1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/sys/ufs/ifs/ifs_vfsops.c

315 lines
8.7 KiB
C
Raw Normal View History

Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
/*
* Copyright (c) 1999, 2000
* Adrian Chadd <adrian@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
* $FreeBSD$
*/
#include "opt_ffs.h"
#include "opt_quota.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/fcntl.h>
#include <sys/disklabel.h>
#include <sys/malloc.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ifs/ifs_extern.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
static MALLOC_DEFINE(M_IFSNODE, "IFS node", "IFS vnode private part");
static int ifs_init (struct vfsconf *);
static int ifs_mount (struct mount *, char *, caddr_t,
struct nameidata *, struct proc *);
extern int ifs_vget (struct mount *, ino_t, struct vnode **);
static struct vfsops ifs_vfsops = {
ifs_mount,
ufs_start,
ffs_unmount,
ufs_root,
ufs_quotactl,
ffs_statfs,
ffs_sync,
ifs_vget,
ffs_fhtovp,
vfs_stdcheckexp,
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
ffs_vptofh,
ifs_init,
vfs_stduninit,
vfs_stdextattrctl,
};
VFS_SET(ifs_vfsops, ifs, 0);
/*
* ifs_mount
*
* A simple wrapper around ffs_mount - IFS filesystems right now can't
* deal with softupdates so we make sure the user isn't trying to use it.
*/
static int
ifs_mount(mp, path, data, ndp, p)
struct mount *mp;
char *path;
caddr_t data;
struct nameidata *ndp;
struct proc *p;
{
/* Clear the softdep flag */
mp->mnt_flag &= ~MNT_SOFTDEP;
return (ffs_mount(mp, path, data, ndp, p));
}
/*
* Look up a IFS dinode number to find its incore vnode, otherwise read it
* in from disk. If it is in core, wait for the lock bit to clear, then
* return the inode locked. Detection and handling of mount points must be
* done by the calling routine.
*/
static int ifs_inode_hash_lock;
/*
* ifs_inode_hash_lock is a variable to manage mutual exclusion
* of vnode allocation and intertion to the hash, especially to
* avoid holding more than one vnodes for the same inode in the
* hash table. ifs_inode_hash_lock must hence be tested-and-set
* or cleared atomically, accomplished by ifs_inode_hash_mtx.
*
* As vnode allocation may block during MALLOC() and zone
* allocation, we should also do msleep() to give away the CPU
* if anyone else is allocating a vnode. lockmgr is not suitable
* here because someone else may insert to the hash table the
* vnode we are trying to allocate during our sleep, in which
* case the hash table needs to be examined once again after
* waking up.
*/
static struct mtx ifs_inode_hash_mtx;
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
/*
* Initialize the filesystem; just use ufs_init.
*/
static int
ifs_init(vfsp)
struct vfsconf *vfsp;
{
mtx_init(&ifs_inode_hash_mtx, "ifsvgt", MTX_DEF);
return (ufs_init(vfsp));
}
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
int
ifs_vget(mp, ino, vpp)
struct mount *mp;
ino_t ino;
struct vnode **vpp;
{
struct fs *fs;
struct inode *ip;
struct ufsmount *ump;
struct buf *bp;
struct vnode *vp;
dev_t dev;
int error, want_wakeup;
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
ump = VFSTOUFS(mp);
dev = ump->um_dev;
restart:
if ((*vpp = ufs_ihashget(dev, ino)) != NULL) {
return (0);
}
/*
* Lock out the creation of new entries in the FFS hash table in
* case getnewvnode() or MALLOC() blocks, otherwise a duplicate
* may occur!
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&ifs_inode_hash_mtx);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
if (ifs_inode_hash_lock) {
while (ifs_inode_hash_lock) {
ifs_inode_hash_lock = -1;
msleep(&ifs_inode_hash_lock, &ifs_inode_hash_mtx, PVM, "ifsvgt", 0);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&ifs_inode_hash_mtx);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
goto restart;
}
ifs_inode_hash_lock = 1;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&ifs_inode_hash_mtx);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
/*
* If this MALLOC() is performed after the getnewvnode()
* it might block, leaving a vnode with a NULL v_data to be
* found by ffs_sync() if a sync happens to fire right then,
* which will cause a panic because ffs_sync() blindly
* dereferences vp->v_data (as well it should).
*/
MALLOC(ip, struct inode *, sizeof(struct inode),
ump->um_malloctype, M_WAITOK);
/* Allocate a new vnode/inode. */
error = getnewvnode(VT_UFS, mp, ifs_vnodeop_p, &vp);
if (error) {
/*
* Do not wake up processes while holding the mutex,
* otherwise the processes waken up immediately hit
* themselves into the mutex.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&ifs_inode_hash_mtx);
want_wakeup = ifs_inode_hash_lock < 0;
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
ifs_inode_hash_lock = 0;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&ifs_inode_hash_mtx);
if (want_wakeup)
wakeup(&ifs_inode_hash_lock);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
*vpp = NULL;
FREE(ip, ump->um_malloctype);
return (error);
}
bzero((caddr_t)ip, sizeof(struct inode));
/*
* IFS supports lock sharing in the stack of vnodes
*/
vp->v_vnlock = &vp->v_lock;
lockinit(vp->v_vnlock, PINOD, "inode", 0, LK_CANRECURSE);
vp->v_data = ip;
ip->i_vnode = vp;
ip->i_fs = fs = ump->um_fs;
ip->i_dev = dev;
ip->i_number = ino;
#ifdef QUOTA
{
int i;
for (i = 0; i < MAXQUOTAS; i++)
ip->i_dquot[i] = NODQUOT;
}
#endif
/*
* Put it onto its hash chain and lock it so that other requests for
* this inode will block if they arrive while we are sleeping waiting
* for old data structures to be purged or for the contents of the
* disk portion of this inode to be read.
*/
ufs_ihashins(ip);
/*
* Do not wake up processes while holding the mutex,
* otherwise the processes waken up immediately hit
* themselves into the mutex.
*/
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock(&ifs_inode_hash_mtx);
want_wakeup = ifs_inode_hash_lock < 0;
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
ifs_inode_hash_lock = 0;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock(&ifs_inode_hash_mtx);
if (want_wakeup)
wakeup(&ifs_inode_hash_lock);
Initial commit of IFS - a inode-namespaced FFS. Here is a short description: How it works: -- Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.) I didn't see the need in duplicating all of sys/ufs/ffs to get this off the ground. File creation is done through a special file - 'newfile' . When newfile is called, the system allocates and returns an inode. Note that newfile is done in a cloning fashion: fd = open("newfile", O_CREAT|O_RDWR, 0644); fstat(fd, &st); printf("new file is %d\n", (int)st.st_ino); Once you have created a file, you can open() and unlink() it by its returned inode number retrieved from the stat call, ie: fd = open("5", O_RDWR); The creation permissions depend entirely if you have write access to the root directory of the filesystem. To get the list of currently allocated inodes, VOP_READDIR has been added which returns a directory listing of those currently allocated. -- What this entails: * patching conf/files and conf/options to include IFS as a new compile option (and since ifs depends upon FFS, include the FFS routines) * An entry in i386/conf/NOTES indicating IFS exists and where to go for an explanation * Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS routines require (ffs_mount() and ffs_reload()) * a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS routines. IFS replaces some of the vfsops, and a handful of vnops - most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR(). Any other directory operation is marked as invalid. What this results in: * an IFS partition's create permissions are controlled by the perm/ownership of the root mount point, just like a normal directory * Each inode has perm and ownership too * IFS does *NOT* mean an FFS partition can be opened per inode. This is a completely seperate filesystem here * Softupdates doesn't work with IFS, and really I don't think it needs it. Besides, fsck's are FAST. (Try it :-) * Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC). Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against this particular inode, and unravelling THAT code isn't trivial. Therefore, useful inodes start at 3. Enjoy, and feedback is definitely appreciated!
2000-10-14 03:02:30 +00:00
/* Read in the disk contents for the inode, copy into the inode. */
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
brelse(bp);
vput(vp);
*vpp = NULL;
return (error);
}
ip->i_din = *((struct dinode *)bp->b_data + ino_to_fsbo(fs, ino));
if (DOINGSOFTDEP(vp))
softdep_load_inodeblock(ip);
else
ip->i_effnlink = ip->i_nlink;
bqrelse(bp);
/*
* Initialize the vnode from the inode, check for aliases.
* Note that the underlying vnode may have changed.
*/
error = ufs_vinit(mp, ifs_specop_p, ifs_fifoop_p, &vp);
if (error) {
vput(vp);
*vpp = NULL;
return (error);
}
/*
* Finish inode initialization now that aliasing has been resolved.
*/
ip->i_devvp = ump->um_devvp;
VREF(ip->i_devvp);
/*
* Set up a generation number for this inode if it does not
* already have one. This should only happen on old filesystems.
*/
if (ip->i_gen == 0) {
ip->i_gen = random() / 2 + 1;
if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
ip->i_flag |= IN_MODIFIED;
}
/*
* Ensure that uid and gid are correct. This is a temporary
* fix until fsck has been changed to do the update.
*/
if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
ip->i_uid = ip->i_din.di_ouid; /* XXX */
ip->i_gid = ip->i_din.di_ogid; /* XXX */
} /* XXX */
*vpp = vp;
return (0);
}