1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-21 15:45:02 +00:00
freebsd/sys/vm/vm_contig.c

349 lines
10 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
*/
/*-
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
2003-06-11 23:50:51 +00:00
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
static int
vm_contig_launder_page(vm_page_t m, vm_page_t *next)
{
vm_object_t object;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
vm_page_t m_tmp;
struct vnode *vp;
struct mount *mp;
int vfslocked;
mtx_assert(&vm_page_queue_mtx, MA_OWNED);
vm_page_lock_assert(m, MA_OWNED);
object = m->object;
if (!VM_OBJECT_TRYLOCK(object) &&
(!vm_pageout_fallback_object_lock(m, next) || m->hold_count != 0)) {
vm_page_unlock(m);
VM_OBJECT_UNLOCK(object);
return (EAGAIN);
}
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
if (vm_page_sleep_if_busy(m, TRUE, "vpctw0")) {
VM_OBJECT_UNLOCK(object);
vm_page_lock_queues();
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
return (EBUSY);
}
vm_page_test_dirty(m);
if (m->dirty == 0)
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
pmap_remove_all(m);
if (m->dirty != 0) {
vm_page_unlock(m);
if ((object->flags & OBJ_DEAD) != 0) {
VM_OBJECT_UNLOCK(object);
return (EAGAIN);
}
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
if (object->type == OBJT_VNODE) {
vm_page_unlock_queues();
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
vp = object->handle;
vm_object_reference_locked(object);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
VM_OBJECT_UNLOCK(object);
(void) vn_start_write(vp, &mp, V_WAIT);
vfslocked = VFS_LOCK_GIANT(vp->v_mount);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
VM_OBJECT_LOCK(object);
vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
VM_OBJECT_UNLOCK(object);
VOP_UNLOCK(vp, 0);
VFS_UNLOCK_GIANT(vfslocked);
vm_object_deallocate(object);
vn_finished_write(mp);
vm_page_lock_queues();
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
return (0);
} else if (object->type == OBJT_SWAP ||
object->type == OBJT_DEFAULT) {
vm_page_unlock_queues();
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
m_tmp = m;
vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC, 0, NULL);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
VM_OBJECT_UNLOCK(object);
vm_page_lock_queues();
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
return (0);
}
} else {
vm_page_cache(m);
vm_page_unlock(m);
}
VM_OBJECT_UNLOCK(object);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
return (0);
}
static int
vm_contig_launder(int queue, vm_paddr_t low, vm_paddr_t high)
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
{
vm_page_t m, next;
vm_paddr_t pa;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
int error;
TAILQ_FOREACH_SAFE(m, &vm_page_queues[queue].pl, pageq, next) {
/* Skip marker pages */
if ((m->flags & PG_MARKER) != 0)
continue;
pa = VM_PAGE_TO_PHYS(m);
if (pa < low || pa + PAGE_SIZE > high)
continue;
if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
vm_page_unlock(m);
continue;
}
KASSERT(m->queue == queue,
("vm_contig_launder: page %p's queue is not %d", m, queue));
error = vm_contig_launder_page(m, &next);
vm_page_lock_assert(m, MA_NOTOWNED);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
if (error == 0)
return (TRUE);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
if (error == EBUSY)
return (FALSE);
}
return (FALSE);
}
/*
* Increase the number of cached pages.
*/
void
vm_contig_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
{
int actl, actmax, inactl, inactmax;
vm_page_lock_queues();
inactl = 0;
inactmax = tries < 1 ? 0 : cnt.v_inactive_count;
actl = 0;
actmax = tries < 2 ? 0 : cnt.v_active_count;
again:
if (inactl < inactmax && vm_contig_launder(PQ_INACTIVE, low, high)) {
inactl++;
goto again;
}
if (actl < actmax && vm_contig_launder(PQ_ACTIVE, low, high)) {
actl++;
goto again;
}
vm_page_unlock_queues();
}
/*
* Allocates a region from the kernel address map and pages within the
* specified physical address range to the kernel object, creates a wired
* mapping from the region to these pages, and returns the region's starting
* virtual address. The allocated pages are not necessarily physically
* contiguous. If M_ZERO is specified through the given flags, then the pages
* are zeroed before they are mapped.
*/
vm_offset_t
kmem_alloc_attr(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
vm_paddr_t high, vm_memattr_t memattr)
{
vm_object_t object = kernel_object;
vm_offset_t addr;
vm_ooffset_t end_offset, offset;
vm_page_t m;
int pflags, tries;
size = round_page(size);
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
vm_map_unlock(map);
return (0);
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
vm_object_reference(object);
vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
VM_PROT_ALL, 0);
if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT)
pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY;
else
pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY;
if (flags & M_ZERO)
pflags |= VM_ALLOC_ZERO;
VM_OBJECT_LOCK(object);
end_offset = offset + size;
for (; offset < end_offset; offset += PAGE_SIZE) {
tries = 0;
retry:
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags, 1,
low, high, PAGE_SIZE, 0, memattr);
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
vm_map_unlock(map);
vm_contig_grow_cache(tries, low, high);
vm_map_lock(map);
VM_OBJECT_LOCK(object);
tries++;
goto retry;
}
/*
* Since the pages that were allocated by any previous
* iterations of this loop are not busy, they can be
* freed by vm_object_page_remove(), which is called
* by vm_map_delete().
*/
vm_map_delete(map, addr, addr + size);
vm_map_unlock(map);
return (0);
}
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
}
VM_OBJECT_UNLOCK(object);
vm_map_unlock(map);
vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
VM_MAP_WIRE_NOHOLES);
return (addr);
}
/*
* Allocates a region from the kernel address map, inserts the
* given physically contiguous pages into the kernel object,
* creates a wired mapping from the region to the pages, and
* returns the region's starting virtual address. If M_ZERO is
* specified through the given flags, then the pages are zeroed
* before they are mapped.
*/
vm_offset_t
kmem_alloc_contig(vm_map_t map, vm_size_t size, int flags, vm_paddr_t low,
vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
vm_memattr_t memattr)
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
{
vm_object_t object = kernel_object;
vm_offset_t addr;
vm_ooffset_t offset;
vm_page_t end_m, m;
int pflags, tries;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
size = round_page(size);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
vm_map_lock(map);
if (vm_map_findspace(map, vm_map_min(map), size, &addr)) {
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
vm_map_unlock(map);
return (0);
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
}
offset = addr - VM_MIN_KERNEL_ADDRESS;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
vm_object_reference(object);
vm_map_insert(map, object, offset, addr, addr + size, VM_PROT_ALL,
VM_PROT_ALL, 0);
if ((flags & (M_NOWAIT | M_USE_RESERVE)) == M_NOWAIT)
pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_NOBUSY;
else
pflags = VM_ALLOC_SYSTEM | VM_ALLOC_NOBUSY;
if (flags & M_ZERO)
pflags |= VM_ALLOC_ZERO;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
VM_OBJECT_LOCK(object);
tries = 0;
retry:
m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
atop(size), low, high, alignment, boundary, memattr);
if (m == NULL) {
VM_OBJECT_UNLOCK(object);
if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
vm_map_unlock(map);
vm_contig_grow_cache(tries, low, high);
vm_map_lock(map);
VM_OBJECT_LOCK(object);
tries++;
goto retry;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
}
vm_map_delete(map, addr, addr + size);
vm_map_unlock(map);
return (0);
}
end_m = m + atop(size);
for (; m < end_m; m++) {
if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
m->valid = VM_PAGE_BITS_ALL;
Reimplement contigmalloc(9) with an algorithm which stands a greatly- improved chance of working despite pressure from running programs. Instead of trying to throw a bunch of pages out to swap and hope for the best, only a range that can potentially fulfill contigmalloc(9)'s request will have its contents paged out (potentially, not forcibly) at a time. The new contigmalloc operation still operates in three passes, but it could potentially be tuned to more or less. The first pass only looks at pages in the cache and free pages, so they would be thrown out without having to block. If this is not enough, the subsequent passes page out any unwired memory. To combat memory pressure refragmenting the section of memory being laundered, each page is removed from the systems' free memory queue once it has been freed so that blocking later doesn't cause the memory laundered so far to get reallocated. The page-out operations are now blocking, as it would make little sense to try to push out a page, then get its status immediately afterward to remove it from the available free pages queue, if it's unlikely to have been freed. Another change is that if KVA allocation fails, the allocated memory segment will be freed and not leaked. There is a sysctl/tunable, defaulting to on, which causes the old contigmalloc() algorithm to be used. Nonetheless, I have been using vm.old_contigmalloc=0 for over a month. It is safe to switch at run-time to see the difference it makes. A new interface has been used which does not require mapping the allocated pages into KVA: vm_page.h functions vm_page_alloc_contig() and vm_page_release_contig(). These are what vm.old_contigmalloc=0 uses internally, so the sysctl/tunable does not affect their operation. When using the contigmalloc(9) and contigfree(9) interfaces, memory is now tracked with malloc(9) stats. Several functions have been exported from kern_malloc.c to allow other subsystems to use these statistics, as well. This invalidates the BUGS section of the contigmalloc(9) manpage.
2004-07-19 06:21:27 +00:00
}
VM_OBJECT_UNLOCK(object);
vm_map_unlock(map);
vm_map_wire(map, addr, addr + size, VM_MAP_WIRE_SYSTEM |
VM_MAP_WIRE_NOHOLES);
return (addr);
}