_reject(struct mbuf *m, int code, int offset, int ip_len)
{
if (code != ICMP_REJECT_RST) /* Send an ICMP unreach */
icmp_error(m, ICMP_UNREACH, code, 0L, 0);
else {
/* XXX warning, this code writes into the mbuf */
struct ip *ip = mtod(m, struct ip *);
struct tcphdr *const tcp = L3HDR(struct tcphdr, ip);
struct tcpiphdr ti, *const tip = (struct tcpiphdr *) ip;
int hlen = ip->ip_hl << 2;
if (offset != 0 || (tcp->th_flags & TH_RST)) {
m_freem(m); /* free the mbuf */
return;
}
ti.ti_i = *((struct ipovly *) ip);
ti.ti_t = *tcp;
bcopy(&ti, ip, sizeof(ti));
tip->ti_seq = ntohl(tip->ti_seq);
tip->ti_ack = ntohl(tip->ti_ack);
tip->ti_len = ip_len - hlen - (tip->ti_off << 2);
if (tcp->th_flags & TH_ACK) {
tcp_respond(NULL, (void *)ip, tcp, m,
0, tcp->th_ack, TH_RST);
} else {
if (tcp->th_flags & TH_SYN)
tip->ti_len++;
tcp_respond(NULL, (void *)ip, tcp, m,
tip->ti_seq + tip->ti_len, 0, TH_RST|TH_ACK);
}
}
}
/**
*
* Given an ip_fw *, lookup_next_rule will return a pointer
* to the next rule, which can be either the jump
* target (for skipto instructions) or the next one in the list (in
* all other cases including a missing jump target).
* The result is also written in the "next_rule" field of the rule.
* Backward jumps are not allowed, so start looking from the next
* rule...
*
* This never returns NULL -- in case we do not have an exact match,
* the next rule is returned. When the ruleset is changed,
* pointers are flushed so we are always correct.
*/
static struct ip_fw *
lookup_next_rule(struct ip_fw *me)
{
struct ip_fw *rule = NULL;
ipfw_insn *cmd;
/* look for action, in case it is a skipto */
cmd = ACTION_PTR(me);
if ( cmd->opcode == O_SKIPTO )
for (rule = me->next; rule ; rule = rule->next)
if (rule->rulenum >= cmd->arg1)
break;
if (rule == NULL) /* failure or not a skipto */
rule = me->next;
me->next_rule = rule;
return rule;
}
/*
* The main check routine for the firewall.
*
* All arguments are in args so we can modify them and return them
* back to the caller.
*
* Parameters:
*
* args->m (in/out) The packet; we set to NULL when/if we nuke it.
* Starts with the IP header.
* args->eh (in) Mac header if present, or NULL for layer3 packet.
* args->oif Outgoing interface, or NULL if packet is incoming.
* The incoming interface is in the mbuf. (in)
* args->divert_rule (in/out)
* Skip up to the first rule past this rule number;
* upon return, non-zero port number for divert or tee.
*
* args->rule Pointer to the last matching rule (in/out)
* args->next_hop Socket we are forwarding to (out).
* args->f_id Addresses grabbed from the packet (out)
*
* Return value:
*
* IP_FW_PORT_DENY_FLAG the packet must be dropped.
* 0 The packet is to be accepted and routed normally OR
* the packet was denied/rejected and has been dropped;
* in the latter case, *m is equal to NULL upon return.
* port Divert the packet to port, with these caveats:
*
* - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
* of diverting it (ie, 'ipfw tee').
*
* - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
* 16 bits as a dummynet pipe number instead of diverting
*/
static int
ipfw_chk(struct ip_fw_args *args)
{
/*
* Local variables hold state during the processing of a packet.
*
* IMPORTANT NOTE: to speed up the processing of rules, there
* are some assumption on the values of the variables, which
* are documented here. Should you change them, please check
* the implementation of the various instructions to make sure
* that they still work.
*/
/*
* args->eh The MAC header. It is non-null for a layer2
* packet, it is NULL for a layer-3 packet.
*
* m | args->m Pointer to the mbuf, as received from the caller.
* It may change if ipfw_chk() does an m_pullup, or if it
* consumes the packet because it calls send_reject().
* XXX This has to change, so that ipfw_chk() never modifies
* or consumes the buffer.
* ip is simply an alias of the value of m, and it is kept
* in sync with it (the packet is supposed to start with
* the ip header).
*/
struct mbuf *m = args->m;
struct ip *ip = mtod(m, struct ip *);
/*
* oif | args->oif If NULL, ipfw_chk has been called on the
* inbound path (ether_input, bdg_forward, ip_input).
* If non-NULL, ipfw_chk has been called on the outbound path
* (ether_output, ip_output).
*/
struct ifnet *oif = args->oif;
struct ip_fw *f = NULL; /* matching rule */
int retval = 0;
/*
* hlen The length of the IPv4 header.
* hlen >0 means we have an IPv4 packet.
*/
u_int hlen = 0; /* hlen >0 means we have an IP pkt */
/*
* offset The offset of a fragment. offset != 0 means that
* we have a fragment at this offset of an IPv4 packet.
* offset == 0 means that (if this is an IPv4 packet)
* this is the first or only fragment.
*/
u_short offset = 0;
/*
* Local copies of addresses. They are only valid if we have
* an IP packet.
*
* proto The protocol. Set to 0 for non-ip packets,
* or to the protocol read from the packet otherwise.
* proto != 0 means that we have an IPv4 packet.
*
* src_port, dst_port port numbers, in HOST format. Only
* valid for TCP and UDP packets.
*
* src_ip, dst_ip ip addresses, in NETWORK format.
* Only valid for IPv4 packets.
*/
u_int8_t proto;
u_int16_t src_port = 0, dst_port = 0; /* NOTE: host format */
struct in_addr src_ip, dst_ip; /* NOTE: network format */
u_int16_t ip_len=0;
int dyn_dir = MATCH_UNKNOWN;
ipfw_dyn_rule *q = NULL;
/*
* dyn_dir = MATCH_UNKNOWN when rules unchecked,
* MATCH_NONE when checked and not matched (q = NULL),
* MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
*/
if (args->eh == NULL || /* layer 3 packet */
( m->m_pkthdr.len >= sizeof(struct ip) &&
ntohs(args->eh->ether_type) == ETHERTYPE_IP))
hlen = ip->ip_hl << 2;
/*
* Collect parameters into local variables for faster matching.
*/
if (hlen == 0) { /* do not grab addresses for non-ip pkts */
proto = args->f_id.proto = 0; /* mark f_id invalid */
goto after_ip_checks;
}
proto = args->f_id.proto = ip->ip_p;
src_ip = ip->ip_src;
dst_ip = ip->ip_dst;
if (args->eh != NULL) { /* layer 2 packets are as on the wire */
offset = ntohs(ip->ip_off) & IP_OFFMASK;
ip_len = ntohs(ip->ip_len);
} else {
offset = ip->ip_off & IP_OFFMASK;
ip_len = ip->ip_len;
}
#define PULLUP_TO(len) \
do { \
if ((m)->m_len < (len)) { \
args->m = m = m_pullup(m, (len)); \
if (m == 0) \
goto pullup_failed; \
ip = mtod(m, struct ip *); \
} \
} while (0)
if (offset == 0) {
switch (proto) {
case IPPROTO_TCP:
{
struct tcphdr *tcp;
PULLUP_TO(hlen + sizeof(struct tcphdr));
tcp = L3HDR(struct tcphdr, ip);
dst_port = tcp->th_dport;
src_port = tcp->th_sport;
args->f_id.flags = tcp->th_flags;
}
break;
case IPPROTO_UDP:
{
struct udphdr *udp;
PULLUP_TO(hlen + sizeof(struct udphdr));
udp = L3HDR(struct udphdr, ip);
dst_port = udp->uh_dport;
src_port = udp->uh_sport;
}
break;
case IPPROTO_ICMP:
PULLUP_TO(hlen + 4); /* type, code and checksum. */
args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
break;
default:
break;
}
#undef PULLUP_TO
}
args->f_id.src_ip = ntohl(src_ip.s_addr);
args->f_id.dst_ip = ntohl(dst_ip.s_addr);
args->f_id.src_port = src_port = ntohs(src_port);
args->f_id.dst_port = dst_port = ntohs(dst_port);
after_ip_checks:
if (args->rule) {
/*
* Packet has already been tagged. Look for the next rule
* to restart processing.
*
* If fw_one_pass != 0 then just accept it.
* XXX should not happen here, but optimized out in
* the caller.
*/
if (fw_one_pass)
return 0;
f = args->rule->next_rule;
if (f == NULL)
f = lookup_next_rule(args->rule);
} else {
/*
* Find the starting rule. It can be either the first
* one, or the one after divert_rule if asked so.
*/
int skipto = args->divert_rule;
f = layer3_chain;
if (args->eh == NULL && skipto != 0) {
if (skipto >= IPFW_DEFAULT_RULE)
return(IP_FW_PORT_DENY_FLAG); /* invalid */
while (f && f->rulenum <= skipto)
f = f->next;
if (f == NULL) /* drop packet */
return(IP_FW_PORT_DENY_FLAG);
}
}
args->divert_rule = 0; /* reset to avoid confusion later */
/*
* Now scan the rules, and parse microinstructions for each rule.
*/
for (; f; f = f->next) {
int l, cmdlen;
ipfw_insn *cmd;
int skip_or; /* skip rest of OR block */
again:
skip_or = 0;
for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
l -= cmdlen, cmd += cmdlen) {
/*
* check_body is a jump target used when we find a
* CHECK_STATE, and need to jump to the body of
* the target rule.
*/
check_body:
cmdlen = F_LEN(cmd);
/*
* An OR block (insn_1 || .. || insn_n) has the
* F_OR bit set in all but the last instruction.
* The first match will set "skip_or", and cause
* the following instructions to be skipped until
* past the one with the F_OR bit clear.
*/
if (skip_or) { /* skip this instruction */
if ((cmd->len & F_OR) == 0)
skip_or = 0; /* next one is good */
continue;
}
switch (cmd->opcode) {
case O_NOP:
goto cmd_match; /* That's easy */
case O_IPPRE:
case O_FORWARD_MAC:
printf("ipfw: opcode %d unimplemented\n",
cmd->opcode);
goto cmd_fail;
case O_GID:
case O_UID:
/*
* We only check offset == 0 && proto != 0,
* as this ensures that we have an IPv4
* packet with the ports info.
*/
if (offset!=0)
goto cmd_fail;
{
struct inpcbinfo *pi;
int wildcard;
struct inpcb *pcb;
if (proto == IPPROTO_TCP) {
wildcard = 0;
pi = &tcbinfo;
} else if (proto == IPPROTO_UDP) {
wildcard = 1;
pi = &udbinfo;
} else
goto cmd_fail;
pcb = (oif) ?
in_pcblookup_hash(pi,
dst_ip, htons(dst_port),
src_ip, htons(src_port),
wildcard, oif) :
in_pcblookup_hash(pi,
src_ip, htons(src_port),
dst_ip, htons(dst_port),
wildcard, NULL);
if (pcb == NULL || pcb->inp_socket == NULL)
goto cmd_fail;
if (cmd->opcode == O_UID) {
#if __FreeBSD_version >= 500034
if (socheckuid(pcb->inp_socket,
(uid_t)((ipfw_insn_u32 *)cmd)->d[0]
))
#else
if (pcb->inp_socket->so_cred->cr_uid !=
(uid_t)((ipfw_insn_u32 *)cmd)->d[0])
#endif
goto cmd_match;
} else {
if (groupmember(
(uid_t)((ipfw_insn_u32 *)cmd)->d[0],
pcb->inp_socket->so_cred))
goto cmd_match;
}
}
goto cmd_fail;
case O_RECV:
if (iface_match(m->m_pkthdr.rcvif,
(ipfw_insn_if *)cmd))
goto cmd_match;
goto cmd_fail;
case O_XMIT:
if (iface_match(oif, (ipfw_insn_if *)cmd))
goto cmd_match;
goto cmd_fail;
case O_VIA:
if (iface_match(oif ? oif : m->m_pkthdr.rcvif,
(ipfw_insn_if *)cmd))
goto cmd_match;
goto cmd_fail;
case O_MACADDR2:
if (args->eh != NULL) { /* have MAC header */
u_int32_t *want = (u_int32_t *)
((ipfw_insn_mac *)cmd)->addr;
u_int32_t *mask = (u_int32_t *)
((ipfw_insn_mac *)cmd)->mask;
u_int32_t *hdr = (u_int32_t *)args->eh;
if ( want[0] == (hdr[0] & mask[0]) &&
want[1] == (hdr[1] & mask[1]) &&
want[2] == (hdr[2] & mask[2]) )
goto cmd_match;
}
goto cmd_fail;
case O_MAC_TYPE:
if (args->eh != NULL) {
u_int16_t type =
ntohs(args->eh->ether_type);
u_int16_t *p =
((ipfw_insn_u16 *)cmd)->ports;
int i;
for (i = cmdlen - 1; i>0; i--)
if (type>=p[0] && type<=p[1])
goto cmd_match;
else
p += 2;
}
goto cmd_fail;
case O_FRAG:
/* XXX check this -- MF bit ? */
if (hlen == 0 || offset != 0)
goto cmd_fail;
goto cmd_match;
case O_IN: /* "out" is "not in" */
if (oif != NULL)
goto cmd_fail;
goto cmd_match;
case O_LAYER2:
if (args->eh == NULL)
goto cmd_fail;
goto cmd_match;
case O_PROTO:
/*
* We do not allow an arg of 0 so the
* check of "proto" only suffices.
*/
if (proto == cmd->arg1)
goto cmd_match;
goto cmd_fail;
case O_IP_SRC:
if (hlen > 0 &&
((ipfw_insn_ip *)cmd)->addr.s_addr ==
src_ip.s_addr)
goto cmd_match;
goto cmd_fail;
case O_IP_SRC_MASK:
if (hlen > 0 &&
((ipfw_insn_ip *)cmd)->addr.s_addr ==
(src_ip.s_addr &
((ipfw_insn_ip *)cmd)->mask.s_addr))
goto cmd_match;
goto cmd_fail;
case O_IP_SRC_ME:
if (hlen == 0)
goto cmd_fail;
{
struct ifnet *tif;
INADDR_TO_IFP(src_ip, tif);
if (tif != NULL)
goto cmd_match;
}
goto cmd_fail;
case O_IP_DST_SET:
case O_IP_SRC_SET:
if (hlen == 0)
goto cmd_fail;
{
u_int32_t *d = (u_int32_t *)(cmd+1);
u_int32_t a =
cmd->opcode == O_IP_DST_SET ?
args->f_id.src_ip : args->f_id.dst_ip;
if (a < d[0])
goto cmd_fail;
a -= d[0];
if (a >= cmd->arg1)
goto cmd_fail;
if (d[ 1 + (a>>5)] & (1<<(a & 0x1f)) )
goto cmd_match;
}
goto cmd_fail;
case O_IP_DST:
if (hlen > 0 &&
((ipfw_insn_ip *)cmd)->addr.s_addr ==
dst_ip.s_addr)
goto cmd_match;
goto cmd_fail;
case O_IP_DST_MASK:
if (hlen == 0)
goto cmd_fail;
if (((ipfw_insn_ip *)cmd)->addr.s_addr ==
(dst_ip.s_addr &
((ipfw_insn_ip *)cmd)->mask.s_addr))
goto cmd_match;
goto cmd_fail;
case O_IP_DST_ME:
if (hlen == 0)
goto cmd_fail;
{
struct ifnet *tif;
INADDR_TO_IFP(dst_ip, tif);
if (tif != NULL)
goto cmd_match;
}
goto cmd_fail;
case O_IP_SRCPORT:
case O_IP_DSTPORT:
/*
* offset == 0 && proto != 0 is enough
* to guarantee that we have an IPv4
* packet with port info.
*/
if (offset != 0)
goto cmd_fail;
if (proto==IPPROTO_UDP ||
proto==IPPROTO_TCP) {
u_int16_t port =
(cmd->opcode == O_IP_SRCPORT) ?
src_port : dst_port ;
u_int16_t *p =
((ipfw_insn_u16 *)cmd)->ports;
int i;
for (i = cmdlen - 1; i>0; i--)
if (port>=p[0] && port<=p[1])
goto cmd_match;
else
p += 2;
}
goto cmd_fail;
case O_ICMPTYPE:
if (offset > 0 ||
proto != IPPROTO_ICMP ||
!icmptype_match(ip, (ipfw_insn_u32 *)cmd) )
goto cmd_fail;
goto cmd_match;
case O_IPOPT:
if (hlen == 0 ||
!ipopts_match(ip, cmd) )
goto cmd_fail;
goto cmd_match;
case O_IPVER:
if (hlen == 0 || cmd->arg1 != ip->ip_v)
goto cmd_fail;
goto cmd_match;
case O_IPTTL:
if (hlen == 0 || cmd->arg1 != ip->ip_ttl)
goto cmd_fail;
goto cmd_match;
case O_IPID:
if (hlen == 0 || cmd->arg1 != ntohs(ip->ip_id))
goto cmd_fail;
goto cmd_match;
case O_IPLEN:
if (hlen == 0 || cmd->arg1 != ip_len)
goto cmd_fail;
goto cmd_match;
case O_IPTOS:
if (hlen == 0 ||
!flags_match(cmd, ip->ip_tos))
goto cmd_fail;
goto cmd_match;
case O_TCPFLAGS:
if (proto != IPPROTO_TCP ||
offset > 0 ||
!flags_match(cmd,
L3HDR(struct tcphdr,ip)->th_flags))
goto cmd_fail;
goto cmd_match;
case O_TCPOPTS:
if (proto != IPPROTO_TCP ||
offset > 0 ||
!tcpopts_match(ip, cmd))
goto cmd_fail;
goto cmd_match;
case O_TCPSEQ:
if (proto != IPPROTO_TCP || offset > 0 ||
((ipfw_insn_u32 *)cmd)->d[0] !=
L3HDR(struct tcphdr,ip)->th_seq)
goto cmd_fail;
goto cmd_match;
case O_TCPACK:
if (proto != IPPROTO_TCP || offset > 0 ||
((ipfw_insn_u32 *)cmd)->d[0] !=
L3HDR(struct tcphdr,ip)->th_ack)
goto cmd_fail;
goto cmd_match;
case O_TCPWIN:
if (proto != IPPROTO_TCP || offset > 0 ||
cmd->arg1 !=
L3HDR(struct tcphdr,ip)->th_win)
goto cmd_fail;
goto cmd_match;
case O_ESTAB:
if (proto != IPPROTO_TCP || offset > 0)
goto cmd_fail;
/* reject packets which have SYN only */
if ((L3HDR(struct tcphdr,ip)->th_flags &
(TH_RST | TH_ACK | TH_SYN)) == TH_SYN)
goto cmd_fail;
goto cmd_match;
case O_LOG:
ipfw_log(f, hlen, args->eh, m, oif);
goto cmd_match;
case O_PROB: /* XXX check */
if (random() < ((ipfw_insn_u32 *)cmd)->d[0] )
goto cmd_match;
goto cmd_fail;
case O_LIMIT:
case O_KEEP_STATE:
if (install_state(f,
(ipfw_insn_limit *)cmd, args))
goto deny; /* error/limit violation */
goto cmd_match;
case O_PROBE_STATE:
case O_CHECK_STATE:
/*
* dynamic rules are checked at the first
* keep-state or check-state occurrence.
* The compiler introduces a probe-state
* instruction for us when we have a
* keep-state (because probe-state needs
* to be run first).
*/
if (dyn_dir == MATCH_UNKNOWN) {
q = lookup_dyn_rule(&args->f_id,
&dyn_dir);
if (q != NULL) {
f = q->rule;
q->pcnt++;
q->bcnt += ip_len;
/* go to ACTION */
cmd = ACTION_PTR(f);
l = f->cmd_len - f->act_ofs;
goto check_body;
}
}
if (cmd->opcode == O_CHECK_STATE)
goto next_rule;
else
goto cmd_match;
case O_ACCEPT:
retval = 0; /* accept */
goto accept;
case O_PIPE:
case O_QUEUE:
args->rule = f; /* report matching rule */
retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
goto accept;
case O_DIVERT:
case O_TEE:
if (args->eh) /* not on layer 2 */
goto cmd_fail;
args->divert_rule = f->rulenum;
if (cmd->opcode == O_DIVERT)
retval = cmd->arg1;
else
retval = cmd->arg1|IP_FW_PORT_TEE_FLAG;
goto accept;
case O_COUNT:
case O_SKIPTO:
f->pcnt++; /* update stats */
f->bcnt += ip_len;
f->timestamp = time_second;
if (cmd->opcode == O_COUNT)
goto next_rule;
/* handle skipto */
if (f->next_rule == NULL)
lookup_next_rule(f);
f = f->next_rule;
goto again;
case O_REJECT:
/*
* Drop the packet and send a reject notice
* if the packet is not ICMP (or is an ICMP
* query), and it is not multicast/broadcast.
*/
if (hlen > 0 &&
(proto != IPPROTO_ICMP ||
is_icmp_query(ip)) &&
!(m->m_flags & (M_BCAST|M_MCAST)) &&
!IN_MULTICAST(dst_ip.s_addr)) {
send_reject(m,cmd->arg1,offset,ip_len);
args->m = m = NULL;
}
goto deny;
case O_FORWARD_IP:
if (args->eh) /* not valid on layer2 pkts */
goto cmd_fail;
if (!q || dyn_dir == MATCH_FORWARD)
args->next_hop =
&((ipfw_insn_sa *)cmd)->sa;
retval = 0;
goto accept;
case O_DENY:
goto deny;
default:
panic("-- unknown opcode %d\n", cmd->opcode);
}
panic("ipfw_chk: end of inner loop");
/*
* This code is a bit spaghetti, but we have
* 4 cases to handle:
* INSN FAIL, no F_NOT --> insn_fail
* INSN FAIL, but we have F_NOT --> cmd_success
* INSN MATCH, no F_NOT --> cmd_success
* INSN MATCH, but we have F_NOT --> insn_fail
*
* after this:
* cmd_success, F_OR --> set skip_or
* cmd_success, not F_OR --> try next insn
* insn_fail, F_OR --> try next insn
* insn_fail, not F_OR --> rule does not match
*/
cmd_fail:
if (cmd->len & F_NOT) /* NOT fail is a success */
goto cmd_success;
else
goto insn_fail;
cmd_match:
if (cmd->len & F_NOT) { /* NOT match is a failure. */
insn_fail:
if (cmd->len & F_OR) /* If an or block */
continue; /* try next insn */
else
break; /* otherwise next rule */
}
cmd_success:
if (cmd->len & F_OR)
skip_or = 1;
} /* end of inner for, scan opcodes */
next_rule: /* try next rule */
} /* end of outer for, scan rules */
deny:
retval = IP_FW_PORT_DENY_FLAG;
accept:
/* Update statistics */
f->pcnt++;
f->bcnt += ip_len;
f->timestamp = time_second;
return retval;
pullup_failed:
if (fw_verbose)
printf("pullup failed\n");
return(IP_FW_PORT_DENY_FLAG);
}
#if 0 /* XXX old instructions not implemented yet XXX */
bogusfrag:
if (fw_verbose) {
if (*m != NULL)
ipfw_report(NULL, ip, ip_off, ip_len, (*m)->m_pkthdr.rcvif, oif);
}
return(IP_FW_PORT_DENY_FLAG);
if (f->fw_ipflg & IP_FW_IF_IPPRE &&
(f->fw_iptos & 0xe0) != (ip->ip_tos & 0xe0))
continue;
#endif /* XXX old instructions not implemented yet */
/*
* When a rule is added/deleted, clear the next_rule pointers in all rules.
* These will be reconstructed on the fly as packets are matched.
* Must be called at splimp().
*/
static void
flush_rule_ptrs(void)
{
struct ip_fw *rule;
for (rule = layer3_chain; rule; rule = rule->next)
rule->next_rule = NULL;
}
/*
* When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
* pipe/queue, or to all of them (match == NULL).
* Must be called at splimp().
*/
void
flush_pipe_ptrs(struct dn_flow_set *match)
{
struct ip_fw *rule;
for (rule = layer3_chain; rule; rule = rule->next) {
ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
continue;
if (match == NULL || cmd->pipe_ptr == match)
cmd->pipe_ptr = NULL;
}
}
/*
* Add a new rule to the list. Copy the rule into a malloc'ed area, then
* possibly create a rule number and add the rule to the list.
* Update the rule_number in the input struct so the caller knows it as well.
*/
static int
add_rule(struct ip_fw **head, struct ip_fw *input_rule)
{
struct ip_fw *rule, *f, *prev;
int s;
int l = RULESIZE(input_rule);
if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
return (EINVAL);
rule = malloc(l, M_IPFW, M_DONTWAIT | M_ZERO);
if (rule == NULL)
return (ENOSPC);
bcopy(input_rule, rule, l);
rule->next = NULL;
rule->next_rule = NULL;
rule->pcnt = 0;
rule->bcnt = 0;
rule->timestamp = 0;
s = splimp();
if (*head == NULL) { /* default rule */
*head = rule;
goto done;
}
/*
* If rulenum is 0, find highest numbered rule before the
* default rule, and add autoinc_step
*/
if (autoinc_step < 1)
autoinc_step = 1;
else if (autoinc_step > 1000)
autoinc_step = 1000;
if (rule->rulenum == 0) {
/*
* locate the highest numbered rule before default
*/
for (f = *head; f; f = f->next) {
if (f->rulenum == IPFW_DEFAULT_RULE)
break;
rule->rulenum = f->rulenum;
}
if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
rule->rulenum += autoinc_step;
input_rule->rulenum = rule->rulenum;
}
/*
* Now insert the new rule in the right place in the sorted list.
*/
for (prev = NULL, f = *head; f; prev = f, f = f->next) {
if (f->rulenum > rule->rulenum) { /* found the location */
if (prev) {
rule->next = f;
prev->next = rule;
} else { /* head insert */
rule->next = *head;
*head = rule;
}
break;
}
}
flush_rule_ptrs();
done:
static_count++;
static_len += l;
splx(s);
DEB(printf("++ installed rule %d, static count now %d\n",
rule->rulenum, static_count);)
return (0);
}
/**
* Free storage associated with a static rule (including derived
* dynamic rules).
* The caller is in charge of clearing rule pointers to avoid
* dangling pointers.
* @return a pointer to the next entry.
* Arguments are not checked, so they better be correct.
* Must be called at splimp().
*/
static struct ip_fw *
delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
{
struct ip_fw *n;
int l = RULESIZE(rule);
n = rule->next;
remove_dyn_rule(rule, NULL /* force removal */);
if (prev == NULL)
*head = n;
else
prev->next = n;
static_count--;
static_len -= l;
if (DUMMYNET_LOADED)
ip_dn_ruledel_ptr(rule);
free(rule, M_IPFW);
return n;
}
/*
* Deletes all rules from a chain (including the default rule
* if the second argument is set).
* Must be called at splimp().
*/
static void
free_chain(struct ip_fw **chain, int kill_default)
{
struct ip_fw *rule;
flush_rule_ptrs(); /* more efficient to do outside the loop */
while ( (rule = *chain) != NULL &&
(kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
delete_rule(chain, NULL, rule);
}
/**
* Remove all rules with given number.
*/
static int
del_entry(struct ip_fw **chain, u_short rulenum)
{
struct ip_fw *prev, *rule;
int s;
if (rulenum == IPFW_DEFAULT_RULE)
return EINVAL;
/*
* locate first rule to delete
*/
for (prev = NULL, rule = *chain; rule && rule->rulenum < rulenum;
prev = rule, rule = rule->next)
;
if (rule->rulenum != rulenum)
return EINVAL;
s = splimp(); /* no access to rules while removing */
flush_rule_ptrs(); /* more efficient to do outside the loop */
/*
* prev remains the same throughout the cycle
*/
while (rule && rule->rulenum == rulenum)
rule = delete_rule(chain, prev, rule);
splx(s);
return 0;
}
/*
* Clear counters for a specific rule.
*/
static void
clear_counters(struct ip_fw *rule, int log_only)
{
ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
if (log_only == 0) {
rule->bcnt = rule->pcnt = 0;
rule->timestamp = 0;
}
if (l->o.opcode == O_LOG)
l->log_left = l->max_log;
}
/**
* Reset some or all counters on firewall rules.
* @arg frwl is null to clear all entries, or contains a specific
* rule number.
* @arg log_only is 1 if we only want to reset logs, zero otherwise.
*/
static int
zero_entry(int rulenum, int log_only)
{
struct ip_fw *rule;
int s;
char *msg;
if (rulenum == 0) {
s = splimp();
norule_counter = 0;
for (rule = layer3_chain; rule; rule = rule->next)
clear_counters(rule, log_only);
splx(s);
msg = log_only ? "ipfw: All logging counts reset.\n" :
"ipfw: Accounting cleared.\n";
} else {
int cleared = 0;
/*
* We can have multiple rules with the same number, so we
* need to clear them all.
*/
for (rule = layer3_chain; rule; rule = rule->next)
if (rule->rulenum == rulenum) {
s = splimp();
while (rule && rule->rulenum == rulenum) {
clear_counters(rule, log_only);
rule = rule->next;
}
splx(s);
cleared = 1;
break;
}
if (!cleared) /* we did not find any matching rules */
return (EINVAL);
msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
"ipfw: Entry %d cleared.\n";
}
if (fw_verbose)
log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
return (0);
}
/*
* Check validity of the structure before insert.
* Fortunately rules are simple, so this mostly need to check rule sizes.
*/
static int
check_ipfw_struct(struct ip_fw *rule, int size)
{
int l, cmdlen = 0;
int have_action=0;
ipfw_insn *cmd;
if (size < sizeof(*rule)) {
printf("kipfw: rule too short\n");
return (EINVAL);
}
/* first, check for valid size */
l = RULESIZE(rule);
if (l != size) {
printf("kipfw: size mismatch (have %d want %d)\n", size, l);
return (EINVAL);
}
/*
* Now go for the individual checks. Very simple ones, basically only
* instruction sizes.
*/
for (l = rule->cmd_len, cmd = rule->cmd ;
l > 0 ; l -= cmdlen, cmd += cmdlen) {
cmdlen = F_LEN(cmd);
if (cmdlen > l) {
printf("kipfw: opcode %d size truncated\n",
cmd->opcode);
return EINVAL;
}
DEB(printf("kipfw: opcode %d\n", cmd->opcode);)
switch (cmd->opcode) {
case O_NOP:
case O_PROBE_STATE:
case O_KEEP_STATE:
case O_PROTO:
case O_IP_SRC_ME:
case O_IP_DST_ME:
case O_LAYER2:
case O_IN:
case O_FRAG:
case O_IPOPT:
case O_IPLEN:
case O_IPID:
case O_IPPRE:
case O_IPTOS:
case O_IPTTL:
case O_IPVER:
case O_TCPWIN:
case O_TCPFLAGS:
case O_TCPOPTS:
case O_ESTAB:
if (cmdlen != F_INSN_SIZE(ipfw_insn))
goto bad_size;
break;
case O_UID:
case O_GID:
case O_IP_SRC:
case O_IP_DST:
case O_TCPSEQ:
case O_TCPACK:
case O_PROB:
case O_ICMPTYPE:
if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
goto bad_size;
break;
case O_LIMIT:
if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
goto bad_size;
break;
case O_LOG:
if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
goto bad_size;
((ipfw_insn_log *)cmd)->log_left =
((ipfw_insn_log *)cmd)->max_log;
break;
case O_IP_SRC_MASK:
case O_IP_DST_MASK:
if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
goto bad_size;
if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
printf("kipfw: opcode %d, useless rule\n",
cmd->opcode);
return EINVAL;
}
break;
case O_IP_SRC_SET:
case O_IP_DST_SET:
if (cmd->arg1 == 0 || cmd->arg1 > 256) {
printf("kipfw: invalid set size %d\n",
cmd->arg1);
return EINVAL;
}
if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
(cmd->arg1+31)/32 )
goto bad_size;
break;
case O_MACADDR2:
if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
goto bad_size;
break;
case O_MAC_TYPE:
case O_IP_SRCPORT:
case O_IP_DSTPORT: /* XXX artificial limit, 15 port pairs */
if (cmdlen < 2 || cmdlen > 15)
goto bad_size;
break;
case O_RECV:
case O_XMIT:
case O_VIA:
if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
goto bad_size;
break;
case O_PIPE:
case O_QUEUE:
if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
goto bad_size;
goto check_action;
case O_FORWARD_IP: /* XXX no! */
if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
goto bad_size;
goto check_action;
case O_FORWARD_MAC: /* XXX no! */
case O_CHECK_STATE:
case O_COUNT:
case O_ACCEPT:
case O_DENY:
case O_REJECT:
case O_SKIPTO:
case O_DIVERT:
case O_TEE:
if (cmdlen != F_INSN_SIZE(ipfw_insn))
goto bad_size;
check_action:
if (have_action) {
printf("kipfw: opcode %d, multiple actions"
" not allowed\n",
cmd->opcode);
return EINVAL;
}
have_action = 1;
if (l != cmdlen) {
printf("kipfw: opcode %d, action must be"
" last opcode\n",
cmd->opcode);
return EINVAL;
}
break;
default:
printf("kipfw: opcode %d, unknown opcode\n",
cmd->opcode);
return EINVAL;
}
}
if (have_action == 0) {
printf("kipfw: missing action\n");
return EINVAL;
}
return 0;
bad_size:
printf("kipfw: opcode %d size %d wrong\n",
cmd->opcode, cmdlen);
return EINVAL;
}
/**
* {set|get}sockopt parser.
*/
static int
ipfw_ctl(struct sockopt *sopt)
{
int error, s, rulenum;
size_t size;
struct ip_fw *bp , *buf, *rule;
static u_int32_t rule_buf[255]; /* we copy the data here */
/*
* Disallow modifications in really-really secure mode, but still allow
* the logging counters to be reset.
*/
if (sopt->sopt_name == IP_FW_ADD ||
(sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
#if __FreeBSD_version >= 500034
error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
if (error)
return (error);
#else /* FreeBSD 4.x */
if (securelevel >= 3)
return (EPERM);
#endif
}
error = 0;
switch (sopt->sopt_name) {
case IP_FW_GET:
/*
* pass up a copy of the current rules. Static rules
* come first (the last of which has number IPFW_DEFAULT_RULE),
* followed by a possibly empty list of dynamic rule.
* The last dynamic rule has NULL in the "next" field.
*/
s = splimp();
size = static_len; /* size of static rules */
if (ipfw_dyn_v) /* add size of dyn.rules */
size += (dyn_count * sizeof(ipfw_dyn_rule));
/*
* XXX todo: if the user passes a short length just to know
* how much room is needed, do not bother filling up the
* buffer, just jump to the sooptcopyout.
*/
buf = malloc(size, M_TEMP, M_WAITOK);
if (buf == 0) {
splx(s);
error = ENOBUFS;
break;
}
bp = buf;
for (rule = layer3_chain; rule ; rule = rule->next) {
int i = RULESIZE(rule);
bcopy(rule, bp, i);
bp = (struct ip_fw *)((char *)bp + i);
}
if (ipfw_dyn_v) {
int i;
ipfw_dyn_rule *p, *dst, *last = NULL;
dst = (ipfw_dyn_rule *)bp;
for (i = 0 ; i < curr_dyn_buckets ; i++ )
for ( p = ipfw_dyn_v[i] ; p != NULL ;
p = p->next, dst++ ) {
bcopy(p, dst, sizeof *p);
(int)dst->rule = p->rule->rulenum ;
/*
* store a non-null value in "next".
* The userland code will interpret a
* NULL here as a marker
* for the last dynamic rule.
*/
dst->next = dst ;
last = dst ;
dst->expire =
TIME_LEQ(dst->expire, time_second) ?
0 : dst->expire - time_second ;
}
if (last != NULL) /* mark last dynamic rule */
last->next = NULL;
}
splx(s);
error = sooptcopyout(sopt, buf, size);
free(buf, M_TEMP);
break;
case IP_FW_FLUSH:
/*
* Normally we cannot release the lock on each iteration.
* We could do it here only because we start from the head all
* the times so there is no risk of missing some entries.
* On the other hand, the risk is that we end up with
* a very inconsistent ruleset, so better keep the lock
* around the whole cycle.
*
* XXX this code can be improved by resetting the head of
* the list to point to the default rule, and then freeing
* the old list without the need for a lock.
*/
s = splimp();
free_chain(&layer3_chain, 0 /* keep default rule */);
splx(s);
break;
case IP_FW_ADD:
rule = (struct ip_fw *)rule_buf; /* XXX do a malloc */
error = sooptcopyin(sopt, rule, sizeof(rule_buf),
sizeof(struct ip_fw) );
size = sopt->sopt_valsize;
if (error || (error = check_ipfw_struct(rule, size)))
break;
error = add_rule(&layer3_chain, rule);
size = RULESIZE(rule);
if (!error && sopt->sopt_dir == SOPT_GET)
error = sooptcopyout(sopt, rule, size);
break;
case IP_FW_DEL: /* argument is an int, the rule number */
error = sooptcopyin(sopt, &rulenum, sizeof(int), sizeof(int));
if (error)
break;
if (rulenum == IPFW_DEFAULT_RULE) {
if (fw_debug)
printf("ipfw: can't delete rule %u\n",
(unsigned)IPFW_DEFAULT_RULE);
error = EINVAL;
} else
error = del_entry(&layer3_chain, rulenum);
break;
case IP_FW_ZERO:
case IP_FW_RESETLOG: /* argument is an int, the rule number */
rulenum=0;
if (sopt->sopt_val != 0) {
error = sooptcopyin(sopt, &rulenum,
sizeof(int), sizeof(int));
if (error)
break;
}
error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
break;
default:
printf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
error = EINVAL;
}
return (error);
}
/**
* dummynet needs a reference to the default rule, because rules can be
* deleted while packets hold a reference to them. When this happens,
* dummynet changes the reference to the default rule (it could well be a
* NULL pointer, but this way we do not need to check for the special
* case, plus here he have info on the default behaviour).
*/
struct ip_fw *ip_fw_default_rule;
static void
ipfw_init(void)
{
struct ip_fw default_rule;
ip_fw_chk_ptr = ipfw_chk;
ip_fw_ctl_ptr = ipfw_ctl;
layer3_chain = NULL;
bzero(&default_rule, sizeof default_rule);
default_rule.act_ofs = 0;
default_rule.rulenum = IPFW_DEFAULT_RULE;
default_rule.cmd_len = 1;
default_rule.cmd[0].len = 1;
default_rule.cmd[0].opcode =
#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
1 ? O_ACCEPT :
#endif
O_DENY;
add_rule(&layer3_chain, &default_rule);
ip_fw_default_rule = layer3_chain;
printf("IP packet filtering initialized, divert %s, "
"rule-based forwarding %s, default to %s, logging ",
#ifdef IPDIVERT
"enabled",
#else
"disabled",
#endif
"enabled",
default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
#ifdef IPFIREWALL_VERBOSE
fw_verbose = 1;
#endif
#ifdef IPFIREWALL_VERBOSE_LIMIT
verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
#endif
printf("logging ");
if (fw_verbose == 0)
printf("disabled\n");
else if (verbose_limit == 0)
printf("unlimited\n");
else
printf("limited to %d packets/entry by default\n",
verbose_limit);
}
static int
ipfw_modevent(module_t mod, int type, void *unused)
{
int s;
int err = 0;
switch (type) {
case MOD_LOAD:
s = splimp();
if (IPFW_LOADED) {
splx(s);
printf("IP firewall already loaded\n");
err = EEXIST;
} else {
ipfw_init();
splx(s);
}
break;
case MOD_UNLOAD:
#if !defined(KLD_MODULE)
printf("ipfw statically compiled, cannot unload\n");
err = EBUSY;
#else
s = splimp();
ip_fw_chk_ptr = NULL;
ip_fw_ctl_ptr = NULL;
free_chain(&layer3_chain, 1 /* kill default rule */);
splx(s);
printf("IP firewall unloaded\n");
#endif
break;
default:
break;
}
return err;
}
static moduledata_t ipfwmod = {
"ipfw",
ipfw_modevent,
0
};
DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(ipfw, 1);