1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-25 11:37:56 +00:00
freebsd/sys/amd64/include/mptable.h

2901 lines
68 KiB
C
Raw Normal View History

/*
* Copyright (c) 1996, by Steve Passe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the developer may NOT be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
#include "opt_cpu.h"
#ifdef SMP
#include <machine/smptests.h>
#else
#error
#endif
1997-08-25 21:28:08 +00:00
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/memrange.h>
#include <sys/mutex.h>
#ifdef BETTER_CLOCK
#include <sys/dkstat.h>
#endif
#include <sys/cons.h> /* cngetc() */
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#ifdef BETTER_CLOCK
#include <sys/lock.h>
#include <vm/vm_map.h>
#include <sys/user.h>
#ifdef GPROF
#include <sys/gmon.h>
#endif
#endif
#include <machine/smp.h>
#include <machine/apic.h>
#include <machine/atomic.h>
#include <machine/cpufunc.h>
#include <machine/mpapic.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/smptests.h> /** TEST_DEFAULT_CONFIG, TEST_TEST1 */
#include <machine/tss.h>
#include <machine/specialreg.h>
#include <machine/globaldata.h>
#if defined(APIC_IO)
#include <machine/md_var.h> /* setidt() */
#include <i386/isa/icu.h> /* IPIs */
#include <i386/isa/intr_machdep.h> /* IPIs */
#endif /* APIC_IO */
#if defined(TEST_DEFAULT_CONFIG)
#define MPFPS_MPFB1 TEST_DEFAULT_CONFIG
#else
#define MPFPS_MPFB1 mpfps->mpfb1
#endif /* TEST_DEFAULT_CONFIG */
#define WARMBOOT_TARGET 0
#define WARMBOOT_OFF (KERNBASE + 0x0467)
#define WARMBOOT_SEG (KERNBASE + 0x0469)
#ifdef PC98
#define BIOS_BASE (0xe8000)
#define BIOS_SIZE (0x18000)
#else
#define BIOS_BASE (0xf0000)
#define BIOS_SIZE (0x10000)
#endif
#define BIOS_COUNT (BIOS_SIZE/4)
#define CMOS_REG (0x70)
#define CMOS_DATA (0x71)
#define BIOS_RESET (0x0f)
#define BIOS_WARM (0x0a)
#define PROCENTRY_FLAG_EN 0x01
#define PROCENTRY_FLAG_BP 0x02
#define IOAPICENTRY_FLAG_EN 0x01
/* MP Floating Pointer Structure */
typedef struct MPFPS {
char signature[4];
void *pap;
u_char length;
u_char spec_rev;
u_char checksum;
u_char mpfb1;
u_char mpfb2;
u_char mpfb3;
u_char mpfb4;
u_char mpfb5;
} *mpfps_t;
/* MP Configuration Table Header */
typedef struct MPCTH {
char signature[4];
u_short base_table_length;
u_char spec_rev;
u_char checksum;
u_char oem_id[8];
u_char product_id[12];
void *oem_table_pointer;
u_short oem_table_size;
u_short entry_count;
void *apic_address;
u_short extended_table_length;
u_char extended_table_checksum;
u_char reserved;
} *mpcth_t;
typedef struct PROCENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char cpu_flags;
u_long cpu_signature;
u_long feature_flags;
u_long reserved1;
u_long reserved2;
} *proc_entry_ptr;
typedef struct BUSENTRY {
u_char type;
u_char bus_id;
char bus_type[6];
} *bus_entry_ptr;
typedef struct IOAPICENTRY {
u_char type;
u_char apic_id;
u_char apic_version;
u_char apic_flags;
void *apic_address;
} *io_apic_entry_ptr;
typedef struct INTENTRY {
u_char type;
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
} *int_entry_ptr;
/* descriptions of MP basetable entries */
typedef struct BASETABLE_ENTRY {
u_char type;
u_char length;
char name[16];
} basetable_entry;
/*
* this code MUST be enabled here and in mpboot.s.
* it follows the very early stages of AP boot by placing values in CMOS ram.
* it NORMALLY will never be needed and thus the primitive method for enabling.
*
#define CHECK_POINTS
*/
1998-10-10 09:38:02 +00:00
#if defined(CHECK_POINTS) && !defined(PC98)
#define CHECK_READ(A) (outb(CMOS_REG, (A)), inb(CMOS_DATA))
#define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
#define CHECK_INIT(D); \
CHECK_WRITE(0x34, (D)); \
CHECK_WRITE(0x35, (D)); \
CHECK_WRITE(0x36, (D)); \
CHECK_WRITE(0x37, (D)); \
CHECK_WRITE(0x38, (D)); \
CHECK_WRITE(0x39, (D));
#define CHECK_PRINT(S); \
printf("%s: %d, %d, %d, %d, %d, %d\n", \
(S), \
CHECK_READ(0x34), \
CHECK_READ(0x35), \
CHECK_READ(0x36), \
CHECK_READ(0x37), \
CHECK_READ(0x38), \
CHECK_READ(0x39));
#else /* CHECK_POINTS */
#define CHECK_INIT(D)
#define CHECK_PRINT(S)
#endif /* CHECK_POINTS */
/*
* Values to send to the POST hardware.
*/
#define MP_BOOTADDRESS_POST 0x10
#define MP_PROBE_POST 0x11
#define MPTABLE_PASS1_POST 0x12
#define MP_START_POST 0x13
#define MP_ENABLE_POST 0x14
#define MPTABLE_PASS2_POST 0x15
#define START_ALL_APS_POST 0x16
#define INSTALL_AP_TRAMP_POST 0x17
#define START_AP_POST 0x18
#define MP_ANNOUNCE_POST 0x19
/* used to hold the AP's until we are ready to release them */
struct mtx ap_boot_mtx;
/** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
int current_postcode;
/** XXX FIXME: what system files declare these??? */
extern struct region_descriptor r_gdt, r_idt;
int bsp_apic_ready = 0; /* flags useability of BSP apic */
int mp_ncpus; /* # of CPUs, including BSP */
int mp_naps; /* # of Applications processors */
int mp_nbusses; /* # of busses */
int mp_napics; /* # of IO APICs */
int boot_cpu_id; /* designated BSP */
vm_offset_t cpu_apic_address;
vm_offset_t io_apic_address[NAPICID]; /* NAPICID is more than enough */
extern int nkpt;
u_int32_t cpu_apic_versions[MAXCPU];
u_int32_t *io_apic_versions;
#ifdef APIC_INTR_REORDER
struct {
volatile int *location;
int bit;
} apic_isrbit_location[32];
#endif
struct apic_intmapinfo int_to_apicintpin[APIC_INTMAPSIZE];
/*
* APIC ID logical/physical mapping structures.
* We oversize these to simplify boot-time config.
*/
int cpu_num_to_apic_id[NAPICID];
int io_num_to_apic_id[NAPICID];
int apic_id_to_logical[NAPICID];
/* Bitmap of all available CPUs */
u_int all_cpus;
/* AP uses this during bootstrap. Do not staticize. */
char *bootSTK;
static int bootAP;
/* Hotwire a 0->4MB V==P mapping */
extern pt_entry_t *KPTphys;
/* SMP page table page */
extern pt_entry_t *SMPpt;
struct pcb stoppcbs[MAXCPU];
int smp_started; /* has the system started? */
int smp_active = 0; /* are the APs allowed to run? */
SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RW, &smp_active, 0, "");
/* XXX maybe should be hw.ncpu */
static int smp_cpus = 1; /* how many cpu's running */
SYSCTL_INT(_machdep, OID_AUTO, smp_cpus, CTLFLAG_RD, &smp_cpus, 0, "");
int invltlb_ok = 0; /* throttle smp_invltlb() till safe */
SYSCTL_INT(_machdep, OID_AUTO, invltlb_ok, CTLFLAG_RW, &invltlb_ok, 0, "");
/* Enable forwarding of a signal to a process running on a different CPU */
static int forward_signal_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
&forward_signal_enabled, 0, "");
/* Enable forwarding of roundrobin to all other cpus */
static int forward_roundrobin_enabled = 1;
SYSCTL_INT(_machdep, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
&forward_roundrobin_enabled, 0, "");
/*
* Local data and functions.
*/
/* Set to 1 once we're ready to let the APs out of the pen. */
static volatile int aps_ready = 0;
static int mp_capable;
static u_int boot_address;
static u_int base_memory;
static int picmode; /* 0: virtual wire mode, 1: PIC mode */
static mpfps_t mpfps;
static int search_for_sig(u_int32_t target, int count);
static void mp_enable(u_int boot_addr);
static void mptable_pass1(void);
static int mptable_pass2(void);
static void default_mp_table(int type);
static void fix_mp_table(void);
static void setup_apic_irq_mapping(void);
static void init_locks(void);
static int start_all_aps(u_int boot_addr);
static void install_ap_tramp(u_int boot_addr);
static int start_ap(int logicalCpu, u_int boot_addr);
void ap_init(void);
static int apic_int_is_bus_type(int intr, int bus_type);
static void release_aps(void *dummy);
/*
* initialize all the SMP locks
*/
/* critical region around IO APIC, apic_imen */
struct mtx imen_mtx;
/* lock region used by kernel profiling */
struct mtx mcount_mtx;
#ifdef USE_COMLOCK
/* locks com (tty) data/hardware accesses: a FASTINTR() */
struct mtx com_mtx;
#endif /* USE_COMLOCK */
/* lock around the MP rendezvous */
static struct mtx smp_rv_mtx;
/* only 1 CPU can panic at a time :) */
struct mtx panic_mtx;
static void
init_locks(void)
{
/*
* XXX The mcount mutex probably needs to be statically initialized,
* since it will be used even in the function calls that get us to this
* point.
*/
mtx_init(&mcount_mtx, "mcount", MTX_DEF);
mtx_init(&smp_rv_mtx, "smp rendezvous", MTX_SPIN);
mtx_init(&panic_mtx, "panic", MTX_DEF);
#ifdef USE_COMLOCK
mtx_init(&com_mtx, "com", MTX_SPIN);
#endif /* USE_COMLOCK */
mtx_init(&ap_boot_mtx, "ap boot", MTX_SPIN);
}
/*
* Calculate usable address in base memory for AP trampoline code.
*/
u_int
mp_bootaddress(u_int basemem)
{
POSTCODE(MP_BOOTADDRESS_POST);
base_memory = basemem * 1024; /* convert to bytes */
boot_address = base_memory & ~0xfff; /* round down to 4k boundary */
if ((base_memory - boot_address) < bootMP_size)
boot_address -= 4096; /* not enough, lower by 4k */
return boot_address;
}
/*
* Look for an Intel MP spec table (ie, SMP capable hardware).
*/
int
mp_probe(void)
{
int x;
u_long segment;
u_int32_t target;
POSTCODE(MP_PROBE_POST);
/* see if EBDA exists */
if ((segment = (u_long) * (u_short *) (KERNBASE + 0x40e)) != 0) {
/* search first 1K of EBDA */
target = (u_int32_t) (segment << 4);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
} else {
/* last 1K of base memory, effective 'top of base' passed in */
target = (u_int32_t) (base_memory - 0x400);
if ((x = search_for_sig(target, 1024 / 4)) >= 0)
goto found;
}
/* search the BIOS */
target = (u_int32_t) BIOS_BASE;
if ((x = search_for_sig(target, BIOS_COUNT)) >= 0)
goto found;
/* nothing found */
mpfps = (mpfps_t)0;
mp_capable = 0;
return 0;
found:
/* calculate needed resources */
mpfps = (mpfps_t)x;
mptable_pass1();
/* flag fact that we are running multiple processors */
mp_capable = 1;
return 1;
}
/*
* Initialize the SMP hardware and the APIC and start up the AP's.
*/
void
mp_start(void)
{
POSTCODE(MP_START_POST);
/* look for MP capable motherboard */
if (mp_capable)
mp_enable(boot_address);
else
panic("MP hardware not found!");
}
/*
* Print various information about the SMP system hardware and setup.
*/
void
mp_announce(void)
{
int x;
POSTCODE(MP_ANNOUNCE_POST);
printf("FreeBSD/SMP: Multiprocessor motherboard\n");
1997-07-18 03:58:14 +00:00
printf(" cpu0 (BSP): apic id: %2d", CPU_TO_ID(0));
printf(", version: 0x%08x", cpu_apic_versions[0]);
printf(", at 0x%08x\n", cpu_apic_address);
for (x = 1; x <= mp_naps; ++x) {
printf(" cpu%d (AP): apic id: %2d", x, CPU_TO_ID(x));
printf(", version: 0x%08x", cpu_apic_versions[x]);
printf(", at 0x%08x\n", cpu_apic_address);
}
#if defined(APIC_IO)
for (x = 0; x < mp_napics; ++x) {
1997-07-18 03:58:14 +00:00
printf(" io%d (APIC): apic id: %2d", x, IO_TO_ID(x));
printf(", version: 0x%08x", io_apic_versions[x]);
printf(", at 0x%08x\n", io_apic_address[x]);
}
#else
printf(" Warning: APIC I/O disabled\n");
#endif /* APIC_IO */
}
/*
* AP cpu's call this to sync up protected mode.
*/
void
init_secondary(void)
{
int gsel_tss;
int x, myid = bootAP;
gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[myid];
gdt_segs[GPROC0_SEL].ssd_base =
(int) &SMP_prvspace[myid].globaldata.gd_common_tss;
SMP_prvspace[myid].globaldata.gd_prvspace =
&SMP_prvspace[myid].globaldata;
for (x = 0; x < NGDT; x++) {
ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x].sd);
}
r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
r_gdt.rd_base = (int) &gdt[myid * NGDT];
lgdt(&r_gdt); /* does magic intra-segment return */
lidt(&r_idt);
lldt(_default_ldt);
PCPU_SET(currentldt, _default_ldt);
gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
gdt[myid * NGDT + GPROC0_SEL].sd.sd_type = SDT_SYS386TSS;
PCPU_SET(common_tss.tss_esp0, 0); /* not used until after switch */
PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL));
PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16);
PCPU_SET(tss_gdt, &gdt[myid * NGDT + GPROC0_SEL].sd);
PCPU_SET(common_tssd, *PCPU_GET(tss_gdt));
ltr(gsel_tss);
pmap_set_opt();
}
#if defined(APIC_IO)
/*
* Final configuration of the BSP's local APIC:
* - disable 'pic mode'.
* - disable 'virtual wire mode'.
* - enable NMI.
*/
void
bsp_apic_configure(void)
{
u_char byte;
u_int32_t temp;
/* leave 'pic mode' if necessary */
if (picmode) {
outb(0x22, 0x70); /* select IMCR */
byte = inb(0x23); /* current contents */
byte |= 0x01; /* mask external INTR */
outb(0x23, byte); /* disconnect 8259s/NMI */
}
/* mask lint0 (the 8259 'virtual wire' connection) */
temp = lapic.lvt_lint0;
temp |= APIC_LVT_M; /* set the mask */
lapic.lvt_lint0 = temp;
/* setup lint1 to handle NMI */
temp = lapic.lvt_lint1;
temp &= ~APIC_LVT_M; /* clear the mask */
lapic.lvt_lint1 = temp;
if (bootverbose)
apic_dump("bsp_apic_configure()");
}
#endif /* APIC_IO */
/*******************************************************************
* local functions and data
*/
/*
* start the SMP system
*/
static void
mp_enable(u_int boot_addr)
{
int x;
#if defined(APIC_IO)
int apic;
u_int ux;
#endif /* APIC_IO */
POSTCODE(MP_ENABLE_POST);
/* turn on 4MB of V == P addressing so we can get to MP table */
*(int *)PTD = PG_V | PG_RW | ((uintptr_t)(void *)KPTphys & PG_FRAME);
invltlb();
/* examine the MP table for needed info, uses physical addresses */
x = mptable_pass2();
*(int *)PTD = 0;
invltlb();
/* can't process default configs till the CPU APIC is pmapped */
if (x)
default_mp_table(x);
/* post scan cleanup */
fix_mp_table();
setup_apic_irq_mapping();
#if defined(APIC_IO)
/* fill the LOGICAL io_apic_versions table */
for (apic = 0; apic < mp_napics; ++apic) {
ux = io_apic_read(apic, IOAPIC_VER);
io_apic_versions[apic] = ux;
io_apic_set_id(apic, IO_TO_ID(apic));
}
1997-04-28 01:08:47 +00:00
/* program each IO APIC in the system */
for (apic = 0; apic < mp_napics; ++apic)
if (io_apic_setup(apic) < 0)
panic("IO APIC setup failure");
/* install a 'Spurious INTerrupt' vector */
setidt(XSPURIOUSINT_OFFSET, Xspuriousint,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for TLB invalidation */
setidt(XINVLTLB_OFFSET, Xinvltlb,
1997-04-28 01:08:47 +00:00
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#ifdef BETTER_CLOCK
/* install an inter-CPU IPI for reading processor state */
setidt(XCPUCHECKSTATE_OFFSET, Xcpucheckstate,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif
/* install an inter-CPU IPI for all-CPU rendezvous */
setidt(XRENDEZVOUS_OFFSET, Xrendezvous,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for forcing an additional software trap */
setidt(XCPUAST_OFFSET, Xcpuast,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
/* install an inter-CPU IPI for CPU stop/restart */
setidt(XCPUSTOP_OFFSET, Xcpustop,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#if defined(TEST_TEST1)
/* install a "fake hardware INTerrupt" vector */
setidt(XTEST1_OFFSET, Xtest1,
SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
#endif /** TEST_TEST1 */
#endif /* APIC_IO */
/* initialize all SMP locks */
init_locks();
/* start each Application Processor */
start_all_aps(boot_addr);
}
/*
* look for the MP spec signature
*/
/* string defined by the Intel MP Spec as identifying the MP table */
#define MP_SIG 0x5f504d5f /* _MP_ */
#define NEXT(X) ((X) += 4)
static int
search_for_sig(u_int32_t target, int count)
{
int x;
u_int32_t *addr = (u_int32_t *) (KERNBASE + target);
for (x = 0; x < count; NEXT(x))
if (addr[x] == MP_SIG)
/* make array index a byte index */
return (target + (x * sizeof(u_int32_t)));
return -1;
}
static basetable_entry basetable_entry_types[] =
{
{0, 20, "Processor"},
{1, 8, "Bus"},
{2, 8, "I/O APIC"},
{3, 8, "I/O INT"},
{4, 8, "Local INT"}
};
typedef struct BUSDATA {
u_char bus_id;
enum busTypes bus_type;
} bus_datum;
typedef struct INTDATA {
u_char int_type;
u_short int_flags;
u_char src_bus_id;
u_char src_bus_irq;
u_char dst_apic_id;
u_char dst_apic_int;
u_char int_vector;
} io_int, local_int;
typedef struct BUSTYPENAME {
u_char type;
char name[7];
} bus_type_name;
static bus_type_name bus_type_table[] =
{
{CBUS, "CBUS"},
{CBUSII, "CBUSII"},
{EISA, "EISA"},
{MCA, "MCA"},
{UNKNOWN_BUSTYPE, "---"},
{ISA, "ISA"},
{MCA, "MCA"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{PCI, "PCI"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{UNKNOWN_BUSTYPE, "---"},
{XPRESS, "XPRESS"},
{UNKNOWN_BUSTYPE, "---"}
};
/* from MP spec v1.4, table 5-1 */
static int default_data[7][5] =
{
/* nbus, id0, type0, id1, type1 */
{1, 0, ISA, 255, 255},
{1, 0, EISA, 255, 255},
{1, 0, EISA, 255, 255},
{1, 0, MCA, 255, 255},
{2, 0, ISA, 1, PCI},
{2, 0, EISA, 1, PCI},
{2, 0, MCA, 1, PCI}
};
/* the bus data */
static bus_datum *bus_data;
/* the IO INT data, one entry per possible APIC INTerrupt */
static io_int *io_apic_ints;
static int nintrs;
static int processor_entry __P((proc_entry_ptr entry, int cpu));
static int bus_entry __P((bus_entry_ptr entry, int bus));
static int io_apic_entry __P((io_apic_entry_ptr entry, int apic));
static int int_entry __P((int_entry_ptr entry, int intr));
static int lookup_bus_type __P((char *name));
/*
* 1st pass on motherboard's Intel MP specification table.
*
* initializes:
* mp_ncpus = 1
*
* determines:
* cpu_apic_address (common to all CPUs)
* io_apic_address[N]
* mp_naps
* mp_nbusses
* mp_napics
* nintrs
*/
static void
mptable_pass1(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
POSTCODE(MPTABLE_PASS1_POST);
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
io_apic_address[x] = ~0; /* IO APIC address table */
}
/* init everything to empty */
mp_naps = 0;
mp_nbusses = 0;
mp_napics = 0;
nintrs = 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0) {
/* use default addresses */
cpu_apic_address = DEFAULT_APIC_BASE;
io_apic_address[0] = DEFAULT_IO_APIC_BASE;
/* fill in with defaults */
mp_naps = 2; /* includes BSP */
mp_nbusses = default_data[MPFPS_MPFB1 - 1][0];
#if defined(APIC_IO)
mp_napics = 1;
nintrs = 16;
#endif /* APIC_IO */
}
else {
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
cpu_apic_address = (vm_offset_t) cth->apic_address;
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
while (count--) {
switch (type = *(u_char *) position) {
case 0: /* processor_entry */
if (((proc_entry_ptr)position)->cpu_flags
& PROCENTRY_FLAG_EN)
++mp_naps;
break;
case 1: /* bus_entry */
++mp_nbusses;
break;
case 2: /* io_apic_entry */
if (((io_apic_entry_ptr)position)->apic_flags
& IOAPICENTRY_FLAG_EN)
io_apic_address[mp_napics++] =
(vm_offset_t)((io_apic_entry_ptr)
position)->apic_address;
break;
case 3: /* int_entry */
++nintrs;
break;
case 4: /* int_entry */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char*)position += basetable_entry_types[type].length;
}
}
/* qualify the numbers */
if (mp_naps > MAXCPU) {
printf("Warning: only using %d of %d available CPUs!\n",
MAXCPU, mp_naps);
mp_naps = MAXCPU;
}
/*
* Count the BSP.
* This is also used as a counter while starting the APs.
*/
mp_ncpus = 1;
--mp_naps; /* subtract the BSP */
}
/*
* 2nd pass on motherboard's Intel MP specification table.
*
* sets:
* boot_cpu_id
* ID_TO_IO(N), phy APIC ID to log CPU/IO table
* CPU_TO_ID(N), logical CPU to APIC ID table
* IO_TO_ID(N), logical IO to APIC ID table
* bus_data[N]
* io_apic_ints[N]
*/
static int
mptable_pass2(void)
{
int x;
mpcth_t cth;
int totalSize;
void* position;
int count;
int type;
int apic, bus, cpu, intr;
int i, j;
int pgeflag;
POSTCODE(MPTABLE_PASS2_POST);
pgeflag = 0; /* XXX - Not used under SMP yet. */
MALLOC(io_apic_versions, u_int32_t *, sizeof(u_int32_t) * mp_napics,
M_DEVBUF, M_WAITOK);
MALLOC(ioapic, volatile ioapic_t **, sizeof(ioapic_t *) * mp_napics,
M_DEVBUF, M_WAITOK);
MALLOC(io_apic_ints, io_int *, sizeof(io_int) * (nintrs + 1),
M_DEVBUF, M_WAITOK);
MALLOC(bus_data, bus_datum *, sizeof(bus_datum) * mp_nbusses,
M_DEVBUF, M_WAITOK);
bzero(ioapic, sizeof(ioapic_t *) * mp_napics);
for (i = 0; i < mp_napics; i++) {
for (j = 0; j < mp_napics; j++) {
/* same page frame as a previous IO apic? */
if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) ==
(io_apic_address[i] & PG_FRAME)) {
ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
+ (NPTEPG-2-j) * PAGE_SIZE
+ (io_apic_address[i] & PAGE_MASK));
break;
}
/* use this slot if available */
if (((vm_offset_t)SMPpt[NPTEPG-2-j] & PG_FRAME) == 0) {
SMPpt[NPTEPG-2-j] = (pt_entry_t)(PG_V | PG_RW |
pgeflag | (io_apic_address[i] & PG_FRAME));
ioapic[i] = (ioapic_t *)((u_int)SMP_prvspace
+ (NPTEPG-2-j) * PAGE_SIZE
+ (io_apic_address[i] & PAGE_MASK));
break;
}
}
}
/* clear various tables */
for (x = 0; x < NAPICID; ++x) {
ID_TO_IO(x) = -1; /* phy APIC ID to log CPU/IO table */
CPU_TO_ID(x) = -1; /* logical CPU to APIC ID table */
IO_TO_ID(x) = -1; /* logical IO to APIC ID table */
}
/* clear bus data table */
for (x = 0; x < mp_nbusses; ++x)
bus_data[x].bus_id = 0xff;
/* clear IO APIC INT table */
for (x = 0; x < (nintrs + 1); ++x) {
io_apic_ints[x].int_type = 0xff;
io_apic_ints[x].int_vector = 0xff;
}
/* setup the cpu/apic mapping arrays */
boot_cpu_id = -1;
/* record whether PIC or virtual-wire mode */
picmode = (mpfps->mpfb2 & 0x80) ? 1 : 0;
/* check for use of 'default' configuration */
if (MPFPS_MPFB1 != 0)
return MPFPS_MPFB1; /* return default configuration type */
if ((cth = mpfps->pap) == 0)
panic("MP Configuration Table Header MISSING!");
/* walk the table, recording info of interest */
totalSize = cth->base_table_length - sizeof(struct MPCTH);
position = (u_char *) cth + sizeof(struct MPCTH);
count = cth->entry_count;
apic = bus = intr = 0;
cpu = 1; /* pre-count the BSP */
while (count--) {
switch (type = *(u_char *) position) {
case 0:
if (processor_entry(position, cpu))
++cpu;
break;
case 1:
if (bus_entry(position, bus))
++bus;
break;
case 2:
if (io_apic_entry(position, apic))
++apic;
break;
case 3:
if (int_entry(position, intr))
++intr;
break;
case 4:
/* int_entry(position); */
break;
default:
panic("mpfps Base Table HOSED!");
/* NOTREACHED */
}
totalSize -= basetable_entry_types[type].length;
(u_char *) position += basetable_entry_types[type].length;
}
if (boot_cpu_id == -1)
panic("NO BSP found!");
/* report fact that its NOT a default configuration */
return 0;
}
void
assign_apic_irq(int apic, int intpin, int irq)
{
int x;
if (int_to_apicintpin[irq].ioapic != -1)
panic("assign_apic_irq: inconsistent table");
int_to_apicintpin[irq].ioapic = apic;
int_to_apicintpin[irq].int_pin = intpin;
int_to_apicintpin[irq].apic_address = ioapic[apic];
int_to_apicintpin[irq].redirindex = IOAPIC_REDTBL + 2 * intpin;
for (x = 0; x < nintrs; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(apic) &&
io_apic_ints[x].dst_apic_int == intpin)
io_apic_ints[x].int_vector = irq;
}
}
void
revoke_apic_irq(int irq)
{
int x;
int oldapic;
int oldintpin;
if (int_to_apicintpin[irq].ioapic == -1)
panic("assign_apic_irq: inconsistent table");
oldapic = int_to_apicintpin[irq].ioapic;
oldintpin = int_to_apicintpin[irq].int_pin;
int_to_apicintpin[irq].ioapic = -1;
int_to_apicintpin[irq].int_pin = 0;
int_to_apicintpin[irq].apic_address = NULL;
int_to_apicintpin[irq].redirindex = 0;
for (x = 0; x < nintrs; x++) {
if ((io_apic_ints[x].int_type == 0 ||
io_apic_ints[x].int_type == 3) &&
io_apic_ints[x].int_vector == 0xff &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(oldapic) &&
io_apic_ints[x].dst_apic_int == oldintpin)
io_apic_ints[x].int_vector = 0xff;
}
}
static void
allocate_apic_irq(int intr)
{
int apic;
int intpin;
int irq;
if (io_apic_ints[intr].int_vector != 0xff)
return; /* Interrupt handler already assigned */
if (io_apic_ints[intr].int_type != 0 &&
(io_apic_ints[intr].int_type != 3 ||
(io_apic_ints[intr].dst_apic_id == IO_TO_ID(0) &&
io_apic_ints[intr].dst_apic_int == 0)))
return; /* Not INT or ExtInt on != (0, 0) */
irq = 0;
while (irq < APIC_INTMAPSIZE &&
int_to_apicintpin[irq].ioapic != -1)
irq++;
if (irq >= APIC_INTMAPSIZE)
return; /* No free interrupt handlers */
apic = ID_TO_IO(io_apic_ints[intr].dst_apic_id);
intpin = io_apic_ints[intr].dst_apic_int;
assign_apic_irq(apic, intpin, irq);
io_apic_setup_intpin(apic, intpin);
}
static void
swap_apic_id(int apic, int oldid, int newid)
{
int x;
int oapic;
if (oldid == newid)
return; /* Nothing to do */
printf("Changing APIC ID for IO APIC #%d from %d to %d in MP table\n",
apic, oldid, newid);
/* Swap physical APIC IDs in interrupt entries */
for (x = 0; x < nintrs; x++) {
if (io_apic_ints[x].dst_apic_id == oldid)
io_apic_ints[x].dst_apic_id = newid;
else if (io_apic_ints[x].dst_apic_id == newid)
io_apic_ints[x].dst_apic_id = oldid;
}
/* Swap physical APIC IDs in IO_TO_ID mappings */
for (oapic = 0; oapic < mp_napics; oapic++)
if (IO_TO_ID(oapic) == newid)
break;
if (oapic < mp_napics) {
printf("Changing APIC ID for IO APIC #%d from "
"%d to %d in MP table\n",
oapic, newid, oldid);
IO_TO_ID(oapic) = oldid;
}
IO_TO_ID(apic) = newid;
}
static void
fix_id_to_io_mapping(void)
{
int x;
for (x = 0; x < NAPICID; x++)
ID_TO_IO(x) = -1;
for (x = 0; x <= mp_naps; x++)
if (CPU_TO_ID(x) < NAPICID)
ID_TO_IO(CPU_TO_ID(x)) = x;
for (x = 0; x < mp_napics; x++)
if (IO_TO_ID(x) < NAPICID)
ID_TO_IO(IO_TO_ID(x)) = x;
}
static int
first_free_apic_id(void)
{
int freeid, x;
for (freeid = 0; freeid < NAPICID; freeid++) {
for (x = 0; x <= mp_naps; x++)
if (CPU_TO_ID(x) == freeid)
break;
if (x <= mp_naps)
continue;
for (x = 0; x < mp_napics; x++)
if (IO_TO_ID(x) == freeid)
break;
if (x < mp_napics)
continue;
return freeid;
}
return freeid;
}
static int
io_apic_id_acceptable(int apic, int id)
{
int cpu; /* Logical CPU number */
int oapic; /* Logical IO APIC number for other IO APIC */
if (id >= NAPICID)
return 0; /* Out of range */
for (cpu = 0; cpu <= mp_naps; cpu++)
if (CPU_TO_ID(cpu) == id)
return 0; /* Conflict with CPU */
for (oapic = 0; oapic < mp_napics && oapic < apic; oapic++)
if (IO_TO_ID(oapic) == id)
return 0; /* Conflict with other APIC */
return 1; /* ID is acceptable for IO APIC */
}
/*
* parse an Intel MP specification table
*/
static void
fix_mp_table(void)
{
int x;
int id;
1999-01-12 00:19:33 +00:00
int bus_0 = 0; /* Stop GCC warning */
int bus_pci = 0; /* Stop GCC warning */
int num_pci_bus;
int apic; /* IO APIC unit number */
int freeid; /* Free physical APIC ID */
int physid; /* Current physical IO APIC ID */
/*
* Fix mis-numbering of the PCI bus and its INT entries if the BIOS
* did it wrong. The MP spec says that when more than 1 PCI bus
* exists the BIOS must begin with bus entries for the PCI bus and use
* actual PCI bus numbering. This implies that when only 1 PCI bus
* exists the BIOS can choose to ignore this ordering, and indeed many
* MP motherboards do ignore it. This causes a problem when the PCI
* sub-system makes requests of the MP sub-system based on PCI bus
* numbers. So here we look for the situation and renumber the
* busses and associated INTs in an effort to "make it right".
*/
/* find bus 0, PCI bus, count the number of PCI busses */
for (num_pci_bus = 0, x = 0; x < mp_nbusses; ++x) {
if (bus_data[x].bus_id == 0) {
bus_0 = x;
}
if (bus_data[x].bus_type == PCI) {
++num_pci_bus;
bus_pci = x;
}
}
/*
* bus_0 == slot of bus with ID of 0
* bus_pci == slot of last PCI bus encountered
*/
/* check the 1 PCI bus case for sanity */
/* if it is number 0 all is well */
if (num_pci_bus == 1 &&
bus_data[bus_pci].bus_id != 0) {
/* mis-numbered, swap with whichever bus uses slot 0 */
/* swap the bus entry types */
bus_data[bus_pci].bus_type = bus_data[bus_0].bus_type;
bus_data[bus_0].bus_type = PCI;
/* swap each relavant INTerrupt entry */
id = bus_data[bus_pci].bus_id;
for (x = 0; x < nintrs; ++x) {
if (io_apic_ints[x].src_bus_id == id) {
io_apic_ints[x].src_bus_id = 0;
}
else if (io_apic_ints[x].src_bus_id == 0) {
io_apic_ints[x].src_bus_id = id;
}
}
}
/* Assign IO APIC IDs.
*
* First try the existing ID. If a conflict is detected, try
* the ID in the MP table. If a conflict is still detected, find
* a free id.
*
* We cannot use the ID_TO_IO table before all conflicts has been
* resolved and the table has been corrected.
*/
for (apic = 0; apic < mp_napics; ++apic) { /* For all IO APICs */
/* First try to use the value set by the BIOS */
physid = io_apic_get_id(apic);
if (io_apic_id_acceptable(apic, physid)) {
if (IO_TO_ID(apic) != physid)
swap_apic_id(apic, IO_TO_ID(apic), physid);
continue;
}
/* Then check if the value in the MP table is acceptable */
if (io_apic_id_acceptable(apic, IO_TO_ID(apic)))
continue;
/* Last resort, find a free APIC ID and use it */
freeid = first_free_apic_id();
if (freeid >= NAPICID)
panic("No free physical APIC IDs found");
if (io_apic_id_acceptable(apic, freeid)) {
swap_apic_id(apic, IO_TO_ID(apic), freeid);
continue;
}
panic("Free physical APIC ID not usable");
}
fix_id_to_io_mapping();
/* detect and fix broken Compaq MP table */
if (apic_int_type(0, 0) == -1) {
printf("APIC_IO: MP table broken: 8259->APIC entry missing!\n");
io_apic_ints[nintrs].int_type = 3; /* ExtInt */
io_apic_ints[nintrs].int_vector = 0xff; /* Unassigned */
/* XXX fixme, set src bus id etc, but it doesn't seem to hurt */
io_apic_ints[nintrs].dst_apic_id = IO_TO_ID(0);
io_apic_ints[nintrs].dst_apic_int = 0; /* Pin 0 */
nintrs++;
}
}
/* Assign low level interrupt handlers */
static void
setup_apic_irq_mapping(void)
{
int x;
int int_vector;
/* Clear array */
for (x = 0; x < APIC_INTMAPSIZE; x++) {
int_to_apicintpin[x].ioapic = -1;
int_to_apicintpin[x].int_pin = 0;
int_to_apicintpin[x].apic_address = NULL;
int_to_apicintpin[x].redirindex = 0;
}
/* First assign ISA/EISA interrupts */
for (x = 0; x < nintrs; x++) {
int_vector = io_apic_ints[x].src_bus_irq;
if (int_vector < APIC_INTMAPSIZE &&
io_apic_ints[x].int_vector == 0xff &&
int_to_apicintpin[int_vector].ioapic == -1 &&
(apic_int_is_bus_type(x, ISA) ||
apic_int_is_bus_type(x, EISA)) &&
io_apic_ints[x].int_type == 0) {
assign_apic_irq(ID_TO_IO(io_apic_ints[x].dst_apic_id),
io_apic_ints[x].dst_apic_int,
int_vector);
}
}
/* Assign ExtInt entry if no ISA/EISA interrupt 0 entry */
for (x = 0; x < nintrs; x++) {
if (io_apic_ints[x].dst_apic_int == 0 &&
io_apic_ints[x].dst_apic_id == IO_TO_ID(0) &&
io_apic_ints[x].int_vector == 0xff &&
int_to_apicintpin[0].ioapic == -1 &&
io_apic_ints[x].int_type == 3) {
assign_apic_irq(0, 0, 0);
break;
}
}
/* PCI interrupt assignment is deferred */
}
static int
processor_entry(proc_entry_ptr entry, int cpu)
{
/* check for usability */
if (!(entry->cpu_flags & PROCENTRY_FLAG_EN))
return 0;
if(entry->apic_id >= NAPICID)
panic("CPU APIC ID out of range (0..%d)", NAPICID - 1);
/* check for BSP flag */
if (entry->cpu_flags & PROCENTRY_FLAG_BP) {
boot_cpu_id = entry->apic_id;
CPU_TO_ID(0) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = 0;
return 0; /* its already been counted */
}
/* add another AP to list, if less than max number of CPUs */
else if (cpu < MAXCPU) {
CPU_TO_ID(cpu) = entry->apic_id;
ID_TO_CPU(entry->apic_id) = cpu;
return 1;
}
return 0;
}
static int
bus_entry(bus_entry_ptr entry, int bus)
{
int x;
char c, name[8];
/* encode the name into an index */
for (x = 0; x < 6; ++x) {
if ((c = entry->bus_type[x]) == ' ')
break;
name[x] = c;
}
name[x] = '\0';
if ((x = lookup_bus_type(name)) == UNKNOWN_BUSTYPE)
panic("unknown bus type: '%s'", name);
bus_data[bus].bus_id = entry->bus_id;
bus_data[bus].bus_type = x;
return 1;
}
static int
io_apic_entry(io_apic_entry_ptr entry, int apic)
{
if (!(entry->apic_flags & IOAPICENTRY_FLAG_EN))
return 0;
IO_TO_ID(apic) = entry->apic_id;
if (entry->apic_id < NAPICID)
ID_TO_IO(entry->apic_id) = apic;
return 1;
}
static int
lookup_bus_type(char *name)
{
int x;
for (x = 0; x < MAX_BUSTYPE; ++x)
if (strcmp(bus_type_table[x].name, name) == 0)
return bus_type_table[x].type;
return UNKNOWN_BUSTYPE;
}
static int
int_entry(int_entry_ptr entry, int intr)
{
int apic;
io_apic_ints[intr].int_type = entry->int_type;
io_apic_ints[intr].int_flags = entry->int_flags;
io_apic_ints[intr].src_bus_id = entry->src_bus_id;
io_apic_ints[intr].src_bus_irq = entry->src_bus_irq;
if (entry->dst_apic_id == 255) {
/* This signal goes to all IO APICS. Select an IO APIC
with sufficient number of interrupt pins */
for (apic = 0; apic < mp_napics; apic++)
if (((io_apic_read(apic, IOAPIC_VER) &
IOART_VER_MAXREDIR) >> MAXREDIRSHIFT) >=
entry->dst_apic_int)
break;
if (apic < mp_napics)
io_apic_ints[intr].dst_apic_id = IO_TO_ID(apic);
else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
} else
io_apic_ints[intr].dst_apic_id = entry->dst_apic_id;
io_apic_ints[intr].dst_apic_int = entry->dst_apic_int;
return 1;
}
static int
apic_int_is_bus_type(int intr, int bus_type)
{
int bus;
for (bus = 0; bus < mp_nbusses; ++bus)
if ((bus_data[bus].bus_id == io_apic_ints[intr].src_bus_id)
&& ((int) bus_data[bus].bus_type == bus_type))
return 1;
return 0;
}
/*
* Given a traditional ISA INT mask, return an APIC mask.
*/
u_int
isa_apic_mask(u_int isa_mask)
{
int isa_irq;
int apic_pin;
#if defined(SKIP_IRQ15_REDIRECT)
if (isa_mask == (1 << 15)) {
printf("skipping ISA IRQ15 redirect\n");
return isa_mask;
}
#endif /* SKIP_IRQ15_REDIRECT */
isa_irq = ffs(isa_mask); /* find its bit position */
if (isa_irq == 0) /* doesn't exist */
return 0;
--isa_irq; /* make it zero based */
apic_pin = isa_apic_irq(isa_irq); /* look for APIC connection */
if (apic_pin == -1)
return 0;
return (1 << apic_pin); /* convert pin# to a mask */
}
/*
* Determine which APIC pin an ISA/EISA INT is attached to.
*/
#define INTTYPE(I) (io_apic_ints[(I)].int_type)
#define INTPIN(I) (io_apic_ints[(I)].dst_apic_int)
#define INTIRQ(I) (io_apic_ints[(I)].int_vector)
#define INTAPIC(I) (ID_TO_IO(io_apic_ints[(I)].dst_apic_id))
#define SRCBUSIRQ(I) (io_apic_ints[(I)].src_bus_irq)
int
isa_apic_irq(int isa_irq)
{
int intr;
for (intr = 0; intr < nintrs; ++intr) { /* check each record */
if (INTTYPE(intr) == 0) { /* standard INT */
if (SRCBUSIRQ(intr) == isa_irq) {
if (apic_int_is_bus_type(intr, ISA) ||
apic_int_is_bus_type(intr, EISA)) {
if (INTIRQ(intr) == 0xff)
return -1; /* unassigned */
return INTIRQ(intr); /* found */
}
}
}
}
return -1; /* NOT found */
}
/*
* Determine which APIC pin a PCI INT is attached to.
*/
#define SRCBUSID(I) (io_apic_ints[(I)].src_bus_id)
#define SRCBUSDEVICE(I) ((io_apic_ints[(I)].src_bus_irq >> 2) & 0x1f)
#define SRCBUSLINE(I) (io_apic_ints[(I)].src_bus_irq & 0x03)
int
pci_apic_irq(int pciBus, int pciDevice, int pciInt)
{
int intr;
--pciInt; /* zero based */
for (intr = 0; intr < nintrs; ++intr) /* check each record */
if ((INTTYPE(intr) == 0) /* standard INT */
&& (SRCBUSID(intr) == pciBus)
&& (SRCBUSDEVICE(intr) == pciDevice)
&& (SRCBUSLINE(intr) == pciInt)) /* a candidate IRQ */
if (apic_int_is_bus_type(intr, PCI)) {
if (INTIRQ(intr) == 0xff)
allocate_apic_irq(intr);
if (INTIRQ(intr) == 0xff)
return -1; /* unassigned */
return INTIRQ(intr); /* exact match */
}
return -1; /* NOT found */
}
int
next_apic_irq(int irq)
{
int intr, ointr;
int bus, bustype;
bus = 0;
bustype = 0;
for (intr = 0; intr < nintrs; intr++) {
if (INTIRQ(intr) != irq || INTTYPE(intr) != 0)
continue;
bus = SRCBUSID(intr);
bustype = apic_bus_type(bus);
if (bustype != ISA &&
bustype != EISA &&
bustype != PCI)
continue;
break;
}
if (intr >= nintrs) {
return -1;
}
for (ointr = intr + 1; ointr < nintrs; ointr++) {
if (INTTYPE(ointr) != 0)
continue;
if (bus != SRCBUSID(ointr))
continue;
if (bustype == PCI) {
if (SRCBUSDEVICE(intr) != SRCBUSDEVICE(ointr))
continue;
if (SRCBUSLINE(intr) != SRCBUSLINE(ointr))
continue;
}
if (bustype == ISA || bustype == EISA) {
if (SRCBUSIRQ(intr) != SRCBUSIRQ(ointr))
continue;
}
if (INTPIN(intr) == INTPIN(ointr))
continue;
break;
}
if (ointr >= nintrs) {
return -1;
}
return INTIRQ(ointr);
}
#undef SRCBUSLINE
#undef SRCBUSDEVICE
#undef SRCBUSID
#undef SRCBUSIRQ
#undef INTPIN
#undef INTIRQ
#undef INTAPIC
#undef INTTYPE
/*
* Reprogram the MB chipset to NOT redirect an ISA INTerrupt.
*
* XXX FIXME:
* Exactly what this means is unclear at this point. It is a solution
* for motherboards that redirect the MBIRQ0 pin. Generically a motherboard
* could route any of the ISA INTs to upper (>15) IRQ values. But most would
* NOT be redirected via MBIRQ0, thus "undirect()ing" them would NOT be an
* option.
*/
int
undirect_isa_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected ISA irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return -1;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected ISA irq %d.\n", rirq);
return 0;
#endif /* READY */
}
/*
* Reprogram the MB chipset to NOT redirect a PCI INTerrupt
*/
int
undirect_pci_irq(int rirq)
{
#if defined(READY)
if (bootverbose)
printf("Freeing redirected PCI irq %d.\n", rirq);
/** FIXME: tickle the MB redirector chip */
return -1;
#else
if (bootverbose)
printf("Freeing (NOT implemented) redirected PCI irq %d.\n",
rirq);
return 0;
#endif /* READY */
}
/*
* given a bus ID, return:
* the bus type if found
* -1 if NOT found
*/
int
apic_bus_type(int id)
{
int x;
for (x = 0; x < mp_nbusses; ++x)
if (bus_data[x].bus_id == id)
return bus_data[x].bus_type;
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus ID if found
* -1 if NOT found
*/
int
apic_src_bus_id(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_id);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated src bus IRQ if found
* -1 if NOT found
*/
int
apic_src_bus_irq(int apic, int pin)
{
int x;
for (x = 0; x < nintrs; x++)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].src_bus_irq);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated INTerrupt type if found
* -1 if NOT found
*/
int
apic_int_type(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_type);
return -1; /* NOT found */
}
int
apic_irq(int apic, int pin)
{
int x;
int res;
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int)) {
res = io_apic_ints[x].int_vector;
if (res == 0xff)
return -1;
if (apic != int_to_apicintpin[res].ioapic)
panic("apic_irq: inconsistent table");
if (pin != int_to_apicintpin[res].int_pin)
panic("apic_irq inconsistent table (2)");
return res;
}
return -1;
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated trigger mode if found
* -1 if NOT found
*/
int
apic_trigger(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return ((io_apic_ints[x].int_flags >> 2) & 0x03);
return -1; /* NOT found */
}
/*
* given a LOGICAL APIC# and pin#, return:
* the associated 'active' level if found
* -1 if NOT found
*/
int
apic_polarity(int apic, int pin)
{
int x;
/* search each of the possible INTerrupt sources */
for (x = 0; x < nintrs; ++x)
if ((apic == ID_TO_IO(io_apic_ints[x].dst_apic_id)) &&
(pin == io_apic_ints[x].dst_apic_int))
return (io_apic_ints[x].int_flags & 0x03);
return -1; /* NOT found */
}
/*
* set data according to MP defaults
* FIXME: probably not complete yet...
*/
static void
default_mp_table(int type)
{
int ap_cpu_id;
#if defined(APIC_IO)
int io_apic_id;
int pin;
#endif /* APIC_IO */
#if 0
printf(" MP default config type: %d\n", type);
switch (type) {
case 1:
printf(" bus: ISA, APIC: 82489DX\n");
break;
case 2:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 3:
printf(" bus: EISA, APIC: 82489DX\n");
break;
case 4:
printf(" bus: MCA, APIC: 82489DX\n");
break;
case 5:
printf(" bus: ISA+PCI, APIC: Integrated\n");
break;
case 6:
printf(" bus: EISA+PCI, APIC: Integrated\n");
break;
case 7:
printf(" bus: MCA+PCI, APIC: Integrated\n");
break;
default:
printf(" future type\n");
break;
/* NOTREACHED */
}
#endif /* 0 */
boot_cpu_id = (lapic.id & APIC_ID_MASK) >> 24;
ap_cpu_id = (boot_cpu_id == 0) ? 1 : 0;
/* BSP */
CPU_TO_ID(0) = boot_cpu_id;
ID_TO_CPU(boot_cpu_id) = 0;
/* one and only AP */
CPU_TO_ID(1) = ap_cpu_id;
ID_TO_CPU(ap_cpu_id) = 1;
#if defined(APIC_IO)
/* one and only IO APIC */
io_apic_id = (io_apic_read(0, IOAPIC_ID) & APIC_ID_MASK) >> 24;
/*
* sanity check, refer to MP spec section 3.6.6, last paragraph
* necessary as some hardware isn't properly setting up the IO APIC
*/
#if defined(REALLY_ANAL_IOAPICID_VALUE)
if (io_apic_id != 2) {
#else
if ((io_apic_id == 0) || (io_apic_id == 1) || (io_apic_id == 15)) {
#endif /* REALLY_ANAL_IOAPICID_VALUE */
io_apic_set_id(0, 2);
io_apic_id = 2;
}
IO_TO_ID(0) = io_apic_id;
ID_TO_IO(io_apic_id) = 0;
#endif /* APIC_IO */
/* fill out bus entries */
switch (type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
bus_data[0].bus_id = default_data[type - 1][1];
bus_data[0].bus_type = default_data[type - 1][2];
bus_data[1].bus_id = default_data[type - 1][3];
bus_data[1].bus_type = default_data[type - 1][4];
break;
/* case 4: case 7: MCA NOT supported */
default: /* illegal/reserved */
panic("BAD default MP config: %d", type);
/* NOTREACHED */
}
#if defined(APIC_IO)
/* general cases from MP v1.4, table 5-2 */
for (pin = 0; pin < 16; ++pin) {
io_apic_ints[pin].int_type = 0;
io_apic_ints[pin].int_flags = 0x05; /* edge/active-hi */
io_apic_ints[pin].src_bus_id = 0;
io_apic_ints[pin].src_bus_irq = pin; /* IRQ2 caught below */
io_apic_ints[pin].dst_apic_id = io_apic_id;
io_apic_ints[pin].dst_apic_int = pin; /* 1-to-1 */
}
/* special cases from MP v1.4, table 5-2 */
if (type == 2) {
io_apic_ints[2].int_type = 0xff; /* N/C */
io_apic_ints[13].int_type = 0xff; /* N/C */
#if !defined(APIC_MIXED_MODE)
/** FIXME: ??? */
panic("sorry, can't support type 2 default yet");
#endif /* APIC_MIXED_MODE */
}
else
io_apic_ints[2].src_bus_irq = 0; /* ISA IRQ0 is on APIC INT 2 */
if (type == 7)
io_apic_ints[0].int_type = 0xff; /* N/C */
else
io_apic_ints[0].int_type = 3; /* vectored 8259 */
#endif /* APIC_IO */
}
/*
* start each AP in our list
*/
static int
start_all_aps(u_int boot_addr)
{
int x, i, pg;
u_char mpbiosreason;
u_long mpbioswarmvec;
struct globaldata *gd;
char *stack;
uintptr_t kptbase;
POSTCODE(START_ALL_APS_POST);
/* initialize BSP's local APIC */
apic_initialize();
bsp_apic_ready = 1;
/* install the AP 1st level boot code */
install_ap_tramp(boot_addr);
/* save the current value of the warm-start vector */
mpbioswarmvec = *((u_long *) WARMBOOT_OFF);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
mpbiosreason = inb(CMOS_DATA);
1998-10-10 09:38:02 +00:00
#endif
/* record BSP in CPU map */
all_cpus = 1;
/* set up temporary P==V mapping for AP boot */
/* XXX this is a hack, we should boot the AP on its own stack/PTD */
kptbase = (uintptr_t)(void *)KPTphys;
for (x = 0; x < NKPT; x++)
PTD[x] = (pd_entry_t)(PG_V | PG_RW |
((kptbase + x * PAGE_SIZE) & PG_FRAME));
invltlb();
/* start each AP */
for (x = 1; x <= mp_naps; ++x) {
/* This is a bit verbose, it will go away soon. */
/* first page of AP's private space */
pg = x * i386_btop(sizeof(struct privatespace));
/* allocate a new private data page */
gd = (struct globaldata *)kmem_alloc(kernel_map, PAGE_SIZE);
/* wire it into the private page table page */
SMPpt[pg] = (pt_entry_t)(PG_V | PG_RW | vtophys(gd));
/* allocate and set up an idle stack data page */
stack = (char *)kmem_alloc(kernel_map, UPAGES*PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[pg + 1 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
/* prime data page for it to use */
SLIST_INSERT_HEAD(&cpuhead, gd, gd_allcpu);
gd->gd_cpuid = x;
/* setup a vector to our boot code */
*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, BIOS_WARM); /* 'warm-start' */
1998-10-10 09:38:02 +00:00
#endif
bootSTK = &SMP_prvspace[x].idlestack[UPAGES*PAGE_SIZE];
bootAP = x;
/* attempt to start the Application Processor */
CHECK_INIT(99); /* setup checkpoints */
if (!start_ap(x, boot_addr)) {
printf("AP #%d (PHY# %d) failed!\n", x, CPU_TO_ID(x));
CHECK_PRINT("trace"); /* show checkpoints */
/* better panic as the AP may be running loose */
printf("panic y/n? [y] ");
if (cngetc() != 'n')
panic("bye-bye");
}
CHECK_PRINT("trace"); /* show checkpoints */
/* record its version info */
cpu_apic_versions[x] = cpu_apic_versions[0];
all_cpus |= (1 << x); /* record AP in CPU map */
}
/* build our map of 'other' CPUs */
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
/* fill in our (BSP) APIC version */
cpu_apic_versions[0] = lapic.version;
/* restore the warmstart vector */
*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
#ifndef PC98
outb(CMOS_REG, BIOS_RESET);
outb(CMOS_DATA, mpbiosreason);
1998-10-10 09:38:02 +00:00
#endif
/*
* Set up the idle context for the BSP. Similar to above except
* that some was done by locore, some by pmap.c and some is implicit
* because the BSP is cpu#0 and the page is initially zero, and also
* because we can refer to variables by name on the BSP..
*/
/* Allocate and setup BSP idle stack */
stack = (char *)kmem_alloc(kernel_map, UPAGES * PAGE_SIZE);
for (i = 0; i < UPAGES; i++)
SMPpt[1 + i] = (pt_entry_t)
(PG_V | PG_RW | vtophys(PAGE_SIZE * i + stack));
for (x = 0; x < NKPT; x++)
PTD[x] = 0;
pmap_set_opt();
/* number of APs actually started */
return mp_ncpus - 1;
}
/*
* load the 1st level AP boot code into base memory.
*/
/* targets for relocation */
extern void bigJump(void);
extern void bootCodeSeg(void);
extern void bootDataSeg(void);
extern void MPentry(void);
extern u_int MP_GDT;
extern u_int mp_gdtbase;
static void
install_ap_tramp(u_int boot_addr)
{
int x;
int size = *(int *) ((u_long) & bootMP_size);
u_char *src = (u_char *) ((u_long) bootMP);
u_char *dst = (u_char *) boot_addr + KERNBASE;
u_int boot_base = (u_int) bootMP;
u_int8_t *dst8;
u_int16_t *dst16;
u_int32_t *dst32;
POSTCODE(INSTALL_AP_TRAMP_POST);
for (x = 0; x < size; ++x)
*dst++ = *src++;
/*
* modify addresses in code we just moved to basemem. unfortunately we
* need fairly detailed info about mpboot.s for this to work. changes
* to mpboot.s might require changes here.
*/
/* boot code is located in KERNEL space */
dst = (u_char *) boot_addr + KERNBASE;
/* modify the lgdt arg */
dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
/* modify the ljmp target for MPentry() */
dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
*dst32 = ((u_int) MPentry - KERNBASE);
/* modify the target for boot code segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
/* modify the target for boot data segment */
dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
dst8 = (u_int8_t *) (dst16 + 1);
*dst16 = (u_int) boot_addr & 0xffff;
*dst8 = ((u_int) boot_addr >> 16) & 0xff;
}
/*
* this function starts the AP (application processor) identified
* by the APIC ID 'physicalCpu'. It does quite a "song and dance"
* to accomplish this. This is necessary because of the nuances
* of the different hardware we might encounter. It ain't pretty,
* but it seems to work.
*/
static int
start_ap(int logical_cpu, u_int boot_addr)
{
int physical_cpu;
int vector;
int cpus;
u_long icr_lo, icr_hi;
POSTCODE(START_AP_POST);
/* get the PHYSICAL APIC ID# */
physical_cpu = CPU_TO_ID(logical_cpu);
/* calculate the vector */
vector = (boot_addr >> 12) & 0xff;
/* used as a watchpoint to signal AP startup */
cpus = mp_ncpus;
/*
* first we do an INIT/RESET IPI this INIT IPI might be run, reseting
* and running the target CPU. OR this INIT IPI might be latched (P5
* bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
* ignored.
*/
/* setup the address for the target AP */
icr_hi = lapic.icr_hi & ~APIC_ID_MASK;
icr_hi |= (physical_cpu << 24);
lapic.icr_hi = icr_hi;
/* do an INIT IPI: assert RESET */
icr_lo = lapic.icr_lo & 0xfff00000;
lapic.icr_lo = icr_lo | 0x0000c500;
/* wait for pending status end */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/* do an INIT IPI: deassert RESET */
lapic.icr_lo = icr_lo | 0x00008500;
/* wait for pending status end */
u_sleep(10000); /* wait ~10mS */
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
/*
* next we do a STARTUP IPI: the previous INIT IPI might still be
* latched, (P5 bug) this 1st STARTUP would then terminate
* immediately, and the previously started INIT IPI would continue. OR
* the previous INIT IPI has already run. and this STARTUP IPI will
* run. OR the previous INIT IPI was ignored. and this STARTUP IPI
* will run.
*/
/* do a STARTUP IPI */
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/*
* finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
* the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
* this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
* recognized after hardware RESET or INIT IPI.
*/
lapic.icr_lo = icr_lo | 0x00000600 | vector;
while (lapic.icr_lo & APIC_DELSTAT_MASK)
/* spin */ ;
u_sleep(200); /* wait ~200uS */
/* wait for it to start */
set_apic_timer(5000000);/* == 5 seconds */
while (read_apic_timer())
if (mp_ncpus > cpus)
return 1; /* return SUCCESS */
return 0; /* return FAILURE */
}
/*
* Flush the TLB on all other CPU's
*
* XXX: Needs to handshake and wait for completion before proceding.
*/
void
smp_invltlb(void)
{
#if defined(APIC_IO)
if (smp_started && invltlb_ok)
all_but_self_ipi(XINVLTLB_OFFSET);
#endif /* APIC_IO */
}
void
invlpg(u_int addr)
{
__asm __volatile("invlpg (%0)"::"r"(addr):"memory");
/* send a message to the other CPUs */
smp_invltlb();
}
void
invltlb(void)
{
u_long temp;
/*
* This should be implemented as load_cr3(rcr3()) when load_cr3() is
* inlined.
*/
__asm __volatile("movl %%cr3, %0; movl %0, %%cr3":"=r"(temp) :: "memory");
/* send a message to the other CPUs */
smp_invltlb();
}
/*
* This is called once the rest of the system is up and running and we're
* ready to let the AP's out of the pen.
*/
void
ap_init(void)
{
u_int apic_id;
/* spin until all the AP's are ready */
while (!aps_ready)
/* spin */ ;
/*
* Set curproc to our per-cpu idleproc so that mutexes have
* something unique to lock with.
*/
PCPU_SET(curproc, PCPU_GET(idleproc));
/* lock against other AP's that are waking up */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&ap_boot_mtx);
/* BSP may have changed PTD while we're waiting for the lock */
cpu_invltlb();
smp_cpus++;
#if defined(I586_CPU) && !defined(NO_F00F_HACK)
lidt(&r_idt);
#endif
/* Build our map of 'other' CPUs. */
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
Clean up some low level bootstrap code: - stop using the evil 'struct trapframe' argument for mi_startup() (formerly main()). There are much better ways of doing it. - do not use prepare_usermode() - setregs() in execve() will do it all for us as long as the p_md.md_regs pointer is set. (which is now done in machdep.c rather than init_main.c. The Alpha port did it this way all along and is much cleaner). - collect all the magic %cr0 etc register settings into one place and have the AP's call that instead of using magic numbers (!!) that keep changing over and over again. - Make it safe to call kthread_create() earlier, including during the device probe sequence. It doesn't need the callback mechanism that NetBSD's version uses. - kthreads created this way are root-less as they exist before the root filesystem is mounted. init(1) is set up so that it aquires the root pointers prior to running. If other kthreads want filesystem acccess we can make this code more generic. - set all threads start times once we have decided what time it is. - init uses a trampoline rather than the evil prepare_usermode() hack. - kern_descrip.c has a couple of tweaks to deal with forking when there is no rootdir or cwd etc. - adjust the early SYSINIT() sequence so that a few prereqisites are in place. eg: make sure the run queue is initialized before doing forks. With this, the USB code can easily create a kthread to do the device tree discovery. (I have tested it, it works nicely). There are still some open issues before this is truely useful. - tsleep() does not like working before the clock is running. It sort-of tries to spin wait, but it can do more useful things now. - stopping a kthread in kld code at unload time is "interesting" but we have a solution for that. The Alpha code needs no changes for this. It already uses pretty much the same strategies, but a little cleaner.
2000-08-11 09:05:12 +00:00
/* set up CPU registers and state */
cpu_setregs();
/* set up FPU state on the AP */
npxinit(__INITIAL_NPXCW__);
/* A quick check from sanity claus */
apic_id = (apic_id_to_logical[(lapic.id & 0x0f000000) >> 24]);
if (PCPU_GET(cpuid) != apic_id) {
printf("SMP: cpuid = %d\n", PCPU_GET(cpuid));
printf("SMP: apic_id = %d\n", apic_id);
printf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
panic("cpuid mismatch! boom!!");
}
/* Init local apic for irq's */
apic_initialize();
/* Set memory range attributes for this CPU to match the BSP */
mem_range_AP_init();
/*
* Activate smp_invltlb, although strictly speaking, this isn't
* quite correct yet. We should have a bitfield for cpus willing
* to accept TLB flush IPI's or something and sync them.
*/
if (smp_cpus == mp_ncpus) {
invltlb_ok = 1;
smp_started = 1; /* enable IPI's, tlb shootdown, freezes etc */
smp_active = 1; /* historic */
}
/* let other AP's wake up now */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&ap_boot_mtx);
/* wait until all the AP's are up */
while (smp_started == 0)
; /* nothing */
microuptime(PCPU_PTR(switchtime));
PCPU_SET(switchticks, ticks);
/* ok, now grab sched_lock and enter the scheduler */
enable_intr();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
cpu_throw(); /* doesn't return */
panic("scheduler returned us to ap_init");
}
#ifdef BETTER_CLOCK
#define CHECKSTATE_USER 0
#define CHECKSTATE_SYS 1
#define CHECKSTATE_INTR 2
1998-02-09 06:11:36 +00:00
/* Do not staticize. Used from apic_vector.s */
struct proc* checkstate_curproc[MAXCPU];
int checkstate_cpustate[MAXCPU];
u_long checkstate_pc[MAXCPU];
#define PC_TO_INDEX(pc, prof) \
((int)(((u_quad_t)((pc) - (prof)->pr_off) * \
(u_quad_t)((prof)->pr_scale)) >> 16) & ~1)
static void
addupc_intr_forwarded(struct proc *p, int id, int *astmap)
{
int i;
struct uprof *prof;
u_long pc;
pc = checkstate_pc[id];
prof = &p->p_stats->p_prof;
if (pc >= prof->pr_off &&
(i = PC_TO_INDEX(pc, prof)) < prof->pr_size) {
mtx_assert(&sched_lock, MA_OWNED);
if ((p->p_sflag & PS_OWEUPC) == 0) {
prof->pr_addr = pc;
prof->pr_ticks = 1;
p->p_sflag |= PS_OWEUPC;
}
*astmap |= (1 << id);
}
}
static void
forwarded_statclock(int id, int pscnt, int *astmap)
{
struct pstats *pstats;
long rss;
struct rusage *ru;
struct vmspace *vm;
int cpustate;
struct proc *p;
#ifdef GPROF
register struct gmonparam *g;
int i;
#endif
mtx_assert(&sched_lock, MA_OWNED);
p = checkstate_curproc[id];
cpustate = checkstate_cpustate[id];
/* XXX */
if (p->p_ithd)
cpustate = CHECKSTATE_INTR;
else if (p == SMP_prvspace[id].globaldata.gd_idleproc)
cpustate = CHECKSTATE_SYS;
switch (cpustate) {
case CHECKSTATE_USER:
if (p->p_sflag & PS_PROFIL)
addupc_intr_forwarded(p, id, astmap);
if (pscnt > 1)
return;
p->p_uticks++;
if (p->p_nice > NZERO)
cp_time[CP_NICE]++;
else
cp_time[CP_USER]++;
break;
case CHECKSTATE_SYS:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
p->p_sticks++;
if (p == SMP_prvspace[id].globaldata.gd_idleproc)
cp_time[CP_IDLE]++;
else
cp_time[CP_SYS]++;
break;
case CHECKSTATE_INTR:
default:
#ifdef GPROF
/*
* Kernel statistics are just like addupc_intr, only easier.
*/
g = &_gmonparam;
if (g->state == GMON_PROF_ON) {
i = checkstate_pc[id] - g->lowpc;
if (i < g->textsize) {
i /= HISTFRACTION * sizeof(*g->kcount);
g->kcount[i]++;
}
}
#endif
if (pscnt > 1)
return;
KASSERT(p != NULL, ("NULL process in interrupt state"));
p->p_iticks++;
cp_time[CP_INTR]++;
}
schedclock(p);
/* Update resource usage integrals and maximums. */
if ((pstats = p->p_stats) != NULL &&
(ru = &pstats->p_ru) != NULL &&
(vm = p->p_vmspace) != NULL) {
ru->ru_ixrss += pgtok(vm->vm_tsize);
ru->ru_idrss += pgtok(vm->vm_dsize);
ru->ru_isrss += pgtok(vm->vm_ssize);
rss = pgtok(vmspace_resident_count(vm));
if (ru->ru_maxrss < rss)
ru->ru_maxrss = rss;
}
}
void
forward_statclock(int pscnt)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
CTR1(KTR_SMP, "forward_statclock(%d)", pscnt);
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle ) */
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == PCPU_GET(cpuid))
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
forwarded_statclock(id, pscnt, &map);
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_statclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
void
forward_hardclock(int pscnt)
{
int map;
int id;
struct proc *p;
struct pstats *pstats;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
CTR1(KTR_SMP, "forward_hardclock(%d)", pscnt);
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
/* Step 1: Probe state (user, cpu, interrupt, spinlock, idle) */
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
checkstate_probed_cpus = 0;
if (map != 0)
selected_apic_ipi(map,
XCPUCHECKSTATE_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while (checkstate_probed_cpus != map) {
/* spin */
i++;
if (i == 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: checkstate %x\n",
checkstate_probed_cpus);
#endif
break;
}
}
/*
* Step 2: walk through other processors processes, update virtual
* timer and profiling timer. If stathz == 0, also update ticks and
* profiling info.
*/
map = 0;
for (id = 0; id < mp_ncpus; id++) {
if (id == PCPU_GET(cpuid))
continue;
if (((1 << id) & checkstate_probed_cpus) == 0)
continue;
p = checkstate_curproc[id];
if (p) {
pstats = p->p_stats;
if (checkstate_cpustate[id] == CHECKSTATE_USER &&
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) {
p->p_sflag |= PS_ALRMPEND;
map |= (1 << id);
}
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) {
p->p_sflag |= PS_PROFPEND;
map |= (1 << id);
}
}
if (stathz == 0) {
forwarded_statclock( id, pscnt, &map);
}
}
if (map != 0) {
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#ifdef BETTER_CLOCK_DIAGNOSTIC
printf("forward_hardclock: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
}
#endif /* BETTER_CLOCK */
void
forward_signal(struct proc *p)
{
int map;
int id;
int i;
/* Kludge. We don't yet have separate locks for the interrupts
* and the kernel. This means that we cannot let the other processors
* handle complex interrupts while inhibiting them from entering
* the kernel in a non-interrupt context.
*
* What we can do, without changing the locking mechanisms yet,
* is letting the other processors handle a very simple interrupt
* (wich determines the processor states), and do the main
* work ourself.
*/
CTR1(KTR_SMP, "forward_signal(%p)", p);
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_signal_enabled)
return;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
while (1) {
if (p->p_stat != SRUN) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
return;
}
id = p->p_oncpu;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
if (id == 0xff)
return;
map = (1<<id);
checkstate_need_ast |= map;
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_signal: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&sched_lock);
if (id == p->p_oncpu) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&sched_lock);
return;
}
}
}
void
forward_roundrobin(void)
{
u_int map;
int i;
CTR0(KTR_SMP, "forward_roundrobin()");
if (!smp_started || !invltlb_ok || cold || panicstr)
return;
if (!forward_roundrobin_enabled)
return;
resched_cpus |= PCPU_GET(other_cpus);
map = PCPU_GET(other_cpus) & ~stopped_cpus ;
#if 1
selected_apic_ipi(map, XCPUAST_OFFSET, APIC_DELMODE_FIXED);
#else
(void) all_but_self_ipi(XCPUAST_OFFSET);
#endif
i = 0;
while ((checkstate_need_ast & map) != 0) {
/* spin */
i++;
if (i > 100000) {
#if 0
printf("forward_roundrobin: dropped ast 0x%x\n",
checkstate_need_ast & map);
#endif
break;
}
}
}
/*
* When called the executing CPU will send an IPI to all other CPUs
* requesting that they halt execution.
*
* Usually (but not necessarily) called with 'other_cpus' as its arg.
*
* - Signals all CPUs in map to stop.
* - Waits for each to stop.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
* from executing at same time.
*/
int
stop_cpus(u_int map)
{
int count = 0;
if (!smp_started)
return 0;
/* send the Xcpustop IPI to all CPUs in map */
selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
while (count++ < 100000 && (stopped_cpus & map) != map)
/* spin */ ;
#ifdef DIAGNOSTIC
if ((stopped_cpus & map) != map)
printf("Warning: CPUs 0x%x did not stop!\n",
(~(stopped_cpus & map)) & map);
#endif
return 1;
}
/*
* Called by a CPU to restart stopped CPUs.
*
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
*
* - Signals all CPUs in map to restart.
* - Waits for each to restart.
*
* Returns:
* -1: error
* 0: NA
* 1: ok
*/
int
restart_cpus(u_int map)
{
int count = 0;
if (!smp_started)
return 0;
started_cpus = map; /* signal other cpus to restart */
/* wait for each to clear its bit */
while (count++ < 100000 && (stopped_cpus & map) != 0)
/* spin */ ;
#ifdef DIAGNOSTIC
if ((stopped_cpus & map) != 0)
printf("Warning: CPUs 0x%x did not restart!\n",
(~(stopped_cpus & map)) & map);
#endif
return 1;
}
#ifdef APIC_INTR_REORDER
/*
* Maintain mapping from softintr vector to isr bit in local apic.
*/
void
set_lapic_isrloc(int intr, int vector)
{
if (intr < 0 || intr > 32)
panic("set_apic_isrloc: bad intr argument: %d",intr);
if (vector < ICU_OFFSET || vector > 255)
panic("set_apic_isrloc: bad vector argument: %d",vector);
apic_isrbit_location[intr].location = &lapic.isr0 + ((vector>>5)<<2);
apic_isrbit_location[intr].bit = (1<<(vector & 31));
}
#endif
/*
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
* (if specified), rendezvous, execute the action function (if specified),
* rendezvous again, execute the teardown function (if specified), and then
* resume.
*
* Note that the supplied external functions _must_ be reentrant and aware
* that they are running in parallel and in an unknown lock context.
*/
static void (*smp_rv_setup_func)(void *arg);
static void (*smp_rv_action_func)(void *arg);
static void (*smp_rv_teardown_func)(void *arg);
static void *smp_rv_func_arg;
static volatile int smp_rv_waiters[2];
void
smp_rendezvous_action(void)
{
/* setup function */
if (smp_rv_setup_func != NULL)
smp_rv_setup_func(smp_rv_func_arg);
/* spin on entry rendezvous */
atomic_add_int(&smp_rv_waiters[0], 1);
while (smp_rv_waiters[0] < mp_ncpus)
;
/* action function */
if (smp_rv_action_func != NULL)
smp_rv_action_func(smp_rv_func_arg);
/* spin on exit rendezvous */
atomic_add_int(&smp_rv_waiters[1], 1);
while (smp_rv_waiters[1] < mp_ncpus)
;
/* teardown function */
if (smp_rv_teardown_func != NULL)
smp_rv_teardown_func(smp_rv_func_arg);
}
void
smp_rendezvous(void (* setup_func)(void *),
void (* action_func)(void *),
void (* teardown_func)(void *),
void *arg)
{
/* obtain rendezvous lock */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&smp_rv_mtx);
/* set static function pointers */
smp_rv_setup_func = setup_func;
smp_rv_action_func = action_func;
smp_rv_teardown_func = teardown_func;
smp_rv_func_arg = arg;
smp_rv_waiters[0] = 0;
smp_rv_waiters[1] = 0;
/*
* signal other processors, which will enter the IPI with interrupts off
*/
all_but_self_ipi(XRENDEZVOUS_OFFSET);
/* call executor function */
smp_rendezvous_action();
/* release lock */
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&smp_rv_mtx);
}
void
release_aps(void *dummy __unused)
{
atomic_store_rel_int(&aps_ready, 1);
}
SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL);