1
0
mirror of https://git.FreeBSD.org/src.git synced 2025-01-21 15:45:02 +00:00
freebsd/sys/dev/firewire/fwohci.c

2650 lines
71 KiB
C
Raw Normal View History

/*
* Copyright (c) 1998-2002 Katsushi Kobayashi and Hidetoshi Shimokawa
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the acknowledgement as bellow:
*
* This product includes software developed by K. Kobayashi and H. SHimokawa
*
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*
*/
extern int nxfer;
#define DEBUG_PACKET
#undef DEBUG_PACKET
#define ATRQ_CH 0
#define ATRS_CH 1
#define ARRQ_CH 2
#define ARRS_CH 3
#define ITX_CH 4
#define IRX_CH 0x24
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/signalvar.h>
#include <sys/malloc.h>
#include <sys/uio.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#ifdef __FreeBSD__
#include <machine/cpufunc.h> /* for rdtsc proto for clock.h below */
#include <machine/clock.h>
#include <pci/pcivar.h>
#include <pci/pcireg.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h> /* for vtophys proto */
#include <dev/firewire/firewire.h>
#include <dev/firewire/firewirebusreg.h>
#include <dev/firewire/firewirereg.h>
#include <dev/firewire/fwohcireg.h>
#include <dev/firewire/fwohcivar.h>
#include <dev/firewire/firewire_phy.h>
#define OHCI_DEBUG
#undef OHCI_DEBUG
/*
#define OHCI_DEBUG
*/
static char dbcode[16][0x10]={"OUTM", "OUTL","INPM","INPL",
"STOR","LOAD","NOP ","STOP",};
static char dbkey[8][0x10]={"ST0", "ST1","ST2","ST3",
"UNDEF","REG","SYS","DEV"};
char fwohcicode[32][0x20]={
"No stat","Undef","long","miss Ack err",
"underrun","overrun","desc err", "data read err",
"data write err","bus reset","timeout","tcode err",
"Undef","Undef","unknown event","flushed",
"Undef","ack complete","ack pend","Undef",
"ack busy_X","ack busy_A","ack busy_B","Undef",
"Undef","Undef","Undef","ack tardy",
"Undef","ack data_err","ack type_err",""};
#define MAX_SPEED 2
extern char linkspeed[MAX_SPEED+1][0x10];
extern int maxrec[MAX_SPEED+1];
static char dbcond[4][0x10]={"NEV","C=1", "C=0", "ALL"};
u_int32_t tagbit[4] = { 1 << 28, 1 << 29, 1 << 30, 1 << 31};
static struct tcode_info tinfo[] = {
/* hdr_len block flag*/
/* 0 WREQQ */ {16, FWTI_REQ | FWTI_TLABEL},
/* 1 WREQB */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY},
/* 2 WRES */ {12, FWTI_RES},
/* 3 XXX */ { 0, 0},
/* 4 RREQQ */ {12, FWTI_REQ | FWTI_TLABEL},
/* 5 RREQB */ {16, FWTI_REQ | FWTI_TLABEL},
/* 6 RRESQ */ {16, FWTI_RES},
/* 7 RRESB */ {16, FWTI_RES | FWTI_BLOCK_ASY},
/* 8 CYCS */ { 0, 0},
/* 9 LREQ */ {16, FWTI_REQ | FWTI_TLABEL | FWTI_BLOCK_ASY},
/* a STREAM */ { 4, FWTI_REQ | FWTI_BLOCK_STR},
/* b LRES */ {16, FWTI_RES | FWTI_BLOCK_ASY},
/* c XXX */ { 0, 0},
/* d XXX */ { 0, 0},
/* e PHY */ {12, FWTI_REQ},
/* f XXX */ { 0, 0}
};
#define OHCI_WRITE_SIGMASK 0xffff0000
#define OHCI_READ_SIGMASK 0xffff0000
#define OWRITE(sc, r, x) bus_space_write_4((sc)->bst, (sc)->bsh, (r), (x))
#define OREAD(sc, r) bus_space_read_4((sc)->bst, (sc)->bsh, (r))
#endif /* __FreeBSD__ */
#define senderr(e) { error = (e); goto bad;}
static void fwohci_ibr __P((struct firewire_comm *));
static void fwohci_db_init __P((struct fwohci_dbch *));
static void fwohci_db_free __P((struct fwohci_dbch *));
static void fwohci_arcv __P((struct fwohci_softc *, struct fwohci_dbch *));
static void fwohci_ircv __P((struct fwohci_softc *, struct fwohci_dbch *));
static void fwohci_txd __P((struct fwohci_softc *, struct fwohci_dbch *));
static void fwohci_start_atq __P((struct firewire_comm *));
static void fwohci_start_ats __P((struct firewire_comm *));
static void fwohci_start __P((struct fwohci_softc *, struct fwohci_dbch *));
static void fwohci_drain_atq __P((struct firewire_comm *, struct fw_xfer *));
static void fwohci_drain_ats __P((struct firewire_comm *, struct fw_xfer *));
static void fwohci_drain __P((struct firewire_comm *, struct fw_xfer *, struct fwohci_dbch *));
static u_int32_t fwphy_wrdata __P(( struct fwohci_softc *, u_int32_t, u_int32_t));
static u_int32_t fwphy_rddata __P(( struct fwohci_softc *, u_int32_t));
static int fwohci_rx_enable __P((struct fwohci_softc *, struct fwohci_dbch *));
static int fwohci_tx_enable __P((struct fwohci_softc *, struct fwohci_dbch *));
static int fwohci_irx_enable __P((struct firewire_comm *, int));
static int fwohci_irxpp_enable __P((struct firewire_comm *, int));
static int fwohci_irxbuf_enable __P((struct firewire_comm *, int));
static int fwohci_irx_disable __P((struct firewire_comm *, int));
static void fwohci_irx_post __P((struct firewire_comm *, u_int32_t *));
static int fwohci_itxbuf_enable __P((struct firewire_comm *, int));
static int fwohci_itx_disable __P((struct firewire_comm *, int));
static void fwohci_timeout __P((void *));
static void fwohci_poll __P((struct firewire_comm *, int, int));
static void fwohci_set_intr __P((struct firewire_comm *, int));
static int fwohci_add_rx_buf __P((struct fwohcidb_tr *, unsigned short, int, void *, void *));
static int fwohci_add_tx_buf __P((struct fwohcidb_tr *, unsigned short, int, void *));
static void dump_db __P((struct fwohci_softc *, u_int32_t));
static void print_db __P((volatile struct fwohcidb *, u_int32_t , u_int32_t));
static void dump_dma __P((struct fwohci_softc *, u_int32_t));
static u_int32_t fwohci_cyctimer __P((struct firewire_comm *));
static void fwohci_rbuf_update __P((struct fwohci_softc *, int));
static void fwohci_tbuf_update __P((struct fwohci_softc *, int));
void fwohci_txbufdb __P((struct fwohci_softc *, int , struct fw_bulkxfer *));
/*
* memory allocated for DMA programs
*/
#define DMA_PROG_ALLOC (8 * PAGE_SIZE)
/* #define NDB 1024 */
#define NDB FWMAXQUEUE
#define NDVDB (DVBUF * NDB)
#define OHCI_VERSION 0x00
#define OHCI_CROMHDR 0x18
#define OHCI_BUS_OPT 0x20
#define OHCI_BUSIRMC (1 << 31)
#define OHCI_BUSCMC (1 << 30)
#define OHCI_BUSISC (1 << 29)
#define OHCI_BUSBMC (1 << 28)
#define OHCI_BUSPMC (1 << 27)
#define OHCI_BUSFNC OHCI_BUSIRMC | OHCI_BUSCMC | OHCI_BUSISC |\
OHCI_BUSBMC | OHCI_BUSPMC
#define OHCI_EUID_HI 0x24
#define OHCI_EUID_LO 0x28
#define OHCI_CROMPTR 0x34
#define OHCI_HCCCTL 0x50
#define OHCI_HCCCTLCLR 0x54
#define OHCI_AREQHI 0x100
#define OHCI_AREQHICLR 0x104
#define OHCI_AREQLO 0x108
#define OHCI_AREQLOCLR 0x10c
#define OHCI_PREQHI 0x110
#define OHCI_PREQHICLR 0x114
#define OHCI_PREQLO 0x118
#define OHCI_PREQLOCLR 0x11c
#define OHCI_PREQUPPER 0x120
#define OHCI_SID_BUF 0x64
#define OHCI_SID_CNT 0x68
#define OHCI_SID_CNT_MASK 0xffc
#define OHCI_IT_STAT 0x90
#define OHCI_IT_STATCLR 0x94
#define OHCI_IT_MASK 0x98
#define OHCI_IT_MASKCLR 0x9c
#define OHCI_IR_STAT 0xa0
#define OHCI_IR_STATCLR 0xa4
#define OHCI_IR_MASK 0xa8
#define OHCI_IR_MASKCLR 0xac
#define OHCI_LNKCTL 0xe0
#define OHCI_LNKCTLCLR 0xe4
#define OHCI_PHYACCESS 0xec
#define OHCI_CYCLETIMER 0xf0
#define OHCI_DMACTL(off) (off)
#define OHCI_DMACTLCLR(off) (off + 4)
#define OHCI_DMACMD(off) (off + 0xc)
#define OHCI_DMAMATCH(off) (off + 0x10)
#define OHCI_ATQOFF 0x180
#define OHCI_ATQCTL OHCI_ATQOFF
#define OHCI_ATQCTLCLR (OHCI_ATQOFF + 4)
#define OHCI_ATQCMD (OHCI_ATQOFF + 0xc)
#define OHCI_ATQMATCH (OHCI_ATQOFF + 0x10)
#define OHCI_ATSOFF 0x1a0
#define OHCI_ATSCTL OHCI_ATSOFF
#define OHCI_ATSCTLCLR (OHCI_ATSOFF + 4)
#define OHCI_ATSCMD (OHCI_ATSOFF + 0xc)
#define OHCI_ATSMATCH (OHCI_ATSOFF + 0x10)
#define OHCI_ARQOFF 0x1c0
#define OHCI_ARQCTL OHCI_ARQOFF
#define OHCI_ARQCTLCLR (OHCI_ARQOFF + 4)
#define OHCI_ARQCMD (OHCI_ARQOFF + 0xc)
#define OHCI_ARQMATCH (OHCI_ARQOFF + 0x10)
#define OHCI_ARSOFF 0x1e0
#define OHCI_ARSCTL OHCI_ARSOFF
#define OHCI_ARSCTLCLR (OHCI_ARSOFF + 4)
#define OHCI_ARSCMD (OHCI_ARSOFF + 0xc)
#define OHCI_ARSMATCH (OHCI_ARSOFF + 0x10)
#define OHCI_ITOFF(CH) (0x200 + 0x10 * (CH))
#define OHCI_ITCTL(CH) (OHCI_ITOFF(CH))
#define OHCI_ITCTLCLR(CH) (OHCI_ITOFF(CH) + 4)
#define OHCI_ITCMD(CH) (OHCI_ITOFF(CH) + 0xc)
#define OHCI_IROFF(CH) (0x400 + 0x20 * (CH))
#define OHCI_IRCTL(CH) (OHCI_IROFF(CH))
#define OHCI_IRCTLCLR(CH) (OHCI_IROFF(CH) + 4)
#define OHCI_IRCMD(CH) (OHCI_IROFF(CH) + 0xc)
#define OHCI_IRMATCH(CH) (OHCI_IROFF(CH) + 0x10)
d_ioctl_t fwohci_ioctl;
/*
* Communication with PHY device
*/
static u_int32_t fwphy_wrdata( struct fwohci_softc *sc, u_int32_t addr, u_int32_t data)
{
u_int32_t fun;
addr &= 0xf;
data &= 0xff;
fun = (PHYDEV_WRCMD | (addr << PHYDEV_REGADDR) | (data << PHYDEV_WRDATA));
OWRITE(sc, OHCI_PHYACCESS, fun);
DELAY(100);
return(fwphy_rddata( sc, addr));
}
static u_int32_t
fwohci_set_bus_manager(struct firewire_comm *fc, u_int node)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int i;
u_int32_t bm;
#define OHCI_CSR_DATA 0x0c
#define OHCI_CSR_COMP 0x10
#define OHCI_CSR_CONT 0x14
#define OHCI_BUS_MANAGER_ID 0
OWRITE(sc, OHCI_CSR_DATA, node);
OWRITE(sc, OHCI_CSR_COMP, 0x3f);
OWRITE(sc, OHCI_CSR_CONT, OHCI_BUS_MANAGER_ID);
for (i = 0; !(OREAD(sc, OHCI_CSR_CONT) & (1<<31)) && (i < 1000); i++)
DELAY(100);
bm = OREAD(sc, OHCI_CSR_DATA);
if((bm & 0x3f) == 0x3f){
printf("fw_set_bus_manager: %d->%d (loop=%d)\n", bm, node, i);
bm = node;
}else{
printf("fw_set_bus_manager: %d-X%d (loop=%d)\n", bm, node, i);
}
return(bm);
}
static u_int32_t fwphy_rddata(struct fwohci_softc *sc, u_int addr)
{
u_int32_t fun;
u_int i;
addr &= 0xf;
fun = PHYDEV_RDCMD | (addr << PHYDEV_REGADDR);
OWRITE(sc, OHCI_PHYACCESS, fun);
for ( i = 0 ; i < 1000 ; i ++ ){
fun = OREAD(sc, OHCI_PHYACCESS);
if ((fun & PHYDEV_RDCMD) == 0 && (fun & PHYDEV_RDDONE) != 0)
break;
DELAY(1000);
}
if( i >= 1000)
device_printf(sc->fc.dev, "cannot read phy\n");
return((fun >> PHYDEV_RDDATA )& 0xff);
}
/* Device specific ioctl. */
int
fwohci_ioctl (dev_t dev, u_long cmd, caddr_t data, int flag, fw_proc *td)
{
struct firewire_softc *sc;
struct fwohci_softc *fc;
int unit = DEV2UNIT(dev);
int err = 0;
struct fw_reg_req_t *reg = (struct fw_reg_req_t *) data;
u_int32_t *dmach = (u_int32_t *) data;
sc = devclass_get_softc(firewire_devclass, unit);
if(sc == NULL){
return(EINVAL);
}
fc = (struct fwohci_softc *)sc->fc;
if (!data)
return(EINVAL);
switch (cmd) {
case FWOHCI_WRREG:
#define OHCI_MAX_REG 0x800
if(reg->addr <= OHCI_MAX_REG){
OWRITE(fc, reg->addr, reg->data);
reg->data = OREAD(fc, reg->addr);
}else{
err = EINVAL;
}
break;
case FWOHCI_RDREG:
if(reg->addr <= OHCI_MAX_REG){
reg->data = OREAD(fc, reg->addr);
}else{
err = EINVAL;
}
break;
/* Read DMA descriptors for debug */
case DUMPDMA:
if(*dmach <= OHCI_MAX_DMA_CH ){
dump_dma(fc, *dmach);
dump_db(fc, *dmach);
}else{
err = EINVAL;
}
break;
default:
break;
}
return err;
}
int fwohci_init(struct fwohci_softc *sc, device_t dev)
{
int err = 0;
int i;
u_int32_t reg, reg2;
struct fwohcidb_tr *db_tr;
int e1394a = 1;
reg = OREAD(sc, OHCI_VERSION);
device_printf(dev, "OHCI version %x.%x (ROM=%d)\n",
(reg>>16) & 0xff, reg & 0xff, (reg>>24) & 1);
#if 0
/* XXX: Not support bridge function yet, then clear bus ID */
OWRITE(sc, FWOHCI_NODEID, (OREAD(sc, FWOHCI_NODEID)) & 0xffff003f);
#endif
/* XXX: Available Isochrounous DMA channel probe */
for( i = 0 ; i < 0x20 ; i ++ ){
OWRITE(sc, OHCI_IRCTL(i), OHCI_CNTL_DMA_RUN);
reg = OREAD(sc, OHCI_IRCTL(i));
if(!(reg & OHCI_CNTL_DMA_RUN)) break;
OWRITE(sc, OHCI_ITCTL(i), OHCI_CNTL_DMA_RUN);
reg = OREAD(sc, OHCI_ITCTL(i));
if(!(reg & OHCI_CNTL_DMA_RUN)) break;
}
sc->fc.nisodma = i;
device_printf(dev, "No. of Isochronous channel is %d.\n", i);
sc->fc.arq = &sc->arrq.xferq;
sc->fc.ars = &sc->arrs.xferq;
sc->fc.atq = &sc->atrq.xferq;
sc->fc.ats = &sc->atrs.xferq;
sc->arrq.xferq.start = NULL;
sc->arrs.xferq.start = NULL;
sc->atrq.xferq.start = fwohci_start_atq;
sc->atrs.xferq.start = fwohci_start_ats;
sc->arrq.xferq.drain = NULL;
sc->arrs.xferq.drain = NULL;
sc->atrq.xferq.drain = fwohci_drain_atq;
sc->atrs.xferq.drain = fwohci_drain_ats;
sc->arrq.ndesc = 1;
sc->arrs.ndesc = 1;
sc->atrq.ndesc = 10;
sc->atrs.ndesc = 10 / 2;
sc->arrq.ndb = NDB;
sc->arrs.ndb = NDB / 2;
sc->atrq.ndb = NDB;
sc->atrs.ndb = NDB / 2;
sc->arrq.dummy = NULL;
sc->arrs.dummy = NULL;
sc->atrq.dummy = NULL;
sc->atrs.dummy = NULL;
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
sc->fc.it[i] = &sc->it[i].xferq;
sc->fc.ir[i] = &sc->ir[i].xferq;
sc->it[i].ndb = 0;
sc->ir[i].ndb = 0;
}
sc->fc.tcode = tinfo;
sc->cromptr = (u_int32_t *)
contigmalloc(CROMSIZE * 2, M_DEVBUF, M_NOWAIT, 0, ~0, 1<<10, 0);
if(sc->cromptr == NULL){
return ENOMEM;
}
sc->fc.dev = dev;
sc->fc.config_rom = &(sc->cromptr[CROMSIZE/4]);
sc->fc.config_rom[1] = 0x31333934;
sc->fc.config_rom[2] = 0xf000a002;
sc->fc.config_rom[3] = OREAD(sc, OHCI_EUID_HI);
sc->fc.config_rom[4] = OREAD(sc, OHCI_EUID_LO);
sc->fc.config_rom[5] = 0;
sc->fc.config_rom[0] = (4 << 24) | (5 << 16);
sc->fc.config_rom[0] |= fw_crc16(&sc->fc.config_rom[1], 5*4);
fw_init(&sc->fc);
/* Now stopping all DMA channel */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, ~0);
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
device_printf(dev, "resetting OHCI...");
i = 0;
while(OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_RESET) {
if (i++ > 100) break;
DELAY(1000);
}
printf("done (%d)\n", i);
#if 0
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN | OHCI_HCC_LPS);
#endif
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS);
/* XXX wait for SCLK. */
DELAY(100000);
reg = OREAD(sc, OHCI_BUS_OPT);
reg2 = reg | OHCI_BUSFNC;
/* XXX */
if (((reg & 0x0000f000) >> 12) < 10)
reg2 = (reg2 & 0xffff0fff) | (10 << 12);
device_printf(dev, "BUS_OPT 0x%x -> 0x%x\n", reg, reg2);
OWRITE(sc, OHCI_BUS_OPT, reg2);
OWRITE(sc, OHCI_CROMHDR, sc->fc.config_rom[0]);
OWRITE(sc, OHCI_CROMPTR, vtophys(&sc->fc.config_rom[0]));
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_BIGEND);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_POSTWR);
/*
* probe PHY parameters
* 0. to prove PHY version, whether compliance of 1394a.
* 1. to probe maximum speed supported by the PHY and
* number of port supported by core-logic.
* It is not actually available port on your PC .
*/
/* Wait a while */
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
#if 0
/* try again */
DELAY(1000);
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
#endif
if((reg >> 5) != 7 ){
sc->fc.mode &= ~FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = reg & FW_PHY_SPD >> 6;
if (sc->fc.speed > MAX_SPEED) {
device_printf(dev, "invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
sc->fc.maxrec = maxrec[sc->fc.speed];
device_printf(dev,
"Link 1394 only %s, %d ports, maxrec %d bytes.\n",
linkspeed[sc->fc.speed], sc->fc.nport, sc->fc.maxrec);
}else{
reg2 = fwphy_rddata(sc, FW_PHY_ESPD_REG);
sc->fc.mode |= FWPHYASYST;
sc->fc.nport = reg & FW_PHY_NP;
sc->fc.speed = (reg2 & FW_PHY_ESPD) >> 5;
if (sc->fc.speed > MAX_SPEED) {
device_printf(dev, "invalid speed %d (fixed to %d).\n",
sc->fc.speed, MAX_SPEED);
sc->fc.speed = MAX_SPEED;
}
sc->fc.maxrec = maxrec[sc->fc.speed];
device_printf(dev,
"Link 1394a available %s, %d ports, maxrec %d bytes.\n",
linkspeed[sc->fc.speed], sc->fc.nport, sc->fc.maxrec);
/* check programPhyEnable */
reg2 = fwphy_rddata(sc, 5);
#if 0
if (e1394a && (OREAD(sc, OHCI_HCCCTL) & OHCI_HCC_PRPHY)) {
#else /* XXX f<>force to enable 1394a */
if (e1394a) {
#endif
device_printf(dev, "Enable 1394a Enhancements\n");
/* enable EAA EMC */
reg2 |= 0x03;
/* set aPhyEnhanceEnable */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_PHYEN);
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_PRPHY);
} else {
/* for safe */
reg2 &= ~0x83;
}
reg2 = fwphy_wrdata(sc, 5, reg2);
}
reg = fwphy_rddata(sc, FW_PHY_SPD_REG);
if((reg >> 5) == 7 ){
reg = fwphy_rddata(sc, 4);
reg |= 1 << 6;
fwphy_wrdata(sc, 4, reg);
reg = fwphy_rddata(sc, 4);
}
/* SID recieve buffer must allign 2^11 */
#define OHCI_SIDSIZE (1 << 11)
sc->fc.sid_buf = (u_int32_t *) vm_page_alloc_contig( OHCI_SIDSIZE,
0x10000, 0xffffffff, OHCI_SIDSIZE);
OWRITE(sc, OHCI_SID_BUF, vtophys(sc->fc.sid_buf));
sc->fc.sid_buf++;
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_SID);
fwohci_db_init(&sc->arrq);
fwohci_db_init(&sc->arrs);
fwohci_db_init(&sc->atrq);
fwohci_db_init(&sc->atrs);
reg = OREAD(sc, FWOHCIGUID_H);
for( i = 0 ; i < 4 ; i ++){
sc->fc.eui[3 - i] = reg & 0xff;
reg = reg >> 8;
}
reg = OREAD(sc, FWOHCIGUID_L);
for( i = 0 ; i < 4 ; i ++){
sc->fc.eui[7 - i] = reg & 0xff;
reg = reg >> 8;
}
device_printf(dev, "EUI64 %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
sc->fc.eui[0], sc->fc.eui[1], sc->fc.eui[2], sc->fc.eui[3],
sc->fc.eui[4], sc->fc.eui[5], sc->fc.eui[6], sc->fc.eui[7]);
sc->fc.ioctl = fwohci_ioctl;
sc->fc.cyctimer = fwohci_cyctimer;
sc->fc.set_bmr = fwohci_set_bus_manager;
sc->fc.ibr = fwohci_ibr;
sc->fc.irx_enable = fwohci_irx_enable;
sc->fc.irx_disable = fwohci_irx_disable;
sc->fc.itx_enable = fwohci_itxbuf_enable;
sc->fc.itx_disable = fwohci_itx_disable;
sc->fc.irx_post = fwohci_irx_post;
sc->fc.itx_post = NULL;
sc->fc.timeout = fwohci_timeout;
sc->fc.poll = fwohci_poll;
sc->fc.set_intr = fwohci_set_intr;
#if 0
/* why this need twice? */
fwohci_db_init(&sc->arrq);
#endif
/* enable link */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN);
fw_busreset(&sc->fc);
fwohci_rx_enable(sc, &sc->arrq);
fwohci_rx_enable(sc, &sc->arrs);
for( i = 0, db_tr = sc->atrq.top; i < sc->atrq.ndb ;
i ++, db_tr = STAILQ_NEXT(db_tr, link)){
db_tr->xfer = NULL;
}
for( i = 0, db_tr = sc->atrs.top; i < sc->atrs.ndb ;
i ++, db_tr = STAILQ_NEXT(db_tr, link)){
db_tr->xfer = NULL;
}
sc->atrq.flags = sc->atrs.flags = 0;
OWRITE(sc, FWOHCI_RETRY,
(0xffff << 16 )| (0x0f << 8) | (0x0f << 4) | 0x0f) ;
OWRITE(sc, FWOHCI_INTMASKCLR, ~0);
OWRITE(sc, FWOHCI_INTMASK,
OHCI_INT_ERR | OHCI_INT_PHY_SID
| OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS
| OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS
| OHCI_INT_PHY_BUS_R | OHCI_INT_PW_ERR);
fwohci_set_intr(&sc->fc, 1);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN | OHCI_CNTL_DMA_DEAD);
#if 0
fwohci_ibr(sc);
#endif
return err;
}
void fwohci_timeout(void *arg)
{
/*
fwohci_txd(sc, &(sc->atrq));
fwohci_txd(sc, &(sc->atrs));
fw_expire_tlabel(&sc->fc);
*/
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)arg;
sc->fc.timeouthandle = timeout(fwohci_timeout,
(void *)sc, FW_XFERTIMEOUT * hz * 10);
}
u_int32_t fwohci_cyctimer(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
return(OREAD(sc, OHCI_CYCLETIMER));
}
#define LAST_DB(dbtr, db) do { \
struct fwohcidb_tr *_dbtr = (dbtr); \
int _cnt = _dbtr->dbcnt; \
db = &_dbtr->db[ (_cnt > 2) ? (_cnt -1) : 0]; \
} while (0)
static void fwohci_start(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int i, s;
int tcode, hdr_len, hdr_off, len;
int fsegment = -1;
u_int32_t off;
#if 0
u_int32_t reg;
#endif
struct fw_xfer *xfer;
struct fw_pkt *fp;
volatile struct fwohci_txpkthdr *ohcifp;
struct fwohcidb_tr *db_tr;
volatile struct fwohcidb *db;
struct mbuf *m;
struct tcode_info *info;
if(&sc->atrq == dbch){
off = OHCI_ATQOFF;
}else if(&sc->atrs == dbch){
off = OHCI_ATSOFF;
}else{
return;
}
if (dbch->flags & FWOHCI_DBCH_FULL)
return;
s = splfw();
db_tr = dbch->top;
txloop:
xfer = STAILQ_FIRST(&dbch->xferq.q);
if(xfer == NULL){
goto kick;
}
if(dbch->xferq.queued == 0 ){
device_printf(sc->fc.dev, "TX queue empty\n");
}
STAILQ_REMOVE_HEAD(&dbch->xferq.q, link);
db_tr->xfer = xfer;
xfer->state = FWXF_START;
dbch->xferq.packets++;
fp = (struct fw_pkt *)(xfer->send.buf + xfer->send.off);
tcode = fp->mode.common.tcode;
ohcifp = (volatile struct fwohci_txpkthdr *) db_tr->db[1].db.immed;
#if 0
switch(tcode){
case FWTCODE_STREAM:
hdr_off = 4;
hdr_len = 8;
len = ntohs(fp->mode.stream.len) + 4;
break;
case FWTCODE_RREQQ:
case FWTCODE_WRES:
hdr_off = 12;
hdr_len = 12;
len = 12;
break;
case FWTCODE_WREQQ:
case FWTCODE_RRESQ:
case FWTCODE_RREQB:
hdr_off = 16;
hdr_len = 16;
len = 16;
break;
case FWTCODE_PHY:
hdr_off = 12;
hdr_len = 12;
len = 12;
break;
default:
hdr_off = 16;
hdr_len = 16;
/* presume block request len */
len = ntohs(fp->mode.rresb.len) + 16;
break;
}
#else
info = &tinfo[tcode];
hdr_len = hdr_off = info->hdr_len;
/* fw_asyreq must pass valid send.len */
len = xfer->send.len;
#endif
for( i = 0 ; i < hdr_off ; i+= 4){
ohcifp->mode.ld[i/4] = ntohl(fp->mode.ld[i/4]);
}
ohcifp->mode.common.spd = xfer->spd;
if (tcode == FWTCODE_STREAM ){
hdr_len = 8;
ohcifp->mode.stream.len = ntohs(fp->mode.stream.len);
} else if (tcode == FWTCODE_PHY) {
hdr_len = 12;
ohcifp->mode.ld[1] = ntohl(fp->mode.ld[1]);
ohcifp->mode.ld[2] = ntohl(fp->mode.ld[2]);
ohcifp->mode.common.spd = 0;
ohcifp->mode.common.tcode = FWOHCITCODE_PHY;
} else {
ohcifp->mode.asycomm.dst = ntohs(fp->mode.hdr.dst);
ohcifp->mode.asycomm.srcbus = OHCI_ASYSRCBUS;
ohcifp->mode.asycomm.tlrt |= FWRETRY_X;
}
db = &db_tr->db[0];
db->db.desc.cmd = OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | hdr_len;
db->db.desc.status = 0;
/* Specify bound timer of asy. responce */
if(&sc->atrs == dbch){
db->db.desc.count
= (OREAD(sc, OHCI_CYCLETIMER) >> 12) + (1 << 13);
}
db_tr->dbcnt = 2;
db = &db_tr->db[db_tr->dbcnt];
if(len > hdr_off){
if (xfer->mbuf == NULL) {
db->db.desc.addr
= vtophys(xfer->send.buf + xfer->send.off) + hdr_off;
db->db.desc.cmd
= OHCI_OUTPUT_MORE | ((len - hdr_off) & 0xffff);
db->db.desc.status = 0;
db_tr->dbcnt++;
} else {
/* XXX we assume mbuf chain is shorter than ndesc */
m = xfer->mbuf;
#if 0
m_adj(m, hdr_off);
#endif
do {
db->db.desc.addr
= vtophys(mtod(m, caddr_t));
db->db.desc.cmd = OHCI_OUTPUT_MORE | m->m_len;
db->db.desc.status = 0;
db++;
db_tr->dbcnt++;
m = m->m_next;
} while (m != NULL);
}
}
/* last db */
LAST_DB(db_tr, db);
db->db.desc.cmd |= OHCI_OUTPUT_LAST
| OHCI_INTERRUPT_ALWAYS
| OHCI_BRANCH_ALWAYS;
db->db.desc.depend = vtophys(STAILQ_NEXT(db_tr, link)->db);
if(fsegment == -1 )
fsegment = db_tr->dbcnt;
if (dbch->pdb_tr != NULL) {
LAST_DB(dbch->pdb_tr, db);
db->db.desc.depend |= db_tr->dbcnt;
}
dbch->pdb_tr = db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
if(db_tr != dbch->bottom){
goto txloop;
} else {
printf("fwohci_start: lack of db_trq\n");
dbch->flags |= FWOHCI_DBCH_FULL;
}
kick:
if (firewire_debug) printf("kick\n");
/* kick asy q */
#if 0
if(!(OREAD(sc, OHCI_DMACTL(off)) & OHCI_CNTL_DMA_ACTIVE)
&& fsegment != -1){
if (OREAD(sc, OHCI_DMACTL(off)) & OHCI_CNTL_DMA_RUN) {
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_WAKE);
} else if (dbch->top != db_tr) {
/* db_tr contains next unfilled db */
#if 0
printf("start DMA\n");
print_db(dbch->top->db, 0, 2);
#endif
OWRITE(sc, OHCI_DMACMD(off),
vtophys(dbch->top->db) | fsegment);
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
} else
printf("fwohci_start: nothing to kick\n");
}
#else
#if 1
if(dbch->xferq.flag & FWXFERQ_RUNNING) {
#else
reg = OREAD(sc, OHCI_DMACTL(off));
if ((reg & OHCI_CNTL_DMA_RUN) && !(reg & OHCI_CNTL_DMA_DEAD)) {
#endif
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_WAKE);
} else {
printf("start AT DMA status=%x\n",
OREAD(sc, OHCI_DMACTL(off)));
OWRITE(sc, OHCI_DMACMD(off), vtophys(dbch->top->db) | fsegment);
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
dbch->xferq.flag |= FWXFERQ_RUNNING;
}
#endif
dbch->top = db_tr;
splx(s);
return;
}
static void fwohci_drain_atq(struct firewire_comm *fc, struct fw_xfer *xfer)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_drain(&sc->fc, xfer, &(sc->atrq));
return;
}
static void fwohci_drain_ats(struct firewire_comm *fc, struct fw_xfer *xfer)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_drain(&sc->fc, xfer, &(sc->atrs));
return;
}
static void fwohci_start_atq(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_start( sc, &(sc->atrq));
return;
}
static void fwohci_start_ats(struct firewire_comm *fc)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
fwohci_start( sc, &(sc->atrs));
return;
}
void fwohci_txd(struct fwohci_softc *sc, struct fwohci_dbch *dbch)
{
int s, err = 0;
struct fwohcidb_tr *tr;
volatile struct fwohcidb *db;
struct fw_xfer *xfer;
u_int32_t off;
u_int stat;
int packets;
struct firewire_comm *fc = (struct firewire_comm *)sc;
if(&sc->atrq == dbch){
off = OHCI_ATQOFF;
}else if(&sc->atrs == dbch){
off = OHCI_ATSOFF;
}else{
return;
}
s = splfw();
tr = dbch->bottom;
packets = 0;
while(dbch->xferq.queued > 0){
#if 0
cmd = 0xfffffff0 & OREAD(sc, OHCI_DMACMD(off));
#endif
LAST_DB(tr, db);
if(!(db->db.desc.status & OHCI_CNTL_DMA_ACTIVE)){
if (fc->status != FWBUSRESET)
/* maybe out of order?? */
goto out;
}
#if 0
if(OREAD(sc, OHCI_DMACTL(off)) & OHCI_CNTL_DMA_DEAD ){
#else
if(db->db.desc.status & OHCI_CNTL_DMA_DEAD) {
#endif
#ifdef OHCI_DEBUG
dump_dma(sc, ch);
dump_db(sc, ch);
#endif
/* Stop DMA */
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
device_printf(sc->fc.dev, "force reset AT FIFO\n");
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS | OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
}
stat = db->db.desc.status & FWOHCIEV_MASK;
switch(stat){
case FWOHCIEV_ACKCOMPL:
case FWOHCIEV_ACKPEND:
err = 0;
break;
case FWOHCIEV_ACKBSA:
case FWOHCIEV_ACKBSB:
device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]);
case FWOHCIEV_ACKBSX:
err = EBUSY;
break;
case FWOHCIEV_FLUSHED:
case FWOHCIEV_ACKTARD:
device_printf(sc->fc.dev, "txd err=%2x %s\n", stat, fwohcicode[stat]);
err = EAGAIN;
break;
case FWOHCIEV_MISSACK:
case FWOHCIEV_UNDRRUN:
case FWOHCIEV_OVRRUN:
case FWOHCIEV_DESCERR:
case FWOHCIEV_DTRDERR:
case FWOHCIEV_TIMEOUT:
case FWOHCIEV_TCODERR:
case FWOHCIEV_UNKNOWN:
case FWOHCIEV_ACKDERR:
case FWOHCIEV_ACKTERR:
default:
device_printf(sc->fc.dev, "txd err=%2x %s\n",
stat, fwohcicode[stat]);
err = EINVAL;
break;
}
if(tr->xfer != NULL){
xfer = tr->xfer;
xfer->state = FWXF_SENT;
if(err == EBUSY && fc->status != FWBUSRESET){
xfer->state = FWXF_BUSY;
switch(xfer->act_type){
case FWACT_XFER:
xfer->resp = err;
if(xfer->retry_req != NULL){
xfer->retry_req(xfer);
}
break;
default:
break;
}
} else if( stat != FWOHCIEV_ACKPEND){
if (stat != FWOHCIEV_ACKCOMPL)
xfer->state = FWXF_SENTERR;
xfer->resp = err;
switch(xfer->act_type){
case FWACT_XFER:
fw_xfer_done(xfer);
break;
default:
break;
}
}
dbch->xferq.queued --;
#if 0
} else {
/* already drained after timeout or getting response? */
printf("fwohci_txd: no xfer stat=%d\n", stat);
#endif
}
tr->xfer = NULL;
packets ++;
tr = STAILQ_NEXT(tr, link);
dbch->bottom = tr;
}
out:
#if 0
if (packets < 1)
printf("fwohci_txd: no packets..out of order execution??\n");
#endif
if ((dbch->flags & FWOHCI_DBCH_FULL) && packets > 0) {
printf("make free slot\n");
dbch->flags &= ~FWOHCI_DBCH_FULL;
fwohci_start(sc, dbch);
}
splx(s);
}
static void fwohci_drain(struct firewire_comm *fc, struct fw_xfer *xfer, struct fwohci_dbch *dbch)
{
int i, s;
struct fwohcidb_tr *tr;
if(xfer->state != FWXF_START) return;
s = splfw();
tr = dbch->bottom;
for( i = 0 ; i <= dbch->xferq.queued ; i ++){
if(tr->xfer == xfer){
s = splfw();
tr->xfer = NULL;
dbch->xferq.queued --;
#if 1
/* XXX */
if (tr == dbch->bottom)
dbch->bottom = STAILQ_NEXT(tr, link);
#endif
if (dbch->flags & FWOHCI_DBCH_FULL) {
printf("fwohci_drain: make slot\n");
dbch->flags &= ~FWOHCI_DBCH_FULL;
fwohci_start((struct fwohci_softc *)fc, dbch);
}
splx(s);
break;
}
tr = STAILQ_NEXT(tr, link);
}
splx(s);
return;
}
static void fwohci_db_free(struct fwohci_dbch *dbch)
{
struct fwohcidb_tr *db_tr;
int idb;
if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){
for(db_tr = STAILQ_FIRST(&dbch->db_trq), idb = 0;
idb < dbch->ndb;
db_tr = STAILQ_NEXT(db_tr, link), idb++){
free(db_tr->buf, M_DEVBUF);
db_tr->buf = NULL;
}
}
dbch->ndb = 0;
db_tr = STAILQ_FIRST(&dbch->db_trq);
contigfree((void *)(uintptr_t)(volatile void *)db_tr->db,
sizeof(struct fwohcidb) * dbch->ndesc * dbch->ndb, M_DEVBUF);
/* Attach DB to DMA ch. */
free(db_tr, M_DEVBUF);
STAILQ_INIT(&dbch->db_trq);
}
static void fwohci_db_init(struct fwohci_dbch *dbch)
{
int idb;
struct fwohcidb *db;
struct fwohcidb_tr *db_tr;
/* allocate DB entries and attach one to each DMA channels */
/* DB entry must start at 16 bytes bounary. */
dbch->frag.buf = NULL;
dbch->frag.len = 0;
dbch->frag.plen = 0;
dbch->xferq.queued = 0;
dbch->pdb_tr = NULL;
STAILQ_INIT(&dbch->db_trq);
db_tr = (struct fwohcidb_tr *)
malloc(sizeof(struct fwohcidb_tr) * dbch->ndb,
M_DEVBUF, M_DONTWAIT);
if(db_tr == NULL){
return;
}
db = (struct fwohcidb *)
contigmalloc(sizeof (struct fwohcidb) * dbch->ndesc * dbch->ndb,
M_DEVBUF, M_DONTWAIT, 0x10000, 0xffffffff, PAGE_SIZE, 0ul);
if(db == NULL){
printf("fwochi_db_init: contigmalloc failed\n");
return;
}
bzero(db, sizeof (struct fwohcidb) * dbch->ndesc * dbch->ndb);
/* Attach DB to DMA ch. */
for(idb = 0 ; idb < dbch->ndb ; idb++){
db_tr->dbcnt = 0;
db_tr->db = &db[idb * dbch->ndesc];
STAILQ_INSERT_TAIL(&dbch->db_trq, db_tr, link);
if(!(dbch->xferq.flag & FWXFERQ_PACKET) &&
(idb % dbch->xferq.bnpacket == 0)){
dbch->xferq.bulkxfer[idb/dbch->xferq.bnpacket].start
= (caddr_t)db_tr;
}
if((!(dbch->xferq.flag & FWXFERQ_PACKET)) &&
((idb + 1)% dbch->xferq.bnpacket == 0)){
dbch->xferq.bulkxfer[idb/dbch->xferq.bnpacket].end
= (caddr_t)db_tr;
}
db_tr++;
}
STAILQ_LAST(&dbch->db_trq, fwohcidb_tr,link)->link.stqe_next
= STAILQ_FIRST(&dbch->db_trq);
dbch->top = STAILQ_FIRST(&dbch->db_trq);
dbch->bottom = dbch->top;
}
static int fwohci_itx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
fwohci_db_free(&sc->it[dmach]);
sc->it[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
static int fwohci_irx_disable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
if(sc->ir[dmach].dummy != NULL){
free(sc->ir[dmach].dummy, M_DEVBUF);
}
sc->ir[dmach].dummy = NULL;
fwohci_db_free(&sc->ir[dmach]);
sc->ir[dmach].xferq.flag &= ~FWXFERQ_RUNNING;
return 0;
}
static void fwohci_irx_post (struct firewire_comm *fc , u_int32_t *qld)
{
qld[0] = ntohl(qld[0]);
return;
}
static int fwohci_irxpp_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0;
unsigned short tag, ich;
tag = (sc->ir[dmach].xferq.flag >> 6) & 3;
ich = sc->ir[dmach].xferq.flag & 0x3f;
#if 0
if(STAILQ_FIRST(&fc->ir[dmach]->q) != NULL){
wakeup(fc->ir[dmach]);
return err;
}
#endif
OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich);
if(!(sc->ir[dmach].xferq.flag & FWXFERQ_RUNNING)){
sc->ir[dmach].xferq.queued = 0;
sc->ir[dmach].ndb = NDB;
sc->ir[dmach].xferq.psize = FWPMAX_S400;
sc->ir[dmach].ndesc = 1;
fwohci_db_init(&sc->ir[dmach]);
err = fwohci_rx_enable(sc, &sc->ir[dmach]);
}
if(err){
device_printf(sc->fc.dev, "err in IRX setting\n");
return err;
}
if(!(OREAD(sc, OHCI_IRCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE)){
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_MASK, 1 << dmach);
OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf8000000);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR);
OWRITE(sc, OHCI_IRCMD(dmach),
vtophys(sc->ir[dmach].top->db) | 1);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR);
}
return err;
}
static int fwohci_tx_enable(struct fwohci_softc *sc,
struct fwohci_dbch *dbch)
{
int err = 0;
int idb, z, i, dmach = 0;
u_int32_t off = NULL;
struct fwohcidb_tr *db_tr;
if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){
err = EINVAL;
return err;
}
z = dbch->ndesc;
for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){
if( &sc->it[dmach] == dbch){
off = OHCI_ITOFF(dmach);
break;
}
}
if(off == NULL){
err = EINVAL;
return err;
}
if(dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
dbch->xferq.flag |= FWXFERQ_RUNNING;
for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
}
db_tr = dbch->top;
for( idb = 0 ; idb < dbch->ndb ; idb ++){
fwohci_add_tx_buf(db_tr,
dbch->xferq.psize, dbch->xferq.flag,
dbch->xferq.buf + dbch->xferq.psize * idb);
if(STAILQ_NEXT(db_tr, link) == NULL){
break;
}
db_tr->db[0].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | z;
db_tr->db[db_tr->dbcnt - 1].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | z;
if(dbch->xferq.flag & FWXFERQ_EXTBUF){
if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){
db_tr->db[db_tr->dbcnt - 1].db.desc.cmd
|= OHCI_INTERRUPT_ALWAYS;
db_tr->db[0].db.desc.depend &= ~0xf;
db_tr->db[db_tr->dbcnt - 1].db.desc.depend &=
~0xf;
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend &= 0xfffffff0;
return err;
}
static int fwohci_rx_enable(struct fwohci_softc *sc,
struct fwohci_dbch *dbch)
{
int err = 0;
int idb, z, i, dmach = 0;
u_int32_t off = NULL;
struct fwohcidb_tr *db_tr;
z = dbch->ndesc;
if(&sc->arrq == dbch){
off = OHCI_ARQOFF;
}else if(&sc->arrs == dbch){
off = OHCI_ARSOFF;
}else{
for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){
if( &sc->ir[dmach] == dbch){
off = OHCI_IROFF(dmach);
break;
}
}
}
if(off == NULL){
err = EINVAL;
return err;
}
if(dbch->xferq.flag & FWXFERQ_STREAM){
if(dbch->xferq.flag & FWXFERQ_RUNNING)
return err;
}else{
if(dbch->xferq.flag & FWXFERQ_RUNNING){
err = EBUSY;
return err;
}
}
dbch->xferq.flag |= FWXFERQ_RUNNING;
for( i = 0, dbch->bottom = dbch->top; i < (dbch->ndb - 1); i++){
dbch->bottom = STAILQ_NEXT(dbch->bottom, link);
}
db_tr = dbch->top;
for( idb = 0 ; idb < dbch->ndb ; idb ++){
if(!(dbch->xferq.flag & FWXFERQ_EXTBUF)){
fwohci_add_rx_buf(db_tr,
dbch->xferq.psize, dbch->xferq.flag, 0, NULL);
}else{
fwohci_add_rx_buf(db_tr,
dbch->xferq.psize, dbch->xferq.flag,
dbch->xferq.buf + dbch->xferq.psize * idb,
dbch->dummy + sizeof(u_int32_t) * idb);
}
if(STAILQ_NEXT(db_tr, link) == NULL){
break;
}
db_tr->db[db_tr->dbcnt - 1].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | z;
if(dbch->xferq.flag & FWXFERQ_EXTBUF){
if(((idb + 1 ) % dbch->xferq.bnpacket) == 0){
db_tr->db[db_tr->dbcnt - 1].db.desc.cmd
|= OHCI_INTERRUPT_ALWAYS;
db_tr->db[db_tr->dbcnt - 1].db.desc.depend &=
~0xf;
}
}
db_tr = STAILQ_NEXT(db_tr, link);
}
dbch->bottom->db[db_tr->dbcnt - 1].db.desc.depend &= 0xfffffff0;
dbch->buf_offset = 0;
if(dbch->xferq.flag & FWXFERQ_STREAM){
return err;
}else{
OWRITE(sc, OHCI_DMACMD(off), vtophys(dbch->top->db) | z);
}
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
return err;
}
static int fwohci_itxbuf_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0;
unsigned short tag, ich;
struct fwohci_dbch *dbch;
struct fw_pkt *fp;
struct fwohcidb_tr *db_tr;
tag = (sc->it[dmach].xferq.flag >> 6) & 3;
ich = sc->it[dmach].xferq.flag & 0x3f;
dbch = &sc->it[dmach];
if(dbch->ndb == 0){
dbch->xferq.queued = 0;
dbch->ndb = dbch->xferq.bnpacket * dbch->xferq.bnchunk;
dbch->ndesc = 3;
fwohci_db_init(dbch);
err = fwohci_tx_enable(sc, dbch);
}
if(err)
return err;
if(OREAD(sc, OHCI_ITCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE){
if(dbch->xferq.stdma2 != NULL){
fwohci_txbufdb(sc, dmach, dbch->xferq.stdma2);
((struct fwohcidb_tr *)
(dbch->xferq.stdma->end))->db[dbch->ndesc - 1].db.desc.cmd
|= OHCI_BRANCH_ALWAYS;
((struct fwohcidb_tr *)
(dbch->xferq.stdma->end))->db[dbch->ndesc - 1].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(dbch->xferq.stdma2->start))->db) | dbch->ndesc;
((struct fwohcidb_tr *)(dbch->xferq.stdma->end))->db[0].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(dbch->xferq.stdma2->start))->db) | dbch->ndesc;
((struct fwohcidb_tr *)(dbch->xferq.stdma2->end))->db[dbch->ndesc - 1].db.desc.depend &= ~0xf;
((struct fwohcidb_tr *)(dbch->xferq.stdma2->end))->db[0].db.desc.depend &= ~0xf;
}
}else if(!(OREAD(sc, OHCI_ITCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE)){
fw_tbuf_update(&sc->fc, dmach, 0);
if(dbch->xferq.stdma == NULL){
return err;
}
OWRITE(sc, OHCI_ITCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IT_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IT_MASK, 1 << dmach);
OWRITE(sc, OHCI_ITCTLCLR(dmach), 0xf0000000);
fwohci_txbufdb(sc, dmach, dbch->xferq.stdma);
if(dbch->xferq.stdma2 != NULL){
fwohci_txbufdb(sc, dmach, dbch->xferq.stdma2);
((struct fwohcidb_tr *)
(dbch->xferq.stdma->end))->db[dbch->ndesc - 1].db.desc.cmd
|= OHCI_BRANCH_ALWAYS;
((struct fwohcidb_tr *)(dbch->xferq.stdma->end))->db[dbch->ndesc - 1].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(dbch->xferq.stdma2->start))->db) | dbch->ndesc;
((struct fwohcidb_tr *)(dbch->xferq.stdma->end))->db[0].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(dbch->xferq.stdma2->start))->db) | dbch->ndesc;
((struct fwohcidb_tr *)(dbch->xferq.stdma2->end))->db[dbch->ndesc - 1].db.desc.depend &= ~0xf;
((struct fwohcidb_tr *) (dbch->xferq.stdma2->end))->db[0].db.desc.depend &= ~0xf;
}else{
((struct fwohcidb_tr *) (dbch->xferq.stdma->end))->db[dbch->ndesc - 1].db.desc.depend &= ~0xf;
((struct fwohcidb_tr *) (dbch->xferq.stdma->end))->db[0].db.desc.depend &= ~0xf;
}
OWRITE(sc, OHCI_ITCMD(dmach),
vtophys(((struct fwohcidb_tr *)
(dbch->xferq.stdma->start))->db) | dbch->ndesc);
if(dbch->xferq.flag & FWXFERQ_DV){
db_tr = (struct fwohcidb_tr *)dbch->xferq.stdma->start;
fp = (struct fw_pkt *)db_tr->buf;
fp->mode.ld[2] = htonl(0x80000000 +
((fc->cyctimer(fc) + 0x3000) & 0xf000));
}
OWRITE(sc, OHCI_ITCTL(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IT);
}
return err;
}
static int fwohci_irxbuf_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0;
unsigned short tag, ich;
tag = (sc->ir[dmach].xferq.flag >> 6) & 3;
ich = sc->ir[dmach].xferq.flag & 0x3f;
OWRITE(sc, OHCI_IRMATCH(dmach), tagbit[tag] | ich);
if(!(sc->ir[dmach].xferq.flag & FWXFERQ_RUNNING)){
sc->ir[dmach].xferq.queued = 0;
sc->ir[dmach].ndb = sc->ir[dmach].xferq.bnpacket *
sc->ir[dmach].xferq.bnchunk;
sc->ir[dmach].dummy =
malloc(sizeof(u_int32_t) * sc->ir[dmach].ndb,
M_DEVBUF, M_DONTWAIT);
if(sc->ir[dmach].dummy == NULL){
err = ENOMEM;
return err;
}
sc->ir[dmach].ndesc = 2;
fwohci_db_init(&sc->ir[dmach]);
err = fwohci_rx_enable(sc, &sc->ir[dmach]);
}
if(err)
return err;
if(OREAD(sc, OHCI_IRCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE){
if(sc->ir[dmach].xferq.stdma2 != NULL){
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[sc->ir[dmach].ndesc - 1].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->start))->db) | sc->ir[dmach].ndesc;
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[0].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->start))->db);
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->end))->db[sc->ir[dmach].ndesc - 1].db.desc.depend &= ~0xf;
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->end))->db[0].db.desc.depend &= ~0xf;
}
}else if(!(OREAD(sc, OHCI_IRCTL(dmach)) & OHCI_CNTL_DMA_ACTIVE)
&& !(sc->ir[dmach].xferq.flag & FWXFERQ_PACKET)){
fw_rbuf_update(&sc->fc, dmach, 0);
OWRITE(sc, OHCI_IRCTLCLR(dmach), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_IR_MASKCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_STATCLR, 1 << dmach);
OWRITE(sc, OHCI_IR_MASK, 1 << dmach);
OWRITE(sc, OHCI_IRCTLCLR(dmach), 0xf0000000);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_ISOHDR);
if(sc->ir[dmach].xferq.stdma2 != NULL){
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[sc->ir[dmach].ndesc - 1].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->start))->db) | sc->ir[dmach].ndesc;
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[0].db.desc.depend =
vtophys(((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->start))->db);
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma2->end))->db[sc->ir[dmach].ndesc - 1].db.desc.depend &= ~0xf;
}else{
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[sc->ir[dmach].ndesc - 1].db.desc.depend &= ~0xf;
((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->end))->db[0].db.desc.depend &= ~0xf;
}
OWRITE(sc, OHCI_IRCMD(dmach),
vtophys(((struct fwohcidb_tr *)(sc->ir[dmach].xferq.stdma->start))->db) | sc->ir[dmach].ndesc);
OWRITE(sc, OHCI_IRCTL(dmach), OHCI_CNTL_DMA_RUN);
}
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_DMA_IR);
return err;
}
static int fwohci_irx_enable(struct firewire_comm *fc, int dmach)
{
struct fwohci_softc *sc = (struct fwohci_softc *)fc;
int err = 0;
if(sc->ir[dmach].xferq.flag & FWXFERQ_PACKET){
err = fwohci_irxpp_enable(fc, dmach);
return err;
}else{
err = fwohci_irxbuf_enable(fc, dmach);
return err;
}
}
int fwohci_shutdown(device_t dev)
{
u_int i;
struct fwohci_softc *sc = device_get_softc(dev);
/* Now stopping all DMA channel */
OWRITE(sc, OHCI_ARQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ARSCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
for( i = 0 ; i < sc->fc.nisodma ; i ++ ){
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
/* FLUSH FIFO and reset Transmitter/Reciever */
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_RESET);
/* Stop interrupt */
OWRITE(sc, FWOHCI_INTMASKCLR,
OHCI_INT_EN | OHCI_INT_ERR | OHCI_INT_PHY_SID
| OHCI_INT_PHY_INT
| OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS
| OHCI_INT_DMA_PRRQ | OHCI_INT_DMA_PRRS
| OHCI_INT_DMA_ARRQ | OHCI_INT_DMA_ARRS
| OHCI_INT_PHY_BUS_R);
return 0;
}
#define ACK_ALL
static void
fwohci_intr_body(struct fwohci_softc *sc, u_int32_t stat)
{
u_int32_t irstat, itstat;
u_int i;
struct firewire_comm *fc = (struct firewire_comm *)sc;
#define OHCI_DEBUG
#undef OHCI_DEBUG
#ifdef OHCI_DEBUG
if(stat & OREAD(sc, FWOHCI_INTMASK))
device_printf(fc->dev, "INTERRUPT < %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s> 0x%08x, 0x%08x\n",
stat & OHCI_INT_EN ? "DMA_EN ":"",
stat & OHCI_INT_PHY_REG ? "PHY_REG ":"",
stat & OHCI_INT_CYC_LONG ? "CYC_LONG ":"",
stat & OHCI_INT_ERR ? "INT_ERR ":"",
stat & OHCI_INT_CYC_ERR ? "CYC_ERR ":"",
stat & OHCI_INT_CYC_LOST ? "CYC_LOST ":"",
stat & OHCI_INT_CYC_64SECOND ? "CYC_64SECOND ":"",
stat & OHCI_INT_CYC_START ? "CYC_START ":"",
stat & OHCI_INT_PHY_INT ? "PHY_INT ":"",
stat & OHCI_INT_PHY_BUS_R ? "BUS_RESET ":"",
stat & OHCI_INT_PHY_SID ? "SID ":"",
stat & OHCI_INT_LR_ERR ? "DMA_LR_ERR ":"",
stat & OHCI_INT_PW_ERR ? "DMA_PW_ERR ":"",
stat & OHCI_INT_DMA_IR ? "DMA_IR ":"",
stat & OHCI_INT_DMA_IT ? "DMA_IT " :"",
stat & OHCI_INT_DMA_PRRS ? "DMA_PRRS " :"",
stat & OHCI_INT_DMA_PRRQ ? "DMA_PRRQ " :"",
stat & OHCI_INT_DMA_ARRS ? "DMA_ARRS " :"",
stat & OHCI_INT_DMA_ARRQ ? "DMA_ARRQ " :"",
stat & OHCI_INT_DMA_ATRS ? "DMA_ATRS " :"",
stat & OHCI_INT_DMA_ATRQ ? "DMA_ATRQ " :"",
stat, OREAD(sc, FWOHCI_INTMASK)
);
#endif
/* Bus reset */
if(stat & OHCI_INT_PHY_BUS_R ){
device_printf(fc->dev, "BUS reset\n");
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_CYC_LOST);
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCSRC);
OWRITE(sc, OHCI_ATQCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrq.xferq.flag &= ~FWXFERQ_RUNNING;
OWRITE(sc, OHCI_ATSCTLCLR, OHCI_CNTL_DMA_RUN);
sc->atrs.xferq.flag &= ~FWXFERQ_RUNNING;
#if 0
for( i = 0 ; i < fc->nisodma ; i ++ ){
OWRITE(sc, OHCI_IRCTLCLR(i), OHCI_CNTL_DMA_RUN);
OWRITE(sc, OHCI_ITCTLCLR(i), OHCI_CNTL_DMA_RUN);
}
#endif
fw_busreset(fc);
/* XXX need to wait DMA to stop */
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_BUS_R);
#endif
#if 1
/* pending all pre-bus_reset packets */
fwohci_txd(sc, &sc->atrq);
fwohci_txd(sc, &sc->atrs);
fwohci_arcv(sc, &sc->arrs);
fwohci_arcv(sc, &sc->arrq);
#endif
OWRITE(sc, OHCI_AREQHI, 1 << 31);
/* XXX insecure ?? */
OWRITE(sc, OHCI_PREQHI, 0x7fffffff);
OWRITE(sc, OHCI_PREQLO, 0xffffffff);
OWRITE(sc, OHCI_PREQUPPER, 0x10000);
#if 0
OWRITE(sc, OHCI_HCCCTLCLR, OHCI_HCC_LINKEN);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LPS);
OWRITE(sc, OHCI_HCCCTL, OHCI_HCC_LINKEN);
#endif
}
if((stat & OHCI_INT_DMA_IR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IR);
#endif
#if 0
irstat = OREAD(sc, OHCI_IR_STAT) & OREAD(sc, OHCI_IR_MASK);
#else
irstat = OREAD(sc, OHCI_IR_STAT);
#endif
OWRITE(sc, OHCI_IR_STATCLR, ~0);
for(i = 0; i < fc->nisodma ; i++){
if((irstat & (1 << i)) != 0){
if(sc->ir[i].xferq.flag & FWXFERQ_PACKET){
fwohci_ircv(sc, &sc->ir[i]);
}else{
fwohci_rbuf_update(sc, i);
}
}
}
}
if((stat & OHCI_INT_DMA_IT )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_IT);
#endif
#if 0
itstat = OREAD(sc, OHCI_IT_STAT) & OREAD(sc, OHCI_IT_MASK);
#else
itstat = OREAD(sc, OHCI_IT_STAT);
#endif
OWRITE(sc, OHCI_IT_STATCLR, ~0);
for(i = 0; i < fc->nisodma ; i++){
if((itstat & (1 << i)) != 0){
fwohci_tbuf_update(sc, i);
}
}
}
if((stat & OHCI_INT_DMA_PRRS )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRS);
#endif
#if 0
dump_dma(sc, ARRS_CH);
dump_db(sc, ARRS_CH);
#endif
fwohci_arcv(sc, &sc->arrs);
}
if((stat & OHCI_INT_DMA_PRRQ )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_PRRQ);
#endif
#if 0
dump_dma(sc, ARRQ_CH);
dump_db(sc, ARRQ_CH);
#endif
fwohci_arcv(sc, &sc->arrq);
}
if(stat & OHCI_INT_PHY_SID){
caddr_t buf;
int plen;
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_SID);
#endif
/*
** Checking whether the node is root or not. If root, turn on
** cycle master.
*/
#if 0
OWRITE(sc, FWOHCI_NODEID, (OREAD(sc, FWOHCI_NODEID)) & 0xffff003f);
#endif
device_printf(fc->dev, "node_id = 0x%08x, ", OREAD(sc, FWOHCI_NODEID));
if(!(OREAD(sc, FWOHCI_NODEID) & OHCI_NODE_VALID)){
printf("Bus reset failure\n");
#if 0
fwohci_ibr(sc);
#endif
goto sidout;
}
if( OREAD(sc, FWOHCI_NODEID) & OHCI_NODE_ROOT ){
printf("CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTL,
OHCI_CNTL_CYCMTR | OHCI_CNTL_CYCTIMER);
}else{
printf("non CYCLEMASTER mode\n");
OWRITE(sc, OHCI_LNKCTLCLR, OHCI_CNTL_CYCMTR);
OWRITE(sc, OHCI_LNKCTL, OHCI_CNTL_CYCTIMER);
}
fc->nodeid = OREAD(sc, FWOHCI_NODEID) & 0x3f;
plen = OREAD(sc, OHCI_SID_CNT) & OHCI_SID_CNT_MASK;
plen -= 4; /* chop control info */
buf = malloc( FWPMAX_S400, M_DEVBUF, M_NOWAIT);
if(buf == NULL) goto sidout;
bcopy((void *)(uintptr_t)(volatile void *)fc->sid_buf,
buf, plen);
fw_sidrcv(fc, buf, plen, 0);
}
sidout:
if((stat & OHCI_INT_DMA_ATRQ )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRQ);
#endif
fwohci_txd(sc, &(sc->atrq));
}
if((stat & OHCI_INT_DMA_ATRS )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_DMA_ATRS);
#endif
fwohci_txd(sc, &(sc->atrs));
}
if((stat & OHCI_INT_PW_ERR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PW_ERR);
#endif
device_printf(fc->dev, "posted write error\n");
}
if((stat & OHCI_INT_ERR )){
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_ERR);
#endif
device_printf(fc->dev, "unrecoverable error\n");
}
if((stat & OHCI_INT_PHY_INT)) {
#ifndef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, OHCI_INT_PHY_INT);
#endif
device_printf(fc->dev, "phy int\n");
}
return;
}
void
fwohci_intr(void *arg)
{
struct fwohci_softc *sc = (struct fwohci_softc *)arg;
u_int32_t stat;
if (!(sc->intmask & OHCI_INT_EN)) {
/* polling mode */
return;
}
while ((stat = OREAD(sc, FWOHCI_INTSTAT)) != 0) {
if (stat == 0xffffffff) {
device_printf(sc->fc.dev,
"device physically ejected?\n");
return;
}
#ifdef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, stat);
#endif
fwohci_intr_body(sc, stat);
}
}
static void
fwohci_poll(struct firewire_comm *fc, int quick, int count)
{
int s;
u_int32_t stat;
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)fc;
stat = OHCI_INT_DMA_IR | OHCI_INT_DMA_IT |
OHCI_INT_DMA_PRRS | OHCI_INT_DMA_PRRQ |
OHCI_INT_DMA_ATRQ | OHCI_INT_DMA_ATRS;
#if 0
if (!quick) {
#else
if (1) {
#endif
stat = OREAD(sc, FWOHCI_INTSTAT);
if (stat == 0)
return;
if (stat == 0xffffffff) {
device_printf(sc->fc.dev,
"device physically ejected?\n");
return;
}
#ifdef ACK_ALL
OWRITE(sc, FWOHCI_INTSTATCLR, stat);
#endif
}
s = splfw();
fwohci_intr_body(sc, stat);
splx(s);
}
static void
fwohci_set_intr(struct firewire_comm *fc, int enable)
{
struct fwohci_softc *sc;
sc = (struct fwohci_softc *)fc;
printf("fwochi_set_intr: %d\n", enable);
if (enable) {
sc->intmask |= OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASK, OHCI_INT_EN);
} else {
sc->intmask &= ~OHCI_INT_EN;
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_EN);
}
}
static void fwohci_tbuf_update(struct fwohci_softc *sc, int dmach)
{
int stat;
struct firewire_comm *fc = &sc->fc;
struct fw_pkt *fp;
struct fwohci_dbch *dbch;
struct fwohcidb_tr *db_tr;
dbch = &sc->it[dmach];
if((dbch->xferq.flag & FWXFERQ_DV) && (dbch->xferq.stdma2 != NULL)){
db_tr = (struct fwohcidb_tr *)dbch->xferq.stdma2->start;
/*
* Overwrite highest significant 4 bits timestamp information
*/
fp = (struct fw_pkt *)db_tr->buf;
fp->mode.ld[2] |= htonl(0x80000000 |
((fc->cyctimer(fc) + 0x4000) & 0xf000));
}
stat = OREAD(sc, OHCI_ITCTL(dmach)) & 0x1f;
switch(stat){
case FWOHCIEV_ACKCOMPL:
fw_tbuf_update(fc, dmach, 1);
break;
default:
fw_tbuf_update(fc, dmach, 0);
break;
}
fwohci_itxbuf_enable(&sc->fc, dmach);
}
static void fwohci_rbuf_update(struct fwohci_softc *sc, int dmach)
{
int stat;
stat = OREAD(sc, OHCI_IRCTL(dmach)) & 0x1f;
switch(stat){
case FWOHCIEV_ACKCOMPL:
fw_rbuf_update(&sc->fc, dmach, 1);
wakeup(sc->fc.ir[dmach]);
fwohci_irx_enable(&sc->fc, dmach);
break;
default:
break;
}
}
void dump_dma(struct fwohci_softc *sc, u_int32_t ch){
u_int32_t off, cntl, stat, cmd, match;
if(ch == 0){
off = OHCI_ATQOFF;
}else if(ch == 1){
off = OHCI_ATSOFF;
}else if(ch == 2){
off = OHCI_ARQOFF;
}else if(ch == 3){
off = OHCI_ARSOFF;
}else if(ch < IRX_CH){
off = OHCI_ITCTL(ch - ITX_CH);
}else{
off = OHCI_IRCTL(ch - IRX_CH);
}
cntl = stat = OREAD(sc, off);
cmd = OREAD(sc, off + 0xc);
match = OREAD(sc, off + 0x10);
device_printf(sc->fc.dev, "dma ch %1x:dma regs 0x%08x 0x%08x 0x%08x 0x%08x \n",
ch,
cntl,
stat,
cmd,
match);
stat &= 0xffff ;
if(stat & 0xff00){
device_printf(sc->fc.dev, "dma %d ch:%s%s%s%s%s%s %s(%x)\n",
ch,
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
}else{
device_printf(sc->fc.dev, "dma %d ch: Nostat\n", ch);
}
}
void dump_db(struct fwohci_softc *sc, u_int32_t ch){
struct fwohci_dbch *dbch;
struct fwohcidb_tr *cp = NULL, *pp, *np;
volatile struct fwohcidb *curr = NULL, *prev, *next = NULL;
int idb, jdb;
u_int32_t cmd, off;
if(ch == 0){
off = OHCI_ATQOFF;
dbch = &sc->atrq;
}else if(ch == 1){
off = OHCI_ATSOFF;
dbch = &sc->atrs;
}else if(ch == 2){
off = OHCI_ARQOFF;
dbch = &sc->arrq;
}else if(ch == 3){
off = OHCI_ARSOFF;
dbch = &sc->arrs;
}else if(ch < IRX_CH){
off = OHCI_ITCTL(ch - ITX_CH);
dbch = &sc->it[ch - ITX_CH];
}else {
off = OHCI_IRCTL(ch - IRX_CH);
dbch = &sc->ir[ch - IRX_CH];
}
cmd = OREAD(sc, off + 0xc);
if( dbch->ndb == 0 ){
device_printf(sc->fc.dev, "No DB is attached ch=%d\n", ch);
return;
}
pp = dbch->top;
prev = pp->db;
for(idb = 0 ; idb < dbch->ndb ; idb ++ ){
if(pp == NULL){
curr = NULL;
goto outdb;
}
cp = STAILQ_NEXT(pp, link);
if(cp == NULL){
curr = NULL;
goto outdb;
}
np = STAILQ_NEXT(cp, link);
if(cp == NULL) break;
for(jdb = 0 ; jdb < dbch->ndesc ; jdb ++ ){
if((cmd & 0xfffffff0)
== vtophys(&(cp->db[jdb]))){
curr = cp->db;
if(np != NULL){
next = np->db;
}else{
next = NULL;
}
goto outdb;
}
}
pp = STAILQ_NEXT(pp, link);
prev = pp->db;
}
outdb:
if( curr != NULL){
printf("Prev DB %d\n", ch);
print_db(prev, ch, dbch->ndesc);
printf("Current DB %d\n", ch);
print_db(curr, ch, dbch->ndesc);
printf("Next DB %d\n", ch);
print_db(next, ch, dbch->ndesc);
}else{
printf("dbdump err ch = %d cmd = 0x%08x\n", ch, cmd);
}
return;
}
void print_db(volatile struct fwohcidb *db, u_int32_t ch, u_int32_t max){
fwohcireg_t stat;
int i, key;
if(db == NULL){
printf("No Descriptor is found\n");
return;
}
printf("ch = %d\n%8s %s %s %s %s %4s %8s %8s %4s:%4s\n",
ch,
"Current",
"OP ",
"KEY",
"INT",
"BR ",
"len",
"Addr",
"Depend",
"Stat",
"Cnt");
for( i = 0 ; i <= max ; i ++){
key = db[i].db.desc.cmd & OHCI_KEY_MASK;
printf("%08x %s %s %s %s %5d %08x %08x %04x:%04x",
vtophys(&db[i]),
dbcode[(db[i].db.desc.cmd >> 28) & 0xf],
dbkey[(db[i].db.desc.cmd >> 24) & 0x7],
dbcond[(db[i].db.desc.cmd >> 20) & 0x3],
dbcond[(db[i].db.desc.cmd >> 18) & 0x3],
db[i].db.desc.cmd & 0xffff,
db[i].db.desc.addr,
db[i].db.desc.depend,
db[i].db.desc.status,
db[i].db.desc.count);
stat = db[i].db.desc.status;
if(stat & 0xff00){
printf(" %s%s%s%s%s%s %s(%x)\n",
stat & OHCI_CNTL_DMA_RUN ? "RUN," : "",
stat & OHCI_CNTL_DMA_WAKE ? "WAKE," : "",
stat & OHCI_CNTL_DMA_DEAD ? "DEAD," : "",
stat & OHCI_CNTL_DMA_ACTIVE ? "ACTIVE," : "",
stat & OHCI_CNTL_DMA_BT ? "BRANCH," : "",
stat & OHCI_CNTL_DMA_BAD ? "BADDMA," : "",
fwohcicode[stat & 0x1f],
stat & 0x1f
);
}else{
printf(" Nostat\n");
}
if(key == OHCI_KEY_ST2 ){
printf("0x%08x 0x%08x 0x%08x 0x%08x\n",
db[i+1].db.immed[0],
db[i+1].db.immed[1],
db[i+1].db.immed[2],
db[i+1].db.immed[3]);
}
if(key == OHCI_KEY_DEVICE){
return;
}
if((db[i].db.desc.cmd & OHCI_BRANCH_MASK)
== OHCI_BRANCH_ALWAYS){
return;
}
if((db[i].db.desc.cmd & OHCI_CMD_MASK)
== OHCI_OUTPUT_LAST){
return;
}
if((db[i].db.desc.cmd & OHCI_CMD_MASK)
== OHCI_INPUT_LAST){
return;
}
if(key == OHCI_KEY_ST2 ){
i++;
}
}
return;
}
void fwohci_ibr(struct firewire_comm *fc)
{
struct fwohci_softc *sc;
u_int32_t fun;
sc = (struct fwohci_softc *)fc;
#if 1
fun = fwphy_rddata(sc, FW_PHY_IBR_REG);
fun |= FW_PHY_IBR;
fun = fwphy_wrdata(sc, FW_PHY_IBR_REG, fun);
#else
fun = fwphy_rddata(sc, FW_PHY_ISBR_REG);
fun |= FW_PHY_ISBR;
fun = fwphy_wrdata(sc, FW_PHY_ISBR_REG, fun);
#endif
}
void fwohci_txbufdb(struct fwohci_softc *sc, int dmach,
struct fw_bulkxfer *bulkxfer)
{
struct fwohcidb_tr *db_tr, *fdb_tr;
struct fwohci_dbch *dbch;
struct fw_pkt *fp;
volatile struct fwohci_txpkthdr *ohcifp;
unsigned short chtag;
int idb;
dbch = &sc->it[dmach];
chtag = sc->it[dmach].xferq.flag & 0xff;
db_tr = (struct fwohcidb_tr *)(bulkxfer->start);
fdb_tr = (struct fwohcidb_tr *)(bulkxfer->end);
/*
device_printf(sc->fc.dev, "DB %08x %08x %08x\n", bulkxfer, vtophys(db_tr->db), vtophys(fdb_tr->db));
*/
if(bulkxfer->flag != 0){
return;
}
bulkxfer->flag = 1;
for( idb = 0 ; idb < bulkxfer->npacket ; idb ++){
db_tr->db[0].db.desc.cmd
= OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | 8;
fp = (struct fw_pkt *)db_tr->buf;
ohcifp = (volatile struct fwohci_txpkthdr *)
db_tr->db[1].db.immed;
ohcifp->mode.ld[0] = ntohl(fp->mode.ld[0]);
ohcifp->mode.stream.len = ntohs(fp->mode.stream.len);
ohcifp->mode.stream.chtag = chtag;
ohcifp->mode.stream.tcode = 0xa;
ohcifp->mode.stream.spd = 4;
ohcifp->mode.ld[2] = ntohl(fp->mode.ld[1]);
ohcifp->mode.ld[3] = ntohl(fp->mode.ld[2]);
db_tr->db[2].db.desc.cmd
= OHCI_OUTPUT_LAST
| OHCI_UPDATE
| OHCI_BRANCH_ALWAYS
| ((ntohs(fp->mode.stream.len) ) & 0xffff);
db_tr->db[2].db.desc.status = 0;
db_tr->db[2].db.desc.count = 0;
if(dbch->xferq.flag & FWXFERQ_DV){
db_tr->db[0].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | dbch->ndesc;
db_tr->db[dbch->ndesc - 1].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | dbch->ndesc;
}else{
db_tr->db[0].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | dbch->ndesc;
db_tr->db[dbch->ndesc - 1].db.desc.depend
= vtophys(STAILQ_NEXT(db_tr, link)->db) | dbch->ndesc;
}
bulkxfer->end = (caddr_t)db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
}
db_tr = (struct fwohcidb_tr *)bulkxfer->end;
db_tr->db[0].db.desc.depend &= ~0xf;
db_tr->db[dbch->ndesc - 1].db.desc.depend &= ~0xf;
/**/
db_tr->db[dbch->ndesc - 1].db.desc.cmd &= ~OHCI_BRANCH_ALWAYS;
db_tr->db[dbch->ndesc - 1].db.desc.cmd |= OHCI_BRANCH_NEVER;
/**/
db_tr->db[dbch->ndesc - 1].db.desc.cmd |= OHCI_INTERRUPT_ALWAYS;
db_tr = (struct fwohcidb_tr *)bulkxfer->start;
fdb_tr = (struct fwohcidb_tr *)bulkxfer->end;
/*
device_printf(sc->fc.dev, "DB %08x %3d %08x %08x\n", bulkxfer, bulkxfer->npacket, vtophys(db_tr->db), vtophys(fdb_tr->db));
*/
return;
}
static int fwohci_add_tx_buf(struct fwohcidb_tr *db_tr, unsigned short size, int mode, void *buf)
{
volatile struct fwohcidb *db = db_tr->db;
int err = 0;
if(buf == 0){
err = EINVAL;
return err;
}
db_tr->buf = buf;
db_tr->dbcnt = 3;
db_tr->dummy = NULL;
db[0].db.desc.cmd = OHCI_OUTPUT_MORE | OHCI_KEY_ST2 | 8;
db[2].db.desc.depend = 0;
db[2].db.desc.addr = vtophys(buf) + sizeof(u_int32_t);
db[2].db.desc.cmd = OHCI_OUTPUT_MORE;
db[0].db.desc.status = 0;
db[0].db.desc.count = 0;
db[2].db.desc.status = 0;
db[2].db.desc.count = 0;
if( mode & FWXFERQ_STREAM ){
db[2].db.desc.cmd |= OHCI_OUTPUT_LAST;
if(mode & FWXFERQ_PACKET ){
db[2].db.desc.cmd
|= OHCI_INTERRUPT_ALWAYS;
}
}
db[2].db.desc.cmd |= OHCI_BRANCH_ALWAYS;
return 1;
}
int fwohci_add_rx_buf(db_tr, size, mode, buf, dummy)
struct fwohcidb_tr *db_tr;
unsigned short size;
int mode;
void *buf, *dummy;
{
volatile struct fwohcidb *db = db_tr->db;
int i;
void *dbuf[2];
int dsiz[2];
if(buf == 0){
buf = malloc(size, M_DEVBUF, M_NOWAIT);
if(buf == NULL) return 0;
db_tr->buf = buf;
db_tr->dbcnt = 1;
db_tr->dummy = NULL;
dsiz[0] = size;
dbuf[0] = buf;
}else if(dummy == NULL){
db_tr->buf = buf;
db_tr->dbcnt = 1;
db_tr->dummy = NULL;
dsiz[0] = size;
dbuf[0] = buf;
}else{
db_tr->buf = buf;
db_tr->dbcnt = 2;
db_tr->dummy = dummy;
dsiz[0] = sizeof(u_int32_t);
dsiz[1] = size;
dbuf[0] = dummy;
dbuf[1] = buf;
}
for(i = 0 ; i < db_tr->dbcnt ; i++){
#if 0
db[i].db.desc.depend = 0;
#endif
db[i].db.desc.addr = vtophys(dbuf[i]) ;
db[i].db.desc.cmd = OHCI_INPUT_MORE | dsiz[i];
if( mode & FWXFERQ_STREAM ){
db[i].db.desc.cmd |= OHCI_UPDATE;
}
db[i].db.desc.status = 0;
db[i].db.desc.count = dsiz[i];
}
if( mode & FWXFERQ_STREAM ){
db[db_tr->dbcnt - 1].db.desc.cmd |= OHCI_INPUT_LAST;
if(mode & FWXFERQ_PACKET ){
db[db_tr->dbcnt - 1].db.desc.cmd
|= OHCI_INTERRUPT_ALWAYS;
}
}
db[db_tr->dbcnt - 1].db.desc.cmd |= OHCI_BRANCH_ALWAYS;
return 1;
}
#if 0
/* BUS parameter initialization after BUS reset */
void fwohci_busreset(sc)
struct fwohci_softc *sc;
{
}
#endif
static void fwohci_ircv(sc, dbch)
struct fwohci_softc *sc;
struct fwohci_dbch *dbch;
{
struct fwohcidb_tr *db_tr = dbch->top, *odb_tr;
struct firewire_comm *fc = (struct firewire_comm *)sc;
int z = 1;
struct fw_pkt *fp;
u_int8_t *ld;
u_int32_t off = NULL;
u_int32_t stat;
u_int32_t *qld;
u_int32_t reg;
u_int spd;
u_int dmach;
int len, i, plen;
caddr_t buf;
for(dmach = 0 ; dmach < sc->fc.nisodma ; dmach++){
if( &sc->ir[dmach] == dbch){
off = OHCI_IROFF(dmach);
break;
}
}
if(off == NULL){
return;
}
if(!(dbch->xferq.flag & FWXFERQ_RUNNING)){
fwohci_irx_disable(&sc->fc, dmach);
return;
}
odb_tr = NULL;
db_tr = dbch->top;
i = 0;
while ((reg = db_tr->db[0].db.desc.status) & 0x1f) {
ld = (u_int8_t *)db_tr->buf;
if (dbch->xferq.flag & FWXFERQ_PACKET) {
/* skip timeStamp */
ld += sizeof(struct fwohci_trailer);
}
qld = (u_int32_t *)ld;
len = dbch->xferq.psize - (db_tr->db[0].db.desc.count);
/*
{
device_printf(sc->fc.dev, "%04x %2x 0x%08x 0x%08x 0x%08x 0x%08x\n", len,
db_tr->db[0].db.desc.status & 0x1f, qld[0],qld[1],qld[2],qld[3]);
}
*/
#if 0
fp=(struct fw_pkt *)(ld + sizeof(struct fwohci_trailer));
#else
fp=(struct fw_pkt *)ld;
#endif
qld[0] = htonl(qld[0]);
plen = sizeof(struct fw_isohdr)
+ ntohs(fp->mode.stream.len) + sizeof(u_int32_t);
ld += plen;
len -= plen;
buf = db_tr->buf;
db_tr->buf = NULL;
stat = reg & 0x1f;
spd = reg & 0x3;
switch(stat){
case FWOHCIEV_ACKCOMPL:
case FWOHCIEV_ACKPEND:
fw_rcv(&sc->fc, buf, plen - sizeof(u_int32_t), dmach, sizeof(u_int32_t), spd);
break;
default:
free(buf, M_DEVBUF);
device_printf(sc->fc.dev, "Isochronous receive err %02x\n", stat);
break;
}
i++;
fwohci_add_rx_buf(db_tr, dbch->xferq.psize,
dbch->xferq.flag, 0, NULL);
db_tr->db[0].db.desc.depend &= ~0xf;
if(dbch->pdb_tr != NULL){
dbch->pdb_tr->db[0].db.desc.depend |= z;
} else {
/* XXX should be rewritten in better way */
dbch->bottom->db[0].db.desc.depend |= z;
}
dbch->pdb_tr = db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
#if 0
if (!(reg & OHCI_CNTL_DMA_RUN) ||
!(reg & OHCI_CNTL_DMA_ACTIVE) ||
(reg & OHCI_CNTL_DMA_DEAD)) {
printf("reg = %x\n", reg);
}
#endif
}
dbch->top = db_tr;
reg = OREAD(sc, OHCI_DMACTL(off));
if (reg & OHCI_CNTL_DMA_ACTIVE)
return;
device_printf(sc->fc.dev, "IR DMA %d stopped at %x status=%x (%d)\n",
dmach, OREAD(sc, OHCI_DMACMD(off)), reg, i);
dbch->top = db_tr;
fwohci_irx_enable(fc, dmach);
}
#define PLEN(x) (((ntohs(x))+0x3) & ~0x3)
static int
fwohci_get_plen(struct fwohci_softc *sc, struct fw_pkt *fp, int hlen)
{
int i;
for( i = 4; i < hlen ; i+=4){
fp->mode.ld[i/4] = htonl(fp->mode.ld[i/4]);
}
switch(fp->mode.common.tcode){
case FWTCODE_RREQQ:
return sizeof(fp->mode.rreqq) + sizeof(u_int32_t);
case FWTCODE_WRES:
return sizeof(fp->mode.wres) + sizeof(u_int32_t);
case FWTCODE_WREQQ:
return sizeof(fp->mode.wreqq) + sizeof(u_int32_t);
case FWTCODE_RREQB:
return sizeof(fp->mode.rreqb) + sizeof(u_int32_t);
case FWTCODE_RRESQ:
return sizeof(fp->mode.rresq) + sizeof(u_int32_t);
case FWTCODE_WREQB:
return sizeof(struct fw_asyhdr) + PLEN(fp->mode.wreqb.len)
+ sizeof(u_int32_t);
case FWTCODE_LREQ:
return sizeof(struct fw_asyhdr) + PLEN(fp->mode.lreq.len)
+ sizeof(u_int32_t);
case FWTCODE_RRESB:
return sizeof(struct fw_asyhdr) + PLEN(fp->mode.rresb.len)
+ sizeof(u_int32_t);
case FWTCODE_LRES:
return sizeof(struct fw_asyhdr) + PLEN(fp->mode.lres.len)
+ sizeof(u_int32_t);
case FWOHCITCODE_PHY:
return 16;
}
device_printf(sc->fc.dev, "Unknown tcode %d\n", fp->mode.common.tcode);
return 0;
}
static void fwohci_arcv(sc, dbch)
struct fwohci_softc *sc;
struct fwohci_dbch *dbch;
{
struct fwohcidb_tr *db_tr;
int z = 1;
struct fw_pkt *fp;
u_int8_t *ld;
u_int32_t stat, off;
#if 0
u_int32_t *qld;
u_int32_t dbcmd;
int itr, i;
#endif
u_int spd;
int len, plen, hlen, pcnt, poff = 0, rlen;
int s;
caddr_t buf;
int resCount;
if(&sc->arrq == dbch){
off = OHCI_ARQOFF;
}else if(&sc->arrs == dbch){
off = OHCI_ARSOFF;
}else{
return;
}
s = splfw();
#if 0
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
dbcmd = OREAD(sc, OHCI_DMACMD(off)) & ~0xf;
/*
{
db_tr = dbch->top;
ld = (u_int8_t *)db_tr->buf;
qld = (u_int32_t *)ld;
len = dbch->xferq.psize - (db_tr->db[0].db.desc.count);
device_printf(sc->fc.dev, "%08x %04x %2x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", ld, len,
db_tr->db[0].db.desc.status & 0x1f, qld[0],qld[1],qld[2],qld[3], dbcmd, vtophys(db_tr->db));
}
*/
for( db_tr = dbch->top, itr = 1;
dbcmd != vtophys(db_tr->db); itr++){
db_tr = STAILQ_NEXT(db_tr, link);
if( itr >= dbch->ndb ) break;
/*
if(itr != 1){
ld = (u_int8_t *)db_tr->buf;
qld = (u_int32_t *)ld;
len = dbch->xferq.psize - (db_tr->db[0].db.desc.count);
device_printf(sc->fc.dev, "%04x %2x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", len,
db_tr->db[0].db.desc.status & 0x1f, qld[0],qld[1],qld[2],qld[3], dbcmd, vtophys(db_tr->db));
}
*/
}
/* OHCI does not support per packet receive mode in Aync receive. */
if( dbcmd != vtophys(db_tr->db)){
if(&sc->arrq == dbch){
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_DMA_PRRQ);
}else if(&sc->arrs == dbch){
OWRITE(sc, FWOHCI_INTMASKCLR, OHCI_INT_DMA_PRRS);
}
OWRITE(sc, OHCI_DMACTLCLR(off), OHCI_CNTL_DMA_RUN);
splx(s);
return;
}else{
db_tr = STAILQ_NEXT(db_tr, link);
dbch->top = db_tr;
OWRITE(sc, OHCI_DMACMD(off),vtophys(dbch->top->db) | 1);
OWRITE(sc, OHCI_DMACTL(off), OHCI_CNTL_DMA_RUN);
}
db_tr = dbch->bottom;
while(itr > 0){
db_tr->db[0].db.desc.depend |= z;
db_tr = STAILQ_NEXT(db_tr, link);
ld = (u_int8_t *)db_tr->buf;
qld = (u_int32_t *)db_tr->buf;
len = dbch->xferq.psize - (db_tr->db[0].db.desc.count);
pcnt = 0;
do{
#else
db_tr = dbch->top;
pcnt = 0;
/* XXX we cannot handle a packet which lies in more than two buf */
while (db_tr->db[0].db.desc.status & OHCI_CNTL_DMA_ACTIVE) {
ld = (u_int8_t *)db_tr->buf + dbch->buf_offset;
resCount = db_tr->db[0].db.desc.count;
len = dbch->xferq.psize - resCount
- dbch->buf_offset;
#if 0
printf("len: %d resCount: %d offset: %d\n",
len, resCount, dbch->buf_offset);
#endif
while (len > 0 ) {
#endif
if(dbch->frag.buf != NULL){
buf = dbch->frag.buf;
if (dbch->frag.plen < 0) {
/* incomplete header */
int hlen;
hlen = - dbch->frag.plen;
rlen = hlen - dbch->frag.len;
bcopy(ld, dbch->frag.buf + dbch->frag.len, rlen);
ld += rlen;
len -= rlen;
dbch->frag.len += rlen;
#if 0
printf("(1)frag.plen=%d frag.len=%d rlen=%d len=%d\n", dbch->frag.plen, dbch->frag.len, rlen, len);
#endif
fp=(struct fw_pkt *)dbch->frag.buf;
dbch->frag.plen
= fwohci_get_plen(sc, fp, hlen);
if (dbch->frag.plen == 0)
goto out;
}
rlen = dbch->frag.plen - dbch->frag.len;
#if 0
printf("(2)frag.plen=%d frag.len=%d rlen=%d len=%d\n", dbch->frag.plen, dbch->frag.len, rlen, len);
#endif
bcopy(ld, dbch->frag.buf + dbch->frag.len,
rlen);
ld += rlen;
len -= rlen;
plen = dbch->frag.plen;
dbch->frag.buf = NULL;
dbch->frag.plen = 0;
dbch->frag.len = 0;
poff = 0;
}else{
fp=(struct fw_pkt *)ld;
fp->mode.ld[0] = htonl(fp->mode.ld[0]);
switch(fp->mode.common.tcode){
case FWTCODE_RREQQ:
case FWTCODE_WRES:
case FWTCODE_WREQQ:
case FWTCODE_RRESQ:
case FWOHCITCODE_PHY:
hlen = 12;
break;
case FWTCODE_RREQB:
case FWTCODE_WREQB:
case FWTCODE_LREQ:
case FWTCODE_RRESB:
case FWTCODE_LRES:
hlen = 16;
break;
default:
device_printf(sc->fc.dev, "Unknown tcode %d\n", fp->mode.common.tcode);
goto out;
}
if (len >= hlen) {
plen = fwohci_get_plen(sc, fp, hlen);
if (plen == 0)
goto out;
plen = (plen + 3) & ~3;
len -= plen;
} else {
plen = -hlen;
len -= hlen;
}
if(resCount > 0 || len > 0){
buf = malloc( dbch->xferq.psize,
M_DEVBUF, M_NOWAIT);
if(buf == NULL){
printf("cannot malloc!\n");
free(db_tr->buf, M_DEVBUF);
goto out;
}
bcopy(ld, buf, plen);
poff = 0;
dbch->frag.buf = NULL;
dbch->frag.plen = 0;
dbch->frag.len = 0;
}else if(len < 0){
dbch->frag.buf = db_tr->buf;
if (plen < 0) {
#if 0
printf("plen < 0:"
"hlen: %d len: %d\n",
hlen, len);
#endif
dbch->frag.len = hlen + len;
dbch->frag.plen = -hlen;
} else {
dbch->frag.len = plen + len;
dbch->frag.plen = plen;
}
bcopy(ld, db_tr->buf, dbch->frag.len);
buf = NULL;
}else{
buf = db_tr->buf;
poff = ld - (u_int8_t *)buf;
dbch->frag.buf = NULL;
dbch->frag.plen = 0;
dbch->frag.len = 0;
}
ld += plen;
}
if( buf != NULL){
/* DMA result-code will be written at the tail of packet */
stat = ((struct fwohci_trailer *)(ld - sizeof(struct fwohci_trailer)))->stat;
spd = (stat >> 5) & 0x3;
stat &= 0x1f;
switch(stat){
case FWOHCIEV_ACKPEND:
#if 0
printf("fwohci_arcv: ack pending..\n");
#endif
/* fall through */
case FWOHCIEV_ACKCOMPL:
if( poff != 0 )
bcopy(buf+poff, buf, plen - 4);
fw_rcv(&sc->fc, buf, plen - sizeof(struct fwohci_trailer), 0, 0, spd);
break;
case FWOHCIEV_BUSRST:
free(buf, M_DEVBUF);
if (sc->fc.status != FWBUSRESET)
printf("got BUSRST packet!?\n");
break;
default:
device_printf(sc->fc.dev, "Async DMA Receive error err = %02x %s\n", stat, fwohcicode[stat]);
#if 0 /* XXX */
goto out;
#endif
break;
}
}
pcnt ++;
};
out:
#if 0
itr--;
fwohci_add_rx_buf(db_tr, dbch->xferq.psize, dbch->xferq.flag, 0, NULL);
#else
if (resCount == 0) {
/* done on this buffer */
fwohci_add_rx_buf(db_tr, dbch->xferq.psize,
dbch->xferq.flag, 0, NULL);
dbch->bottom->db[0].db.desc.depend |= z;
dbch->bottom = db_tr;
db_tr = STAILQ_NEXT(db_tr, link);
dbch->top = db_tr;
dbch->buf_offset = 0;
} else {
dbch->buf_offset = dbch->xferq.psize - resCount;
break;
}
#endif
/* XXX make sure DMA is not dead */
}
#if 0
dbch->bottom = db_tr;
dbch->bottom->db[0].db.desc.depend &= 0xfffffff0;
#else
#if 0
if (pcnt < 1)
printf("fwohci_arcv: no packets\n");
#endif
#endif
splx(s);
}