1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-18 10:35:55 +00:00
freebsd/sys/dev/aic7xxx/aic7xxx.c

4824 lines
128 KiB
C
Raw Normal View History

/*
* Generic driver for the aic7xxx based adaptec SCSI controllers
* Product specific probe and attach routines can be found in:
* i386/eisa/ahc_eisa.c 27/284X and aic7770 motherboard controllers
* pci/ahc_pci.c 3985, 3980, 3940, 2940, aic7895, aic7890,
* aic7880, aic7870, aic7860, and aic7850 controllers
*
* Copyright (c) 1994, 1995, 1996, 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Where this Software is combined with software released under the terms of
* the GNU Public License ("GPL") and the terms of the GPL would require the
* combined work to also be released under the terms of the GPL, the terms
* and conditions of this License will apply in addition to those of the
* GPL with the exception of any terms or conditions of this License that
* conflict with, or are expressly prohibited by, the GPL.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: aic7xxx.c,v 1.113 1997/04/05 21:41:13 gibbs Exp $
*/
/*
* A few notes on features of the driver.
*
* SCB paging takes advantage of the fact that devices stay disconnected
* from the bus a relatively long time and that while they're disconnected,
* having the SCBs for these transactions down on the host adapter is of
* little use. Instead of leaving this idle SCB down on the card we copy
* it back up into kernel memory and reuse the SCB slot on the card to
* schedule another transaction. This can be a real payoff when doing random
* I/O to tagged queueing devices since there are more transactions active at
* once for the device to sort for optimal seek reduction. The algorithm goes
* like this...
*
* The sequencer maintains two lists of its hardware SCBs. The first is the
* singly linked free list which tracks all SCBs that are not currently in
* use. The second is the doubly linked disconnected list which holds the
* SCBs of transactions that are in the disconnected state sorted most
* recently disconnected first. When the kernel queues a transaction to
* the card, a hardware SCB to "house" this transaction is retrieved from
* either of these two lists. If the SCB came from the disconnected list,
* a check is made to see if any data transfer or SCB linking (more on linking
* in a bit) information has been changed since it was copied from the host
* and if so, DMAs the SCB back up before it can be used. Once a hardware
* SCB has been obtained, the SCB is DMAed from the host. Before any work
* can begin on this SCB, the sequencer must ensure that either the SCB is
* for a tagged transaction or the target is not already working on another
* non-tagged transaction. If a conflict arises in the non-tagged case, the
* sequencer finds the SCB for the active transactions and sets the SCB_LINKED
* field in that SCB to this next SCB to execute. To facilitate finding
* active non-tagged SCBs, the last four bytes of up to the first four hardware
* SCBs serve as a storage area for the currently active SCB ID for each
* target.
*
* When a device reconnects, a search is made of the hardware SCBs to find
* the SCB for this transaction. If the search fails, a hardware SCB is
* pulled from either the free or disconnected SCB list and the proper
* SCB is DMAed from the host. If the MK_MESSAGE control bit is set
* in the control byte of the SCB while it was disconnected, the sequencer
* will assert ATN and attempt to issue a message to the host.
*
* When a command completes, a check for non-zero status and residuals is
* made. If either of these conditions exists, the SCB is DMAed back up to
* the host so that it can interpret this information. Additionally, in the
* case of bad status, the sequencer generates a special interrupt and pauses
* itself. This allows the host to setup a request sense command if it
* chooses for this target synchronously with the error so that sense
* information isn't lost.
*
*/
#include <opt_aic7xxx.h>
#include <pci.h>
#include <stddef.h> /* For offsetof */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#if NPCI > 0
#include <machine/bus_memio.h>
#endif
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/clock.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/aic7xxx/aic7xxx.h>
#include <dev/aic7xxx/sequencer.h>
#include <aic7xxx_reg.h>
#include <aic7xxx_seq.h>
#include <sys/kernel.h>
#ifndef AHC_TMODE_ENABLE
#define AHC_TMODE_ENABLE 0
#endif
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ALL_TARGETS (~0)
#define ALL_LUNS (~0)
#define ALL_CHANNELS '\0'
#define SIM_IS_SCSIBUS_B(ahc, sim) \
(sim == ahc->sim_b)
#define SCB_IS_SCSIBUS_B(scb) \
(((scb)->hscb->tcl & SELBUSB) != 0)
#define SCB_TARGET(scb) \
(((scb)->hscb->tcl & TID) >> 4)
#define SCB_CHANNEL(scb) \
(SCB_IS_SCSIBUS_B(scb) ? 'B' : 'A')
#define SCB_LUN(scb) \
((scb)->hscb->tcl & LID)
#define SCB_TARGET_OFFSET(scb) \
(SCB_TARGET(scb) + (SCB_IS_SCSIBUS_B(scb) ? 8 : 0))
#define SCB_TARGET_MASK(scb) \
(0x01 << (SCB_TARGET_OFFSET(scb)))
#define ccb_scb_ptr spriv_ptr0
#define ccb_ahc_ptr spriv_ptr1
struct ahc_devinfo {
int target_offset;
u_int16_t target_mask;
u_int8_t target;
char channel;
};
typedef enum {
SEARCH_COMPLETE,
SEARCH_COUNT,
SEARCH_REMOVE
} ahc_search_action;
u_long ahc_unit = 0;
#ifdef AHC_DEBUG
static int ahc_debug = AHC_DEBUG;
#endif
#if NPCI > 0
void ahc_pci_intr(struct ahc_softc *ahc);
#endif
static void ahc_dump_targcmd(struct target_cmd *cmd);
static void ahc_shutdown(int howto, void *arg);
static void ahcminphys(struct buf *bp);
static cam_status
ahc_find_tmode_devs(struct ahc_softc *ahc,
struct cam_sim *sim, union ccb *ccb,
struct tmode_tstate **tstate,
struct tmode_lstate **lstate,
int notfound_failure);
static void ahc_action(struct cam_sim *sim, union ccb *ccb);
static void ahc_async(void *callback_arg, u_int32_t code,
struct cam_path *path, void *arg);
static void ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void ahc_poll(struct cam_sim *sim);
static void ahc_setup_data(struct ahc_softc *ahc,
struct ccb_scsiio *csio, struct scb *scb);
static void ahc_freeze_devq(struct ahc_softc *ahc, struct cam_path *path);
static struct scb *
ahc_get_scb(struct ahc_softc *ahc);
static void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static struct scb *
ahc_alloc_scb(struct ahc_softc *ahc);
static void ahc_fetch_devinfo(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo);
static void ahc_compile_devinfo(struct ahc_devinfo *devinfo,
u_int target, char channel);
static u_int8_t ahc_abort_wscb(struct ahc_softc *ahc, u_int8_t scbpos,
u_int8_t prev);
static void ahc_done(struct ahc_softc *ahc, struct scb *scbp);
static void ahc_handle_target_cmd(struct ahc_softc *ahc);
static void ahc_handle_seqint(struct ahc_softc *ahc, u_int8_t intstat);
static void ahc_handle_scsiint(struct ahc_softc *ahc,
u_int8_t intstat);
static void ahc_handle_reqinit(struct ahc_softc *ahc,
struct scb *scb);
static int ahc_parse_msg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_devinfo *devinfo);
static void ahc_handle_devreset(struct ahc_softc *ahc, int target,
char channel, cam_status status,
ac_code acode, char *message,
int verbose_only);
static void ahc_loadseq(struct ahc_softc *ahc);
static int ahc_check_patch(struct ahc_softc *ahc,
struct patch **start_patch,
int start_instr, int *skip_addr);
static void ahc_download_instr(struct ahc_softc *ahc,
int instrptr, u_int8_t *dconsts);
static int ahc_match_scb(struct scb *scb, int target, char channel,
int lun, u_int8_t tag);
#ifdef AHC_DEBUG
static void ahc_print_scb(struct scb *scb);
#endif
static u_int8_t ahc_find_scb(struct ahc_softc *ahc, struct scb *scb);
static int ahc_search_qinfifo(struct ahc_softc *ahc, int target,
char channel, int lun, u_int8_t tag,
u_int32_t status, ahc_search_action action);
static int ahc_reset_channel(struct ahc_softc *ahc, char channel,
int initiate_reset);
static int ahc_abort_scbs(struct ahc_softc *ahc, int target,
char channel, int lun, u_int8_t tag,
u_int32_t status);
static u_int8_t ahc_rem_scb_from_disc_list(struct ahc_softc *ahc,
u_int8_t prev, u_int8_t scbptr);
static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc);
static void ahc_clear_intstat(struct ahc_softc *ahc);
static void ahc_reset_current_bus(struct ahc_softc *ahc);
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
u_int maxsync);
static u_int ahc_find_period(struct ahc_softc *ahc, u_int scsirate,
u_int maxsync);
static void ahc_validate_offset(struct ahc_softc *ahc,
struct ahc_syncrate *syncrate,
u_int *offset, int wide);
static void ahc_set_syncrate(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct cam_path *path,
struct ahc_syncrate *syncrate,
u_int period, u_int offset, u_int type);
static void ahc_set_width(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo,
struct cam_path *path, u_int width, u_int type);
static void ahc_construct_sdtr(struct ahc_softc *ahc,
u_int8_t period, u_int8_t offset);
static void ahc_construct_wdtr(struct ahc_softc *ahc,
u_int8_t bus_width);
static void ahc_calc_residual(struct scb *scb);
static void ahc_update_pending_syncrates(struct ahc_softc *ahc);
static void ahc_set_recoveryscb(struct ahc_softc *ahc, struct scb *scb);
static timeout_t
ahc_timeout;
static __inline void pause_sequencer(struct ahc_softc *ahc);
static __inline void unpause_sequencer(struct ahc_softc *ahc,
int unpause_always);
static __inline void restart_sequencer(struct ahc_softc *ahc);
static __inline u_int8_t ahc_index_busy_tcl(struct ahc_softc *ahc,
u_int8_t tcl, int unbusy);
static __inline void ahc_busy_tcl(struct ahc_softc *ahc, struct scb *scb);
static __inline void ahc_freeze_ccb(union ccb* ccb);
static __inline cam_status ahc_ccb_status(union ccb* ccb);
static __inline void ahc_set_ccb_status(union ccb* ccb,
cam_status status);
static __inline u_int32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
return (ahc->hscb_busaddr + (sizeof(struct hardware_scb) * index));
}
#define AHC_BUSRESET_DELAY 25 /* Reset delay in us */
static __inline void
pause_sequencer(struct ahc_softc *ahc)
{
ahc_outb(ahc, HCNTRL, ahc->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while ((ahc_inb(ahc, HCNTRL) & PAUSE) == 0)
;
}
static __inline void
unpause_sequencer(struct ahc_softc *ahc, int unpause_always)
{
if ((ahc->flags & AHC_HANDLING_REQINITS) == 0
&& (unpause_always
|| (ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0))
ahc_outb(ahc, HCNTRL, ahc->unpause);
}
/*
* Restart the sequencer program from address zero
*/
static __inline void
restart_sequencer(struct ahc_softc *ahc)
{
pause_sequencer(ahc);
ahc_outb(ahc, SEQCTL, FASTMODE|SEQRESET);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
static __inline u_int8_t
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int8_t tcl, int unbusy)
{
u_int8_t scbid;
scbid = ahc->untagged_scbs[tcl];
if (unbusy)
ahc->untagged_scbs[tcl] = SCB_LIST_NULL;
return (scbid);
}
static __inline void
ahc_busy_tcl(struct ahc_softc *ahc, struct scb *scb)
{
ahc->untagged_scbs[scb->hscb->tcl] = scb->hscb->tag;
}
static __inline void
ahc_freeze_ccb(union ccb* ccb)
{
if ((ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
}
}
static __inline cam_status
ahc_ccb_status(union ccb* ccb)
{
return (ccb->ccb_h.status & CAM_STATUS_MASK);
}
static __inline void
ahc_set_ccb_status(union ccb* ccb, cam_status status)
{
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= status;
}
char *
ahc_name(struct ahc_softc *ahc)
{
static char name[10];
sprintf(name, "ahc%d", ahc->unit);
return (name);
}
#ifdef AHC_DEBUG
static void
ahc_print_scb(struct scb *scb)
{
struct hardware_scb *hscb = scb->hscb;
printf("scb:%p control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%lx\n",
scb,
hscb->control,
hscb->tcl,
hscb->cmdlen,
hscb->cmdpointer );
printf(" datlen:%d data:0x%lx segs:0x%x segp:0x%lx\n",
hscb->datalen,
hscb->data,
hscb->SG_count,
hscb->SG_pointer);
printf(" sg_addr:%lx sg_len:%ld\n",
scb->ahc_dma[0].addr,
scb->ahc_dma[0].len);
printf(" cdb:%x %x %x %x %x %x %x %x %x %x %x %x\n",
hscb->cmdstore[0], hscb->cmdstore[1], hscb->cmdstore[2],
hscb->cmdstore[3], hscb->cmdstore[4], hscb->cmdstore[5],
hscb->cmdstore[6], hscb->cmdstore[7], hscb->cmdstore[8],
hscb->cmdstore[9], hscb->cmdstore[10], hscb->cmdstore[11]);
}
#endif
static struct {
u_int8_t errno;
char *errmesg;
} hard_error[] = {
{ ILLHADDR, "Illegal Host Access" },
{ ILLSADDR, "Illegal Sequencer Address referrenced" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ PCIERRSTAT, "PCI Error detected" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
/*
* Valid SCSIRATE values. (p. 3-17)
* Provides a mapping of tranfer periods in ns to the proper value to
* stick in the scsiscfr reg to use that transfer rate.
*/
#define AHC_SYNCRATE_ULTRA2 0
#define AHC_SYNCRATE_ULTRA 2
#define AHC_SYNCRATE_FAST 5
static struct ahc_syncrate ahc_syncrates[] = {
/* ultra2 fast/ultra period rate */
{ 0x13, 0x000, 10, "40.0" },
{ 0x14, 0x000, 11, "33.0" },
{ 0x15, 0x100, 12, "20.0" },
{ 0x16, 0x110, 15, "16.0" },
{ 0x17, 0x120, 18, "13.4" },
{ 0x18, 0x000, 25, "10.0" },
{ 0x19, 0x010, 31, "8.0" },
{ 0x1a, 0x020, 37, "6.67" },
{ 0x1b, 0x030, 43, "5.7" },
{ 0x10, 0x040, 50, "5.0" },
{ 0x00, 0x050, 56, "4.4" },
{ 0x00, 0x060, 62, "4.0" },
{ 0x00, 0x070, 68, "3.6" },
{ 0x00, 0x000, 0, NULL }
};
/*
* Allocate a controller structure for a new device and initialize it.
*/
struct ahc_softc *
ahc_alloc(int unit, u_int32_t iobase, vm_offset_t maddr, ahc_chip chip,
ahc_feature features, ahc_flag flags, struct scb_data *scb_data)
{
/*
* find unit and check we have that many defined
*/
struct ahc_softc *ahc;
size_t alloc_size;
/*
* Allocate a storage area for us
*/
if (scb_data == NULL)
/*
* We are not sharing SCB space with another controller
* so allocate our own SCB data space.
*/
alloc_size = sizeof(struct full_ahc_softc);
else
alloc_size = sizeof(struct ahc_softc);
ahc = malloc(alloc_size, M_DEVBUF, M_NOWAIT);
if (!ahc) {
printf("ahc%d: cannot malloc!\n", unit);
return NULL;
}
bzero(ahc, alloc_size);
if (scb_data == NULL) {
struct full_ahc_softc* full_softc = (struct full_ahc_softc*)ahc;
ahc->scb_data = &full_softc->scb_data_storage;
STAILQ_INIT(&ahc->scb_data->free_scbs);
} else
ahc->scb_data = scb_data;
LIST_INIT(&ahc->pending_ccbs);
ahc->unit = unit;
/*
* XXX This should be done by the bus specific probe stubs with
* the bus layer providing the bsh and tag. Unfortunately,
* we need to clean up how we configure things before this
* can happen.
*/
if (maddr != NULL) {
ahc->tag = I386_BUS_SPACE_MEM;
ahc->bsh = (bus_space_handle_t)maddr;
} else {
ahc->tag = I386_BUS_SPACE_IO;
ahc->bsh = (bus_space_handle_t)iobase;
}
ahc->chip = chip;
ahc->features = features;
ahc->flags = flags;
ahc->unpause = (ahc_inb(ahc, HCNTRL) & IRQMS) | INTEN;
ahc->pause = ahc->unpause | PAUSE;
return (ahc);
}
void
ahc_free(ahc)
struct ahc_softc *ahc;
{
free(ahc, M_DEVBUF);
return;
}
int
ahc_reset(struct ahc_softc *ahc)
{
u_int8_t hcntrl;
u_int8_t sblkctl;
int wait;
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
/*
* Ensure that the reset has finished
*/
wait = 1000;
while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK))
DELAY(1000);
if (wait == 0) {
printf("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahc_name(ahc));
}
ahc_outb(ahc, HCNTRL, ahc->pause);
/* Determine channel configuration */
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
/* No Twin Channel PCI cards */
if ((ahc->chip & AHC_PCI) != 0)
sblkctl &= ~SELBUSB;
switch (sblkctl) {
case 0:
/* Single Narrow Channel */
break;
case 2:
/* Wide Channel */
ahc->features |= AHC_WIDE;
break;
case 8:
/* Twin Channel */
ahc->features |= AHC_TWIN;
break;
default:
printf(" Unsupported adapter type. Ignoring\n");
return(-1);
}
return (0);
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
static struct ahc_syncrate *
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period, u_int maxsync)
{
struct ahc_syncrate *syncrate;
syncrate = &ahc_syncrates[maxsync];
while ((syncrate->rate != NULL)
&& ((ahc->features & AHC_ULTRA2) == 0
|| (syncrate->sxfr_ultra2 != 0))) {
if (*period <= syncrate->period) {
/*
* When responding to a target that requests
* sync, the requested rate may fall between
* two rates that we can output, but still be
* a rate that we can receive. Because of this,
* we want to respond to the target with
* the same rate that it sent to us even
* if the period we use to send data to it
* is lower. Only lower the response period
* if we must.
*/
if (syncrate == &ahc_syncrates[maxsync]) {
*period = syncrate->period;
}
break;
}
syncrate++;
}
if ((*period == 0)
|| (syncrate->rate == NULL)
|| ((ahc->features & AHC_ULTRA2) != 0
&& (syncrate->sxfr_ultra2 == 0))) {
/* Use asynchronous transfers. */
*period = 0;
syncrate = NULL;
}
return (syncrate);
}
static u_int
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
{
struct ahc_syncrate *syncrate;
if ((ahc->features & AHC_ULTRA2) != 0) {
scsirate &= SXFR_ULTRA2;
} else {
scsirate &= SXFR;
}
syncrate = &ahc_syncrates[maxsync];
while (syncrate->rate != NULL) {
if ((ahc->features & AHC_ULTRA2) != 0) {
if (syncrate->sxfr_ultra2 == 0)
break;
else if (scsirate == syncrate->sxfr_ultra2)
return (syncrate->period);
} else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR)) {
return (syncrate->period);
}
syncrate++;
}
return (0); /* async */
}
static void
ahc_validate_offset(struct ahc_softc *ahc, struct ahc_syncrate *syncrate,
u_int *offset, int wide)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (syncrate == NULL) {
maxoffset = 0;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
maxoffset = MAX_OFFSET_ULTRA2;
} else {
if (wide)
maxoffset = MAX_OFFSET_16BIT;
else
maxoffset = MAX_OFFSET_8BIT;
}
*offset = MIN(*offset, maxoffset);
}
static void
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct cam_path *path, struct ahc_syncrate *syncrate,
u_int period, u_int offset, u_int type)
{
u_int old_period;
u_int old_offset;
if (syncrate == NULL) {
period = 0;
offset = 0;
}
old_period = ahc->transinfo[devinfo->target_offset].current.period;
old_offset = ahc->transinfo[devinfo->target_offset].current.offset;
if ((type & AHC_TRANS_CUR) != 0
&& (old_period != period || old_offset != offset)) {
struct ccb_trans_settings neg;
u_int scsirate;
scsirate = ahc->transinfo[devinfo->target_offset].scsirate;
if ((ahc->features & AHC_ULTRA2) != 0) {
scsirate &= ~SXFR_ULTRA2;
if (syncrate != NULL) {
scsirate |= syncrate->sxfr_ultra2;
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE) {
ahc_outb(ahc, SCSIOFFSET, offset);
}
ahc_outb(ahc, TARG_OFFSET + devinfo->target_offset,
offset);
} else {
scsirate &= ~(SXFR|SOFS);
/*
* Ensure Ultra mode is set properly for
* this target.
*/
ahc->ultraenb &= ~devinfo->target_mask;
if (syncrate != NULL) {
if (syncrate->sxfr & ULTRA_SXFR) {
ahc->ultraenb |= devinfo->target_mask;
}
scsirate |= syncrate->sxfr & SXFR;
scsirate |= offset & SOFS;
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE) {
u_int8_t sxfrctl0;
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
sxfrctl0 &= ~FAST20;
if (ahc->ultraenb & devinfo->target_mask)
sxfrctl0 |= FAST20;
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
}
}
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE)
ahc_outb(ahc, SCSIRATE, scsirate);
ahc->transinfo[devinfo->target_offset].scsirate = scsirate;
ahc->transinfo[devinfo->target_offset].current.period = period;
ahc->transinfo[devinfo->target_offset].current.offset = offset;
/* Update the syncrates in any pending scbs */
ahc_update_pending_syncrates(ahc);
/*
* Tell the SCSI layer about the
* new transfer parameters.
*/
neg.sync_period = period;
neg.sync_offset = offset;
neg.valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &neg);
if (bootverbose) {
if (neg.sync_offset != 0) {
printf("%s: target %d synchronous at %sMHz, "
"offset = 0x%x\n", ahc_name(ahc),
devinfo->target, syncrate->rate, offset);
} else {
printf("%s: target %d using "
"asynchronous transfers\n",
ahc_name(ahc), devinfo->target);
}
}
}
if ((type & AHC_TRANS_GOAL) != 0) {
ahc->transinfo[devinfo->target_offset].goal.period = period;
ahc->transinfo[devinfo->target_offset].goal.offset = offset;
}
if ((type & AHC_TRANS_USER) != 0) {
ahc->transinfo[devinfo->target_offset].user.period = period;
ahc->transinfo[devinfo->target_offset].user.offset = offset;
}
}
static void
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
struct cam_path *path, u_int width, u_int type)
{
u_int oldwidth;
oldwidth = ahc->transinfo[devinfo->target_offset].current.width;
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
struct ccb_trans_settings neg;
u_int8_t scsirate;
scsirate = ahc->transinfo[devinfo->target_offset].scsirate;
scsirate &= ~WIDEXFER;
if (width == MSG_EXT_WDTR_BUS_16_BIT)
scsirate |= WIDEXFER;
ahc->transinfo[devinfo->target_offset].scsirate = scsirate;
if ((type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE)
ahc_outb(ahc, SCSIRATE, scsirate);
ahc->transinfo[devinfo->target_offset].current.width = width;
/* Tell the SCSI layer about the new transfer params */
neg.bus_width = width;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_setup_ccb(&neg.ccb_h, path, /*priority*/1);
xpt_async(AC_TRANSFER_NEG, path, &neg);
if (bootverbose) {
printf("%s: target %d using %dbit transfers\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << neg.bus_width));
}
}
if ((type & AHC_TRANS_GOAL) != 0) {
ahc->transinfo[devinfo->target_offset].goal.width = width;
}
if ((type & AHC_TRANS_USER) != 0) {
ahc->transinfo[devinfo->target_offset].user.width = width;
}
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(struct ahc_softc *ahc)
{
struct ccb_setasync csa;
struct cam_devq *devq;
int bus_id;
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(ahc->scb_data->maxscbs);
if (devq == NULL)
return (0);
/*
* Construct our SIM entry
*/
ahc->sim = cam_sim_alloc(ahc_action, ahc_poll, "ahc", ahc, ahc->unit,
1, ahc->scb_data->maxscbs, devq);
if (ahc->sim == NULL) {
cam_simq_free(devq);
return (0);
}
bus_id = (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? 1 : 0;
if (xpt_bus_register(ahc->sim, bus_id) != CAM_SUCCESS) {
cam_sim_free(ahc->sim, /*free_devq*/TRUE);
return (0);
}
if (xpt_create_path(&ahc->path, /*periph*/NULL,
cam_sim_path(ahc->sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(ahc->sim));
cam_sim_free(ahc->sim, /*free_devq*/TRUE);
return (0);
}
xpt_setup_ccb(&csa.ccb_h, ahc->path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = ahc->sim;
xpt_action((union ccb *)&csa);
if (ahc->features & AHC_TWIN) {
ahc->sim_b = cam_sim_alloc(ahc_action, ahc_poll, "ahc",
ahc, ahc->unit, 1,
ahc->scb_data->maxscbs, devq);
if (ahc->sim_b == NULL) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
/*
* Must return success or the first bus
* won't get attached either.
*/
return (1);
}
bus_id = (ahc->flags & AHC_CHANNEL_B_PRIMARY) ? 0 : 1;
if (xpt_bus_register(ahc->sim_b, bus_id) != CAM_SUCCESS) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
/*
* We do not want to destroy the device queue
* because the first bus is using it.
*/
cam_sim_free(ahc->sim_b, /*free_devq*/FALSE);
ahc->sim_b = NULL;
return (1);
}
if (xpt_create_path(&ahc->path_b, /*periph*/NULL,
cam_sim_path(ahc->sim_b),
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(ahc->sim_b));
cam_sim_free(ahc->sim_b, /*free_devq*/FALSE);
ahc->sim_b = NULL;
return (1);
}
xpt_setup_ccb(&csa.ccb_h, ahc->path_b, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = ahc->sim_b;
xpt_action((union ccb *)&csa);
}
return (1);
}
static void
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
{
u_int8_t saved_tcl;
saved_tcl = ahc_inb(ahc, SAVED_TCL);
ahc_compile_devinfo(devinfo, (saved_tcl >> 4) & 0x0f,
(saved_tcl & SELBUSB) ? 'B': 'A');
}
static void
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int target, char channel)
{
devinfo->target = target;
devinfo->target_offset = target;
devinfo->channel = channel;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
/*
* Catch an interrupt from the adapter
*/
void
ahc_intr(void *arg)
{
struct ahc_softc *ahc;
u_int8_t intstat;
ahc = (struct ahc_softc *)arg;
intstat = ahc_inb(ahc, INTSTAT);
/*
* Any interrupts to process?
*/
#if NPCI > 0
if ((intstat & INT_PEND) == 0) {
if ((ahc->chip & AHC_PCI) != 0
&& (ahc->unsolicited_ints > 500)) {
if ((ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
ahc_pci_intr(ahc);
ahc->unsolicited_ints = 0;
} else {
ahc->unsolicited_ints++;
}
return;
} else {
ahc->unsolicited_ints = 0;
}
#else
if ((intstat & INT_PEND) == 0)
return;
#endif
if (intstat & CMDCMPLT) {
struct scb *scb;
u_int8_t scb_index;
ahc_outb(ahc, CLRINT, CLRCMDINT);
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
ahc->qoutfifo[ahc->qoutfifonext++] = SCB_LIST_NULL;
if (scb_index == TARGET_CMD_CMPLT) {
ahc_handle_target_cmd(ahc);
continue;
}
scb = ahc->scb_data->scbarray[scb_index];
if (!scb || !(scb->flags & SCB_ACTIVE)) {
printf("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahc_name(ahc), scb_index,
ahc->qoutfifonext - 1);
continue;
}
/*
* Save off the residual
* if there is one.
*/
if (scb->hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
ahc_done(ahc, scb);
}
}
if (intstat & BRKADRINT) {
/*
* We upset the sequencer :-(
* Lookup the error message
*/
int i, error, num_errors;
error = ahc_inb(ahc, ERROR);
num_errors = sizeof(hard_error)/sizeof(hard_error[0]);
for (i = 0; error != 1 && i < num_errors; i++)
error >>= 1;
panic("%s: brkadrint, %s at seqaddr = 0x%x\n",
ahc_name(ahc), hard_error[i].errmesg,
ahc_inb(ahc, SEQADDR0) |
(ahc_inb(ahc, SEQADDR1) << 8));
/* Tell everyone that this HBA is no longer availible */
ahc_abort_scbs(ahc, ALL_TARGETS, ALL_CHANNELS,
ALL_LUNS, SCB_LIST_NULL, CAM_NO_HBA);
}
if (intstat & SEQINT)
ahc_handle_seqint(ahc, intstat);
if (intstat & SCSIINT)
ahc_handle_scsiint(ahc, intstat);
}
static void
ahc_handle_target_cmd(struct ahc_softc *ahc)
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
struct ccb_accept_tio *atio;
struct target_cmd *cmd;
u_int8_t *byte;
int initiator;
int target;
int lun;
cmd = &ahc->targetcmds[ahc->next_targetcmd];
ahc->next_targetcmd++;
if (ahc->next_targetcmd >= ahc->num_targetcmds)
ahc->next_targetcmd = 0;
initiator = cmd->icl >> 4;
target = cmd->targ_id;
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
xpt_print_path(ahc->path);
printf("Received Target Command (%d:%d:%d)\n",
initiator, target, lun);
ahc_dump_targcmd(cmd);
byte = cmd->bytes;
tstate = ahc->enabled_targets[target];
lstate = NULL;
if (tstate != NULL && lun < 8)
lstate = tstate->enabled_luns[lun];
/*
* XXX Need to have a default TMODE devce that attaches to luns
* that wouldn't otherwise be enabled and returns the proper
* inquiry information. After all, we don't want to duplicate
* this code in each driver. For now, simply drop it on the
* floor.
*/
if (lstate == NULL) {
printf("Incoming Command on disabled lun\n");
return;
}
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
/* XXX Should reconnect and return BUSY status */
if (atio == NULL) {
printf("No ATIOs for incoming command\n");
return;
}
/*
* Package it up and send it off to
* whomever has this lun enabled.
*/
atio->init_id = initiator;
if (byte[0] != 0xFF) {
/* Tag was included */
atio->tag_action = *byte++;
atio->tag_id = *byte++;
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
} else {
byte++;
atio->ccb_h.flags = 0;
}
/* Okay. Now determine the cdb size based on the command code */
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
case 0:
atio->cdb_len = 6;
break;
case 1:
case 2:
atio->cdb_len = 10;
break;
case 4:
atio->cdb_len = 16;
break;
case 5:
atio->cdb_len = 12;
break;
case 3:
default:
/* Only copy the opcode. */
atio->cdb_len = 1;
printf("Reserved or VU command code type encountered\n");
break;
}
bcopy(byte, atio->cdb_io.cdb_bytes, atio->cdb_len);
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
atio->ccb_h.status |= CAM_CDB_RECVD;
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
/*
* We weren't allowed to disconnect.
* We're hanging on the bus until a
* continue target I/O comes in response
* to this accept tio.
*/
xpt_print_path(atio->ccb_h.path);
printf("Incoming Command did not disconnect %x\n", lstate);
ahc->pending_device = lstate;
}
xpt_done((union ccb*)atio);
}
static void
ahc_handle_seqint(struct ahc_softc *ahc, u_int8_t intstat)
{
struct scb *scb;
struct ahc_devinfo devinfo;
ahc_fetch_devinfo(ahc, &devinfo);
/*
* Clear the upper byte that holds SEQINT status
* codes and clear the SEQINT bit. We will unpause
* the sequencer, if appropriate, after servicing
* the request.
*/
ahc_outb(ahc, CLRINT, CLRSEQINT);
switch (intstat & SEQINT_MASK) {
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
printf("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahc_name(ahc), devinfo.channel, devinfo.target);
printf("SAVED_TCL == 0x%x, ARG_1 == 0x%x, SEQ_FLAGS == 0x%x\n",
ahc_inb(ahc, SAVED_TCL), ahc_inb(ahc, ARG_1),
ahc_inb(ahc, SEQ_FLAGS));
break;
}
case SEND_REJECT:
{
u_int8_t rejbyte = ahc_inb(ahc, ACCUM);
printf("%s:%c:%d: Warning - unknown message received from "
"target (0x%x). Rejecting\n",
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
break;
}
case NO_IDENT:
{
/*
* The reconnecting target either did not send an identify
* message, or did, but we didn't find and SCB to match and
* before it could respond to our ATN/abort, it hit a dataphase.
* The only safe thing to do is to blow it away with a bus
* reset.
*/
int found;
printf("%s:%c:%d: Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x, SAVED_TCL == 0x%x\n",
ahc_name(ahc), devinfo.channel, devinfo.target,
ahc_inb(ahc, LASTPHASE), ahc_inb(ahc, SAVED_TCL));
found = ahc_reset_channel(ahc, devinfo.channel,
/*initiate reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), devinfo.channel,
found);
break;
}
case BAD_PHASE:
if (ahc_inb(ahc, LASTPHASE) == P_BUSFREE) {
printf("%s:%c:%d: Missed busfree.\n", ahc_name(ahc),
devinfo.channel, devinfo.target);
restart_sequencer(ahc);
return;
} else {
printf("%s:%c:%d: unknown scsi bus phase. Attempting "
"to continue\n", ahc_name(ahc), devinfo.channel,
devinfo.target);
}
break;
case EXTENDED_MSG:
{
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahc->msg_len = 0;
ahc->msg_index = 0;
/*
* To actually receive the message, simply turn on
* REQINIT interrupts and let our interrupt handler
* do the rest (REQINIT should already be true).
*/
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENREQINIT);
ahc->flags |= AHC_HANDLING_REQINITS;
return;
}
case REJECT_MSG:
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
u_int8_t scb_index;
u_int8_t last_msg;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
last_msg = ahc_inb(ahc, LAST_MSG);
if ((last_msg == MSG_IDENTIFYFLAG)
&& (scb->hscb->control & MSG_SIMPLE_Q_TAG) != 0) {
struct ccb_trans_settings neg;
printf("%s:%c:%d: refuses tagged commands. Performing "
"non-tagged I/O\n", ahc_name(ahc),
devinfo.channel, devinfo.target);
ahc->tagenable &= ~devinfo.target_mask;
neg.flags = 0;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_setup_ccb(&neg.ccb_h, scb->ccb->ccb_h.path,
/*priority*/1);
xpt_async(AC_TRANSFER_NEG, scb->ccb->ccb_h.path, &neg);
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL)
& ~MSG_SIMPLE_Q_TAG);
scb->hscb->control &= ~MSG_SIMPLE_Q_TAG;
scb->ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
/*
* Requeue all tagged commands for this target
* currently in our posession so they can be
* converted to untagged commands.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb),
SCB_CHANNEL(scb),
SCB_LUN(scb),
/*tag*/SCB_LIST_NULL,
CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
} else if ((last_msg == MSG_IDENTIFYFLAG
|| last_msg == HOST_MSG)
&& (scb->flags & SCB_MSGOUT_WDTR) != 0) {
struct ahc_target_tinfo *tinfo;
/* note 8bit xfers and clear flag */
printf("%s:%c:%d: refuses WIDE negotiation. Using "
"8bit transfers\n", ahc_name(ahc),
devinfo.channel, devinfo.target);
scb->flags &= ~SCB_MSGOUT_BITS;
ahc->wdtrpending &= ~devinfo.target_mask;
ahc_set_width(ahc, &devinfo, scb->ccb->ccb_h.path,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
ahc_set_syncrate(ahc, &devinfo, scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE);
tinfo = &ahc->transinfo[devinfo.target_offset];
if (tinfo->goal.period) {
/* Start the sync negotiation */
ahc->sdtrpending |= devinfo.target_mask;
scb->flags |= SCB_MSGOUT_SDTR;
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
}
} else if ((last_msg == MSG_IDENTIFYFLAG
|| last_msg == HOST_MSG)
&& (scb->flags & SCB_MSGOUT_SDTR) != 0) {
/* note asynch xfers and clear flag */
ahc_set_syncrate(ahc, &devinfo, scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
scb->flags &= ~SCB_MSGOUT_BITS;
ahc->sdtrpending &= ~devinfo.target_mask;
printf("%s:%c:%d: refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahc_name(ahc),
devinfo.channel, devinfo.target);
} else {
/*
* Otherwise, we ignore it.
*/
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC)
printf("%s:%c:%d: Message reject -- ignored\n",
ahc_name(ahc), devinfo.channel,
devinfo.target);
#endif
break;
}
break;
}
case BAD_STATUS:
{
u_int8_t scb_index;
struct hardware_scb *hscb;
struct ccb_scsiio *csio;
/*
* The sequencer will notify us when a command
* has an error that would be of interest to
* the kernel. This allows us to leave the sequencer
* running in the common case of command completes
* without error. The sequencer will already have
* dma'd the SCB back up to us, so we can reference
* the in kernel copy directly.
*/
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
hscb = scb->hscb;
/*
* Set the default return value to 0 (don't
* send sense). The sense code will change
* this if needed.
*/
ahc_outb(ahc, RETURN_1, 0);
if (!(scb && (scb->flags & SCB_ACTIVE))) {
printf("%s:%c:%d: ahc_intr - referenced scb "
"not valid during seqint 0x%x scb(%d)\n",
ahc_name(ahc), devinfo.channel,
devinfo.target, intstat, scb_index);
goto unpause;
}
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and have
* the sequencer do a normal command
* complete.
*/
scb->flags &= ~SCB_SENSE;
ahc_set_ccb_status(scb->ccb, CAM_AUTOSENSE_FAIL);
break;
}
ahc_set_ccb_status(scb->ccb, CAM_SCSI_STATUS_ERROR);
csio = &scb->ccb->csio;
csio->scsi_status = hscb->status;
switch (hscb->status) {
case SCSI_STATUS_OK:
printf("%s: Interrupted for staus of 0???\n",
ahc_name(ahc));
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSENSE) {
xpt_print_path(csio->ccb_h.path);
printf("SCB %d: requests Check Status\n",
scb->hscb->tag);
}
#endif
if ((csio->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0) {
struct ahc_dma_seg *sg = scb->ahc_dma;
struct scsi_sense *sc =
(struct scsi_sense *)(&hscb->cmdstore);
struct ahc_target_tinfo *tinfo;
/*
* Save off the residual if there is one.
*/
if (hscb->residual_SG_count != 0)
ahc_calc_residual(scb);
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWSENSE) {
xpt_print_path(csio->ccb_h.path);
printf("Sending Sense\n");
}
#endif
/*
* bzero from the sense data before having
* the drive fill it. The SCSI spec mandates
* that any untransfered data should be
* assumed to be zero.
*/
bzero(&csio->sense_data,
sizeof(csio->sense_data));
sc->opcode = REQUEST_SENSE;
sc->byte2 = SCB_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = csio->sense_len;
sc->control = 0;
sg->addr = vtophys(&csio->sense_data);
sg->len = csio->sense_len;
/*
* Would be nice to preserve DISCENB here,
* but due to the way we page SCBs, we can't.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate.
*/
ahc_set_width(ahc, &devinfo,
scb->ccb->ccb_h.path,
MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo,
scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_CUR);
scb->flags &= ~SCB_MSGOUT_BITS;
tinfo = &ahc->transinfo[devinfo.target_offset];
if (tinfo->goal.width) {
ahc->wdtrpending |= devinfo.target_mask;
hscb->control |= MK_MESSAGE;
scb->flags |= SCB_MSGOUT_WDTR;
} else if (tinfo->goal.period) {
ahc->sdtrpending |= devinfo.target_mask;
hscb->control |= MK_MESSAGE;
scb->flags |= SCB_MSGOUT_SDTR;
}
hscb->status = 0;
hscb->SG_count = 1;
hscb->SG_pointer = scb->ahc_dmaphys;
hscb->data = sg->addr;
hscb->datalen = sg->len;
hscb->cmdpointer = hscb->cmdstore_busaddr;
hscb->cmdlen = sizeof(*sc);
scb->sg_count = hscb->SG_count;
scb->flags |= SCB_SENSE;
/*
* Ensure the target is busy since this
* will be an untagged request.
*/
ahc_busy_tcl(ahc, scb);
ahc_outb(ahc, RETURN_1, SEND_SENSE);
/*
* Ensure we have enough time to actually
* retrieve the sense.
*/
untimeout(ahc_timeout, (caddr_t)scb,
scb->ccb->ccb_h.timeout_ch);
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb, 5 * hz);
/* Freeze the queue while the sense occurs. */
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_freeze_ccb(scb->ccb);
break;
}
break;
case SCSI_STATUS_BUSY:
case SCSI_STATUS_QUEUE_FULL:
/*
* Requeue any transactions that haven't been
* sent yet.
*/
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_freeze_ccb(scb->ccb);
break;
}
break;
}
case TARGET_SYNC_CMD:
{
/*
* We've already processed the command. If the command
* is still pending, don't unpause the sequencer until
* it returns.
*/
xpt_print_path(ahc->path);
printf("Saw a target sync cmd\n");
if (ahc->pending_device != NULL) {
printf(" Pending device too.\n");
return;
}
break;
}
case TARGET_MSG_HELP:
{
/*
* XXX Handle BDR, Abort, Abort Tag, and transfer negotiations.
*/
restart_sequencer(ahc);
return;
}
case AWAITING_MSG:
{
int scb_index;
scb_index = ahc_inb(ahc, SCB_TAG);
scb = ahc->scb_data->scbarray[scb_index];
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahc->msg_index = 0;
ahc->msg_len = 0;
/*
* This SCB had MK_MESSAGE set in its control byte or
* we have explicitly set HOST_MSG in MSG_OUT,
* informing the sequencer that we want to send a
* special message to this target.
*/
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG
&& (scb->hscb->control & TAG_ENB) != 0) {
ahc->msg_buf[ahc->msg_index++] =
scb->ccb->csio.tag_action;
ahc->msg_buf[ahc->msg_index++] =
scb->hscb->tag;
ahc->msg_len += 2;
}
if (scb->flags & SCB_DEVICE_RESET) {
ahc->msg_buf[ahc->msg_index++] = MSG_BUS_DEV_RESET;
ahc->msg_len++;
xpt_print_path(scb->ccb->ccb_h.path);
printf("Bus Device Reset Message Sent\n");
} else if (scb->flags & SCB_ABORT) {
if ((scb->hscb->control & TAG_ENB) != 0)
ahc->msg_buf[ahc->msg_index++] = MSG_ABORT_TAG;
else
ahc->msg_buf[ahc->msg_index++] = MSG_ABORT;
ahc->msg_len++;
xpt_print_path(scb->ccb->ccb_h.path);
printf("Abort Message Sent\n");
} else if (scb->flags & SCB_MSGOUT_WDTR) {
struct ahc_target_tinfo *tinfo;
tinfo = &ahc->transinfo[devinfo.target_offset];
ahc_construct_wdtr(ahc, tinfo->goal.width);
} else if (scb->flags & SCB_MSGOUT_SDTR) {
struct ahc_target_tinfo *tinfo;
u_int period;
u_int maxsync;
/*
* Now that the target is actually selected, we
* can further refine our sync rate based on the
* output transceiver mode.
*/
if ((ahc->features & AHC_ULTRA2) != 0) {
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHC_SYNCRATE_ULTRA2;
} else {
maxsync = AHC_SYNCRATE_ULTRA;
}
} else if ((ahc->features & AHC_ULTRA) != 0) {
maxsync = AHC_SYNCRATE_ULTRA;
} else {
maxsync = AHC_SYNCRATE_FAST;
}
tinfo = &ahc->transinfo[devinfo.target_offset];
period = tinfo->goal.period;
ahc_find_syncrate(ahc, &period, maxsync);
ahc_construct_sdtr(ahc, period, tinfo->goal.offset);
} else {
printf("ahc_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message");
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
"SCB flags = %x", scb_index, scb->hscb->control,
ahc_inb(ahc, MSG_OUT), scb->flags);
}
/*
* Record the fact that we attempted to send a message.
*/
scb->flags |= SCB_MSGOUT_SENT;
/*
* To actually send the message, simply turn on
* REQINIT interrupts and let our interrupt handler
* do the rest (REQINIT should already be true).
*/
ahc->msg_index = 0;
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
ahc->flags |= AHC_HANDLING_REQINITS;
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENREQINIT);
return;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
u_int8_t scbindex = ahc_inb(ahc, SCB_TAG);
u_int8_t lastphase = ahc_inb(ahc, LASTPHASE);
int i;
scb = ahc->scb_data->scbarray[scbindex];
xpt_print_path(scb->ccb->ccb_h.path);
printf("data overrun detected in %s phase."
" Tag == 0x%x.\n",
lastphase == P_DATAIN ? "Data-In" : "Data-Out",
scb->hscb->tag);
xpt_print_path(scb->ccb->ccb_h.path);
printf("%s seen Data Phase. Length = %d. NumSGs = %d.\n",
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
scb->ccb->csio.dxfer_len, scb->sg_count);
for (i = 0; i < scb->sg_count - 1; i++) {
printf("sg[%d] - Addr 0x%x : Length %d\n",
i,
scb->ahc_dma[i].addr,
scb->ahc_dma[i].len);
}
/*
* Set this and it will take affect when the
* target does a command complete.
*/
ahc_freeze_devq(ahc, scb->ccb->ccb_h.path);
ahc_set_ccb_status(scb->ccb, CAM_DATA_RUN_ERR);
ahc_freeze_ccb(scb->ccb);
break;
}
case TRACEPOINT:
{
printf("TRACEPOINT: RETURN_2 = %d\n", ahc_inb(ahc, RETURN_2));
#if 0
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
printf("SSTAT0 == 0x%x\n", ahc_inb(ahc, SSTAT0));
printf(", SCSISIGI == 0x%x\n", ahc_inb(ahc, SCSISIGI));
printf("TRACEPOINT: CCHCNT = %d, SG_COUNT = %d\n",
ahc_inb(ahc, CCHCNT), ahc_inb(ahc, SG_COUNT));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
printf("TRACEPOINT1: CCHADDR = %d, CCHCNT = %d, SCBPTR = %d\n",
ahc_inb(ahc, CCHADDR)
| (ahc_inb(ahc, CCHADDR+1) << 8)
| (ahc_inb(ahc, CCHADDR+2) << 16)
| (ahc_inb(ahc, CCHADDR+3) << 24),
ahc_inb(ahc, CCHCNT)
| (ahc_inb(ahc, CCHCNT+1) << 8)
| (ahc_inb(ahc, CCHCNT+2) << 16),
ahc_inb(ahc, SCBPTR));
printf("TRACEPOINT: WAITING_SCBH = %d\n", ahc_inb(ahc, WAITING_SCBH));
printf("TRACEPOINT: SCB_TAG = %d\n", ahc_inb(ahc, SCB_TAG));
#endif
break;
}
#if NOT_YET
/* XXX Fill these in later */
case MESG_BUFFER_BUSY:
break;
case MSGIN_PHASEMIS:
break;
#endif
default:
printf("ahc_intr: seqint, "
"intstat == 0x%x, scsisigi = 0x%x\n",
intstat, ahc_inb(ahc, SCSISIGI));
break;
}
unpause:
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
static void
ahc_handle_scsiint(struct ahc_softc *ahc, u_int8_t intstat)
{
u_int8_t scb_index;
u_int8_t status;
struct scb *scb;
scb_index = ahc_inb(ahc, SCB_TAG);
status = ahc_inb(ahc, SSTAT1);
if (scb_index < ahc->scb_data->numscbs) {
scb = ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
scb = NULL;
} else
scb = NULL;
if ((status & SCSIRSTI) != 0) {
char channel;
channel = 'A';
if ((ahc->features & AHC_TWIN) != 0
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
channel = 'B';
printf("%s: Someone reset channel %c\n",
ahc_name(ahc), channel);
ahc_reset_channel(ahc, channel, /* Initiate Reset */FALSE);
} else if ((status & BUSFREE) != 0 && (status & SELTO) == 0) {
/*
* First look at what phase we were last in.
* If its message out, chances are pretty good
* that the busfree was in response to one of
* our abort requests.
*/
u_int8_t lastphase = ahc_inb(ahc, LASTPHASE);
u_int8_t saved_tcl = ahc_inb(ahc, SAVED_TCL);
u_int8_t target = (saved_tcl >> 4) & 0x0f;
char channel = saved_tcl & SELBUSB ? 'B': 'A';
int printerror = 1;
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (lastphase == P_MESGOUT) {
u_int message;
u_int tag;
message = ahc_inb(ahc, SINDEX);
tag = SCB_LIST_NULL;
switch (message) {
case MSG_ABORT_TAG:
tag = scb->hscb->tag;
/* FALLTRHOUGH */
case MSG_ABORT:
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB %d - Abort %s Completed.\n",
tag == SCB_LIST_NULL ? "" : "Tag",
scb->hscb->tag);
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
ahc_set_ccb_status(scb->ccb,
CAM_REQ_ABORTED);
ahc_done(ahc, scb);
}
printerror = 0;
break;
case MSG_BUS_DEV_RESET:
ahc_handle_devreset(ahc, target, channel,
CAM_BDR_SENT, AC_SENT_BDR,
"Bus Device Reset Sent",
/*verbose_only*/FALSE);
printerror = 0;
break;
default:
break;
}
}
if (printerror != 0) {
if (scb != NULL) {
u_int8_t tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = scb->hscb->tag;
else
tag = SCB_LIST_NULL;
ahc_abort_scbs(ahc, target, channel,
SCB_LUN(scb), tag,
CAM_UNEXP_BUSFREE);
} else {
ahc_abort_scbs(ahc, target, channel,
ALL_LUNS, SCB_LIST_NULL,
CAM_UNEXP_BUSFREE);
printf("%s: ", ahc_name(ahc));
}
printf("Unexpected busfree. LASTPHASE == 0x%x\n"
"SEQADDR == 0x%x\n",
lastphase, ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
}
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
ahc_outb(ahc, SIMODE1,
ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENREQINIT));
ahc->flags &= ~AHC_HANDLING_REQINITS;
ahc_outb(ahc, CLRSINT1, CLRBUSFREE);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else if ((status & SELTO) != 0) {
u_int8_t scbptr;
u_int8_t nextscb;
scbptr = ahc_inb(ahc, WAITING_SCBH);
ahc_outb(ahc, SCBPTR, scbptr);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index < ahc->scb_data->numscbs) {
scb = ahc->scb_data->scbarray[scb_index];
if ((scb->flags & SCB_ACTIVE) == 0)
scb = NULL;
} else
scb = NULL;
if (scb == NULL) {
printf("%s: ahc_intr - referenced scb not "
"valid during SELTO scb(%d, %d)\n",
ahc_name(ahc), scbptr, scb_index);
} else {
/*
* Clear any pending messages for the timed out
* target.
*/
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
ahc_handle_devreset(ahc, SCB_TARGET(scb),
SCB_CHANNEL(scb), CAM_SEL_TIMEOUT,
/*ac_code*/0, "Selection Timeout",
/*verbose_only*/TRUE);
}
/* Stop the selection */
ahc_outb(ahc, SCSISEQ, 0);
ahc_outb(ahc, SIMODE1,
ahc_inb(ahc, SIMODE1) & ~ENREQINIT);
ahc->flags &= ~AHC_HANDLING_REQINITS;
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
restart_sequencer(ahc);
} else if (scb == NULL) {
printf("%s: ahc_intr - referenced scb not "
"valid during scsiint 0x%x scb(%d)\n"
"SIMODE0 = 0x%x, SIMODE1 = 0x%x, SSTAT0 = 0x%x\n"
"SEQADDR = 0x%x\n", ahc_name(ahc),
status, scb_index, ahc_inb(ahc, SIMODE0),
ahc_inb(ahc, SIMODE1), ahc_inb(ahc, SSTAT0),
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
ahc_outb(ahc, CLRSINT1, status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
scb = NULL;
} else if ((status & SCSIPERR) != 0) {
/*
* Determine the bus phase and
* queue an appropriate message
*/
char *phase;
u_int8_t mesg_out = MSG_NOOP;
u_int8_t lastphase = ahc_inb(ahc, LASTPHASE);
xpt_print_path(scb->ccb->ccb_h.path);
switch (lastphase) {
case P_DATAOUT:
phase = "Data-Out";
break;
case P_DATAIN:
phase = "Data-In";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_COMMAND:
phase = "Command";
break;
case P_MESGOUT:
phase = "Message-Out";
break;
case P_STATUS:
phase = "Status";
mesg_out = MSG_INITIATOR_DET_ERR;
break;
case P_MESGIN:
phase = "Message-In";
mesg_out = MSG_PARITY_ERROR;
break;
default:
phase = "unknown";
break;
}
printf("parity error during %s phase.\n", phase);
printf("SEQADDR == 0x%x\n", ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
printf("SCSIRATE == 0x%x\n", ahc_inb(ahc, SCSIRATE));
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
if (mesg_out != MSG_NOOP) {
ahc_outb(ahc, MSG_OUT, mesg_out);
}
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
} else if ((status & REQINIT) != 0
&& (ahc->flags & AHC_HANDLING_REQINITS) != 0) {
ahc_handle_reqinit(ahc, scb);
} else {
xpt_print_path(scb->ccb->ccb_h.path);
printf("Unknown SCSIINT. Status = 0x%x\n", status);
ahc_outb(ahc, CLRSINT1, status);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
}
}
static void
ahc_handle_reqinit(struct ahc_softc *ahc, struct scb *scb)
{
struct ahc_devinfo devinfo;
u_int8_t simode1;
ahc_fetch_devinfo(ahc, &devinfo);
switch (ahc->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
u_int8_t bus_phase;
if (ahc->msg_len == 0)
panic("REQINIT interrupt with no active message");
lastbyte = (ahc->msg_index == ahc->msg_len - 1);
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
phasemis = bus_phase != P_MESGOUT;
if (lastbyte || phasemis) {
/* Time to end our message session */
ahc->msg_len = 0;
ahc->msg_type = MSG_TYPE_NONE;
simode1 = ahc_inb(ahc, SIMODE1) & ~ENREQINIT;
ahc_outb(ahc, SIMODE1, simode1);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc->flags &= ~AHC_HANDLING_REQINITS;
if (phasemis == 0) {
ahc_outb(ahc, SINDEX,
ahc->msg_buf[ahc->msg_index]);
ahc_outb(ahc, RETURN_1, 0);
} else {
ahc_outb(ahc, RETURN_1, MSGOUT_PHASEMIS);
}
unpause_sequencer(ahc, /* unpause_always */TRUE);
} else {
/*
* Clear our interrupt status and present the byte
* on the bus, but don't unpause the sequencer.
*/
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_outb(ahc, SCSIDATL, ahc->msg_buf[ahc->msg_index++]);
}
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int done;
phasemis = (ahc_inb(ahc, SCSISIGI) & PHASE_MASK) != P_MESGIN;
if (phasemis == 0) {
ahc->msg_len++;
/* Pull the byte in without acking it */
ahc->msg_buf[ahc->msg_index] = ahc_inb(ahc, SCSIBUSL);
done = ahc_parse_msg(ahc, scb, &devinfo);
/* Ack the byte */
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
ahc_inb(ahc, SCSIDATL);
ahc->msg_index++;
}
if (phasemis || done) {
/* Time to end our message session */
ahc->msg_len = 0;
ahc->msg_type = MSG_TYPE_NONE;
simode1 = ahc_inb(ahc, SIMODE1) & ~ENREQINIT;
ahc->flags &= ~AHC_HANDLING_REQINITS;
ahc_outb(ahc, SIMODE1, simode1);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
unpause_sequencer(ahc, /* unpause_always */TRUE);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
}
static int
ahc_parse_msg(struct ahc_softc *ahc, struct scb *scb,
struct ahc_devinfo *devinfo)
{
int reject;
int done;
u_int targ_scsirate;
done = FALSE;
reject = FALSE;
targ_scsirate = ahc->transinfo[devinfo->target_offset].scsirate;
/*
* Parse as much of the message as is availible,
* rejecting it if we don't support it. When
* the entire message is availible and has been
* handled, return TRUE indicating that we have
* parsed an entire message.
*/
if (ahc->msg_buf[0] != MSG_EXTENDED) {
reject = TRUE;
}
/*
* Just accept the length byte outright and perform
* more checking once we know the message type.
*/
if (!reject && (ahc->msg_len > 2)) {
switch (ahc->msg_buf[2]) {
case MSG_EXT_SDTR:
{
struct ahc_syncrate *syncrate;
u_int period;
u_int offset;
u_int saved_offset;
u_int maxsync;
if (ahc->msg_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*/
if (ahc->msg_len < (MSG_EXT_SDTR_LEN + /*preamble*/2))
break;
period = ahc->msg_buf[3];
saved_offset = offset = ahc->msg_buf[4];
if ((ahc->features & AHC_ULTRA2) != 0) {
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHC_SYNCRATE_ULTRA2;
} else {
maxsync = AHC_SYNCRATE_ULTRA;
}
} else if ((ahc->features & AHC_ULTRA) != 0) {
maxsync = AHC_SYNCRATE_ULTRA;
} else {
maxsync = AHC_SYNCRATE_FAST;
}
syncrate = ahc_find_syncrate(ahc, &period, maxsync);
ahc_validate_offset(ahc, syncrate, &offset,
targ_scsirate & WIDEXFER);
ahc_set_syncrate(ahc, devinfo, scb->ccb->ccb_h.path,
syncrate, period, offset,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if ((scb->flags & (SCB_MSGOUT_SDTR|SCB_MSGOUT_SENT))
== (SCB_MSGOUT_SDTR|SCB_MSGOUT_SENT)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
scb->flags &= ~SCB_MSGOUT_BITS;
ahc->sdtrpending &= ~devinfo->target_mask;
} else {
/*
* Send our own SDTR in reply
*/
scb->flags &= ~SCB_MSGOUT_BITS;
scb->flags |= SCB_MSGOUT_SDTR;
ahc->sdtrpending |= devinfo->target_mask;
xpt_print_path(scb->ccb->ccb_h.path);
printf("Sending SDTR!!\n");
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
}
done = TRUE;
break;
}
case MSG_EXT_WDTR:
{
struct ccb_trans_settings neg;
u_int8_t bus_width;
if (ahc->msg_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*/
if (ahc->msg_len < (MSG_EXT_WDTR_LEN + /*preamble*/2))
break;
bus_width = ahc->msg_buf[3];
if ((scb->flags & (SCB_MSGOUT_WDTR|SCB_MSGOUT_SENT))
== (SCB_MSGOUT_WDTR|SCB_MSGOUT_SENT)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
*/
switch (bus_width){
default:
/*
* How can we do anything greater
* than 16bit transfers on a 16bit
* bus?
*/
reject = TRUE;
printf("%s: target %d requested %dBit "
"transfers. Rejecting...\n",
ahc_name(ahc), devinfo->target,
8 * (0x01 << bus_width));
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
case MSG_EXT_WDTR_BUS_16_BIT:
break;
}
scb->flags &= ~SCB_MSGOUT_WDTR;
ahc->wdtrpending &= ~devinfo->target_mask;
} else {
/*
* Send our own WDTR in reply
*/
printf("Sending WDTR!\n");
scb->flags &= ~SCB_MSGOUT_BITS;
scb->flags |= SCB_MSGOUT_WDTR;
switch (bus_width) {
default:
if (ahc->features & AHC_WIDE) {
/* Respond Wide */
bus_width =
MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
ahc->wdtrpending |= devinfo->target_mask;
}
ahc_set_width(ahc, devinfo, scb->ccb->ccb_h.path,
bus_width,
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL);
/* After a wide message, we are async */
ahc_set_syncrate(ahc, devinfo, scb->ccb->ccb_h.path,
/*syncrate*/NULL, /*period*/0,
/*offset*/0, AHC_TRANS_ACTIVE);
if ((ahc->wdtrpending & devinfo->target_mask) == 0
&& (reject == 0)) {
struct ahc_target_tinfo *tinfo;
scb->flags &= ~SCB_MSGOUT_WDTR;
tinfo = &ahc->transinfo[devinfo->target_offset];
if (tinfo->goal.period) {
/* Start the sync negotiation */
ahc->sdtrpending |=
devinfo->target_mask;
scb->flags |= SCB_MSGOUT_SDTR;
ahc_outb(ahc, MSG_OUT, HOST_MSG);
ahc_outb(ahc, SCSISIGO,
ahc_inb(ahc, SCSISIGO) | ATNO);
}
}
done = TRUE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
}
if (reject) {
/*
* Assert attention and setup to
* reject the message.
*/
ahc_outb(ahc, MSG_OUT, MSG_MESSAGE_REJECT);
ahc_outb(ahc, SCSISIGO, ahc_inb(ahc, SCSISIGO) | ATNO);
done = TRUE;
}
return (done);
}
static void
ahc_handle_devreset(struct ahc_softc *ahc, int target, char channel,
cam_status status, ac_code acode, char *message,
int verbose_only)
{
struct ahc_devinfo devinfo;
struct cam_path *path;
path_id_t path_id;
u_int16_t targ_mask;
u_int8_t targ_scsirate;
int scratch_offset = target;
int found;
int error;
ahc_compile_devinfo(&devinfo, target, channel);
if (channel == 'B')
path_id = cam_sim_path(ahc->sim_b);
else
path_id = cam_sim_path(ahc->sim);
error = xpt_create_path(&path, /*periph*/NULL, path_id, target,
CAM_LUN_WILDCARD);
/*
* Go back to async/narrow transfers and renegotiate.
*/
if (error == CAM_REQ_CMP) {
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0, AHC_TRANS_CUR);
}
found = ahc_abort_scbs(ahc, target, channel, ALL_LUNS,
SCB_LIST_NULL, status);
if (error == CAM_REQ_CMP && acode != 0)
xpt_async(AC_SENT_BDR, path, NULL);
if (error == CAM_REQ_CMP)
xpt_free_path(path);
if (message != NULL
&& (verbose_only == 0 || bootverbose != 0))
printf("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
message, channel, target, found);
}
/*
* We have an scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
static void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
union ccb *ccb;
CAM_DEBUG(scb->ccb->ccb_h.path, CAM_DEBUG_TRACE,
("ahc_done - scb %d\n", scb->hscb->tag));
ccb = scb->ccb;
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
untimeout(ahc_timeout, (caddr_t)scb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahc->dmat, scb->dmamap, op);
bus_dmamap_unload(ahc->dmat, scb->dmamap);
}
/*
* Unbusy this target/channel/lun.
* XXX if we are holding two commands per lun,
* send the next command.
*/
ahc_index_busy_tcl(ahc, scb->hscb->tcl, /*unbusy*/TRUE);
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
xpt_print_path(ccb->ccb_h.path);
printf("CONT_TARGET_IO complete\n");
ccb->ccb_h.status = CAM_REQ_CMP;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
/*
* If the recovery SCB completes, we have to be
* out of our timeout.
*/
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
struct ccb_hdr *ccbh;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
ccbh = ahc->pending_ccbs.lh_first;
while (ccbh != NULL) {
struct scb *pending_scb;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
ccbh->timeout_ch =
timeout(ahc_timeout, pending_scb,
(ccbh->timeout * hz)/1000);
ccbh = LIST_NEXT(ccbh, sim_links.le);
}
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb), SCB_CHANNEL(scb),
SCB_LUN(scb), scb->hscb->tag, /*status*/0,
SEARCH_REMOVE);
if (ahc_ccb_status(ccb) == CAM_BDR_SENT)
ahc_set_ccb_status(ccb, CAM_CMD_TIMEOUT);
xpt_print_path(ccb->ccb_h.path);
printf("no longer in timeout, status = %x\n",
ccb->ccb_h.status);
}
if ((scb->flags & (SCB_MSGOUT_WDTR|SCB_MSGOUT_SDTR)) != 0) {
/*
* Turn off the pending flags for any DTR messages
* regardless of whether they completed successfully
* or not. This ensures that we don't have lingering
* state after we abort an SCB.
*/
u_int16_t mask;
mask = (0x01 << (SCB_TARGET(scb)
| (SCB_IS_SCSIBUS_B(scb) ? SELBUSB : 0)));
if (scb->flags & SCB_MSGOUT_WDTR)
ahc->wdtrpending &= ~mask;
if (scb->flags & SCB_MSGOUT_SDTR)
ahc->sdtrpending &= ~mask;
}
/* Don't clobber any existing error state */
if (ahc_ccb_status(ccb) == CAM_REQ_INPROG) {
ccb->ccb_h.status |= CAM_REQ_CMP;
} else if ((scb->flags & SCB_SENSE) != 0) {
/* We performed autosense retrieval */
scb->ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahc_probe_scbs(struct ahc_softc *ahc) {
int i;
for (i = 0; i < AHC_SCB_MAX; i++) {
ahc_outb(ahc, SCBPTR, i);
ahc_outb(ahc, SCB_CONTROL, i);
if (ahc_inb(ahc, SCB_CONTROL) != i)
break;
ahc_outb(ahc, SCBPTR, 0);
if (ahc_inb(ahc, SCB_CONTROL) != 0)
break;
}
return (i);
}
/*
* Start the board, ready for normal operation
*/
int
ahc_init(struct ahc_softc *ahc)
{
int max_targ = 15;
int i;
int term;
u_int8_t scsi_conf, sxfrctl1;
#ifdef AHC_PRINT_SRAM
printf("Scratch Ram:");
for (i = 0x20; i < 0x5f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
if ((ahc->features & AHC_MORE_SRAM) != 0) {
for (i = 0x70; i < 0x7f; i++) {
if (((i % 8) == 0) && (i != 0)) {
printf ("\n ");
}
printf (" 0x%x", ahc_inb(ahc, i));
}
}
printf ("\n");
#endif
/*
* Assume we have a board at this stage and it has been reset.
*/
if ((ahc->flags & AHC_USEDEFAULTS) != 0) {
ahc->our_id = ahc->our_id_b = 7;
}
/*
* XXX Would be better to use a per device flag, but PCI and EISA
* devices don't have them yet.
*/
if ((AHC_TMODE_ENABLE & (0x01 << ahc->unit)) != 0)
ahc->flags |= AHC_TARGETMODE;
if ((ahc->features & AHC_TWIN) != 0) {
printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, ",
ahc->our_id, ahc->our_id_b);
} else {
if ((ahc->features & AHC_WIDE) != 0) {
printf("Wide ");
} else {
printf("Single ");
}
printf("Channel %c, SCSI Id=%d, ", ahc->channel, ahc->our_id);
}
ahc_outb(ahc, SEQ_FLAGS, 0);
/* Determine the number of SCBs and initialize them */
if (ahc->scb_data->maxhscbs == 0) {
ahc->scb_data->maxhscbs = ahc_probe_scbs(ahc);
/* SCB 0 heads the free list */
ahc_outb(ahc, FREE_SCBH, 0);
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
ahc_outb(ahc, SCBPTR, i);
/* Clear the control byte. */
ahc_outb(ahc, SCB_CONTROL, 0);
/* Set the next pointer */
ahc_outb(ahc, SCB_NEXT, i+1);
/* Make the tag number invalid */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
}
/* Make that the last SCB terminates the free list */
ahc_outb(ahc, SCBPTR, i-1);
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
/* Ensure we clear the 0 SCB's control byte. */
ahc_outb(ahc, SCBPTR, 0);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc->scb_data->maxhscbs = i;
}
if (ahc->scb_data->maxhscbs == 0)
panic("%s: No SCB space found", ahc_name(ahc));
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX) {
ahc->flags |= AHC_PAGESCBS;
ahc->scb_data->maxscbs = AHC_SCB_MAX;
if ((ahc->flags & AHC_TARGETMODE) != 0) {
/* Steal one slot for TMODE commands */
ahc->scb_data->maxscbs--;
}
printf("%d/%d SCBs\n", ahc->scb_data->maxhscbs,
ahc->scb_data->maxscbs);
} else {
ahc->scb_data->maxscbs = ahc->scb_data->maxhscbs;
if ((ahc->flags & AHC_TARGETMODE) != 0) {
/* Steal one slot for TMODE commands */
ahc->scb_data->maxscbs--;
}
ahc->flags &= ~AHC_PAGESCBS;
printf("%d SCBs\n", ahc->scb_data->maxhscbs);
}
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
printf("%s: hardware scb %d bytes; kernel scb %d bytes; "
"ahc_dma %d bytes\n",
ahc_name(ahc),
sizeof(struct hardware_scb),
sizeof(struct scb),
sizeof(struct ahc_dma_seg));
}
#endif /* AHC_DEBUG */
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
if (ahc->features & AHC_TWIN) {
/*
* The device is gated to channel B after a chip reset,
* so set those values first
*/
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id_b);
else
ahc_outb(ahc, SCSIID, ahc->our_id_b);
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
sxfrctl1 = ahc_inb(ahc, SXFRCTL1);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term
|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
if (scsi_conf & RESET_SCSI) {
/* Reset the bus */
if (bootverbose)
printf("%s: Resetting Channel B\n",
ahc_name(ahc));
ahc_reset_current_bus(ahc);
}
/* Select Channel A */
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
}
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
else
ahc_outb(ahc, SCSIID, ahc->our_id);
scsi_conf = ahc_inb(ahc, SCSICONF);
sxfrctl1 = ahc_inb(ahc, SXFRCTL1);
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|term
|ENSTIMER|ACTNEGEN);
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
if ((ahc->features & AHC_ULTRA2) != 0) {
/* Wait for our transceiver status to settle */
i = 1000000;
while (--i && ((ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0))
DELAY(100);
if (i == 0)
panic("%s: Transceiver state never settled\n",
ahc_name(ahc));
}
if (scsi_conf & RESET_SCSI) {
/* Reset the bus */
if (bootverbose)
printf("%s: Resetting Channel %c\n", ahc_name(ahc),
ahc->channel);
ahc_reset_current_bus(ahc);
}
/*
* Look at the information that board initialization or
* the board bios has left us. In the lower four bits of each
* target's scratch space any value other than 0 indicates
* that we should initiate synchronous transfers. If it's zero,
* the user or the BIOS has decided to disable synchronous
* negotiation to that target so we don't activate the needsdtr
* flag.
*/
ahc->ultraenb = 0;
ahc->tagenable = ALL_TARGETS;
/* Grab the disconnection disable table and invert it for our needs */
if (ahc->flags & AHC_USEDEFAULTS) {
printf("%s: Host Adapter Bios disabled. Using default SCSI "
"device parameters\n", ahc_name(ahc));
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B;
ahc->discenable = ALL_TARGETS;
if ((ahc->features & AHC_ULTRA) != 0)
ahc->ultraenb = 0xffff;
} else {
ahc->discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
| ahc_inb(ahc, DISC_DSB));
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
ahc->ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
| ahc_inb(ahc, ULTRA_ENB);
}
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
max_targ = 7;
for (i = 0; i <= max_targ; i++) {
struct ahc_target_tinfo *transinfo;
transinfo = &ahc->transinfo[i];
/* Default to async narrow across the board */
bzero(transinfo, sizeof(*transinfo));
if (ahc->flags & AHC_USEDEFAULTS) {
if ((ahc->features & AHC_WIDE) != 0)
transinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* These will be truncated when we determine the
* connection type we have with the target.
*/
transinfo->user.period = ahc_syncrates->period;
transinfo->user.offset = ~0;
} else {
u_int scsirate;
u_int16_t mask;
/* Take the settings leftover in scratch RAM. */
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
mask = (0x01 << i);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
if ((scsirate & SOFS) == 0x0F) {
/*
* Haven't negotiated yet,
* so the format is different.
*/
scsirate = (scsirate & SXFR) >> 4
| (ahc->ultraenb & mask)
? 0x18 : 0x10
| (scsirate & WIDEXFER);
offset = MAX_OFFSET_ULTRA2;
} else
offset = ahc_inb(ahc, TARG_OFFSET + i);
ahc_find_period(ahc, scsirate,
AHC_SYNCRATE_ULTRA2);
if (offset == 0)
transinfo->user.period = 0;
else
transinfo->user.offset = ~0;
} else if ((scsirate & SOFS) != 0) {
transinfo->user.period =
ahc_find_period(ahc, scsirate,
(ahc->ultraenb & mask)
? AHC_SYNCRATE_ULTRA
: AHC_SYNCRATE_FAST);
if ((scsirate & SOFS) != 0
&& transinfo->user.period != 0) {
transinfo->user.offset = ~0;
}
}
if ((scsirate & WIDEXFER) != 0
&& (ahc->features & AHC_WIDE) != 0) {
transinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
}
}
}
ahc->sdtrpending = 0;
ahc->wdtrpending = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC)
printf("NEEDSDTR == 0x%x\nNEEDWDTR == 0x%x\n"
"DISCENABLE == 0x%x\nULTRAENB == 0x%x\n",
ahc->needsdtr_orig, ahc->needwdtr_orig,
ahc->discenable, ahc->ultraenb);
#endif
/*
* Allocate enough "hardware scbs" to handle
* the maximum number of concurrent transactions
* we can have active. We have to use contigmalloc
* if this array crosses a page boundary since the
* sequencer depends on this array being physically
* contiguous.
*/
if (ahc->scb_data->hscbs == NULL) {
size_t array_size;
array_size = ahc->scb_data->maxscbs*sizeof(struct hardware_scb);
if (array_size > PAGE_SIZE) {
ahc->scb_data->hscbs = (struct hardware_scb *)
contigmalloc(array_size, M_DEVBUF,
M_NOWAIT, 0ul, 0xffffffff,
PAGE_SIZE, 0x10000);
} else {
ahc->scb_data->hscbs = (struct hardware_scb *)
malloc(array_size, M_DEVBUF, M_NOWAIT);
}
if (ahc->scb_data->hscbs == NULL) {
printf("%s: unable to allocate hardware SCB array. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
/* At least the control byte of each hscb needs to be zeroed */
bzero(ahc->scb_data->hscbs, array_size);
}
if ((ahc->flags & AHC_TARGETMODE) != 0) {
size_t array_size;
ahc->num_targetcmds = 32;
array_size = ahc->num_targetcmds * sizeof(struct target_cmd);
ahc->targetcmds = malloc(array_size, M_DEVBUF, M_NOWAIT);
if (ahc->targetcmds == NULL) {
printf("%s: unable to allocate targetcmd array. "
"Failing attach\n", ahc_name(ahc));
return (-1);
}
bzero(ahc->targetcmds, array_size);
ahc_outb(ahc, TMODE_CMDADDR_NEXT, 0);
}
/*
* Tell the sequencer where it can find the our arrays in memory.
*/
{
u_int32_t physaddr;
/* Tell the sequencer where it can find the hscb array. */
physaddr = vtophys(ahc->scb_data->hscbs);
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
ahc->hscb_busaddr = physaddr;
physaddr = vtophys(ahc->qoutfifo);
ahc_outb(ahc, SCBID_ADDR, physaddr & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 1, (physaddr >> 8) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 2, (physaddr >> 16) & 0xFF);
ahc_outb(ahc, SCBID_ADDR + 3, (physaddr >> 24) & 0xFF);
if ((ahc->flags & AHC_TARGETMODE) != 0) {
physaddr = vtophys(ahc->targetcmds);
ahc_outb(ahc, TMODE_CMDADDR, physaddr & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 1,
(physaddr >> 8) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 2,
(physaddr >> 16) & 0xFF);
ahc_outb(ahc, TMODE_CMDADDR + 3,
(physaddr >> 24) & 0xFF);
ahc_outb(ahc, CMDSIZE_TABLE, 5);
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
}
/* There are no untagged SCBs active yet. */
for (i = 0; i < sizeof(ahc->untagged_scbs); i++) {
ahc->untagged_scbs[i] = SCB_LIST_NULL;
}
for (i = 0; i < sizeof(ahc->qoutfifo); i++) {
ahc->qoutfifo[i] = SCB_LIST_NULL;
}
}
/* Our Q FIFOs are empty. */
ahc_outb(ahc, KERNEL_QINPOS, 0);
ahc_outb(ahc, QINPOS, 0);
ahc_outb(ahc, QOUTPOS, 0);
/*
* Use the built in queue management registers
* if they are available.
*/
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
ahc_outb(ahc, SDSCB_QOFF, 0);
ahc_outb(ahc, SNSCB_QOFF, 0);
ahc_outb(ahc, HNSCB_QOFF, 0);
}
/* We don't have any waiting selections */
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
/* Our disconnection list is empty too */
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
/* Message out buffer starts empty */
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
/*
* Load the Sequencer program and Enable the adapter
* in "fast" mode.
*/
if (bootverbose)
printf("%s: Downloading Sequencer Program...",
ahc_name(ahc));
ahc_loadseq(ahc);
/* We have to wait until after any system dumps... */
at_shutdown(ahc_shutdown, ahc, SHUTDOWN_FINAL);
return (0);
}
static void
ahcminphys(struct buf *bp)
{
/*
* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the dma segment
* list that we can hold. The worst case is that all pages are
* discontinuous physically, hense the "page per segment" limit
* enforced here.
*/
if (bp->b_bcount > ((AHC_NSEG - 1) * PAGE_SIZE)) {
bp->b_bcount = ((AHC_NSEG - 1) * PAGE_SIZE);
}
}
static cam_status
ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb,
struct tmode_tstate **tstate, struct tmode_lstate **lstate,
int notfound_failure)
{
int our_id;
/*
* If we are not configured for target mode, someone
* is really confused to be sending this to us.
*/
if ((ahc->flags & AHC_TARGETMODE) == 0)
return (CAM_REQ_INVALID);
/* Range check target and lun */
if (cam_sim_bus(sim) == 0)
our_id = ahc->our_id;
else
our_id = ahc->our_id_b;
if (ccb->ccb_h.target_id > ((ahc->features & AHC_WIDE) ? 15 : 7)
|| ((ahc->features & AHC_MULTI_TID) == 0
&& (ccb->ccb_h.target_id != our_id)))
return (CAM_TID_INVALID);
if (ccb->ccb_h.target_lun > 8)
return (CAM_LUN_INVALID);
*tstate = ahc->enabled_targets[ccb->ccb_h.target_id];
*lstate = NULL;
if (*tstate != NULL)
*lstate = (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
if (notfound_failure != 0 && *lstate == NULL)
return (CAM_PATH_INVALID);
return (CAM_REQ_CMP);
}
static void
ahc_action(struct cam_sim *sim, union ccb *ccb)
{
struct ahc_softc *ahc;
struct tmode_lstate *lstate;
int target_id;
int s;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahc_action\n"));
ahc = (struct ahc_softc *)cam_sim_softc(sim);
target_id = ccb->ccb_h.target_id;
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/
{
struct tmode_tstate *tstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
break;
}
/*
* The target_id represents the target we attempt to
* select. In target mode, this is the initiator of
* the original command.
*/
target_id = ccb->csio.init_id;
xpt_print_path(ccb->ccb_h.path);
printf("Sending a continue TIO\n");
/* FALLTHROUGH */
}
case XPT_SCSI_IO: /* Execute the requested I/O operation */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
struct scb *scb;
struct hardware_scb *hscb;
struct ahc_target_tinfo *tinfo;
u_int16_t mask;
/*
* get an scb to use.
*/
if ((scb = ahc_get_scb(ahc)) == NULL) {
int s;
s = splcam();
ahc->flags |= AHC_RESOURCE_SHORTAGE;
splx(s);
xpt_freeze_simq(ahc->sim, /*count*/1);
ahc_set_ccb_status(ccb, CAM_REQUEUE_REQ);
xpt_done(ccb);
return;
}
hscb = scb->hscb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE,
("start scb(%p)\n", scb));
scb->ccb = ccb;
/*
* So we can find the SCB when an abort is requested
*/
ccb->ccb_h.ccb_scb_ptr = scb;
ccb->ccb_h.ccb_ahc_ptr = ahc;
/*
* Put all the arguments for the xfer in the scb
*/
hscb->tcl = ((target_id << 4) & 0xF0)
| (SIM_IS_SCSIBUS_B(ahc, sim) ? SELBUSB : 0)
| (ccb->ccb_h.target_lun & 0x07);
mask = SCB_TARGET_MASK(scb);
tinfo = &ahc->transinfo[SCB_TARGET_OFFSET(scb)];
hscb->scsirate = tinfo->scsirate;
hscb->scsioffset = tinfo->current.offset;
if ((ahc->ultraenb & mask) != 0)
hscb->control |= ULTRAENB;
if ((ahc->discenable & mask) != 0
&& (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0)
hscb->control |= DISCENB;
if (ccb->ccb_h.func_code == XPT_RESET_DEV) {
hscb->cmdpointer = NULL;
scb->flags |= SCB_DEVICE_RESET;
hscb->control |= MK_MESSAGE;
ahc_execute_scb(scb, NULL, 0, 0);
} else {
if (ccb->ccb_h.func_code == XPT_SCSI_IO) {
if (tinfo->current.width != tinfo->goal.width) {
if ((ahc->wdtrpending & mask) == 0) {
ahc->wdtrpending |= mask;
hscb->control |= MK_MESSAGE;
scb->flags |= SCB_MSGOUT_WDTR;
}
} else if ((tinfo->current.period
!= tinfo->goal.period)
&& (ahc->sdtrpending & mask) == 0) {
ahc->sdtrpending |= mask;
hscb->control |= MK_MESSAGE;
scb->flags |= SCB_MSGOUT_SDTR;
}
} else {
if (ahc->pending_device == lstate) {
scb->flags |= SCB_TARGET_IMMEDIATE;
ahc->pending_device = NULL;
}
hscb->control |= TARGET_SCB;
hscb->cmdpointer = IDENTIFY_SEEN;
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
hscb->cmdpointer |= SPHASE_PENDING;
hscb->status = ccb->csio.scsi_status;
}
/* Overloaded with tag ID */
hscb->cmdlen = ccb->csio.tag_id;
/*
* Overloaded with our target ID to
* use for reselection.
*/
hscb->next = ccb->ccb_h.target_id;
}
if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID)
hscb->control |= ccb->csio.tag_action;
ahc_setup_data(ahc, &ccb->csio, scb);
}
break;
}
case XPT_NOTIFY_ACK:
case XPT_IMMED_NOTIFY:
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
if (ccb->ccb_h.func_code == XPT_NOTIFY_ACK) {
/* Clear notification state */
}
SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
{
struct tmode_tstate *tstate;
struct tmode_lstate *lstate;
struct ccb_en_lun *cel;
cam_status status;
int target;
int lun;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate,
/* notfound_failure*/FALSE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
cel = &ccb->cel;
target = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
if (cel->enable != 0) {
/* Are we already enabled?? */
if (lstate != NULL) {
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
xpt_done(ccb);
break;
}
if (cel->grp6_len != 0
|| cel->grp7_len != 0) {
/*
* Don't (yet?) support vendor
* specific commands.
*/
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
/*
* Seems to be okay.
* Setup our data structures.
*/
if (tstate == NULL) {
tstate = malloc(sizeof(*tstate),
M_DEVBUF, M_NOWAIT);
if (tstate == NULL) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
break;
}
bzero(tstate, sizeof(*tstate));
ahc->enabled_targets[target] = tstate;
}
lstate = malloc(sizeof(*lstate), M_DEVBUF, M_NOWAIT);
if (lstate == NULL) {
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
xpt_done(ccb);
break;
}
bzero(lstate, sizeof(*lstate));
SLIST_INIT(&lstate->accept_tios);
SLIST_INIT(&lstate->immed_notifies);
tstate->enabled_luns[lun] = lstate;
if ((ahc->features & AHC_MULTI_TID) != 0) {
u_int16_t targid_mask;
pause_sequencer(ahc);
targid_mask = ahc_inb(ahc, TARGID)
| (ahc_inb(ahc, TARGID + 1) << 8);
targid_mask |= (0x01 << target);
ahc_outb(ahc, TARGID, targid_mask);
ahc_outb(ahc, TARGID+1, (targid_mask >> 8));
unpause_sequencer(ahc, /*always?*/FALSE);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print_path(ccb->ccb_h.path);
printf("Lun now enabled for target mode\n");
xpt_done(ccb);
break;
} else {
/* XXX Fully Implement Disable */
if (lstate == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
break;
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
break;
}
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings *cts;
struct ahc_target_tinfo *tinfo;
u_int update_type;
int s;
cts = &ccb->cts;
ahc_compile_devinfo(&devinfo, cts->ccb_h.target_id,
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A');
tinfo = &ahc->transinfo[devinfo.target_offset];
update_type = 0;
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
update_type |= AHC_TRANS_GOAL;
if ((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
update_type |= AHC_TRANS_USER;
s = splcam();
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
ahc->discenable |= devinfo.target_mask;
else
ahc->discenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
ahc->tagenable |= devinfo.target_mask;
else
ahc->tagenable &= ~devinfo.target_mask;
}
if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) {
switch (cts->bus_width) {
case MSG_EXT_WDTR_BUS_16_BIT:
if ((ahc->features & AHC_WIDE) != 0)
break;
/* FALLTHROUGH to 8bit */
case MSG_EXT_WDTR_BUS_32_BIT:
case MSG_EXT_WDTR_BUS_8_BIT:
default:
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
if ((update_type & AHC_TRANS_GOAL) != 0)
tinfo->goal.width = cts->bus_width;
if ((update_type & AHC_TRANS_USER) != 0)
tinfo->user.width = cts->bus_width;
}
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) {
struct ahc_syncrate *syncrate;
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0)
maxsync = AHC_SYNCRATE_ULTRA2;
else if ((ahc->features & AHC_ULTRA) != 0)
maxsync = AHC_SYNCRATE_ULTRA;
else
maxsync = AHC_SYNCRATE_FAST;
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0) {
if (cts->sync_offset != 0)
cts->sync_offset = ~0;
} else {
cts->sync_offset = 0;
}
syncrate = ahc_find_syncrate(ahc, &cts->sync_period,
maxsync);
ahc_validate_offset(ahc, syncrate, &cts->sync_offset,
tinfo->goal.width);
/* We use a period of 0 to represent async */
if (cts->sync_offset == 0)
cts->sync_period = 0;
if ((update_type & AHC_TRANS_GOAL) != 0) {
tinfo->goal.period = cts->sync_period;
tinfo->goal.offset = cts->sync_offset;
}
if ((update_type & AHC_TRANS_USER) != 0) {
tinfo->user.period = cts->sync_period;
tinfo->user.offset = cts->sync_offset;
}
}
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings *cts;
struct ahc_target_tinfo *targ_info;
struct ahc_transinfo *tinfo;
int s;
cts = &ccb->cts;
ahc_compile_devinfo(&devinfo, cts->ccb_h.target_id,
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A');
targ_info = &ahc->transinfo[devinfo.target_offset];
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
tinfo = &targ_info->current;
else
tinfo = &targ_info->user;
s = splcam();
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if ((ahc->discenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((ahc->tagenable & devinfo.target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
cts->sync_period = tinfo->period;
cts->sync_offset = tinfo->offset;
cts->bus_width = tinfo->width;
splx(s);
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t size_mb;
u_int32_t secs_per_cylinder;
int extended;
ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L * 1024L) / ccg->block_size);
extended = SIM_IS_SCSIBUS_B(ahc, sim)
? ahc->flags & AHC_EXTENDED_TRANS_B
: ahc->flags & AHC_EXTENDED_TRANS_A;
if (size_mb > 1024 && extended) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
struct cam_path *path;
char channel;
int found;
s = splcam();
if (SIM_IS_SCSIBUS_B(ahc, sim)) {
channel = 'B';
path = ahc->path_b;
} else {
channel = 'A';
path = ahc->path;
}
found = ahc_reset_channel(ahc, channel, /*initiate reset*/TRUE);
splx(s);
if (bootverbose) {
xpt_print_path(path);
printf("SCSI bus reset delivered. "
"%d SCBs aborted.\n", found);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
if ((ahc->features & AHC_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
if ((ahc->flags & AHC_TARGETMODE) != 0) {
cpi->target_sprt = PIT_PROCESSOR
| PIT_DISCONNECT
| PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = (ahc->features & AHC_WIDE) ? 15 : 7;
cpi->max_lun = 7;
if (SIM_IS_SCSIBUS_B(ahc, sim))
cpi->initiator_id = ahc->our_id_b;
else
cpi->initiator_id = ahc->our_id;
cpi->bus_id = cam_sim_bus(sim);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
static void
ahc_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg)
{
struct ahc_softc *ahc;
struct cam_sim *sim;
sim = (struct cam_sim *)callback_arg;
ahc = (struct ahc_softc *)cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
{
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, xpt_path_target_id(path),
SIM_IS_SCSIBUS_B(ahc, sim) ? 'B' : 'A');
/*
* Revert to async/narrow transfers
* for the next device.
*/
pause_sequencer(ahc);
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_GOAL|AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0,
AHC_TRANS_GOAL|AHC_TRANS_CUR);
unpause_sequencer(ahc, /*unpause always*/FALSE);
break;
}
default:
break;
}
}
static void
ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments,
int error)
{
struct scb *scb;
union ccb *ccb;
struct ahc_softc *ahc;
int s;
scb = (struct scb *)arg;
ccb = scb->ccb;
ahc = (struct ahc_softc *)ccb->ccb_h.ccb_ahc_ptr;
if (nsegments != 0) {
struct ahc_dma_seg *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nsegments;
/* Copy the first SG into the data pointer area */
scb->hscb->SG_pointer = scb->ahc_dmaphys;
scb->hscb->data = dm_segs->ds_addr;
scb->hscb->datalen = dm_segs->ds_len;
dm_segs++;
/* Copy the remaining segments into our SG list */
sg = scb->ahc_dma;
while (dm_segs < end_seg) {
sg->addr = dm_segs->ds_addr;
sg->len = dm_segs->ds_len;
sg++;
dm_segs++;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(ahc->dmat, scb->dmamap, op);
} else {
scb->hscb->SG_pointer = 0;
scb->hscb->data = 0;
scb->hscb->datalen = 0;
}
scb->sg_count = scb->hscb->SG_count = nsegments;
s = splcam();
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (ahc_ccb_status(ccb) != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(ahc->dmat, scb->dmamap);
ahc_free_scb(ahc, scb);
xpt_done(ccb);
splx(s);
return;
}
/* Busy this tcl if we are untagged */
if ((scb->hscb->control & TAG_ENB) == 0)
ahc_busy_tcl(ahc, scb);
LIST_INSERT_HEAD(&ahc->pending_ccbs, &ccb->ccb_h,
sim_links.le);
scb->flags |= SCB_ACTIVE;
ccb->ccb_h.status |= CAM_SIM_QUEUED;
ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb,
(ccb->ccb_h.timeout * hz) / 1000);
if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) {
xpt_print_path(ccb->ccb_h.path);
printf("Returning an immediate CTIO\n");
if ((ahc->flags & AHC_PAGESCBS) == 0)
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
ahc_outb(ahc, SCB_TAG, scb->hscb->tag);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
} else {
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
pause_sequencer(ahc);
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
}
}
splx(s);
}
static void
ahc_poll(struct cam_sim *sim)
{
ahc_intr(cam_sim_softc(sim));
}
static void
ahc_setup_data(struct ahc_softc *ahc, struct ccb_scsiio *csio,
struct scb *scb)
{
struct hardware_scb *hscb;
struct ccb_hdr *ccb_h;
hscb = scb->hscb;
ccb_h = &csio->ccb_h;
if (ccb_h->func_code == XPT_SCSI_IO) {
hscb->cmdlen = csio->cdb_len;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if ((ccb_h->flags & CAM_CDB_PHYS) == 0)
if (hscb->cmdlen <= 16) {
memcpy(hscb->cmdstore,
csio->cdb_io.cdb_ptr,
hscb->cmdlen);
hscb->cmdpointer =
hscb->cmdstore_busaddr;
} else
hscb->cmdpointer =
vtophys(csio->cdb_io.cdb_ptr);
else
hscb->cmdpointer =
(u_int32_t)csio->cdb_io.cdb_ptr;
} else {
/*
* CCB CDB Data Storage area is only 16 bytes
* so no additional testing is required
*/
memcpy(hscb->cmdstore, csio->cdb_io.cdb_bytes,
hscb->cmdlen);
hscb->cmdpointer = hscb->cmdstore_busaddr;
}
}
/* Only use S/G if there is a transfer */
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
/* We've been given a pointer to a single buffer */
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error = bus_dmamap_load(ahc->dmat,
scb->dmamap,
csio->data_ptr,
csio->dxfer_len,
ahc_execute_scb,
scb, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(ahc->sim,
/*count*/1);
scb->ccb->ccb_h.status |=
CAM_RELEASE_SIMQ;
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
if (csio->dxfer_len > AHC_MAXTRANSFER_SIZE)
panic("ahc_setup_data - Transfer size "
"larger than can device max");
seg.ds_addr = (bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
ahc_execute_scb(scb, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic("ahc_setup_data - Physical segment "
"pointers unsupported");
if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
panic("ahc_setup_data - Virtual segment "
"addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
ahc_execute_scb(scb, segs, csio->sglist_cnt, 0);
}
if (ccb_h->func_code == XPT_CONT_TARGET_IO) {
hscb->cmdpointer |= DPHASE_PENDING;
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
hscb->cmdpointer |= (TARGET_DATA_IN << 8);
}
} else {
ahc_execute_scb(scb, NULL, 0, 0);
}
}
static void
ahc_freeze_devq(struct ahc_softc *ahc, struct cam_path *path)
{
int target;
char channel;
int lun;
target = xpt_path_target_id(path);
lun = xpt_path_lun_id(path);
channel = xpt_path_sim(path)->bus_id == 0 ? 'A' : 'B';
ahc_search_qinfifo(ahc, target, channel, lun,
/*tag*/SCB_LIST_NULL, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
}
/*
* An scb (and hence an scb entry on the board) is put onto the
* free list.
*/
static void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
struct hardware_scb *hscb;
int opri;
hscb = scb->hscb;
opri = splcam();
if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0
&& (scb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
scb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
ahc->flags &= ~AHC_RESOURCE_SHORTAGE;
}
/* Clean up for the next user */
scb->flags = SCB_FREE;
hscb->control = 0;
hscb->status = 0;
STAILQ_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links);
splx(opri);
}
/*
* Get a free scb, either one already assigned to a hardware slot
* on the adapter or one that will require an SCB to be paged out before
* use. If there are none, see if we can allocate a new SCB. Otherwise
* either return an error or sleep.
*/
static struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
struct scb *scbp;
int opri;
opri = splcam();
if ((scbp = STAILQ_FIRST(&ahc->scb_data->free_scbs))) {
STAILQ_REMOVE_HEAD(&ahc->scb_data->free_scbs, links);
} else if (ahc->scb_data->numscbs < ahc->scb_data->maxscbs) {
scbp = ahc_alloc_scb(ahc);
if (scbp == NULL)
printf("%s: Can't malloc SCB\n", ahc_name(ahc));
}
splx(opri);
return (scbp);
}
static struct scb *
ahc_alloc_scb(struct ahc_softc *ahc)
{
static struct ahc_dma_seg *next_sg_array = NULL;
static int sg_arrays_free = 0;
struct scb *newscb;
int error;
newscb = (struct scb *) malloc(sizeof(struct scb), M_DEVBUF, M_NOWAIT);
if (newscb != NULL) {
bzero(newscb, sizeof(struct scb));
error = bus_dmamap_create(ahc->dmat, /*flags*/0,
&newscb->dmamap);
if (error != 0)
printf("%s: Unable to allocate SCB dmamap - error %d\n",
ahc_name(ahc), error);
if (error == 0 && next_sg_array == NULL) {
size_t alloc_size = sizeof(struct ahc_dma_seg)
* AHC_NSEG;
sg_arrays_free = PAGE_SIZE / alloc_size;
alloc_size *= sg_arrays_free;
if (alloc_size == 0)
panic("%s: SG list doesn't fit in a page",
ahc_name(ahc));
next_sg_array = (struct ahc_dma_seg *)
malloc(alloc_size, M_DEVBUF, M_NOWAIT);
}
if (error == 0 && next_sg_array != NULL) {
struct hardware_scb *hscb;
newscb->ahc_dma = next_sg_array;
newscb->ahc_dmaphys = vtophys(next_sg_array);
sg_arrays_free--;
if (sg_arrays_free == 0)
next_sg_array = NULL;
else
next_sg_array = &next_sg_array[AHC_NSEG];
hscb = &ahc->scb_data->hscbs[ahc->scb_data->numscbs];
newscb->hscb = hscb;
hscb->control = 0;
hscb->status = 0;
hscb->tag = ahc->scb_data->numscbs;
hscb->residual_data_count[2] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[0] = 0;
hscb->residual_SG_count = 0;
hscb->cmdstore_busaddr =
ahc_hscb_busaddr(ahc, hscb->tag)
+ offsetof(struct hardware_scb, cmdstore);
/*
* Place in the scbarray
* Never is removed.
*/
ahc->scb_data->scbarray[hscb->tag] = newscb;
ahc->scb_data->numscbs++;
} else {
free(newscb, M_DEVBUF);
newscb = NULL;
}
}
return newscb;
}
static void
ahc_loadseq(struct ahc_softc *ahc)
{
struct patch *cur_patch;
int i;
int downloaded;
int skip_addr;
u_int8_t download_consts[4];
/* Setup downloadable constant table */
download_consts[TMODE_NUMCMDS] = ahc->num_targetcmds;
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahc_outb(ahc, SEQADDR0, 0);
ahc_outb(ahc, SEQADDR1, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
ahc_download_instr(ahc, i, download_consts);
downloaded++;
}
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
restart_sequencer(ahc);
if (bootverbose)
printf(" %d instructions downloaded\n", downloaded);
}
static int
ahc_check_patch(struct ahc_softc *ahc, struct patch **start_patch,
int start_instr, int *skip_addr)
{
struct patch *cur_patch;
struct patch *last_patch;
int patch_index;
int num_patches;
num_patches = sizeof(patches)/sizeof(struct patch);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahc) == 0) {
int skip;
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our intruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static void
ahc_download_instr(struct ahc_softc *ahc, int instrptr, u_int8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
int fmt3;
u_int8_t opcode;
/* Structure copy */
instr = *(union ins_formats*)&seqprog[instrptr * 4];
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
struct patch *cur_patch;
int address_offset;
u_int address;
int skip_addr;
int i;
fmt3_ins = &instr.format3;
address_offset = 0;
address = fmt3_ins->address;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = MIN(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
address -= address_offset;
fmt3_ins->address = address;
/* FALLTHROUGH */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* FALLTHROUGH */
case AIC_OP_ROL:
if ((ahc->features & AHC_ULTRA2) != 0) {
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
u_int32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
} else {
/* Compress the instruction for older sequencers */
if (fmt3_ins != NULL) {
instr.integer =
fmt3_ins->immediate
| (fmt3_ins->source << 8)
| (fmt3_ins->address << 16)
| (fmt3_ins->opcode << 25);
} else {
instr.integer =
fmt1_ins->immediate
| (fmt1_ins->source << 8)
| (fmt1_ins->destination << 16)
| (fmt1_ins->ret << 24)
| (fmt1_ins->opcode << 25);
}
}
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
break;
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
static void
ahc_set_recoveryscb(struct ahc_softc *ahc, struct scb *scb) {
if ((scb->flags & SCB_RECOVERY_SCB) == 0) {
struct ccb_hdr *ccbh;
scb->flags |= SCB_RECOVERY_SCB;
/*
* Take all queued, but not sent SCBs out of the equation.
* Also ensure that no new CCBs are queued to us while we
* try to fix this problem.
*/
if ((scb->ccb->ccb_h.status & CAM_RELEASE_SIMQ) == 0) {
xpt_freeze_simq(ahc->sim, /*count*/1);
scb->ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
/*
* Go through all of our pending SCBs and remove
* any scheduled timeouts for them. We will reschedule
* them after we've successfully fixed this problem.
*/
ccbh = ahc->pending_ccbs.lh_first;
while (ccbh != NULL) {
struct scb *pending_scb;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
untimeout(ahc_timeout, pending_scb, ccbh->timeout_ch);
ccbh = ccbh->sim_links.le.le_next;
}
}
}
static void
ahc_timeout(void *arg)
{
struct scb *scb;
struct ahc_softc *ahc;
int s, found;
u_int8_t bus_state;
int target;
int lun;
char channel;
scb = (struct scb *)arg;
ahc = (struct ahc_softc *)scb->ccb->ccb_h.ccb_ahc_ptr;
s = splcam();
/*
* Ensure that the card doesn't do anything
* behind our back. Also make sure that we
* didn't "just" miss an interrupt that would
* affect this timeout.
*/
do {
ahc_intr(ahc);
pause_sequencer(ahc);
} while (ahc_inb(ahc, INTSTAT) & INT_PEND);
if ((scb->flags & SCB_ACTIVE) == 0) {
/* Previous timeout took care of me already */
printf("Timedout SCB handled by another timeout\n");
unpause_sequencer(ahc, /*unpause_always*/TRUE);
splx(s);
return;
}
target = SCB_TARGET(scb);
channel = SCB_CHANNEL(scb);
lun = SCB_LUN(scb);
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB 0x%x - timed out ", scb->hscb->tag);
/*
* Take a snapshot of the bus state and print out
* some information so we can track down driver bugs.
*/
bus_state = ahc_inb(ahc, LASTPHASE);
switch(bus_state)
{
case P_DATAOUT:
printf("in dataout phase");
break;
case P_DATAIN:
printf("in datain phase");
break;
case P_COMMAND:
printf("in command phase");
break;
case P_MESGOUT:
printf("in message out phase");
break;
case P_STATUS:
printf("in status phase");
break;
case P_MESGIN:
printf("in message in phase");
break;
case P_BUSFREE:
printf("while idle, LASTPHASE == 0x%x",
bus_state);
break;
default:
/*
* We aren't in a valid phase, so assume we're
* idle.
*/
printf("invalid phase, LASTPHASE == 0x%x",
bus_state);
bus_state = P_BUSFREE;
break;
}
printf(", SCSISIGI == 0x%x\n", ahc_inb(ahc, SCSISIGI));
printf("SEQADDR == 0x%x\n", ahc_inb(ahc, SEQADDR0)
| (ahc_inb(ahc, SEQADDR1) << 8));
printf("SSTAT1 == 0x%x\n", ahc_inb(ahc, SSTAT1));
#if 0
printf("SCSIRATE == 0x%x\n", ahc_inb(ahc, SCSIRATE));
printf("CCSCBCTL == 0x%x\n", ahc_inb(ahc, CCSCBCTL));
printf("CCSCBCNT == 0x%x\n", ahc_inb(ahc, CCSCBCNT));
printf("DFCNTRL == 0x%x\n", ahc_inb(ahc, DFCNTRL));
printf("DFSTATUS == 0x%x\n", ahc_inb(ahc, DFSTATUS));
printf("CCHCNT == 0x%x\n", ahc_inb(ahc, CCHCNT));
#endif
/* Decide our course of action */
if (scb->flags & SCB_DEVICE_RESET) {
/*
* Been down this road before.
* Do a full bus reset.
*/
bus_reset:
ahc_set_ccb_status(scb->ccb, CAM_CMD_TIMEOUT);
found = ahc_reset_channel(ahc, channel, /*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahc_name(ahc), channel, found);
} else {
/*
* Send a Bus Device Reset message:
* The target that is holding up the bus may not
* be the same as the one that triggered this timeout
* (different commands have different timeout lengths).
* Our strategy here is to queue a BDR message
* to the timed out target if the bus is idle.
* Otherwise, if we have an active target we stuff the
* message buffer with a BDR message and assert ATN
* in the hopes that the target will let go of the bus
* and go to the mesgout phase. If this fails, we'll
* get another timeout 2 seconds later which will attempt
* a bus reset.
*/
u_int8_t active_scb_index;
active_scb_index = ahc_inb(ahc, SCB_TAG);
if (bus_state != P_BUSFREE
&& (active_scb_index < ahc->scb_data->numscbs)) {
struct scb *active_scb;
/*
* If the active SCB is not from our device,
* assume that another device is hogging the bus
* and wait for it's timeout to expire before
* taking addition action.
*/
active_scb = ahc->scb_data->scbarray[active_scb_index];
if (active_scb->hscb->tcl != scb->hscb->tcl
&& (scb->flags & SCB_OTHERTCL_TIMEOUT) == 0) {
struct ccb_hdr *ccbh;
u_int newtimeout;
scb->flags |= SCB_OTHERTCL_TIMEOUT;
newtimeout = MAX(active_scb->ccb->ccb_h.timeout,
scb->ccb->ccb_h.timeout);
ccbh = &scb->ccb->ccb_h;
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, scb,
(newtimeout * hz) / 1000);
splx(s);
return;
}
ahc_set_recoveryscb(ahc, active_scb);
ahc_outb(ahc, MSG_OUT, MSG_BUS_DEV_RESET);
ahc_outb(ahc, SCSISIGO, bus_state|ATNO);
xpt_print_path(active_scb->ccb->ccb_h.path);
printf("BDR message in message buffer\n");
active_scb->flags |= SCB_DEVICE_RESET;
active_scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)active_scb, 2 * hz);
unpause_sequencer(ahc, /*unpause_always*/TRUE);
} else {
int disconnected;
if (ahc_search_qinfifo(ahc, target, channel, lun,
scb->hscb->tag, /*status*/0,
SEARCH_COUNT) > 0) {
disconnected = FALSE;
} else {
disconnected = TRUE;
}
if (disconnected) {
u_int8_t hscb_index;
ahc_set_recoveryscb(ahc, scb);
/*
* Simply set the MK_MESSAGE control bit.
*/
scb->hscb->control |= MK_MESSAGE;
scb->flags |= SCB_QUEUED_MSG
| SCB_DEVICE_RESET;
hscb_index = ahc_find_scb(ahc, scb);
if (hscb_index != SCB_LIST_NULL) {
u_int8_t scb_control;
u_int8_t saved_scbptr;
saved_scbptr = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, hscb_index);
scb_control = ahc_inb(ahc, SCB_CONTROL);
ahc_outb(ahc, SCB_CONTROL,
scb_control | MK_MESSAGE);
ahc_outb(ahc, SCBPTR, saved_scbptr);
}
/*
* Actually re-queue this SCB in case we can
* select the device before it reconnects.
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahc_search_qinfifo(ahc, SCB_TARGET(scb),
channel, SCB_LUN(scb),
SCB_LIST_NULL,
CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
xpt_print_path(scb->ccb->ccb_h.path);
printf("Queuing a BDR SCB\n");
ahc->qinfifo[ahc->qinfifonext++] =
scb->hscb->tag;
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF,
ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS,
ahc->qinfifonext);
}
scb->ccb->ccb_h.timeout_ch =
timeout(ahc_timeout, (caddr_t)scb, 2 * hz);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
} else {
/* Go "immediatly" to the bus reset */
/* This shouldn't happen */
ahc_set_recoveryscb(ahc, scb);
xpt_print_path(scb->ccb->ccb_h.path);
printf("SCB %d: Immediate reset. "
"Flags = 0x%x\n", scb->hscb->tag,
scb->flags);
goto bus_reset;
}
}
}
splx(s);
}
/*
* Look through the SCB array of the card and attempt to find the
* hardware SCB that corresponds to the passed in SCB. Return
* SCB_LIST_NULL if unsuccessful. This routine assumes that the
* card is already paused.
*/
static u_int8_t
ahc_find_scb(struct ahc_softc *ahc, struct scb *scb)
{
u_int8_t saved_scbptr;
u_int8_t curindex;
saved_scbptr = ahc_inb(ahc, SCBPTR);
for (curindex = 0; curindex < ahc->scb_data->maxhscbs; curindex++) {
ahc_outb(ahc, SCBPTR, curindex);
if (ahc_inb(ahc, SCB_TAG) == scb->hscb->tag)
break;
}
ahc_outb(ahc, SCBPTR, saved_scbptr);
if (curindex >= ahc->scb_data->maxhscbs)
curindex = SCB_LIST_NULL;
return curindex;
}
static int
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
int lun, u_int8_t tag, u_int32_t status,
ahc_search_action action)
{
struct scb *scbp;
u_int8_t qinpos;
u_int8_t qintail;
int found;
qinpos = ahc_inb(ahc, QINPOS);
qintail = ahc->qinfifonext;
found = 0;
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahc->qinfifonext = qinpos;
while (qinpos != qintail) {
scbp = ahc->scb_data->scbarray[ahc->qinfifo[qinpos]];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
/*
* We found an scb that needs to be removed.
*/
switch (action) {
case SEARCH_COMPLETE:
if (ahc_ccb_status(scbp->ccb) == CAM_REQ_INPROG)
ahc_set_ccb_status(scbp->ccb, status);
ahc_freeze_ccb(scbp->ccb);
ahc_done(ahc, scbp);
break;
case SEARCH_COUNT:
ahc->qinfifo[ahc->qinfifonext++] =
scbp->hscb->tag;
break;
case SEARCH_REMOVE:
break;
}
found++;
} else {
ahc->qinfifo[ahc->qinfifonext++] = scbp->hscb->tag;
}
qinpos++;
}
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
} else {
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
}
return (found);
}
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
static int
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
int lun, u_int8_t tag, u_int32_t status)
{
struct scb *scbp;
u_int8_t active_scb;
int i;
int found;
/* restore this when we're done */
active_scb = ahc_inb(ahc, SCBPTR);
found = ahc_search_qinfifo(ahc, target, channel, lun, tag,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
/*
* Search waiting for selection list.
*/
{
u_int8_t next, prev;
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int8_t scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Waiting List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
next = ahc_abort_wscb(ahc, next, prev);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
}
/*
* Go through the disconnected list and remove any entries we
* have queued for completion, 0'ing their control byte too.
*/
{
u_int8_t next, prev;
next = ahc_inb(ahc, DISCONNECTED_SCBH);
prev = SCB_LIST_NULL;
while (next != SCB_LIST_NULL) {
u_int8_t scb_index;
ahc_outb(ahc, SCBPTR, next);
scb_index = ahc_inb(ahc, SCB_TAG);
if (scb_index >= ahc->scb_data->numscbs) {
panic("Disconnected List inconsistency. "
"SCB index == %d, yet numscbs == %d.",
scb_index, ahc->scb_data->numscbs);
}
scbp = ahc->scb_data->scbarray[scb_index];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
next = ahc_rem_scb_from_disc_list(ahc, prev,
next);
} else {
prev = next;
next = ahc_inb(ahc, SCB_NEXT);
}
}
}
/*
* Go through the hardware SCB array looking for commands that
* were active but not on any list.
*/
for(i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int8_t scbid;
ahc_outb(ahc, SCBPTR, i);
scbid = ahc_inb(ahc, SCB_TAG);
if (scbid < ahc->scb_data->numscbs) {
scbp = ahc->scb_data->scbarray[scbid];
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
ahc_add_curscb_to_free_list(ahc);
}
}
}
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occured.
*/
{
struct ccb_hdr *ccb_h;
ccb_h = ahc->pending_ccbs.lh_first;
while (ccb_h != NULL) {
scbp = (struct scb *)ccb_h->ccb_scb_ptr;
ccb_h = ccb_h->sim_links.le.le_next;
if (ahc_match_scb(scbp, target, channel, lun, tag)) {
if (ahc_ccb_status(scbp->ccb) == CAM_REQ_INPROG)
ahc_set_ccb_status(scbp->ccb, status);
ahc_freeze_ccb(scbp->ccb);
ahc_done(ahc, scbp);
found++;
}
}
}
ahc_outb(ahc, SCBPTR, active_scb);
return found;
}
static u_int8_t
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int8_t prev, u_int8_t scbptr)
{
u_int8_t next;
ahc_outb(ahc, SCBPTR, scbptr);
next = ahc_inb(ahc, SCB_NEXT);
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
if (prev != SCB_LIST_NULL) {
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
} else
ahc_outb(ahc, DISCONNECTED_SCBH, next);
return next;
}
static void
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
{
/* Invalidate the tag so that ahc_find_scb doesn't think it's active */
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int8_t
ahc_abort_wscb(struct ahc_softc *ahc, u_int8_t scbpos, u_int8_t prev)
{
u_int8_t curscb, next;
/*
* Select the SCB we want to abort and
* pull the next pointer out of it.
*/
curscb = ahc_inb(ahc, SCBPTR);
ahc_outb(ahc, SCBPTR, scbpos);
next = ahc_inb(ahc, SCB_NEXT);
/* Clear the necessary fields */
ahc_outb(ahc, SCB_CONTROL, 0);
ahc_add_curscb_to_free_list(ahc);
/* update the waiting list */
if (prev == SCB_LIST_NULL) {
/* First in the list */
ahc_outb(ahc, WAITING_SCBH, next);
/*
* Ensure we aren't attempting to perform
* selection for this entry.
*/
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
} else {
/*
* Select the scb that pointed to us
* and update its next pointer.
*/
ahc_outb(ahc, SCBPTR, prev);
ahc_outb(ahc, SCB_NEXT, next);
}
/*
* Point us back at the original scb position.
*/
ahc_outb(ahc, SCBPTR, curscb);
return next;
}
static void
ahc_clear_intstat(struct ahc_softc *ahc)
{
/* Clear any interrupt conditions this may have caused */
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
CLRREQINIT);
ahc_outb(ahc, CLRINT, CLRSCSIINT);
}
static void
ahc_reset_current_bus(struct ahc_softc *ahc)
{
u_int8_t scsiseq;
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
scsiseq = ahc_inb(ahc, SCSISEQ);
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
DELAY(AHC_BUSRESET_DELAY);
/* Turn off the bus reset */
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
ahc_clear_intstat(ahc);
/* Re-enable reset interrupts */
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
}
static int
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
{
u_int target, max_target;
int found;
u_int8_t sblkctl;
char cur_channel;
struct cam_path *path;
pause_sequencer(ahc);
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahc_abort_scbs(ahc, ALL_TARGETS, channel, ALL_LUNS,
SCB_LIST_NULL, CAM_SCSI_BUS_RESET);
path = channel == 'B' ? ahc->path_b : ahc->path;
/* Notify the XPT that a bus reset occurred */
xpt_async(AC_BUS_RESET, path, NULL);
/*
* Revert to async/narrow transfers until we renegotiate.
*/
max_target = (ahc->features & AHC_WIDE) ? 15 : 7;
for (target = 0; target <= max_target; target++) {
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, target, channel);
ahc_set_width(ahc, &devinfo, path, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_CUR);
ahc_set_syncrate(ahc, &devinfo, path, /*syncrate*/NULL,
/*period*/0, /*offset*/0, AHC_TRANS_CUR);
}
/*
* Reset the bus if we are initiating this reset and
* restart/unpause the sequencer
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
cur_channel = 'A';
if ((ahc->features & AHC_TWIN) != 0
&& ((sblkctl & SELBUSB) != 0))
cur_channel = 'B';
if (cur_channel != channel) {
/* Case 1: Command for another bus is active
* Stealthily reset the other bus without
* upsetting the current bus.
*/
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
ahc_outb(ahc, SIMODE1,
ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENREQINIT));
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
ahc_outb(ahc, SBLKCTL, sblkctl);
unpause_sequencer(ahc, /*unpause_always*/FALSE);
} else {
/* Case 2: A command from this bus is active or we're idle */
ahc_outb(ahc, SIMODE1,
ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENREQINIT));
ahc->flags &= ~AHC_HANDLING_REQINITS;
ahc->msg_type = MSG_TYPE_NONE;
ahc_outb(ahc, SCSISEQ,
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
if (initiate_reset)
ahc_reset_current_bus(ahc);
ahc_clear_intstat(ahc);
restart_sequencer(ahc);
}
return found;
}
static int
ahc_match_scb (struct scb *scb, int target, char channel,
int lun, u_int8_t tag)
{
int targ = SCB_TARGET(scb);
char chan = SCB_CHANNEL(scb);
int slun = SCB_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == ALL_TARGETS));
if (match != 0)
match = ((lun == slun) || (lun == ALL_LUNS));
if (match != 0)
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
return match;
}
static void
ahc_construct_sdtr(struct ahc_softc *ahc, u_int8_t period, u_int8_t offset)
{
ahc->msg_buf[ahc->msg_index++] = MSG_EXTENDED;
ahc->msg_buf[ahc->msg_index++] = MSG_EXT_SDTR_LEN;
ahc->msg_buf[ahc->msg_index++] = MSG_EXT_SDTR;
ahc->msg_buf[ahc->msg_index++] = period;
ahc->msg_buf[ahc->msg_index++] = offset;
ahc->msg_len += 5;
}
static void
ahc_construct_wdtr(struct ahc_softc *ahc, u_int8_t bus_width)
{
ahc->msg_buf[ahc->msg_index++] = MSG_EXTENDED;
ahc->msg_buf[ahc->msg_index++] = MSG_EXT_WDTR_LEN;
ahc->msg_buf[ahc->msg_index++] = MSG_EXT_WDTR;
ahc->msg_buf[ahc->msg_index++] = bus_width;
ahc->msg_len += 4;
}
static void
ahc_calc_residual(struct scb *scb)
{
struct hardware_scb *hscb;
hscb = scb->hscb;
/*
* If the disconnected flag is still set, this is bogus
* residual information left over from a sequencer
* pagin/pageout, so ignore this case.
*/
if ((scb->hscb->control & DISCONNECTED) == 0) {
u_int32_t resid;
int resid_sgs;
int sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = (hscb->residual_data_count[2] << 16)
| (hscb->residual_data_count[1] <<8)
| (hscb->residual_data_count[0]);
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
resid_sgs = scb->hscb->residual_SG_count - 1/*current*/;
sg = scb->sg_count - resid_sgs - 1/*first SG*/;
while (resid_sgs > 0) {
resid += scb->ahc_dma[sg].len;
sg++;
resid_sgs--;
}
if ((scb->flags & SCB_SENSE) == 0) {
scb->ccb->csio.resid = resid;
} else {
scb->ccb->csio.sense_resid = resid;
}
}
/*
* Clean out the residual information in this SCB for its
* next consumer.
*/
hscb->residual_data_count[0] = 0;
hscb->residual_data_count[1] = 0;
hscb->residual_data_count[2] = 0;
hscb->residual_SG_count = 0;
#ifdef AHC_DEBUG
if (ahc_debug & AHC_SHOWMISC) {
sc_print_addr(xs->sc_link);
printf("Handled Residual of %ld bytes\n" ,xs->resid);
}
#endif
}
static void
ahc_update_pending_syncrates(struct ahc_softc *ahc)
{
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings.
*/
struct ccb_hdr *ccbh;
int pending_ccb_count;
int i;
u_int saved_scbptr;
/*
* We were able to complete the command successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
ccbh = LIST_FIRST(&ahc->pending_ccbs);
pending_ccb_count = 0;
while (ccbh != NULL) {
struct scb *pending_scb;
struct hardware_scb *pending_hscb;
struct ahc_target_tinfo *tinfo;
struct ahc_devinfo devinfo;
pending_scb = (struct scb *)ccbh->ccb_scb_ptr;
pending_hscb = pending_scb->hscb;
ahc_compile_devinfo(&devinfo, SCB_TARGET(pending_scb),
SCB_CHANNEL(pending_scb));
tinfo = &ahc->transinfo[devinfo.target_offset];
pending_hscb->control &= ~ULTRAENB;
if ((ahc->ultraenb & devinfo.target_mask) != 0)
pending_hscb->control |= ULTRAENB;
pending_hscb->scsirate = tinfo->scsirate;
pending_hscb->scsioffset = tinfo->current.offset;
pending_ccb_count++;
ccbh = LIST_NEXT(ccbh, sim_links.le);
}
if (pending_ccb_count == 0)
return;
saved_scbptr = ahc_inb(ahc, SCBPTR);
/* Ensure that the hscbs down on the card match the new information */
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
u_int scb_tag;
ahc_outb(ahc, SCBPTR, i);
scb_tag = ahc_inb(ahc, SCB_TAG);
if (scb_tag != SCB_LIST_NULL) {
struct scb *pending_scb;
struct hardware_scb *pending_hscb;
struct ahc_target_tinfo *tinfo;
struct ahc_devinfo devinfo;
u_int control;
pending_scb = ahc->scb_data->scbarray[scb_tag];
pending_hscb = pending_scb->hscb;
ahc_compile_devinfo(&devinfo, SCB_TARGET(pending_scb),
SCB_CHANNEL(pending_scb));
tinfo = &ahc->transinfo[devinfo.target_offset];
control = ahc_inb(ahc, SCB_CONTROL);
control &= ~ULTRAENB;
if ((ahc->ultraenb & devinfo.target_mask) != 0)
control |= ULTRAENB;
ahc_outb(ahc, SCB_CONTROL, control);
ahc_outb(ahc, SCB_SCSIRATE, tinfo->scsirate);
ahc_outb(ahc, SCB_SCSIOFFSET, tinfo->current.offset);
}
}
ahc_outb(ahc, SCBPTR, saved_scbptr);
}
static void
ahc_dump_targcmd(struct target_cmd *cmd)
{
u_int8_t *byte;
u_int8_t *last_byte;
int initiator;
int target;
int lun;
int i;
byte = &cmd->icl;
/* Debugging info for received commands */
last_byte = &cmd[1].icl;
i = 0;
while (byte < last_byte) {
if (i == 0)
printf("\t");
printf("%#x", *byte++);
i++;
if (i == 8) {
printf("\n");
i = 0;
} else {
printf(", ");
}
}
}
static void
ahc_shutdown(int howto, void *arg)
{
struct ahc_softc *ahc;
int i;
ahc = (struct ahc_softc *)arg;
ahc_reset(ahc);
ahc_outb(ahc, SCSISEQ, 0);
ahc_outb(ahc, SXFRCTL0, 0);
ahc_outb(ahc, DSPCISTATUS, 0);
for (i = TARG_SCSIRATE; i < HA_274_BIOSCTRL; i++)
ahc_outb(ahc, i, 0);
}