mirror of
https://git.FreeBSD.org/src.git
synced 2025-01-21 15:45:02 +00:00
1056 lines
27 KiB
C
1056 lines
27 KiB
C
|
/* DDG - Data Dependence Graph implementation.
|
|||
|
Copyright (C) 2004, 2005, 2006
|
|||
|
Free Software Foundation, Inc.
|
|||
|
Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
|
|||
|
|
|||
|
This file is part of GCC.
|
|||
|
|
|||
|
GCC is free software; you can redistribute it and/or modify it under
|
|||
|
the terms of the GNU General Public License as published by the Free
|
|||
|
Software Foundation; either version 2, or (at your option) any later
|
|||
|
version.
|
|||
|
|
|||
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|||
|
for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with GCC; see the file COPYING. If not, write to the Free
|
|||
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|||
|
02110-1301, USA. */
|
|||
|
|
|||
|
|
|||
|
#include "config.h"
|
|||
|
#include "system.h"
|
|||
|
#include "coretypes.h"
|
|||
|
#include "tm.h"
|
|||
|
#include "toplev.h"
|
|||
|
#include "rtl.h"
|
|||
|
#include "tm_p.h"
|
|||
|
#include "hard-reg-set.h"
|
|||
|
#include "regs.h"
|
|||
|
#include "function.h"
|
|||
|
#include "flags.h"
|
|||
|
#include "insn-config.h"
|
|||
|
#include "insn-attr.h"
|
|||
|
#include "except.h"
|
|||
|
#include "recog.h"
|
|||
|
#include "sched-int.h"
|
|||
|
#include "target.h"
|
|||
|
#include "cfglayout.h"
|
|||
|
#include "cfgloop.h"
|
|||
|
#include "sbitmap.h"
|
|||
|
#include "expr.h"
|
|||
|
#include "bitmap.h"
|
|||
|
#include "df.h"
|
|||
|
#include "ddg.h"
|
|||
|
|
|||
|
/* A flag indicating that a ddg edge belongs to an SCC or not. */
|
|||
|
enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
|
|||
|
|
|||
|
/* Forward declarations. */
|
|||
|
static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
|
|||
|
static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
|
|||
|
static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
|
|||
|
static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
|
|||
|
static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
|
|||
|
dep_type, dep_data_type, int);
|
|||
|
static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
|
|||
|
dep_data_type, int, int);
|
|||
|
static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
|
|||
|
|
|||
|
/* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
|
|||
|
static bool mem_ref_p;
|
|||
|
|
|||
|
/* Auxiliary function for mem_read_insn_p. */
|
|||
|
static int
|
|||
|
mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (MEM_P (*x))
|
|||
|
mem_ref_p = true;
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
/* Auxiliary function for mem_read_insn_p. */
|
|||
|
static void
|
|||
|
mark_mem_use_1 (rtx *x, void *data)
|
|||
|
{
|
|||
|
for_each_rtx (x, mark_mem_use, data);
|
|||
|
}
|
|||
|
|
|||
|
/* Returns nonzero if INSN reads from memory. */
|
|||
|
static bool
|
|||
|
mem_read_insn_p (rtx insn)
|
|||
|
{
|
|||
|
mem_ref_p = false;
|
|||
|
note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
|
|||
|
return mem_ref_p;
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
|
|||
|
{
|
|||
|
if (MEM_P (loc))
|
|||
|
mem_ref_p = true;
|
|||
|
}
|
|||
|
|
|||
|
/* Returns nonzero if INSN writes to memory. */
|
|||
|
static bool
|
|||
|
mem_write_insn_p (rtx insn)
|
|||
|
{
|
|||
|
mem_ref_p = false;
|
|||
|
note_stores (PATTERN (insn), mark_mem_store, NULL);
|
|||
|
return mem_ref_p;
|
|||
|
}
|
|||
|
|
|||
|
/* Returns nonzero if X has access to memory. */
|
|||
|
static bool
|
|||
|
rtx_mem_access_p (rtx x)
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
const char *fmt;
|
|||
|
enum rtx_code code;
|
|||
|
|
|||
|
if (x == 0)
|
|||
|
return false;
|
|||
|
|
|||
|
if (MEM_P (x))
|
|||
|
return true;
|
|||
|
|
|||
|
code = GET_CODE (x);
|
|||
|
fmt = GET_RTX_FORMAT (code);
|
|||
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
|||
|
{
|
|||
|
if (fmt[i] == 'e')
|
|||
|
{
|
|||
|
if (rtx_mem_access_p (XEXP (x, i)))
|
|||
|
return true;
|
|||
|
}
|
|||
|
else if (fmt[i] == 'E')
|
|||
|
for (j = 0; j < XVECLEN (x, i); j++)
|
|||
|
{
|
|||
|
if (rtx_mem_access_p (XVECEXP (x, i, j)))
|
|||
|
return true;
|
|||
|
}
|
|||
|
}
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
/* Returns nonzero if INSN reads to or writes from memory. */
|
|||
|
static bool
|
|||
|
mem_access_insn_p (rtx insn)
|
|||
|
{
|
|||
|
return rtx_mem_access_p (PATTERN (insn));
|
|||
|
}
|
|||
|
|
|||
|
/* Computes the dependence parameters (latency, distance etc.), creates
|
|||
|
a ddg_edge and adds it to the given DDG. */
|
|||
|
static void
|
|||
|
create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
|
|||
|
ddg_node_ptr dest_node, rtx link)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
int latency, distance = 0;
|
|||
|
int interloop = (src_node->cuid >= dest_node->cuid);
|
|||
|
dep_type t = TRUE_DEP;
|
|||
|
dep_data_type dt = (mem_access_insn_p (src_node->insn)
|
|||
|
&& mem_access_insn_p (dest_node->insn) ? MEM_DEP
|
|||
|
: REG_DEP);
|
|||
|
|
|||
|
/* For now we don't have an exact calculation of the distance,
|
|||
|
so assume 1 conservatively. */
|
|||
|
if (interloop)
|
|||
|
distance = 1;
|
|||
|
|
|||
|
gcc_assert (link);
|
|||
|
|
|||
|
/* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
|
|||
|
if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
|
|||
|
t = ANTI_DEP;
|
|||
|
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
|
|||
|
t = OUTPUT_DEP;
|
|||
|
latency = insn_cost (src_node->insn, link, dest_node->insn);
|
|||
|
|
|||
|
e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
|
|||
|
|
|||
|
if (interloop)
|
|||
|
{
|
|||
|
/* Some interloop dependencies are relaxed:
|
|||
|
1. Every insn is output dependent on itself; ignore such deps.
|
|||
|
2. Every true/flow dependence is an anti dependence in the
|
|||
|
opposite direction with distance 1; such register deps
|
|||
|
will be removed by renaming if broken --- ignore them. */
|
|||
|
if (!(t == OUTPUT_DEP && src_node == dest_node)
|
|||
|
&& !(t == ANTI_DEP && dt == REG_DEP))
|
|||
|
add_backarc_to_ddg (g, e);
|
|||
|
else
|
|||
|
free (e);
|
|||
|
}
|
|||
|
else if (t == ANTI_DEP && dt == REG_DEP)
|
|||
|
free (e); /* We can fix broken anti register deps using reg-moves. */
|
|||
|
else
|
|||
|
add_edge_to_ddg (g, e);
|
|||
|
}
|
|||
|
|
|||
|
/* The same as the above function, but it doesn't require a link parameter. */
|
|||
|
static void
|
|||
|
create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
|
|||
|
dep_type d_t, dep_data_type d_dt, int distance)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
int l;
|
|||
|
rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
|
|||
|
|
|||
|
if (d_t == ANTI_DEP)
|
|||
|
PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
|
|||
|
else if (d_t == OUTPUT_DEP)
|
|||
|
PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
|
|||
|
|
|||
|
l = insn_cost (from->insn, link, to->insn);
|
|||
|
free_INSN_LIST_node (link);
|
|||
|
|
|||
|
e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
|
|||
|
if (distance > 0)
|
|||
|
add_backarc_to_ddg (g, e);
|
|||
|
else
|
|||
|
add_edge_to_ddg (g, e);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Given a downwards exposed register def RD, add inter-loop true dependences
|
|||
|
for all its uses in the next iteration, and an output dependence to the
|
|||
|
first def of the next iteration. */
|
|||
|
static void
|
|||
|
add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
|
|||
|
{
|
|||
|
int regno = DF_REF_REGNO (rd);
|
|||
|
struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (df, g->bb);
|
|||
|
struct df_link *r_use;
|
|||
|
int use_before_def = false;
|
|||
|
rtx def_insn = DF_REF_INSN (rd);
|
|||
|
ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
|
|||
|
|
|||
|
/* Create and inter-loop true dependence between RD and each of its uses
|
|||
|
that is upwards exposed in RD's block. */
|
|||
|
for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
|
|||
|
{
|
|||
|
if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
|
|||
|
{
|
|||
|
rtx use_insn = DF_REF_INSN (r_use->ref);
|
|||
|
ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
|
|||
|
|
|||
|
gcc_assert (src_node && dest_node);
|
|||
|
|
|||
|
/* Any such upwards exposed use appears before the rd def. */
|
|||
|
use_before_def = true;
|
|||
|
create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
|
|||
|
REG_DEP, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Create an inter-loop output dependence between RD (which is the
|
|||
|
last def in its block, being downwards exposed) and the first def
|
|||
|
in its block. Avoid creating a self output dependence. Avoid creating
|
|||
|
an output dependence if there is a dependence path between the two defs
|
|||
|
starting with a true dependence followed by an anti dependence (i.e. if
|
|||
|
there is a use between the two defs. */
|
|||
|
if (! use_before_def)
|
|||
|
{
|
|||
|
struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
|
|||
|
int i;
|
|||
|
ddg_node_ptr dest_node;
|
|||
|
|
|||
|
if (!def || rd->id == def->id)
|
|||
|
return;
|
|||
|
|
|||
|
/* Check if there are uses after RD. */
|
|||
|
for (i = src_node->cuid + 1; i < g->num_nodes; i++)
|
|||
|
if (df_find_use (df, g->nodes[i].insn, rd->reg))
|
|||
|
return;
|
|||
|
|
|||
|
dest_node = get_node_of_insn (g, def->insn);
|
|||
|
create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Given a register USE, add an inter-loop anti dependence to the first
|
|||
|
(nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
|
|||
|
by a def in the block. */
|
|||
|
static void
|
|||
|
add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
|
|||
|
{
|
|||
|
int i;
|
|||
|
int regno = DF_REF_REGNO (use);
|
|||
|
struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
|
|||
|
ddg_node_ptr use_node;
|
|||
|
ddg_node_ptr def_node;
|
|||
|
struct df_rd_bb_info *bb_info;
|
|||
|
|
|||
|
bb_info = DF_RD_BB_INFO (df, g->bb);
|
|||
|
|
|||
|
if (!first_def)
|
|||
|
return;
|
|||
|
|
|||
|
use_node = get_node_of_insn (g, use->insn);
|
|||
|
def_node = get_node_of_insn (g, first_def->insn);
|
|||
|
|
|||
|
gcc_assert (use_node && def_node);
|
|||
|
|
|||
|
/* Make sure there are no defs after USE. */
|
|||
|
for (i = use_node->cuid + 1; i < g->num_nodes; i++)
|
|||
|
if (df_find_def (df, g->nodes[i].insn, use->reg))
|
|||
|
return;
|
|||
|
/* We must not add ANTI dep when there is an intra-loop TRUE dep in
|
|||
|
the opposite direction. If the first_def reaches the USE then there is
|
|||
|
such a dep. */
|
|||
|
if (! bitmap_bit_p (bb_info->gen, first_def->id))
|
|||
|
create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* Build inter-loop dependencies, by looking at DF analysis backwards. */
|
|||
|
static void
|
|||
|
build_inter_loop_deps (ddg_ptr g, struct df *df)
|
|||
|
{
|
|||
|
unsigned rd_num, u_num;
|
|||
|
struct df_rd_bb_info *rd_bb_info;
|
|||
|
struct df_ru_bb_info *ru_bb_info;
|
|||
|
bitmap_iterator bi;
|
|||
|
|
|||
|
rd_bb_info = DF_RD_BB_INFO (df, g->bb);
|
|||
|
|
|||
|
/* Find inter-loop output and true deps by connecting downward exposed defs
|
|||
|
to the first def of the BB and to upwards exposed uses. */
|
|||
|
EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
|
|||
|
{
|
|||
|
struct df_ref *rd = DF_DEFS_GET (df, rd_num);
|
|||
|
|
|||
|
add_deps_for_def (g, df, rd);
|
|||
|
}
|
|||
|
|
|||
|
ru_bb_info = DF_RU_BB_INFO (df, g->bb);
|
|||
|
|
|||
|
/* Find inter-loop anti deps. We are interested in uses of the block that
|
|||
|
appear below all defs; this implies that these uses are killed. */
|
|||
|
EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
|
|||
|
{
|
|||
|
struct df_ref *use = DF_USES_GET (df, u_num);
|
|||
|
|
|||
|
/* We are interested in uses of this BB. */
|
|||
|
if (BLOCK_FOR_INSN (use->insn) == g->bb)
|
|||
|
add_deps_for_use (g, df, use);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Given two nodes, analyze their RTL insns and add inter-loop mem deps
|
|||
|
to ddg G. */
|
|||
|
static void
|
|||
|
add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
|
|||
|
{
|
|||
|
if (mem_write_insn_p (from->insn))
|
|||
|
{
|
|||
|
if (mem_read_insn_p (to->insn))
|
|||
|
create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
|
|||
|
else if (from->cuid != to->cuid)
|
|||
|
create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
if (mem_read_insn_p (to->insn))
|
|||
|
return;
|
|||
|
else if (from->cuid != to->cuid)
|
|||
|
{
|
|||
|
create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
|
|||
|
create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
/* Perform intra-block Data Dependency analysis and connect the nodes in
|
|||
|
the DDG. We assume the loop has a single basic block. */
|
|||
|
static void
|
|||
|
build_intra_loop_deps (ddg_ptr g)
|
|||
|
{
|
|||
|
int i;
|
|||
|
/* Hold the dependency analysis state during dependency calculations. */
|
|||
|
struct deps tmp_deps;
|
|||
|
rtx head, tail, link;
|
|||
|
|
|||
|
/* Build the dependence information, using the sched_analyze function. */
|
|||
|
init_deps_global ();
|
|||
|
init_deps (&tmp_deps);
|
|||
|
|
|||
|
/* Do the intra-block data dependence analysis for the given block. */
|
|||
|
get_ebb_head_tail (g->bb, g->bb, &head, &tail);
|
|||
|
sched_analyze (&tmp_deps, head, tail);
|
|||
|
|
|||
|
/* Build intra-loop data dependencies using the scheduler dependency
|
|||
|
analysis. */
|
|||
|
for (i = 0; i < g->num_nodes; i++)
|
|||
|
{
|
|||
|
ddg_node_ptr dest_node = &g->nodes[i];
|
|||
|
|
|||
|
if (! INSN_P (dest_node->insn))
|
|||
|
continue;
|
|||
|
|
|||
|
for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
|
|||
|
{
|
|||
|
ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
|
|||
|
|
|||
|
if (!src_node)
|
|||
|
continue;
|
|||
|
|
|||
|
add_forw_dep (dest_node->insn, link);
|
|||
|
create_ddg_dependence (g, src_node, dest_node,
|
|||
|
INSN_DEPEND (src_node->insn));
|
|||
|
}
|
|||
|
|
|||
|
/* If this insn modifies memory, add an edge to all insns that access
|
|||
|
memory. */
|
|||
|
if (mem_access_insn_p (dest_node->insn))
|
|||
|
{
|
|||
|
int j;
|
|||
|
|
|||
|
for (j = 0; j <= i; j++)
|
|||
|
{
|
|||
|
ddg_node_ptr j_node = &g->nodes[j];
|
|||
|
if (mem_access_insn_p (j_node->insn))
|
|||
|
/* Don't bother calculating inter-loop dep if an intra-loop dep
|
|||
|
already exists. */
|
|||
|
if (! TEST_BIT (dest_node->successors, j))
|
|||
|
add_inter_loop_mem_dep (g, dest_node, j_node);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Free the INSN_LISTs. */
|
|||
|
finish_deps_global ();
|
|||
|
free_deps (&tmp_deps);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Given a basic block, create its DDG and return a pointer to a variable
|
|||
|
of ddg type that represents it.
|
|||
|
Initialize the ddg structure fields to the appropriate values. */
|
|||
|
ddg_ptr
|
|||
|
create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
|
|||
|
{
|
|||
|
ddg_ptr g;
|
|||
|
rtx insn, first_note;
|
|||
|
int i;
|
|||
|
int num_nodes = 0;
|
|||
|
|
|||
|
g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
|
|||
|
|
|||
|
g->bb = bb;
|
|||
|
g->closing_branch_deps = closing_branch_deps;
|
|||
|
|
|||
|
/* Count the number of insns in the BB. */
|
|||
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
|
|||
|
continue;
|
|||
|
|
|||
|
if (mem_read_insn_p (insn))
|
|||
|
g->num_loads++;
|
|||
|
if (mem_write_insn_p (insn))
|
|||
|
g->num_stores++;
|
|||
|
num_nodes++;
|
|||
|
}
|
|||
|
|
|||
|
/* There is nothing to do for this BB. */
|
|||
|
if (num_nodes <= 1)
|
|||
|
{
|
|||
|
free (g);
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate the nodes array, and initialize the nodes. */
|
|||
|
g->num_nodes = num_nodes;
|
|||
|
g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
|
|||
|
g->closing_branch = NULL;
|
|||
|
i = 0;
|
|||
|
first_note = NULL_RTX;
|
|||
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
|||
|
insn = NEXT_INSN (insn))
|
|||
|
{
|
|||
|
if (! INSN_P (insn))
|
|||
|
{
|
|||
|
if (! first_note && NOTE_P (insn)
|
|||
|
&& NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
|
|||
|
first_note = insn;
|
|||
|
continue;
|
|||
|
}
|
|||
|
if (JUMP_P (insn))
|
|||
|
{
|
|||
|
gcc_assert (!g->closing_branch);
|
|||
|
g->closing_branch = &g->nodes[i];
|
|||
|
}
|
|||
|
else if (GET_CODE (PATTERN (insn)) == USE)
|
|||
|
{
|
|||
|
if (! first_note)
|
|||
|
first_note = insn;
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
g->nodes[i].cuid = i;
|
|||
|
g->nodes[i].successors = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap_zero (g->nodes[i].successors);
|
|||
|
g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap_zero (g->nodes[i].predecessors);
|
|||
|
g->nodes[i].first_note = (first_note ? first_note : insn);
|
|||
|
g->nodes[i++].insn = insn;
|
|||
|
first_note = NULL_RTX;
|
|||
|
}
|
|||
|
|
|||
|
/* We must have found a branch in DDG. */
|
|||
|
gcc_assert (g->closing_branch);
|
|||
|
|
|||
|
|
|||
|
/* Build the data dependency graph. */
|
|||
|
build_intra_loop_deps (g);
|
|||
|
build_inter_loop_deps (g, df);
|
|||
|
return g;
|
|||
|
}
|
|||
|
|
|||
|
/* Free all the memory allocated for the DDG. */
|
|||
|
void
|
|||
|
free_ddg (ddg_ptr g)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
if (!g)
|
|||
|
return;
|
|||
|
|
|||
|
for (i = 0; i < g->num_nodes; i++)
|
|||
|
{
|
|||
|
ddg_edge_ptr e = g->nodes[i].out;
|
|||
|
|
|||
|
while (e)
|
|||
|
{
|
|||
|
ddg_edge_ptr next = e->next_out;
|
|||
|
|
|||
|
free (e);
|
|||
|
e = next;
|
|||
|
}
|
|||
|
sbitmap_free (g->nodes[i].successors);
|
|||
|
sbitmap_free (g->nodes[i].predecessors);
|
|||
|
}
|
|||
|
if (g->num_backarcs > 0)
|
|||
|
free (g->backarcs);
|
|||
|
free (g->nodes);
|
|||
|
free (g);
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
print_ddg_edge (FILE *file, ddg_edge_ptr e)
|
|||
|
{
|
|||
|
char dep_c;
|
|||
|
|
|||
|
switch (e->type) {
|
|||
|
case OUTPUT_DEP :
|
|||
|
dep_c = 'O';
|
|||
|
break;
|
|||
|
case ANTI_DEP :
|
|||
|
dep_c = 'A';
|
|||
|
break;
|
|||
|
default:
|
|||
|
dep_c = 'T';
|
|||
|
}
|
|||
|
|
|||
|
fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
|
|||
|
dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
|
|||
|
}
|
|||
|
|
|||
|
/* Print the DDG nodes with there in/out edges to the dump file. */
|
|||
|
void
|
|||
|
print_ddg (FILE *file, ddg_ptr g)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < g->num_nodes; i++)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
|
|||
|
print_rtl_single (file, g->nodes[i].insn);
|
|||
|
fprintf (file, "OUT ARCS: ");
|
|||
|
for (e = g->nodes[i].out; e; e = e->next_out)
|
|||
|
print_ddg_edge (file, e);
|
|||
|
|
|||
|
fprintf (file, "\nIN ARCS: ");
|
|||
|
for (e = g->nodes[i].in; e; e = e->next_in)
|
|||
|
print_ddg_edge (file, e);
|
|||
|
|
|||
|
fprintf (file, "\n");
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Print the given DDG in VCG format. */
|
|||
|
void
|
|||
|
vcg_print_ddg (FILE *file, ddg_ptr g)
|
|||
|
{
|
|||
|
int src_cuid;
|
|||
|
|
|||
|
fprintf (file, "graph: {\n");
|
|||
|
for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
int src_uid = INSN_UID (g->nodes[src_cuid].insn);
|
|||
|
|
|||
|
fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
|
|||
|
print_rtl_single (file, g->nodes[src_cuid].insn);
|
|||
|
fprintf (file, "\"}\n");
|
|||
|
for (e = g->nodes[src_cuid].out; e; e = e->next_out)
|
|||
|
{
|
|||
|
int dst_uid = INSN_UID (e->dest->insn);
|
|||
|
int dst_cuid = e->dest->cuid;
|
|||
|
|
|||
|
/* Give the backarcs a different color. */
|
|||
|
if (e->distance > 0)
|
|||
|
fprintf (file, "backedge: {color: red ");
|
|||
|
else
|
|||
|
fprintf (file, "edge: { ");
|
|||
|
|
|||
|
fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
|
|||
|
fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
|
|||
|
fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
|
|||
|
}
|
|||
|
}
|
|||
|
fprintf (file, "}\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Create an edge and initialize it with given values. */
|
|||
|
static ddg_edge_ptr
|
|||
|
create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
|
|||
|
dep_type t, dep_data_type dt, int l, int d)
|
|||
|
{
|
|||
|
ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
|
|||
|
|
|||
|
e->src = src;
|
|||
|
e->dest = dest;
|
|||
|
e->type = t;
|
|||
|
e->data_type = dt;
|
|||
|
e->latency = l;
|
|||
|
e->distance = d;
|
|||
|
e->next_in = e->next_out = NULL;
|
|||
|
e->aux.info = 0;
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
/* Add the given edge to the in/out linked lists of the DDG nodes. */
|
|||
|
static void
|
|||
|
add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
|
|||
|
{
|
|||
|
ddg_node_ptr src = e->src;
|
|||
|
ddg_node_ptr dest = e->dest;
|
|||
|
|
|||
|
/* Should have allocated the sbitmaps. */
|
|||
|
gcc_assert (src->successors && dest->predecessors);
|
|||
|
|
|||
|
SET_BIT (src->successors, dest->cuid);
|
|||
|
SET_BIT (dest->predecessors, src->cuid);
|
|||
|
e->next_in = dest->in;
|
|||
|
dest->in = e;
|
|||
|
e->next_out = src->out;
|
|||
|
src->out = e;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/* Algorithm for computing the recurrence_length of an scc. We assume at
|
|||
|
for now that cycles in the data dependence graph contain a single backarc.
|
|||
|
This simplifies the algorithm, and can be generalized later. */
|
|||
|
static void
|
|||
|
set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
|
|||
|
{
|
|||
|
int j;
|
|||
|
int result = -1;
|
|||
|
|
|||
|
for (j = 0; j < scc->num_backarcs; j++)
|
|||
|
{
|
|||
|
ddg_edge_ptr backarc = scc->backarcs[j];
|
|||
|
int length;
|
|||
|
int distance = backarc->distance;
|
|||
|
ddg_node_ptr src = backarc->dest;
|
|||
|
ddg_node_ptr dest = backarc->src;
|
|||
|
|
|||
|
length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
|
|||
|
if (length < 0 )
|
|||
|
{
|
|||
|
/* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
|
|||
|
continue;
|
|||
|
}
|
|||
|
length += backarc->latency;
|
|||
|
result = MAX (result, (length / distance));
|
|||
|
}
|
|||
|
scc->recurrence_length = result;
|
|||
|
}
|
|||
|
|
|||
|
/* Create a new SCC given the set of its nodes. Compute its recurrence_length
|
|||
|
and mark edges that belong to this scc as IN_SCC. */
|
|||
|
static ddg_scc_ptr
|
|||
|
create_scc (ddg_ptr g, sbitmap nodes)
|
|||
|
{
|
|||
|
ddg_scc_ptr scc;
|
|||
|
unsigned int u = 0;
|
|||
|
sbitmap_iterator sbi;
|
|||
|
|
|||
|
scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
|
|||
|
scc->backarcs = NULL;
|
|||
|
scc->num_backarcs = 0;
|
|||
|
scc->nodes = sbitmap_alloc (g->num_nodes);
|
|||
|
sbitmap_copy (scc->nodes, nodes);
|
|||
|
|
|||
|
/* Mark the backarcs that belong to this SCC. */
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
ddg_node_ptr n = &g->nodes[u];
|
|||
|
|
|||
|
for (e = n->out; e; e = e->next_out)
|
|||
|
if (TEST_BIT (nodes, e->dest->cuid))
|
|||
|
{
|
|||
|
e->aux.count = IN_SCC;
|
|||
|
if (e->distance > 0)
|
|||
|
add_backarc_to_scc (scc, e);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
set_recurrence_length (scc, g);
|
|||
|
return scc;
|
|||
|
}
|
|||
|
|
|||
|
/* Cleans the memory allocation of a given SCC. */
|
|||
|
static void
|
|||
|
free_scc (ddg_scc_ptr scc)
|
|||
|
{
|
|||
|
if (!scc)
|
|||
|
return;
|
|||
|
|
|||
|
sbitmap_free (scc->nodes);
|
|||
|
if (scc->num_backarcs > 0)
|
|||
|
free (scc->backarcs);
|
|||
|
free (scc);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Add a given edge known to be a backarc to the given DDG. */
|
|||
|
static void
|
|||
|
add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
|
|||
|
{
|
|||
|
int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
|
|||
|
|
|||
|
add_edge_to_ddg (g, e);
|
|||
|
g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
|
|||
|
g->backarcs[g->num_backarcs++] = e;
|
|||
|
}
|
|||
|
|
|||
|
/* Add backarc to an SCC. */
|
|||
|
static void
|
|||
|
add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
|
|||
|
{
|
|||
|
int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
|
|||
|
|
|||
|
scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
|
|||
|
scc->backarcs[scc->num_backarcs++] = e;
|
|||
|
}
|
|||
|
|
|||
|
/* Add the given SCC to the DDG. */
|
|||
|
static void
|
|||
|
add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
|
|||
|
{
|
|||
|
int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
|
|||
|
|
|||
|
g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
|
|||
|
g->sccs[g->num_sccs++] = scc;
|
|||
|
}
|
|||
|
|
|||
|
/* Given the instruction INSN return the node that represents it. */
|
|||
|
ddg_node_ptr
|
|||
|
get_node_of_insn (ddg_ptr g, rtx insn)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < g->num_nodes; i++)
|
|||
|
if (insn == g->nodes[i].insn)
|
|||
|
return &g->nodes[i];
|
|||
|
return NULL;
|
|||
|
}
|
|||
|
|
|||
|
/* Given a set OPS of nodes in the DDG, find the set of their successors
|
|||
|
which are not in OPS, and set their bits in SUCC. Bits corresponding to
|
|||
|
OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
|
|||
|
void
|
|||
|
find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
|
|||
|
{
|
|||
|
unsigned int i = 0;
|
|||
|
sbitmap_iterator sbi;
|
|||
|
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
|
|||
|
{
|
|||
|
const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
|
|||
|
sbitmap_a_or_b (succ, succ, node_succ);
|
|||
|
};
|
|||
|
|
|||
|
/* We want those that are not in ops. */
|
|||
|
sbitmap_difference (succ, succ, ops);
|
|||
|
}
|
|||
|
|
|||
|
/* Given a set OPS of nodes in the DDG, find the set of their predecessors
|
|||
|
which are not in OPS, and set their bits in PREDS. Bits corresponding to
|
|||
|
OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
|
|||
|
void
|
|||
|
find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
|
|||
|
{
|
|||
|
unsigned int i = 0;
|
|||
|
sbitmap_iterator sbi;
|
|||
|
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
|
|||
|
{
|
|||
|
const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
|
|||
|
sbitmap_a_or_b (preds, preds, node_preds);
|
|||
|
};
|
|||
|
|
|||
|
/* We want those that are not in ops. */
|
|||
|
sbitmap_difference (preds, preds, ops);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Compare function to be passed to qsort to order the backarcs in descending
|
|||
|
recMII order. */
|
|||
|
static int
|
|||
|
compare_sccs (const void *s1, const void *s2)
|
|||
|
{
|
|||
|
int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
|
|||
|
int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
|
|||
|
return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
/* Order the backarcs in descending recMII order using compare_sccs. */
|
|||
|
static void
|
|||
|
order_sccs (ddg_all_sccs_ptr g)
|
|||
|
{
|
|||
|
qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
|
|||
|
(int (*) (const void *, const void *)) compare_sccs);
|
|||
|
}
|
|||
|
|
|||
|
/* Perform the Strongly Connected Components decomposing algorithm on the
|
|||
|
DDG and return DDG_ALL_SCCS structure that contains them. */
|
|||
|
ddg_all_sccs_ptr
|
|||
|
create_ddg_all_sccs (ddg_ptr g)
|
|||
|
{
|
|||
|
int i;
|
|||
|
int num_nodes = g->num_nodes;
|
|||
|
sbitmap from = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap to = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap scc_nodes = sbitmap_alloc (num_nodes);
|
|||
|
ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
|
|||
|
xmalloc (sizeof (struct ddg_all_sccs));
|
|||
|
|
|||
|
sccs->ddg = g;
|
|||
|
sccs->sccs = NULL;
|
|||
|
sccs->num_sccs = 0;
|
|||
|
|
|||
|
for (i = 0; i < g->num_backarcs; i++)
|
|||
|
{
|
|||
|
ddg_scc_ptr scc;
|
|||
|
ddg_edge_ptr backarc = g->backarcs[i];
|
|||
|
ddg_node_ptr src = backarc->src;
|
|||
|
ddg_node_ptr dest = backarc->dest;
|
|||
|
|
|||
|
/* If the backarc already belongs to an SCC, continue. */
|
|||
|
if (backarc->aux.count == IN_SCC)
|
|||
|
continue;
|
|||
|
|
|||
|
sbitmap_zero (from);
|
|||
|
sbitmap_zero (to);
|
|||
|
SET_BIT (from, dest->cuid);
|
|||
|
SET_BIT (to, src->cuid);
|
|||
|
|
|||
|
if (find_nodes_on_paths (scc_nodes, g, from, to))
|
|||
|
{
|
|||
|
scc = create_scc (g, scc_nodes);
|
|||
|
add_scc_to_ddg (sccs, scc);
|
|||
|
}
|
|||
|
}
|
|||
|
order_sccs (sccs);
|
|||
|
sbitmap_free (from);
|
|||
|
sbitmap_free (to);
|
|||
|
sbitmap_free (scc_nodes);
|
|||
|
return sccs;
|
|||
|
}
|
|||
|
|
|||
|
/* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
|
|||
|
void
|
|||
|
free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
if (!all_sccs)
|
|||
|
return;
|
|||
|
|
|||
|
for (i = 0; i < all_sccs->num_sccs; i++)
|
|||
|
free_scc (all_sccs->sccs[i]);
|
|||
|
|
|||
|
free (all_sccs);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
|
|||
|
nodes - find all nodes that lie on paths from FROM to TO (not excluding
|
|||
|
nodes from FROM and TO). Return nonzero if nodes exist. */
|
|||
|
int
|
|||
|
find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
|
|||
|
{
|
|||
|
int answer;
|
|||
|
int change;
|
|||
|
unsigned int u = 0;
|
|||
|
int num_nodes = g->num_nodes;
|
|||
|
sbitmap_iterator sbi;
|
|||
|
|
|||
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap reachable_from = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap reach_to = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
|||
|
|
|||
|
sbitmap_copy (reachable_from, from);
|
|||
|
sbitmap_copy (tmp, from);
|
|||
|
|
|||
|
change = 1;
|
|||
|
while (change)
|
|||
|
{
|
|||
|
change = 0;
|
|||
|
sbitmap_copy (workset, tmp);
|
|||
|
sbitmap_zero (tmp);
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
ddg_node_ptr u_node = &g->nodes[u];
|
|||
|
|
|||
|
for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
|
|||
|
{
|
|||
|
ddg_node_ptr v_node = e->dest;
|
|||
|
int v = v_node->cuid;
|
|||
|
|
|||
|
if (!TEST_BIT (reachable_from, v))
|
|||
|
{
|
|||
|
SET_BIT (reachable_from, v);
|
|||
|
SET_BIT (tmp, v);
|
|||
|
change = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
sbitmap_copy (reach_to, to);
|
|||
|
sbitmap_copy (tmp, to);
|
|||
|
|
|||
|
change = 1;
|
|||
|
while (change)
|
|||
|
{
|
|||
|
change = 0;
|
|||
|
sbitmap_copy (workset, tmp);
|
|||
|
sbitmap_zero (tmp);
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
ddg_node_ptr u_node = &g->nodes[u];
|
|||
|
|
|||
|
for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
|
|||
|
{
|
|||
|
ddg_node_ptr v_node = e->src;
|
|||
|
int v = v_node->cuid;
|
|||
|
|
|||
|
if (!TEST_BIT (reach_to, v))
|
|||
|
{
|
|||
|
SET_BIT (reach_to, v);
|
|||
|
SET_BIT (tmp, v);
|
|||
|
change = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
|
|||
|
sbitmap_free (workset);
|
|||
|
sbitmap_free (reachable_from);
|
|||
|
sbitmap_free (reach_to);
|
|||
|
sbitmap_free (tmp);
|
|||
|
return answer;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Updates the counts of U_NODE's successors (that belong to NODES) to be
|
|||
|
at-least as large as the count of U_NODE plus the latency between them.
|
|||
|
Sets a bit in TMP for each successor whose count was changed (increased).
|
|||
|
Returns nonzero if any count was changed. */
|
|||
|
static int
|
|||
|
update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
|
|||
|
{
|
|||
|
ddg_edge_ptr e;
|
|||
|
int result = 0;
|
|||
|
|
|||
|
for (e = u_node->out; e; e = e->next_out)
|
|||
|
{
|
|||
|
ddg_node_ptr v_node = e->dest;
|
|||
|
int v = v_node->cuid;
|
|||
|
|
|||
|
if (TEST_BIT (nodes, v)
|
|||
|
&& (e->distance == 0)
|
|||
|
&& (v_node->aux.count < u_node->aux.count + e->latency))
|
|||
|
{
|
|||
|
v_node->aux.count = u_node->aux.count + e->latency;
|
|||
|
SET_BIT (tmp, v);
|
|||
|
result = 1;
|
|||
|
}
|
|||
|
}
|
|||
|
return result;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Find the length of a longest path from SRC to DEST in G,
|
|||
|
going only through NODES, and disregarding backarcs. */
|
|||
|
int
|
|||
|
longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
|
|||
|
{
|
|||
|
int i;
|
|||
|
unsigned int u = 0;
|
|||
|
int change = 1;
|
|||
|
int result;
|
|||
|
int num_nodes = g->num_nodes;
|
|||
|
sbitmap workset = sbitmap_alloc (num_nodes);
|
|||
|
sbitmap tmp = sbitmap_alloc (num_nodes);
|
|||
|
|
|||
|
|
|||
|
/* Data will hold the distance of the longest path found so far from
|
|||
|
src to each node. Initialize to -1 = less than minimum. */
|
|||
|
for (i = 0; i < g->num_nodes; i++)
|
|||
|
g->nodes[i].aux.count = -1;
|
|||
|
g->nodes[src].aux.count = 0;
|
|||
|
|
|||
|
sbitmap_zero (tmp);
|
|||
|
SET_BIT (tmp, src);
|
|||
|
|
|||
|
while (change)
|
|||
|
{
|
|||
|
sbitmap_iterator sbi;
|
|||
|
|
|||
|
change = 0;
|
|||
|
sbitmap_copy (workset, tmp);
|
|||
|
sbitmap_zero (tmp);
|
|||
|
EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
|
|||
|
{
|
|||
|
ddg_node_ptr u_node = &g->nodes[u];
|
|||
|
|
|||
|
change |= update_dist_to_successors (u_node, nodes, tmp);
|
|||
|
}
|
|||
|
}
|
|||
|
result = g->nodes[dest].aux.count;
|
|||
|
sbitmap_free (workset);
|
|||
|
sbitmap_free (tmp);
|
|||
|
return result;
|
|||
|
}
|