2001-03-12 21:30:52 +00:00
|
|
|
/*-
|
1995-11-28 23:55:26 +00:00
|
|
|
* Copyright (c) 1995, David Greenman
|
2001-03-14 19:50:35 +00:00
|
|
|
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
|
1995-11-28 23:55:26 +00:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice unmodified, this list of conditions, and the following
|
|
|
|
* disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
1999-08-28 01:08:13 +00:00
|
|
|
* $FreeBSD$
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
1996-01-15 10:12:41 +00:00
|
|
|
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/systm.h>
|
|
|
|
#include <sys/mbuf.h>
|
|
|
|
#include <sys/malloc.h>
|
2001-03-12 21:30:52 +00:00
|
|
|
/* #include <sys/mutex.h> */
|
1995-11-28 23:55:26 +00:00
|
|
|
#include <sys/kernel.h>
|
1996-10-12 19:49:43 +00:00
|
|
|
#include <sys/socket.h>
|
2001-10-25 05:32:01 +00:00
|
|
|
#include <sys/sysctl.h>
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
#include <net/if.h>
|
1997-09-29 11:27:43 +00:00
|
|
|
#include <net/if_dl.h>
|
1997-09-05 10:23:58 +00:00
|
|
|
#include <net/if_media.h>
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
#ifdef NS
|
|
|
|
#include <netns/ns.h>
|
|
|
|
#include <netns/ns_if.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <net/bpf.h>
|
1997-09-05 10:23:58 +00:00
|
|
|
#include <sys/sockio.h>
|
1999-04-16 21:22:55 +00:00
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <sys/rman.h>
|
|
|
|
#include <machine/resource.h>
|
1997-09-05 10:23:58 +00:00
|
|
|
|
1998-01-08 23:42:31 +00:00
|
|
|
#include <net/ethernet.h>
|
|
|
|
#include <net/if_arp.h>
|
1997-09-05 10:23:58 +00:00
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
#include <vm/vm.h> /* for vtophys */
|
1995-12-07 12:48:31 +00:00
|
|
|
#include <vm/pmap.h> /* for vtophys */
|
2001-03-12 21:30:52 +00:00
|
|
|
#include <machine/clock.h> /* for DELAY */
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-05-13 00:03:39 +00:00
|
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/if_vlan_var.h>
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
#include <pci/pcivar.h>
|
1999-03-20 04:51:25 +00:00
|
|
|
#include <pci/pcireg.h> /* for PCIM_CMD_xxx */
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
#include <dev/mii/mii.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
|
|
|
|
#include <dev/fxp/if_fxpreg.h>
|
|
|
|
#include <dev/fxp/if_fxpvar.h>
|
2001-10-25 05:32:01 +00:00
|
|
|
#include <dev/fxp/rcvbundl.h>
|
2001-03-12 21:30:52 +00:00
|
|
|
|
|
|
|
MODULE_DEPEND(fxp, miibus, 1, 1, 1);
|
|
|
|
#include "miibus_if.h"
|
1999-09-30 19:03:12 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
/*
|
|
|
|
* NOTE! On the Alpha, we have an alignment constraint. The
|
|
|
|
* card DMAs the packet immediately following the RFA. However,
|
|
|
|
* the first thing in the packet is a 14-byte Ethernet header.
|
|
|
|
* This means that the packet is misaligned. To compensate,
|
|
|
|
* we actually offset the RFA 2 bytes into the cluster. This
|
|
|
|
* alignes the packet after the Ethernet header at a 32-bit
|
|
|
|
* boundary. HOWEVER! This means that the RFA is misaligned!
|
|
|
|
*/
|
|
|
|
#define RFA_ALIGNMENT_FUDGE 2
|
|
|
|
|
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Set initial transmit threshold at 64 (512 bytes). This is
|
|
|
|
* increased by 64 (512 bytes) at a time, to maximum of 192
|
|
|
|
* (1536 bytes), if an underrun occurs.
|
1997-09-05 10:23:58 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
static int tx_threshold = 64;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* The configuration byte map has several undefined fields which
|
|
|
|
* must be one or must be zero. Set up a template for these bits
|
|
|
|
* only, (assuming a 82557 chip) leaving the actual configuration
|
|
|
|
* to fxp_init.
|
|
|
|
*
|
1995-11-28 23:55:26 +00:00
|
|
|
* See struct fxp_cb_config for the bit definitions.
|
|
|
|
*/
|
|
|
|
static u_char fxp_cb_config_template[] = {
|
|
|
|
0x0, 0x0, /* cb_status */
|
2001-03-12 21:30:52 +00:00
|
|
|
0x0, 0x0, /* cb_command */
|
|
|
|
0x0, 0x0, 0x0, 0x0, /* link_addr */
|
|
|
|
0x0, /* 0 */
|
|
|
|
0x0, /* 1 */
|
1995-11-28 23:55:26 +00:00
|
|
|
0x0, /* 2 */
|
|
|
|
0x0, /* 3 */
|
|
|
|
0x0, /* 4 */
|
2001-03-12 21:30:52 +00:00
|
|
|
0x0, /* 5 */
|
|
|
|
0x32, /* 6 */
|
|
|
|
0x0, /* 7 */
|
|
|
|
0x0, /* 8 */
|
1995-11-28 23:55:26 +00:00
|
|
|
0x0, /* 9 */
|
2001-03-12 21:30:52 +00:00
|
|
|
0x6, /* 10 */
|
1995-11-28 23:55:26 +00:00
|
|
|
0x0, /* 11 */
|
2001-03-12 21:30:52 +00:00
|
|
|
0x0, /* 12 */
|
1995-11-28 23:55:26 +00:00
|
|
|
0x0, /* 13 */
|
|
|
|
0xf2, /* 14 */
|
|
|
|
0x48, /* 15 */
|
|
|
|
0x0, /* 16 */
|
|
|
|
0x40, /* 17 */
|
2001-03-12 21:30:52 +00:00
|
|
|
0xf0, /* 18 */
|
1995-11-28 23:55:26 +00:00
|
|
|
0x0, /* 19 */
|
|
|
|
0x3f, /* 20 */
|
1997-09-29 11:27:43 +00:00
|
|
|
0x5 /* 21 */
|
1995-11-28 23:55:26 +00:00
|
|
|
};
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
struct fxp_ident {
|
|
|
|
u_int16_t devid;
|
|
|
|
char *name;
|
1997-09-05 10:23:58 +00:00
|
|
|
};
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/*
|
|
|
|
* Claim various Intel PCI device identifiers for this driver. The
|
|
|
|
* sub-vendor and sub-device field are extensively used to identify
|
|
|
|
* particular variants, but we don't currently differentiate between
|
|
|
|
* them.
|
|
|
|
*/
|
|
|
|
static struct fxp_ident fxp_ident_table[] = {
|
|
|
|
{ 0x1229, "Intel Pro 10/100B/100+ Ethernet" },
|
|
|
|
{ 0x2449, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1209, "Intel Embedded 10/100 Ethernet" },
|
|
|
|
{ 0x1029, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1030, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1031, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1032, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1033, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1034, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1035, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1036, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1037, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x1038, "Intel Pro/100 Ethernet" },
|
2002-06-05 18:34:08 +00:00
|
|
|
{ 0x1039, "Intel Pro/100 Ethernet" },
|
2002-06-29 01:56:14 +00:00
|
|
|
{ 0x103A, "Intel Pro/100 Ethernet" },
|
2002-09-24 23:13:38 +00:00
|
|
|
{ 0x103B, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x103C, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x103D, "Intel Pro/100 Ethernet" },
|
|
|
|
{ 0x103E, "Intel Pro/100 Ethernet" },
|
2001-03-12 21:30:52 +00:00
|
|
|
{ 0, NULL },
|
1997-09-05 10:23:58 +00:00
|
|
|
};
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
static int fxp_probe(device_t dev);
|
|
|
|
static int fxp_attach(device_t dev);
|
|
|
|
static int fxp_detach(device_t dev);
|
|
|
|
static int fxp_shutdown(device_t dev);
|
|
|
|
static int fxp_suspend(device_t dev);
|
|
|
|
static int fxp_resume(device_t dev);
|
|
|
|
|
|
|
|
static void fxp_intr(void *xsc);
|
|
|
|
static void fxp_init(void *xsc);
|
|
|
|
static void fxp_tick(void *xsc);
|
2001-07-25 18:00:17 +00:00
|
|
|
static void fxp_powerstate_d0(device_t dev);
|
2001-03-12 21:30:52 +00:00
|
|
|
static void fxp_start(struct ifnet *ifp);
|
|
|
|
static void fxp_stop(struct fxp_softc *sc);
|
|
|
|
static void fxp_release(struct fxp_softc *sc);
|
|
|
|
static int fxp_ioctl(struct ifnet *ifp, u_long command,
|
|
|
|
caddr_t data);
|
|
|
|
static void fxp_watchdog(struct ifnet *ifp);
|
|
|
|
static int fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
|
2002-01-07 15:08:54 +00:00
|
|
|
static int fxp_mc_addrs(struct fxp_softc *sc);
|
2001-03-12 21:30:52 +00:00
|
|
|
static void fxp_mc_setup(struct fxp_softc *sc);
|
|
|
|
static u_int16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
|
|
|
|
int autosize);
|
2001-08-27 16:07:12 +00:00
|
|
|
static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
|
|
|
|
u_int16_t data);
|
2001-03-12 21:30:52 +00:00
|
|
|
static void fxp_autosize_eeprom(struct fxp_softc *sc);
|
|
|
|
static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
|
|
|
|
int offset, int words);
|
2001-08-27 16:07:12 +00:00
|
|
|
static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
|
|
|
|
int offset, int words);
|
2001-03-12 21:30:52 +00:00
|
|
|
static int fxp_ifmedia_upd(struct ifnet *ifp);
|
|
|
|
static void fxp_ifmedia_sts(struct ifnet *ifp,
|
|
|
|
struct ifmediareq *ifmr);
|
|
|
|
static int fxp_serial_ifmedia_upd(struct ifnet *ifp);
|
|
|
|
static void fxp_serial_ifmedia_sts(struct ifnet *ifp,
|
|
|
|
struct ifmediareq *ifmr);
|
|
|
|
static volatile int fxp_miibus_readreg(device_t dev, int phy, int reg);
|
|
|
|
static void fxp_miibus_writereg(device_t dev, int phy, int reg,
|
|
|
|
int value);
|
2001-10-25 05:32:01 +00:00
|
|
|
static void fxp_load_ucode(struct fxp_softc *sc);
|
|
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
|
|
|
|
int low, int high);
|
|
|
|
static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
|
|
|
|
static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
|
2001-03-12 21:30:52 +00:00
|
|
|
static __inline void fxp_lwcopy(volatile u_int32_t *src,
|
|
|
|
volatile u_int32_t *dst);
|
|
|
|
static __inline void fxp_scb_wait(struct fxp_softc *sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
static __inline void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
|
2001-03-12 21:30:52 +00:00
|
|
|
static __inline void fxp_dma_wait(volatile u_int16_t *status,
|
|
|
|
struct fxp_softc *sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
static device_method_t fxp_methods[] = {
|
|
|
|
/* Device interface */
|
|
|
|
DEVMETHOD(device_probe, fxp_probe),
|
|
|
|
DEVMETHOD(device_attach, fxp_attach),
|
|
|
|
DEVMETHOD(device_detach, fxp_detach),
|
|
|
|
DEVMETHOD(device_shutdown, fxp_shutdown),
|
|
|
|
DEVMETHOD(device_suspend, fxp_suspend),
|
|
|
|
DEVMETHOD(device_resume, fxp_resume),
|
1996-09-19 09:15:20 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/* MII interface */
|
|
|
|
DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
|
|
|
|
DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
{ 0, 0 }
|
|
|
|
};
|
1998-08-04 08:53:12 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
static driver_t fxp_driver = {
|
|
|
|
"fxp",
|
|
|
|
fxp_methods,
|
|
|
|
sizeof(struct fxp_softc),
|
|
|
|
};
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
static devclass_t fxp_devclass;
|
|
|
|
|
|
|
|
DRIVER_MODULE(if_fxp, pci, fxp_driver, fxp_devclass, 0, 0);
|
|
|
|
DRIVER_MODULE(if_fxp, cardbus, fxp_driver, fxp_devclass, 0, 0);
|
|
|
|
DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, 0, 0);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2002-08-04 22:33:28 +00:00
|
|
|
static int fxp_rnr;
|
|
|
|
SYSCTL_INT(_hw, OID_AUTO, fxp_rnr, CTLFLAG_RW, &fxp_rnr, 0, "fxp rnr events");
|
|
|
|
|
1997-09-29 11:27:43 +00:00
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Inline function to copy a 16-bit aligned 32-bit quantity.
|
1997-09-29 11:27:43 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
static __inline void
|
|
|
|
fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
|
|
|
|
{
|
|
|
|
#ifdef __i386__
|
|
|
|
*dst = *src;
|
|
|
|
#else
|
|
|
|
volatile u_int16_t *a = (volatile u_int16_t *)src;
|
|
|
|
volatile u_int16_t *b = (volatile u_int16_t *)dst;
|
|
|
|
|
|
|
|
b[0] = a[0];
|
|
|
|
b[1] = a[1];
|
|
|
|
#endif
|
|
|
|
}
|
1997-09-29 11:27:43 +00:00
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
|
|
|
* Wait for the previous command to be accepted (but not necessarily
|
|
|
|
* completed).
|
|
|
|
*/
|
1998-04-15 17:47:40 +00:00
|
|
|
static __inline void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_scb_wait(struct fxp_softc *sc)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
|
|
|
int i = 10000;
|
|
|
|
|
2000-09-17 22:12:12 +00:00
|
|
|
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
|
|
|
|
DELAY(2);
|
|
|
|
if (i == 0)
|
2001-08-27 16:07:12 +00:00
|
|
|
device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
|
2001-05-13 00:03:39 +00:00
|
|
|
CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
|
|
|
|
CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
|
|
|
|
CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
|
|
|
|
CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
|
2000-09-17 22:12:12 +00:00
|
|
|
}
|
|
|
|
|
2001-05-17 23:50:24 +00:00
|
|
|
static __inline void
|
|
|
|
fxp_scb_cmd(struct fxp_softc *sc, int cmd)
|
|
|
|
{
|
|
|
|
|
|
|
|
if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
|
|
|
|
fxp_scb_wait(sc);
|
|
|
|
}
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
|
|
|
|
}
|
|
|
|
|
2000-09-17 22:12:12 +00:00
|
|
|
static __inline void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
|
2000-09-17 22:12:12 +00:00
|
|
|
{
|
|
|
|
int i = 10000;
|
|
|
|
|
|
|
|
while (!(*status & FXP_CB_STATUS_C) && --i)
|
|
|
|
DELAY(2);
|
|
|
|
if (i == 0)
|
2001-03-12 21:30:52 +00:00
|
|
|
device_printf(sc->dev, "DMA timeout\n");
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
|
|
|
* Return identification string if this is device is ours.
|
|
|
|
*/
|
1999-04-16 21:22:55 +00:00
|
|
|
static int
|
|
|
|
fxp_probe(device_t dev)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
u_int16_t devid;
|
|
|
|
struct fxp_ident *ident;
|
|
|
|
|
2000-06-18 10:26:09 +00:00
|
|
|
if (pci_get_vendor(dev) == FXP_VENDORID_INTEL) {
|
2001-03-12 21:30:52 +00:00
|
|
|
devid = pci_get_device(dev);
|
|
|
|
for (ident = fxp_ident_table; ident->name != NULL; ident++) {
|
|
|
|
if (ident->devid == devid) {
|
|
|
|
device_set_desc(dev, ident->name);
|
|
|
|
return (0);
|
|
|
|
}
|
2000-06-18 10:26:09 +00:00
|
|
|
}
|
1999-09-06 06:15:18 +00:00
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
return (ENXIO);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
2001-07-25 18:00:17 +00:00
|
|
|
static void
|
|
|
|
fxp_powerstate_d0(device_t dev)
|
|
|
|
{
|
|
|
|
#if __FreeBSD_version >= 430002
|
|
|
|
u_int32_t iobase, membase, irq;
|
|
|
|
|
|
|
|
if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
|
|
|
|
/* Save important PCI config data. */
|
|
|
|
iobase = pci_read_config(dev, FXP_PCI_IOBA, 4);
|
|
|
|
membase = pci_read_config(dev, FXP_PCI_MMBA, 4);
|
|
|
|
irq = pci_read_config(dev, PCIR_INTLINE, 4);
|
|
|
|
|
|
|
|
/* Reset the power state. */
|
|
|
|
device_printf(dev, "chip is in D%d power mode "
|
|
|
|
"-- setting to D0\n", pci_get_powerstate(dev));
|
|
|
|
|
|
|
|
pci_set_powerstate(dev, PCI_POWERSTATE_D0);
|
|
|
|
|
|
|
|
/* Restore PCI config data. */
|
|
|
|
pci_write_config(dev, FXP_PCI_IOBA, iobase, 4);
|
|
|
|
pci_write_config(dev, FXP_PCI_MMBA, membase, 4);
|
|
|
|
pci_write_config(dev, PCIR_INTLINE, irq, 4);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
1999-04-16 21:22:55 +00:00
|
|
|
static int
|
|
|
|
fxp_attach(device_t dev)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1999-04-16 21:22:55 +00:00
|
|
|
int error = 0;
|
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
1997-09-05 10:23:58 +00:00
|
|
|
struct ifnet *ifp;
|
2001-01-23 23:22:17 +00:00
|
|
|
u_int32_t val;
|
2001-03-12 21:30:52 +00:00
|
|
|
u_int16_t data;
|
|
|
|
int i, rid, m1, m2, prefer_iomap;
|
|
|
|
int s;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
bzero(sc, sizeof(*sc));
|
|
|
|
sc->dev = dev;
|
1997-09-21 22:02:25 +00:00
|
|
|
callout_handle_init(&sc->stat_ch);
|
2002-01-22 17:51:44 +00:00
|
|
|
sysctl_ctx_init(&sc->sysctl_ctx);
|
2002-04-04 21:03:38 +00:00
|
|
|
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
|
|
MTX_DEF | MTX_RECURSE);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1999-03-20 04:51:25 +00:00
|
|
|
/*
|
2001-01-23 23:22:17 +00:00
|
|
|
* Enable bus mastering. Enable memory space too, in case
|
|
|
|
* BIOS/Prom forgot about it.
|
1999-03-20 04:51:25 +00:00
|
|
|
*/
|
1999-04-16 21:22:55 +00:00
|
|
|
val = pci_read_config(dev, PCIR_COMMAND, 2);
|
1999-03-20 04:51:25 +00:00
|
|
|
val |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
1999-04-16 21:22:55 +00:00
|
|
|
pci_write_config(dev, PCIR_COMMAND, val, 2);
|
2001-01-23 23:22:17 +00:00
|
|
|
val = pci_read_config(dev, PCIR_COMMAND, 2);
|
1999-03-20 04:51:25 +00:00
|
|
|
|
2001-07-25 18:00:17 +00:00
|
|
|
fxp_powerstate_d0(dev);
|
2000-12-18 22:06:12 +00:00
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
2001-01-23 23:22:17 +00:00
|
|
|
* Figure out which we should try first - memory mapping or i/o mapping?
|
|
|
|
* We default to memory mapping. Then we accept an override from the
|
|
|
|
* command line. Then we check to see which one is enabled.
|
1995-12-01 22:41:56 +00:00
|
|
|
*/
|
2001-01-23 23:22:17 +00:00
|
|
|
m1 = PCIM_CMD_MEMEN;
|
|
|
|
m2 = PCIM_CMD_PORTEN;
|
2001-02-27 22:57:32 +00:00
|
|
|
prefer_iomap = 0;
|
|
|
|
if (resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
|
|
"prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
|
|
|
|
m1 = PCIM_CMD_PORTEN;
|
|
|
|
m2 = PCIM_CMD_MEMEN;
|
2001-01-23 23:22:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (val & m1) {
|
|
|
|
sc->rtp =
|
|
|
|
(m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
|
|
|
|
sc->rgd = (m1 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
|
|
|
|
sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
|
|
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
}
|
|
|
|
if (sc->mem == NULL && (val & m2)) {
|
|
|
|
sc->rtp =
|
|
|
|
(m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT;
|
|
|
|
sc->rgd = (m2 == PCIM_CMD_MEMEN)? FXP_PCI_MMBA : FXP_PCI_IOBA;
|
|
|
|
sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
|
|
|
|
0, ~0, 1, RF_ACTIVE);
|
|
|
|
}
|
|
|
|
|
1999-04-16 21:22:55 +00:00
|
|
|
if (!sc->mem) {
|
2001-01-23 23:22:17 +00:00
|
|
|
device_printf(dev, "could not map device registers\n");
|
1999-04-16 21:22:55 +00:00
|
|
|
error = ENXIO;
|
1995-11-28 23:55:26 +00:00
|
|
|
goto fail;
|
1999-04-16 21:22:55 +00:00
|
|
|
}
|
2001-01-23 23:22:17 +00:00
|
|
|
if (bootverbose) {
|
|
|
|
device_printf(dev, "using %s space register mapping\n",
|
|
|
|
sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
|
|
|
|
}
|
1999-09-30 19:03:12 +00:00
|
|
|
|
|
|
|
sc->sc_st = rman_get_bustag(sc->mem);
|
|
|
|
sc->sc_sh = rman_get_bushandle(sc->mem);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
|
|
|
* Allocate our interrupt.
|
|
|
|
*/
|
1999-04-16 21:22:55 +00:00
|
|
|
rid = 0;
|
|
|
|
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
|
|
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->irq == NULL) {
|
|
|
|
device_printf(dev, "could not map interrupt\n");
|
|
|
|
error = ENXIO;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
1999-05-08 21:59:43 +00:00
|
|
|
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
|
|
|
|
fxp_intr, sc, &sc->ih);
|
1999-04-16 21:22:55 +00:00
|
|
|
if (error) {
|
|
|
|
device_printf(dev, "could not setup irq\n");
|
1995-11-28 23:55:26 +00:00
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/*
|
|
|
|
* Reset to a stable state.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
|
|
|
|
DELAY(10);
|
|
|
|
|
|
|
|
sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
|
|
|
|
M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
|
|
if (sc->cbl_base == NULL)
|
|
|
|
goto failmem;
|
|
|
|
|
|
|
|
sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
|
|
|
|
M_NOWAIT | M_ZERO);
|
|
|
|
if (sc->fxp_stats == NULL)
|
|
|
|
goto failmem;
|
|
|
|
|
|
|
|
sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
|
|
|
|
if (sc->mcsp == NULL)
|
|
|
|
goto failmem;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pre-allocate our receive buffers.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
|
|
if (fxp_add_rfabuf(sc, NULL) != 0) {
|
|
|
|
goto failmem;
|
|
|
|
}
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/*
|
|
|
|
* Find out how large of an SEEPROM we have.
|
|
|
|
*/
|
|
|
|
fxp_autosize_eeprom(sc);
|
|
|
|
|
|
|
|
/*
|
2001-03-14 19:50:35 +00:00
|
|
|
* Determine whether we must use the 503 serial interface.
|
2001-03-12 21:30:52 +00:00
|
|
|
*/
|
|
|
|
fxp_read_eeprom(sc, &data, 6, 1);
|
|
|
|
if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
|
|
|
|
(data & FXP_PHY_SERIAL_ONLY))
|
2001-05-15 18:52:40 +00:00
|
|
|
sc->flags |= FXP_FLAG_SERIAL_MEDIA;
|
2001-03-12 21:30:52 +00:00
|
|
|
|
2001-03-14 19:50:35 +00:00
|
|
|
/*
|
2001-10-25 05:32:01 +00:00
|
|
|
* Create the sysctl tree
|
|
|
|
*/
|
|
|
|
sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
|
|
|
|
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
|
|
|
|
device_get_nameunit(dev), CTLFLAG_RD, 0, "");
|
|
|
|
if (sc->sysctl_tree == NULL)
|
|
|
|
goto fail;
|
|
|
|
SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
|
|
|
|
OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
|
2002-10-20 20:42:25 +00:00
|
|
|
&sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
|
2001-10-25 05:32:01 +00:00
|
|
|
"FXP driver receive interrupt microcode bundling delay");
|
|
|
|
SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
|
|
|
|
OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON,
|
2002-10-20 20:42:25 +00:00
|
|
|
&sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
|
2001-10-25 05:32:01 +00:00
|
|
|
"FXP driver receive interrupt microcode bundle size limit");
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pull in device tunables.
|
|
|
|
*/
|
|
|
|
sc->tunable_int_delay = TUNABLE_INT_DELAY;
|
|
|
|
sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
|
|
|
|
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
|
|
"int_delay", &sc->tunable_int_delay);
|
|
|
|
(void) resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
|
|
"bundle_max", &sc->tunable_bundle_max);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Find out the chip revision; lump all 82557 revs together.
|
2001-03-14 19:50:35 +00:00
|
|
|
*/
|
|
|
|
fxp_read_eeprom(sc, &data, 5, 1);
|
|
|
|
if ((data >> 8) == 1)
|
2001-10-25 05:32:01 +00:00
|
|
|
sc->revision = FXP_REV_82557;
|
|
|
|
else
|
|
|
|
sc->revision = pci_get_revid(dev);
|
2001-03-14 19:50:35 +00:00
|
|
|
|
2001-05-17 23:50:24 +00:00
|
|
|
/*
|
|
|
|
* Enable workarounds for certain chip revision deficiencies.
|
2001-08-27 16:07:12 +00:00
|
|
|
*
|
2001-10-25 05:32:01 +00:00
|
|
|
* Systems based on the ICH2/ICH2-M chip from Intel, and possibly
|
|
|
|
* some systems based a normal 82559 design, have a defect where
|
|
|
|
* the chip can cause a PCI protocol violation if it receives
|
2001-08-27 16:07:12 +00:00
|
|
|
* a CU_RESUME command when it is entering the IDLE state. The
|
|
|
|
* workaround is to disable Dynamic Standby Mode, so the chip never
|
|
|
|
* deasserts CLKRUN#, and always remains in an active state.
|
|
|
|
*
|
|
|
|
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
|
2001-05-17 23:50:24 +00:00
|
|
|
*/
|
|
|
|
i = pci_get_device(dev);
|
2001-10-25 05:32:01 +00:00
|
|
|
if (i == 0x2449 || (i > 0x1030 && i < 0x1039) ||
|
|
|
|
sc->revision >= FXP_REV_82559_A0) {
|
2001-08-27 16:07:12 +00:00
|
|
|
fxp_read_eeprom(sc, &data, 10, 1);
|
|
|
|
if (data & 0x02) { /* STB enable */
|
|
|
|
u_int16_t cksum;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
device_printf(dev,
|
2001-12-13 16:13:31 +00:00
|
|
|
"Disabling dynamic standby mode in EEPROM\n");
|
2001-08-27 16:07:12 +00:00
|
|
|
data &= ~0x02;
|
|
|
|
fxp_write_eeprom(sc, &data, 10, 1);
|
|
|
|
device_printf(dev, "New EEPROM ID: 0x%x\n", data);
|
|
|
|
cksum = 0;
|
|
|
|
for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
|
|
|
|
fxp_read_eeprom(sc, &data, i, 1);
|
|
|
|
cksum += data;
|
|
|
|
}
|
|
|
|
i = (1 << sc->eeprom_size) - 1;
|
|
|
|
cksum = 0xBABA - cksum;
|
|
|
|
fxp_read_eeprom(sc, &data, i, 1);
|
|
|
|
fxp_write_eeprom(sc, &cksum, i, 1);
|
|
|
|
device_printf(dev,
|
|
|
|
"EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
|
|
|
|
i, data, cksum);
|
|
|
|
#if 1
|
|
|
|
/*
|
|
|
|
* If the user elects to continue, try the software
|
|
|
|
* workaround, as it is better than nothing.
|
|
|
|
*/
|
|
|
|
sc->flags |= FXP_FLAG_CU_RESUME_BUG;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
2001-05-17 23:50:24 +00:00
|
|
|
|
2001-03-14 19:50:35 +00:00
|
|
|
/*
|
|
|
|
* If we are not a 82557 chip, we can enable extended features.
|
|
|
|
*/
|
2001-10-25 05:32:01 +00:00
|
|
|
if (sc->revision != FXP_REV_82557) {
|
2001-03-14 19:50:35 +00:00
|
|
|
/*
|
2001-07-19 15:48:00 +00:00
|
|
|
* If MWI is enabled in the PCI configuration, and there
|
|
|
|
* is a valid cacheline size (8 or 16 dwords), then tell
|
|
|
|
* the board to turn on MWI.
|
2001-03-14 19:50:35 +00:00
|
|
|
*/
|
2001-07-19 15:48:00 +00:00
|
|
|
if (val & PCIM_CMD_MWRICEN &&
|
|
|
|
pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
|
2001-03-14 19:50:35 +00:00
|
|
|
sc->flags |= FXP_FLAG_MWI_ENABLE;
|
|
|
|
|
|
|
|
/* turn on the extended TxCB feature */
|
|
|
|
sc->flags |= FXP_FLAG_EXT_TXCB;
|
2001-09-05 23:33:58 +00:00
|
|
|
|
2001-05-13 00:03:39 +00:00
|
|
|
/* enable reception of long frames for VLAN */
|
|
|
|
sc->flags |= FXP_FLAG_LONG_PKT_EN;
|
2001-03-14 19:50:35 +00:00
|
|
|
}
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/*
|
|
|
|
* Read MAC address.
|
|
|
|
*/
|
|
|
|
fxp_read_eeprom(sc, (u_int16_t *)sc->arpcom.ac_enaddr, 0, 3);
|
1999-04-16 21:22:55 +00:00
|
|
|
device_printf(dev, "Ethernet address %6D%s\n",
|
2001-03-12 21:30:52 +00:00
|
|
|
sc->arpcom.ac_enaddr, ":",
|
|
|
|
sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
|
|
|
|
if (bootverbose) {
|
2001-05-17 23:50:24 +00:00
|
|
|
device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
|
2001-03-12 21:30:52 +00:00
|
|
|
pci_get_vendor(dev), pci_get_device(dev),
|
2001-05-17 23:50:24 +00:00
|
|
|
pci_get_subvendor(dev), pci_get_subdevice(dev),
|
|
|
|
pci_get_revid(dev));
|
2001-10-25 05:32:01 +00:00
|
|
|
fxp_read_eeprom(sc, &data, 10, 1);
|
|
|
|
device_printf(dev, "Dynamic Standby mode is %s\n",
|
|
|
|
data & 0x02 ? "enabled" : "disabled");
|
2001-03-12 21:30:52 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this is only a 10Mbps device, then there is no MII, and
|
|
|
|
* the PHY will use a serial interface instead.
|
|
|
|
*
|
|
|
|
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
|
|
|
|
* doesn't have a programming interface of any sort. The
|
|
|
|
* media is sensed automatically based on how the link partner
|
|
|
|
* is configured. This is, in essence, manual configuration.
|
|
|
|
*/
|
|
|
|
if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
|
|
|
|
ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
|
|
|
|
fxp_serial_ifmedia_sts);
|
|
|
|
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
|
|
|
|
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
|
|
|
|
} else {
|
|
|
|
if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
|
|
|
|
fxp_ifmedia_sts)) {
|
|
|
|
device_printf(dev, "MII without any PHY!\n");
|
|
|
|
error = ENXIO;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
}
|
1997-09-05 10:23:58 +00:00
|
|
|
|
|
|
|
ifp = &sc->arpcom.ac_if;
|
1999-04-16 21:22:55 +00:00
|
|
|
ifp->if_unit = device_get_unit(dev);
|
1997-09-05 10:23:58 +00:00
|
|
|
ifp->if_name = "fxp";
|
|
|
|
ifp->if_output = ether_output;
|
|
|
|
ifp->if_baudrate = 100000000;
|
|
|
|
ifp->if_init = fxp_init;
|
|
|
|
ifp->if_softc = sc;
|
|
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
|
|
ifp->if_ioctl = fxp_ioctl;
|
|
|
|
ifp->if_start = fxp_start;
|
|
|
|
ifp->if_watchdog = fxp_watchdog;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Attach the interface.
|
|
|
|
*/
|
2000-07-13 22:54:34 +00:00
|
|
|
ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
|
2001-03-12 21:30:52 +00:00
|
|
|
|
2001-05-13 00:03:39 +00:00
|
|
|
/*
|
|
|
|
* Tell the upper layer(s) we support long frames.
|
|
|
|
*/
|
|
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
/*
|
1998-08-04 08:53:12 +00:00
|
|
|
* Let the system queue as many packets as we have available
|
|
|
|
* TX descriptors.
|
1997-10-23 01:45:15 +00:00
|
|
|
*/
|
1998-08-04 08:53:12 +00:00
|
|
|
ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
|
|
|
return (0);
|
|
|
|
|
|
|
|
failmem:
|
|
|
|
device_printf(dev, "Failed to malloc memory\n");
|
|
|
|
error = ENOMEM;
|
|
|
|
fail:
|
|
|
|
splx(s);
|
|
|
|
fxp_release(sc);
|
|
|
|
return (error);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* release all resources
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
fxp_release(struct fxp_softc *sc)
|
|
|
|
{
|
|
|
|
|
2001-03-14 19:50:35 +00:00
|
|
|
bus_generic_detach(sc->dev);
|
|
|
|
if (sc->miibus)
|
2001-03-12 21:30:52 +00:00
|
|
|
device_delete_child(sc->dev, sc->miibus);
|
|
|
|
|
|
|
|
if (sc->cbl_base)
|
|
|
|
free(sc->cbl_base, M_DEVBUF);
|
|
|
|
if (sc->fxp_stats)
|
|
|
|
free(sc->fxp_stats, M_DEVBUF);
|
|
|
|
if (sc->mcsp)
|
|
|
|
free(sc->mcsp, M_DEVBUF);
|
|
|
|
if (sc->rfa_headm)
|
|
|
|
m_freem(sc->rfa_headm);
|
1999-04-16 21:22:55 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
if (sc->ih)
|
|
|
|
bus_teardown_intr(sc->dev, sc->irq, sc->ih);
|
|
|
|
if (sc->irq)
|
|
|
|
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
|
|
|
|
if (sc->mem)
|
|
|
|
bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
|
2001-10-25 05:32:01 +00:00
|
|
|
|
|
|
|
sysctl_ctx_free(&sc->sysctl_ctx);
|
|
|
|
|
2000-09-17 13:26:25 +00:00
|
|
|
mtx_destroy(&sc->sc_mtx);
|
1999-04-16 21:22:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Detach interface.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
fxp_detach(device_t dev)
|
|
|
|
{
|
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
2001-03-12 21:30:52 +00:00
|
|
|
int s;
|
1999-04-16 21:22:55 +00:00
|
|
|
|
2001-05-17 23:50:24 +00:00
|
|
|
/* disable interrupts */
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
1997-09-05 10:23:58 +00:00
|
|
|
|
1999-04-16 21:22:55 +00:00
|
|
|
/*
|
|
|
|
* Stop DMA and drop transmit queue.
|
|
|
|
*/
|
|
|
|
fxp_stop(sc);
|
|
|
|
|
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Close down routes etc.
|
1999-04-16 21:22:55 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
|
1999-04-16 21:22:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Free all media structures.
|
|
|
|
*/
|
|
|
|
ifmedia_removeall(&sc->sc_media);
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/* Release our allocated resources. */
|
|
|
|
fxp_release(sc);
|
1999-04-16 21:22:55 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
return (0);
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Device shutdown routine. Called at system shutdown after sync. The
|
|
|
|
* main purpose of this routine is to shut off receiver DMA so that
|
|
|
|
* kernel memory doesn't get clobbered during warmboot.
|
|
|
|
*/
|
1999-04-16 21:22:55 +00:00
|
|
|
static int
|
|
|
|
fxp_shutdown(device_t dev)
|
1997-09-05 10:23:58 +00:00
|
|
|
{
|
1999-04-16 21:22:55 +00:00
|
|
|
/*
|
|
|
|
* Make sure that DMA is disabled prior to reboot. Not doing
|
|
|
|
* do could allow DMA to corrupt kernel memory during the
|
|
|
|
* reboot before the driver initializes.
|
|
|
|
*/
|
|
|
|
fxp_stop((struct fxp_softc *) device_get_softc(dev));
|
2001-03-12 21:30:52 +00:00
|
|
|
return (0);
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
|
|
|
|
2000-09-17 22:12:12 +00:00
|
|
|
/*
|
|
|
|
* Device suspend routine. Stop the interface and save some PCI
|
|
|
|
* settings in case the BIOS doesn't restore them properly on
|
|
|
|
* resume.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
fxp_suspend(device_t dev)
|
|
|
|
{
|
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
2001-03-12 21:30:52 +00:00
|
|
|
int i, s;
|
2000-09-17 22:12:12 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
2000-09-17 22:12:12 +00:00
|
|
|
|
|
|
|
fxp_stop(sc);
|
|
|
|
|
2001-07-25 18:00:17 +00:00
|
|
|
for (i = 0; i < 5; i++)
|
|
|
|
sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
|
2000-09-17 22:12:12 +00:00
|
|
|
sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
|
|
|
|
sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
|
|
|
|
sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
|
|
|
|
sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
|
|
|
|
|
|
|
|
sc->suspended = 1;
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
|
|
|
return (0);
|
2000-09-17 22:12:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Device resume routine. Restore some PCI settings in case the BIOS
|
|
|
|
* doesn't, re-enable busmastering, and restart the interface if
|
|
|
|
* appropriate.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
fxp_resume(device_t dev)
|
|
|
|
{
|
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
|
|
u_int16_t pci_command;
|
2001-03-12 21:30:52 +00:00
|
|
|
int i, s;
|
2000-09-17 22:12:12 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
2000-09-17 22:12:12 +00:00
|
|
|
|
2001-07-25 18:00:17 +00:00
|
|
|
fxp_powerstate_d0(dev);
|
|
|
|
|
2000-09-17 22:12:12 +00:00
|
|
|
/* better way to do this? */
|
2001-07-25 18:00:17 +00:00
|
|
|
for (i = 0; i < 5; i++)
|
|
|
|
pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
|
2000-09-17 22:12:12 +00:00
|
|
|
pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
|
|
|
|
pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
|
|
|
|
pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
|
|
|
|
pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
|
|
|
|
|
|
|
|
/* reenable busmastering */
|
|
|
|
pci_command = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
|
|
pci_command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
|
|
|
|
pci_write_config(dev, PCIR_COMMAND, pci_command, 2);
|
|
|
|
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
|
|
|
|
DELAY(10);
|
|
|
|
|
|
|
|
/* reinitialize interface if necessary */
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
|
|
fxp_init(sc);
|
|
|
|
|
|
|
|
sc->suspended = 0;
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
|
|
|
return (0);
|
2000-09-17 22:12:12 +00:00
|
|
|
}
|
|
|
|
|
2001-08-27 16:07:12 +00:00
|
|
|
static void
|
|
|
|
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
|
|
|
|
{
|
|
|
|
u_int16_t reg;
|
|
|
|
int x;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Shift in data.
|
|
|
|
*/
|
|
|
|
for (x = 1 << (length - 1); x; x >>= 1) {
|
|
|
|
if (data & x)
|
|
|
|
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
|
|
|
|
else
|
|
|
|
reg = FXP_EEPROM_EECS;
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
|
|
DELAY(1);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
|
|
|
|
DELAY(1);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Read from the serial EEPROM. Basically, you manually shift in
|
|
|
|
* the read opcode (one bit at a time) and then shift in the address,
|
|
|
|
* and then you shift out the data (all of this one bit at a time).
|
|
|
|
* The word size is 16 bits, so you have to provide the address for
|
|
|
|
* every 16 bits of data.
|
1997-09-05 10:23:58 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
static u_int16_t
|
|
|
|
fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
|
1997-09-05 10:23:58 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
u_int16_t reg, data;
|
|
|
|
int x;
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
1997-09-05 10:23:58 +00:00
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Shift in read opcode.
|
1997-09-05 10:23:58 +00:00
|
|
|
*/
|
2001-08-27 16:07:12 +00:00
|
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Shift in address.
|
1995-12-01 22:41:56 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
data = 0;
|
|
|
|
for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
|
|
|
|
if (offset & x)
|
|
|
|
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
|
|
|
|
else
|
|
|
|
reg = FXP_EEPROM_EECS;
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
|
|
DELAY(1);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
|
|
|
|
DELAY(1);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
|
|
DELAY(1);
|
|
|
|
reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
|
|
|
|
data++;
|
|
|
|
if (autosize && reg == 0) {
|
|
|
|
sc->eeprom_size = data;
|
|
|
|
break;
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
}
|
1997-03-17 11:08:16 +00:00
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* Shift out data.
|
1997-03-17 11:08:16 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
data = 0;
|
|
|
|
reg = FXP_EEPROM_EECS;
|
|
|
|
for (x = 1 << 15; x; x >>= 1) {
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
|
|
|
|
DELAY(1);
|
|
|
|
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
|
|
|
|
data |= x;
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
|
|
DELAY(1);
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
|
|
DELAY(1);
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
return (data);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
2001-08-27 16:07:12 +00:00
|
|
|
static void
|
|
|
|
fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Erase/write enable.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
|
|
fxp_eeprom_shiftin(sc, 0x4, 3);
|
|
|
|
fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
|
|
DELAY(1);
|
|
|
|
/*
|
|
|
|
* Shift in write opcode, address, data.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
|
|
|
|
fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
|
|
|
|
fxp_eeprom_shiftin(sc, data, 16);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
|
|
DELAY(1);
|
|
|
|
/*
|
|
|
|
* Wait for EEPROM to finish up.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
|
|
DELAY(1);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
|
|
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
|
|
|
|
break;
|
|
|
|
DELAY(50);
|
|
|
|
}
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
|
|
DELAY(1);
|
|
|
|
/*
|
|
|
|
* Erase/write disable.
|
|
|
|
*/
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
|
|
fxp_eeprom_shiftin(sc, 0x4, 3);
|
|
|
|
fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
|
|
DELAY(1);
|
|
|
|
}
|
|
|
|
|
2000-03-28 04:41:42 +00:00
|
|
|
/*
|
|
|
|
* From NetBSD:
|
|
|
|
*
|
|
|
|
* Figure out EEPROM size.
|
|
|
|
*
|
|
|
|
* 559's can have either 64-word or 256-word EEPROMs, the 558
|
|
|
|
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
|
|
|
|
* talks about the existance of 16 to 256 word EEPROMs.
|
|
|
|
*
|
|
|
|
* The only known sizes are 64 and 256, where the 256 version is used
|
|
|
|
* by CardBus cards to store CIS information.
|
|
|
|
*
|
|
|
|
* The address is shifted in msb-to-lsb, and after the last
|
|
|
|
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
|
|
|
|
* after which follows the actual data. We try to detect this zero, by
|
|
|
|
* probing the data-out bit in the EEPROM control register just after
|
|
|
|
* having shifted in a bit. If the bit is zero, we assume we've
|
|
|
|
* shifted enough address bits. The data-out should be tri-state,
|
|
|
|
* before this, which should translate to a logical one.
|
|
|
|
*/
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_autosize_eeprom(struct fxp_softc *sc)
|
2000-03-28 04:41:42 +00:00
|
|
|
{
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
/* guess maximum size of 256 words */
|
|
|
|
sc->eeprom_size = 8;
|
|
|
|
|
|
|
|
/* autosize */
|
|
|
|
(void) fxp_eeprom_getword(sc, 0, 1);
|
2000-03-28 04:41:42 +00:00
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
|
1997-03-17 11:08:16 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
int i;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
for (i = 0; i < words; i++)
|
|
|
|
data[i] = fxp_eeprom_getword(sc, offset + i, 0);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
2001-08-27 16:07:12 +00:00
|
|
|
static void
|
|
|
|
fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < words; i++)
|
|
|
|
fxp_eeprom_putword(sc, offset + i, data[i]);
|
|
|
|
}
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* Start packet transmission on the interface.
|
|
|
|
*/
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_start(struct ifnet *ifp)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1996-02-06 18:51:28 +00:00
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
1995-11-28 23:55:26 +00:00
|
|
|
struct fxp_cb_tx *txp;
|
|
|
|
|
|
|
|
/*
|
1997-10-23 01:45:15 +00:00
|
|
|
* See if we need to suspend xmit until the multicast filter
|
|
|
|
* has been reprogrammed (which can only be done at the head
|
|
|
|
* of the command chain).
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
2000-09-17 13:26:25 +00:00
|
|
|
if (sc->need_mcsetup) {
|
1995-11-28 23:55:26 +00:00
|
|
|
return;
|
2000-09-17 13:26:25 +00:00
|
|
|
}
|
1996-09-22 11:48:54 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
txp = NULL;
|
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
1997-10-23 01:45:15 +00:00
|
|
|
* We're finished if there is nothing more to add to the list or if
|
|
|
|
* we're all filled up with buffers to transmit.
|
1998-08-04 08:53:12 +00:00
|
|
|
* NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
|
|
|
|
* a NOP command when needed.
|
1995-12-01 22:41:56 +00:00
|
|
|
*/
|
1998-08-04 08:53:12 +00:00
|
|
|
while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
|
1997-10-23 01:45:15 +00:00
|
|
|
struct mbuf *m, *mb_head;
|
|
|
|
int segment;
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1997-10-23 01:45:15 +00:00
|
|
|
* Grab a packet to transmit.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
1997-10-23 01:45:15 +00:00
|
|
|
IF_DEQUEUE(&ifp->if_snd, mb_head);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
/*
|
|
|
|
* Get pointer to next available tx desc.
|
|
|
|
*/
|
|
|
|
txp = sc->cbl_last->next;
|
1995-12-05 11:49:55 +00:00
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1997-10-23 01:45:15 +00:00
|
|
|
* Go through each of the mbufs in the chain and initialize
|
|
|
|
* the transmit buffer descriptors with the physical address
|
|
|
|
* and size of the mbuf.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
1997-10-23 01:45:15 +00:00
|
|
|
tbdinit:
|
|
|
|
for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
|
|
|
|
if (m->m_len != 0) {
|
|
|
|
if (segment == FXP_NTXSEG)
|
|
|
|
break;
|
|
|
|
txp->tbd[segment].tb_addr =
|
|
|
|
vtophys(mtod(m, vm_offset_t));
|
|
|
|
txp->tbd[segment].tb_size = m->m_len;
|
|
|
|
segment++;
|
|
|
|
}
|
1995-12-05 11:49:55 +00:00
|
|
|
}
|
1997-10-23 01:45:15 +00:00
|
|
|
if (m != NULL) {
|
|
|
|
struct mbuf *mn;
|
|
|
|
|
|
|
|
/*
|
2001-03-14 19:50:35 +00:00
|
|
|
* We ran out of segments. We have to recopy this
|
|
|
|
* mbuf chain first. Bail out if we can't get the
|
|
|
|
* new buffers.
|
1997-10-23 01:45:15 +00:00
|
|
|
*/
|
|
|
|
MGETHDR(mn, M_DONTWAIT, MT_DATA);
|
|
|
|
if (mn == NULL) {
|
1995-12-05 11:49:55 +00:00
|
|
|
m_freem(mb_head);
|
1997-10-23 01:45:15 +00:00
|
|
|
break;
|
1995-12-05 11:49:55 +00:00
|
|
|
}
|
1997-10-23 01:45:15 +00:00
|
|
|
if (mb_head->m_pkthdr.len > MHLEN) {
|
|
|
|
MCLGET(mn, M_DONTWAIT);
|
|
|
|
if ((mn->m_flags & M_EXT) == 0) {
|
|
|
|
m_freem(mn);
|
|
|
|
m_freem(mb_head);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
|
|
|
|
mtod(mn, caddr_t));
|
|
|
|
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
|
|
|
|
m_freem(mb_head);
|
|
|
|
mb_head = mn;
|
|
|
|
goto tbdinit;
|
1995-12-05 11:49:55 +00:00
|
|
|
}
|
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
txp->tbd_number = segment;
|
|
|
|
txp->mb_head = mb_head;
|
|
|
|
txp->cb_status = 0;
|
1998-08-04 08:53:12 +00:00
|
|
|
if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
|
|
|
|
txp->cb_command =
|
2001-03-14 19:50:35 +00:00
|
|
|
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
|
|
|
|
FXP_CB_COMMAND_S;
|
1998-08-04 08:53:12 +00:00
|
|
|
} else {
|
|
|
|
txp->cb_command =
|
2001-03-14 19:50:35 +00:00
|
|
|
FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
|
|
|
|
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
|
1998-08-04 08:53:12 +00:00
|
|
|
/*
|
2001-03-14 19:50:35 +00:00
|
|
|
* Set a 5 second timer just in case we don't hear
|
|
|
|
* from the card again.
|
1998-08-04 08:53:12 +00:00
|
|
|
*/
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
}
|
1997-10-23 01:45:15 +00:00
|
|
|
txp->tx_threshold = tx_threshold;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
/*
|
|
|
|
* Advance the end of list forward.
|
|
|
|
*/
|
2000-07-19 14:33:52 +00:00
|
|
|
|
|
|
|
#ifdef __alpha__
|
|
|
|
/*
|
|
|
|
* On platforms which can't access memory in 16-bit
|
|
|
|
* granularities, we must prevent the card from DMA'ing
|
|
|
|
* up the status while we update the command field.
|
|
|
|
* This could cause us to overwrite the completion status.
|
|
|
|
*/
|
|
|
|
atomic_clear_short(&sc->cbl_last->cb_command,
|
|
|
|
FXP_CB_COMMAND_S);
|
|
|
|
#else
|
1997-10-23 01:45:15 +00:00
|
|
|
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
|
2000-07-19 14:33:52 +00:00
|
|
|
#endif /*__alpha__*/
|
1997-10-23 01:45:15 +00:00
|
|
|
sc->cbl_last = txp;
|
1996-09-22 11:48:54 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
/*
|
|
|
|
* Advance the beginning of the list forward if there are
|
|
|
|
* no other packets queued (when nothing is queued, cbl_first
|
|
|
|
* sits on the last TxCB that was sent out).
|
|
|
|
*/
|
|
|
|
if (sc->tx_queued == 0)
|
|
|
|
sc->cbl_first = txp;
|
1996-01-03 05:22:32 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
sc->tx_queued++;
|
1996-09-29 10:20:45 +00:00
|
|
|
|
1997-10-23 01:45:15 +00:00
|
|
|
/*
|
|
|
|
* Pass packet to bpf if there is a listener.
|
|
|
|
*/
|
|
|
|
if (ifp->if_bpf)
|
2000-09-18 21:12:19 +00:00
|
|
|
bpf_mtap(ifp, mb_head);
|
1997-10-23 01:45:15 +00:00
|
|
|
}
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1997-10-23 01:45:15 +00:00
|
|
|
* We're finished. If we added to the list, issue a RESUME to get DMA
|
|
|
|
* going again if suspended.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
1997-10-23 01:45:15 +00:00
|
|
|
if (txp != NULL) {
|
|
|
|
fxp_scb_wait(sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
|
1997-10-23 01:45:15 +00:00
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
static void fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count);
|
|
|
|
|
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
static poll_handler_t fxp_poll;
|
|
|
|
|
|
|
|
static void
|
2001-12-15 02:41:52 +00:00
|
|
|
fxp_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
{
|
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
2001-12-15 02:41:52 +00:00
|
|
|
u_int8_t statack;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
|
|
|
|
if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
|
2001-12-15 02:41:52 +00:00
|
|
|
FXP_SCB_STATACK_FR;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
2001-12-15 02:41:52 +00:00
|
|
|
u_int8_t tmp;
|
|
|
|
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
|
|
|
|
if (tmp == 0xff || tmp == 0)
|
2001-12-15 02:41:52 +00:00
|
|
|
return; /* nothing to do */
|
|
|
|
tmp &= ~statack;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
/* ack what we can */
|
|
|
|
if (tmp != 0)
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
|
2001-12-15 02:41:52 +00:00
|
|
|
statack |= tmp;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
}
|
|
|
|
fxp_intr_body(sc, statack, count);
|
|
|
|
}
|
|
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1996-11-18 02:45:46 +00:00
|
|
|
* Process interface interrupts.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
2000-09-18 21:12:19 +00:00
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_intr(void *xsc)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
struct fxp_softc *sc = xsc;
|
1996-09-22 11:48:54 +00:00
|
|
|
u_int8_t statack;
|
2000-09-17 13:26:25 +00:00
|
|
|
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
|
|
|
2002-08-18 07:05:00 +00:00
|
|
|
if (ifp->if_flags & IFF_POLLING)
|
2001-12-15 02:41:52 +00:00
|
|
|
return;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
if (ether_poll_register(fxp_poll, ifp)) {
|
|
|
|
/* disable interrupts */
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
|
|
|
|
fxp_poll(ifp, 0, 1);
|
2001-12-15 02:41:52 +00:00
|
|
|
return;
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2000-09-17 23:04:57 +00:00
|
|
|
if (sc->suspended) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
|
2001-06-04 22:01:44 +00:00
|
|
|
/*
|
|
|
|
* It should not be possible to have all bits set; the
|
|
|
|
* FXP_SCB_INTR_SWI bit always returns 0 on a read. If
|
|
|
|
* all bits are set, this may indicate that the card has
|
|
|
|
* been physically ejected, so ignore it.
|
|
|
|
*/
|
|
|
|
if (statack == 0xff)
|
|
|
|
return;
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* First ACK all the interrupts in this pass.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
fxp_intr_body(sc, statack, -1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fxp_intr_body(struct fxp_softc *sc, u_int8_t statack, int count)
|
|
|
|
{
|
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
2002-08-04 22:33:28 +00:00
|
|
|
struct mbuf *m;
|
|
|
|
struct fxp_rfa *rfa;
|
|
|
|
int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
|
|
|
|
|
|
|
|
if (rnr)
|
|
|
|
fxp_rnr++;
|
2002-11-07 16:04:07 +00:00
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
/* Pick up a deferred RNR condition if `count' ran out last time. */
|
|
|
|
if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
|
|
|
|
sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
|
|
|
|
rnr = 1;
|
|
|
|
}
|
|
|
|
#endif
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2002-07-29 02:48:09 +00:00
|
|
|
/*
|
|
|
|
* Free any finished transmit mbuf chains.
|
|
|
|
*
|
|
|
|
* Handle the CNA event likt a CXTNO event. It used to
|
|
|
|
* be that this event (control unit not ready) was not
|
|
|
|
* encountered, but it is now with the SMPng modifications.
|
|
|
|
* The exact sequence of events that occur when the interface
|
|
|
|
* is brought up are different now, and if this event
|
|
|
|
* goes unhandled, the configuration/rxfilter setup sequence
|
|
|
|
* can stall for several seconds. The result is that no
|
|
|
|
* packets go out onto the wire for about 5 to 10 seconds
|
|
|
|
* after the interface is ifconfig'ed for the first time.
|
|
|
|
*/
|
|
|
|
if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
|
|
|
|
struct fxp_cb_tx *txp;
|
|
|
|
|
|
|
|
for (txp = sc->cbl_first; sc->tx_queued &&
|
|
|
|
(txp->cb_status & FXP_CB_STATUS_C) != 0;
|
|
|
|
txp = txp->next) {
|
|
|
|
if (txp->mb_head != NULL) {
|
|
|
|
m_freem(txp->mb_head);
|
|
|
|
txp->mb_head = NULL;
|
1998-08-04 08:53:12 +00:00
|
|
|
}
|
2002-07-29 02:48:09 +00:00
|
|
|
sc->tx_queued--;
|
1998-08-04 08:53:12 +00:00
|
|
|
}
|
2002-07-29 02:48:09 +00:00
|
|
|
sc->cbl_first = txp;
|
2002-07-29 04:32:35 +00:00
|
|
|
ifp->if_timer = 0;
|
2002-07-29 02:48:09 +00:00
|
|
|
if (sc->tx_queued == 0) {
|
|
|
|
if (sc->need_mcsetup)
|
|
|
|
fxp_mc_setup(sc);
|
2002-07-29 04:32:35 +00:00
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
2002-07-29 02:48:09 +00:00
|
|
|
* Try to start more packets transmitting.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
2002-07-29 02:48:09 +00:00
|
|
|
if (ifp->if_snd.ifq_head != NULL)
|
|
|
|
fxp_start(ifp);
|
|
|
|
}
|
2002-08-04 22:33:28 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Just return if nothing happened on the receive side.
|
|
|
|
*/
|
2002-11-07 16:04:07 +00:00
|
|
|
if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
|
2002-08-04 22:33:28 +00:00
|
|
|
return;
|
|
|
|
|
2002-07-29 02:48:09 +00:00
|
|
|
/*
|
|
|
|
* Process receiver interrupts. If a no-resource (RNR)
|
|
|
|
* condition exists, get whatever packets we can and
|
|
|
|
* re-start the receiver.
|
2002-11-07 16:04:07 +00:00
|
|
|
*
|
2002-08-04 22:33:28 +00:00
|
|
|
* When using polling, we do not process the list to completion,
|
|
|
|
* so when we get an RNR interrupt we must defer the restart
|
|
|
|
* until we hit the last buffer with the C bit set.
|
|
|
|
* If we run out of cycles and rfa_headm has the C bit set,
|
2002-11-07 16:04:07 +00:00
|
|
|
* record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
|
|
|
|
* that the info will be used in the subsequent polling cycle.
|
2002-07-29 02:48:09 +00:00
|
|
|
*/
|
2002-08-04 22:33:28 +00:00
|
|
|
for (;;) {
|
2002-07-29 02:48:09 +00:00
|
|
|
m = sc->rfa_headm;
|
|
|
|
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
|
|
|
|
RFA_ALIGNMENT_FUDGE);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
|
2002-11-07 16:04:07 +00:00
|
|
|
if (count >= 0 && count-- == 0) {
|
|
|
|
if (rnr) {
|
|
|
|
/* Defer RNR processing until the next time. */
|
|
|
|
sc->flags |= FXP_FLAG_DEFERRED_RNR;
|
|
|
|
rnr = 0;
|
|
|
|
}
|
2002-08-04 22:33:28 +00:00
|
|
|
break;
|
2002-11-07 16:04:07 +00:00
|
|
|
}
|
2002-08-04 22:33:28 +00:00
|
|
|
#endif /* DEVICE_POLLING */
|
2002-07-29 02:48:09 +00:00
|
|
|
|
2002-08-04 22:33:28 +00:00
|
|
|
if ( (rfa->rfa_status & FXP_RFA_STATUS_C) == 0)
|
|
|
|
break;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2002-08-04 22:33:28 +00:00
|
|
|
/*
|
|
|
|
* Remove first packet from the chain.
|
|
|
|
*/
|
|
|
|
sc->rfa_headm = m->m_next;
|
|
|
|
m->m_next = NULL;
|
2002-07-29 02:48:09 +00:00
|
|
|
|
2002-08-04 22:33:28 +00:00
|
|
|
/*
|
|
|
|
* Add a new buffer to the receive chain.
|
|
|
|
* If this fails, the old buffer is recycled
|
|
|
|
* instead.
|
|
|
|
*/
|
|
|
|
if (fxp_add_rfabuf(sc, m) == 0) {
|
|
|
|
int total_len;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fetch packet length (the top 2 bits of
|
|
|
|
* actual_size are flags set by the controller
|
|
|
|
* upon completion), and drop the packet in case
|
|
|
|
* of bogus length or CRC errors.
|
|
|
|
*/
|
|
|
|
total_len = rfa->actual_size & 0x3fff;
|
|
|
|
if (total_len < sizeof(struct ether_header) ||
|
|
|
|
total_len > MCLBYTES - RFA_ALIGNMENT_FUDGE -
|
|
|
|
sizeof(struct fxp_rfa) ||
|
|
|
|
rfa->rfa_status & FXP_RFA_STATUS_CRC) {
|
|
|
|
m_freem(m);
|
|
|
|
continue;
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
2002-08-04 22:33:28 +00:00
|
|
|
|
|
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
2002-08-09 01:48:28 +00:00
|
|
|
ether_input(ifp, NULL, m);
|
2002-07-29 02:48:09 +00:00
|
|
|
}
|
2002-08-04 22:33:28 +00:00
|
|
|
}
|
|
|
|
if (rnr) {
|
2002-11-07 16:04:07 +00:00
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
|
|
vtophys(sc->rfa_headm->m_ext.ext_buf) +
|
|
|
|
RFA_ALIGNMENT_FUDGE);
|
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
|
2002-07-29 02:48:09 +00:00
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
|
|
|
* Update packet in/out/collision statistics. The i82557 doesn't
|
|
|
|
* allow you to access these counters without doing a fairly
|
|
|
|
* expensive DMA to get _all_ of the statistics it maintains, so
|
|
|
|
* we do this operation here only once per second. The statistics
|
|
|
|
* counters in the kernel are updated from the previous dump-stats
|
|
|
|
* DMA and then a new dump-stats DMA is started. The on-chip
|
|
|
|
* counters are zeroed when the DMA completes. If we can't start
|
|
|
|
* the DMA immediately, we don't wait - we just prepare to read
|
|
|
|
* them again next time.
|
|
|
|
*/
|
1998-02-09 06:11:36 +00:00
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_tick(void *xsc)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
struct fxp_softc *sc = xsc;
|
1997-09-05 10:23:58 +00:00
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
1995-11-28 23:55:26 +00:00
|
|
|
struct fxp_stats *sp = sc->fxp_stats;
|
1998-10-22 02:00:49 +00:00
|
|
|
struct fxp_cb_tx *txp;
|
2001-03-12 21:30:52 +00:00
|
|
|
int s;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
ifp->if_opackets += sp->tx_good;
|
|
|
|
ifp->if_collisions += sp->tx_total_collisions;
|
1997-09-29 11:27:43 +00:00
|
|
|
if (sp->rx_good) {
|
|
|
|
ifp->if_ipackets += sp->rx_good;
|
|
|
|
sc->rx_idle_secs = 0;
|
|
|
|
} else {
|
1998-10-22 02:00:49 +00:00
|
|
|
/*
|
|
|
|
* Receiver's been idle for another second.
|
|
|
|
*/
|
1997-09-29 11:27:43 +00:00
|
|
|
sc->rx_idle_secs++;
|
|
|
|
}
|
1996-01-03 05:22:32 +00:00
|
|
|
ifp->if_ierrors +=
|
|
|
|
sp->rx_crc_errors +
|
|
|
|
sp->rx_alignment_errors +
|
|
|
|
sp->rx_rnr_errors +
|
1997-02-04 07:39:28 +00:00
|
|
|
sp->rx_overrun_errors;
|
1996-09-19 09:15:20 +00:00
|
|
|
/*
|
|
|
|
* If any transmit underruns occured, bump up the transmit
|
|
|
|
* threshold by another 512 bytes (64 * 8).
|
|
|
|
*/
|
|
|
|
if (sp->tx_underruns) {
|
|
|
|
ifp->if_oerrors += sp->tx_underruns;
|
|
|
|
if (tx_threshold < 192)
|
|
|
|
tx_threshold += 64;
|
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
1998-10-22 02:00:49 +00:00
|
|
|
/*
|
|
|
|
* Release any xmit buffers that have completed DMA. This isn't
|
|
|
|
* strictly necessary to do here, but it's advantagous for mbufs
|
|
|
|
* with external storage to be released in a timely manner rather
|
|
|
|
* than being defered for a potentially long time. This limits
|
|
|
|
* the delay to a maximum of one second.
|
|
|
|
*/
|
|
|
|
for (txp = sc->cbl_first; sc->tx_queued &&
|
|
|
|
(txp->cb_status & FXP_CB_STATUS_C) != 0;
|
|
|
|
txp = txp->next) {
|
|
|
|
if (txp->mb_head != NULL) {
|
|
|
|
m_freem(txp->mb_head);
|
|
|
|
txp->mb_head = NULL;
|
|
|
|
}
|
|
|
|
sc->tx_queued--;
|
|
|
|
}
|
|
|
|
sc->cbl_first = txp;
|
1997-09-29 11:27:43 +00:00
|
|
|
/*
|
|
|
|
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
|
|
|
|
* then assume the receiver has locked up and attempt to clear
|
|
|
|
* the condition by reprogramming the multicast filter. This is
|
|
|
|
* a work-around for a bug in the 82557 where the receiver locks
|
|
|
|
* up if it gets certain types of garbage in the syncronization
|
|
|
|
* bits prior to the packet header. This bug is supposed to only
|
|
|
|
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
|
|
|
|
* mode as well (perhaps due to a 10/100 speed transition).
|
|
|
|
*/
|
|
|
|
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
|
|
|
|
sc->rx_idle_secs = 0;
|
|
|
|
fxp_mc_setup(sc);
|
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1996-01-03 05:22:32 +00:00
|
|
|
* If there is no pending command, start another stats
|
|
|
|
* dump. Otherwise punt for now.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
1997-09-29 11:27:43 +00:00
|
|
|
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
1997-09-29 11:27:43 +00:00
|
|
|
* Start another stats dump.
|
1995-12-01 22:41:56 +00:00
|
|
|
*/
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
|
1995-12-01 22:41:56 +00:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* A previous command is still waiting to be accepted.
|
|
|
|
* Just zero our copy of the stats and wait for the
|
1996-01-03 05:22:32 +00:00
|
|
|
* next timer event to update them.
|
1995-12-01 22:41:56 +00:00
|
|
|
*/
|
1995-11-28 23:55:26 +00:00
|
|
|
sp->tx_good = 0;
|
1996-09-19 09:15:20 +00:00
|
|
|
sp->tx_underruns = 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
sp->tx_total_collisions = 0;
|
1996-01-03 05:22:32 +00:00
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
sp->rx_good = 0;
|
1996-01-03 05:22:32 +00:00
|
|
|
sp->rx_crc_errors = 0;
|
|
|
|
sp->rx_alignment_errors = 0;
|
|
|
|
sp->rx_rnr_errors = 0;
|
|
|
|
sp->rx_overrun_errors = 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
if (sc->miibus != NULL)
|
|
|
|
mii_tick(device_get_softc(sc->miibus));
|
2001-07-19 15:48:00 +00:00
|
|
|
splx(s);
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* Schedule another timeout one second from now.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
sc->stat_ch = timeout(fxp_tick, sc, hz);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop the interface. Cancels the statistics updater and resets
|
|
|
|
* the interface.
|
|
|
|
*/
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_stop(struct fxp_softc *sc)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1997-09-05 10:23:58 +00:00
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
1996-01-03 05:22:32 +00:00
|
|
|
struct fxp_cb_tx *txp;
|
|
|
|
int i;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2000-09-17 22:12:12 +00:00
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
ifp->if_timer = 0;
|
|
|
|
|
Device Polling code for -current.
Non-SMP, i386-only, no polling in the idle loop at the moment.
To use this code you must compile a kernel with
options DEVICE_POLLING
and at runtime enable polling with
sysctl kern.polling.enable=1
The percentage of CPU reserved to userland can be set with
sysctl kern.polling.user_frac=NN (default is 50)
while the remainder is used by polling device drivers and netisr's.
These are the only two variables that you should need to touch. There
are a few more parameters in kern.polling but the default values
are adequate for all purposes. See the code in kern_poll.c for
more details on them.
Polling in the idle loop will be implemented shortly by introducing
a kernel thread which does the job. Until then, the amount of CPU
dedicated to polling will never exceed (100-user_frac).
The equivalent (actually, better) code for -stable is at
http://info.iet.unipi.it/~luigi/polling/
and also supports polling in the idle loop.
NOTE to Alpha developers:
There is really nothing in this code that is i386-specific.
If you move the 2 lines supporting the new option from
sys/conf/{files,options}.i386 to sys/conf/{files,options} I am
pretty sure that this should work on the Alpha as well, just that
I do not have a suitable test box to try it. If someone feels like
trying it, I would appreciate it.
NOTE to other developers:
sure some things could be done better, and as always I am open to
constructive criticism, which a few of you have already given and
I greatly appreciated.
However, before proposing radical architectural changes, please
take some time to possibly try out this code, or at the very least
read the comments in kern_poll.c, especially re. the reason why I
am using a soft netisr and cannot (I believe) replace it with a
simple timeout.
Quick description of files touched by this commit:
sys/conf/files.i386
new file kern/kern_poll.c
sys/conf/options.i386
new option
sys/i386/i386/trap.c
poll in trap (disabled by default)
sys/kern/kern_clock.c
initialization and hardclock hooks.
sys/kern/kern_intr.c
minor swi_net changes
sys/kern/kern_poll.c
the bulk of the code.
sys/net/if.h
new flag
sys/net/if_var.h
declaration for functions used in device drivers.
sys/net/netisr.h
NETISR_POLL
sys/dev/fxp/if_fxp.c
sys/dev/fxp/if_fxpvar.h
sys/pci/if_dc.c
sys/pci/if_dcreg.h
sys/pci/if_sis.c
sys/pci/if_sisreg.h
device driver modifications
2001-12-14 17:56:12 +00:00
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
ether_poll_deregister(ifp);
|
|
|
|
#endif
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* Cancel stats updater.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
untimeout(fxp_tick, sc, sc->stat_ch);
|
1996-01-03 05:22:32 +00:00
|
|
|
|
|
|
|
/*
|
2001-10-25 05:32:01 +00:00
|
|
|
* Issue software reset, which also unloads the microcode.
|
1996-01-03 05:22:32 +00:00
|
|
|
*/
|
2001-10-25 05:32:01 +00:00
|
|
|
sc->flags &= ~FXP_FLAG_UCODE;
|
2002-01-07 15:08:54 +00:00
|
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
|
2001-10-25 05:32:01 +00:00
|
|
|
DELAY(50);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1996-01-03 05:22:32 +00:00
|
|
|
/*
|
|
|
|
* Release any xmit buffers.
|
|
|
|
*/
|
1998-10-10 19:26:40 +00:00
|
|
|
txp = sc->cbl_base;
|
|
|
|
if (txp != NULL) {
|
|
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
|
|
if (txp[i].mb_head != NULL) {
|
|
|
|
m_freem(txp[i].mb_head);
|
|
|
|
txp[i].mb_head = NULL;
|
|
|
|
}
|
|
|
|
}
|
1996-01-03 05:22:32 +00:00
|
|
|
}
|
|
|
|
sc->tx_queued = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free all the receive buffers then reallocate/reinitialize
|
|
|
|
*/
|
|
|
|
if (sc->rfa_headm != NULL)
|
|
|
|
m_freem(sc->rfa_headm);
|
|
|
|
sc->rfa_headm = NULL;
|
|
|
|
sc->rfa_tailm = NULL;
|
|
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
|
|
if (fxp_add_rfabuf(sc, NULL) != 0) {
|
|
|
|
/*
|
|
|
|
* This "can't happen" - we're at splimp()
|
|
|
|
* and we just freed all the buffers we need
|
|
|
|
* above.
|
|
|
|
*/
|
|
|
|
panic("fxp_stop: no buffers!");
|
|
|
|
}
|
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Watchdog/transmission transmit timeout handler. Called when a
|
|
|
|
* transmission is started on the interface, but no interrupt is
|
|
|
|
* received before the timeout. This usually indicates that the
|
|
|
|
* card has wedged for some reason.
|
|
|
|
*/
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_watchdog(struct ifnet *ifp)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1997-09-05 10:23:58 +00:00
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
device_printf(sc->dev, "device timeout\n");
|
1995-12-05 02:01:59 +00:00
|
|
|
ifp->if_oerrors++;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_init(sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_init(void *xsc)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1996-12-10 07:29:50 +00:00
|
|
|
struct fxp_softc *sc = xsc;
|
1997-09-05 10:23:58 +00:00
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
1995-11-28 23:55:26 +00:00
|
|
|
struct fxp_cb_config *cbp;
|
|
|
|
struct fxp_cb_ias *cb_ias;
|
|
|
|
struct fxp_cb_tx *txp;
|
2002-01-07 15:08:54 +00:00
|
|
|
struct fxp_cb_mcs *mcsp;
|
2001-03-12 21:30:52 +00:00
|
|
|
int i, prm, s;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1996-01-03 05:22:32 +00:00
|
|
|
* Cancel any pending I/O
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
1996-01-03 05:22:32 +00:00
|
|
|
fxp_stop(sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize base of CBL and RFA memory. Loading with zero
|
|
|
|
* sets it up for regular linear addressing.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize base of dump-stats buffer.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-10-25 05:32:01 +00:00
|
|
|
/*
|
|
|
|
* Attempt to load microcode if requested.
|
|
|
|
*/
|
|
|
|
if (ifp->if_flags & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0)
|
|
|
|
fxp_load_ucode(sc);
|
|
|
|
|
2002-01-07 15:08:54 +00:00
|
|
|
/*
|
|
|
|
* Initialize the multicast address list.
|
|
|
|
*/
|
|
|
|
if (fxp_mc_addrs(sc)) {
|
|
|
|
mcsp = sc->mcsp;
|
|
|
|
mcsp->cb_status = 0;
|
|
|
|
mcsp->cb_command = FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL;
|
|
|
|
mcsp->link_addr = -1;
|
|
|
|
/*
|
|
|
|
* Start the multicast setup command.
|
|
|
|
*/
|
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
|
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/* ...and wait for it to complete. */
|
|
|
|
fxp_dma_wait(&mcsp->cb_status, sc);
|
|
|
|
}
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* We temporarily use memory that contains the TxCB list to
|
|
|
|
* construct the config CB. The TxCB list memory is rebuilt
|
|
|
|
* later.
|
|
|
|
*/
|
|
|
|
cbp = (struct fxp_cb_config *) sc->cbl_base;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This bcopy is kind of disgusting, but there are a bunch of must be
|
|
|
|
* zero and must be one bits in this structure and this is the easiest
|
|
|
|
* way to initialize them all to proper values.
|
|
|
|
*/
|
2000-07-28 23:30:30 +00:00
|
|
|
bcopy(fxp_cb_config_template,
|
|
|
|
(void *)(uintptr_t)(volatile void *)&cbp->cb_status,
|
1997-09-29 11:27:43 +00:00
|
|
|
sizeof(fxp_cb_config_template));
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
cbp->cb_status = 0;
|
|
|
|
cbp->cb_command = FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
|
|
|
|
cbp->link_addr = -1; /* (no) next command */
|
|
|
|
cbp->byte_count = 22; /* (22) bytes to config */
|
1997-02-04 11:44:15 +00:00
|
|
|
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
|
|
|
|
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
|
|
|
|
cbp->type_enable = 0; /* actually reserved */
|
|
|
|
cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
|
|
|
|
cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
|
1997-02-04 11:44:15 +00:00
|
|
|
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
|
|
|
|
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->dma_mbce = 0; /* (disable) dma max counters */
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->late_scb = 0; /* (don't) defer SCB update */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
|
|
|
|
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
|
1998-08-04 08:53:12 +00:00
|
|
|
cbp->ci_int = 1; /* interrupt on CU idle */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
|
|
|
|
cbp->ext_stats_dis = 1; /* disable extended counters */
|
|
|
|
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
|
2001-10-25 05:32:01 +00:00
|
|
|
cbp->save_bf = sc->revision == FXP_REV_82557 ? 1 : prm;
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->disc_short_rx = !prm; /* discard short packets */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
|
|
|
|
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
|
|
|
|
cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
|
|
|
|
cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
|
|
|
|
cbp->csma_dis = 0; /* (don't) disable link */
|
|
|
|
cbp->tcp_udp_cksum = 0; /* (don't) enable checksum */
|
|
|
|
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
|
|
|
|
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
|
|
|
|
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
|
|
|
|
cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->nsai = 1; /* (don't) disable source addr insert */
|
|
|
|
cbp->preamble_length = 2; /* (7 byte) preamble */
|
|
|
|
cbp->loopback = 0; /* (don't) loopback */
|
|
|
|
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
|
|
|
|
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
|
|
|
|
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
|
|
|
|
cbp->promiscuous = prm; /* promiscuous mode */
|
|
|
|
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
|
|
|
|
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
|
|
|
|
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
|
|
|
|
cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->stripping = !prm; /* truncate rx packet to byte count */
|
|
|
|
cbp->padding = 1; /* (do) pad short tx packets */
|
|
|
|
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
|
|
|
|
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
|
|
|
|
cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
|
|
|
|
/* must set wake_en in PMCSR also */
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->force_fdx = 0; /* (don't) force full duplex */
|
1996-01-03 05:22:32 +00:00
|
|
|
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
|
1995-11-28 23:55:26 +00:00
|
|
|
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
|
2001-03-12 21:30:52 +00:00
|
|
|
cbp->mc_all = sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-10-25 05:32:01 +00:00
|
|
|
if (sc->revision == FXP_REV_82557) {
|
2001-03-14 19:50:35 +00:00
|
|
|
/*
|
|
|
|
* The 82557 has no hardware flow control, the values
|
|
|
|
* below are the defaults for the chip.
|
|
|
|
*/
|
|
|
|
cbp->fc_delay_lsb = 0;
|
|
|
|
cbp->fc_delay_msb = 0x40;
|
|
|
|
cbp->pri_fc_thresh = 3;
|
|
|
|
cbp->tx_fc_dis = 0;
|
|
|
|
cbp->rx_fc_restop = 0;
|
|
|
|
cbp->rx_fc_restart = 0;
|
|
|
|
cbp->fc_filter = 0;
|
|
|
|
cbp->pri_fc_loc = 1;
|
|
|
|
} else {
|
|
|
|
cbp->fc_delay_lsb = 0x1f;
|
|
|
|
cbp->fc_delay_msb = 0x01;
|
|
|
|
cbp->pri_fc_thresh = 3;
|
|
|
|
cbp->tx_fc_dis = 0; /* enable transmit FC */
|
|
|
|
cbp->rx_fc_restop = 1; /* enable FC restop frames */
|
|
|
|
cbp->rx_fc_restart = 1; /* enable FC restart frames */
|
|
|
|
cbp->fc_filter = !prm; /* drop FC frames to host */
|
|
|
|
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
|
|
|
|
}
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
|
|
|
* Start the config command/DMA.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
1997-09-29 11:27:43 +00:00
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
1995-11-28 23:55:26 +00:00
|
|
|
/* ...and wait for it to complete. */
|
2000-09-17 22:12:12 +00:00
|
|
|
fxp_dma_wait(&cbp->cb_status, sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Now initialize the station address. Temporarily use the TxCB
|
|
|
|
* memory area like we did above for the config CB.
|
|
|
|
*/
|
|
|
|
cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
|
|
|
|
cb_ias->cb_status = 0;
|
|
|
|
cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
|
|
|
|
cb_ias->link_addr = -1;
|
2000-07-28 23:30:30 +00:00
|
|
|
bcopy(sc->arpcom.ac_enaddr,
|
|
|
|
(void *)(uintptr_t)(volatile void *)cb_ias->macaddr,
|
1995-11-28 23:55:26 +00:00
|
|
|
sizeof(sc->arpcom.ac_enaddr));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Start the IAS (Individual Address Setup) command/DMA.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
1995-11-28 23:55:26 +00:00
|
|
|
/* ...and wait for it to complete. */
|
2000-09-17 22:12:12 +00:00
|
|
|
fxp_dma_wait(&cb_ias->cb_status, sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize transmit control block (TxCB) list.
|
|
|
|
*/
|
|
|
|
|
|
|
|
txp = sc->cbl_base;
|
|
|
|
bzero(txp, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
|
|
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
|
|
txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
|
|
|
|
txp[i].cb_command = FXP_CB_COMMAND_NOP;
|
2001-03-14 19:50:35 +00:00
|
|
|
txp[i].link_addr =
|
|
|
|
vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
|
|
|
|
if (sc->flags & FXP_FLAG_EXT_TXCB)
|
|
|
|
txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
|
|
|
|
else
|
|
|
|
txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
|
1995-11-28 23:55:26 +00:00
|
|
|
txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
|
|
|
|
}
|
|
|
|
/*
|
1997-09-29 11:27:43 +00:00
|
|
|
* Set the suspend flag on the first TxCB and start the control
|
1995-11-28 23:55:26 +00:00
|
|
|
* unit. It will execute the NOP and then suspend.
|
|
|
|
*/
|
|
|
|
txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
|
|
|
|
sc->cbl_first = sc->cbl_last = txp;
|
1997-09-29 11:27:43 +00:00
|
|
|
sc->tx_queued = 1;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize receiver buffer area - RFA.
|
|
|
|
*/
|
1997-09-05 10:23:58 +00:00
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
|
|
vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
|
1995-11-28 23:55:26 +00:00
|
|
|
|
1997-03-17 11:08:16 +00:00
|
|
|
/*
|
1997-09-05 10:23:58 +00:00
|
|
|
* Set current media.
|
1997-03-17 11:08:16 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
if (sc->miibus != NULL)
|
|
|
|
mii_mediachg(device_get_softc(sc->miibus));
|
1997-09-05 10:23:58 +00:00
|
|
|
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
2001-05-13 00:03:39 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Enable interrupts.
|
|
|
|
*/
|
2002-08-04 22:33:28 +00:00
|
|
|
#ifdef DEVICE_POLLING
|
|
|
|
/*
|
|
|
|
* ... but only do that if we are not polling. And because (presumably)
|
|
|
|
* the default is interrupts on, we need to disable them explicitly!
|
|
|
|
*/
|
2002-08-18 07:05:00 +00:00
|
|
|
if ( ifp->if_flags & IFF_POLLING )
|
2002-08-04 22:33:28 +00:00
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
|
|
|
|
else
|
|
|
|
#endif /* DEVICE_POLLING */
|
2001-05-13 00:03:39 +00:00
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
1997-09-05 10:23:58 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Start stats updater.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
sc->stat_ch = timeout(fxp_tick, sc, hz);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fxp_serial_ifmedia_upd(struct ifnet *ifp)
|
|
|
|
{
|
|
|
|
|
|
|
|
return (0);
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
|
|
|
|
1998-02-09 06:11:36 +00:00
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
1997-09-05 10:23:58 +00:00
|
|
|
{
|
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
|
1997-09-05 10:23:58 +00:00
|
|
|
}
|
1997-03-17 11:08:16 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
/*
|
|
|
|
* Change media according to request.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
static int
|
|
|
|
fxp_ifmedia_upd(struct ifnet *ifp)
|
1997-09-05 10:23:58 +00:00
|
|
|
{
|
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
2001-03-12 21:30:52 +00:00
|
|
|
struct mii_data *mii;
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
mii_mediachg(mii);
|
1997-09-05 10:23:58 +00:00
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Notify the world which media we're using.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
static void
|
|
|
|
fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
1997-09-05 10:23:58 +00:00
|
|
|
{
|
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
2001-03-12 21:30:52 +00:00
|
|
|
struct mii_data *mii;
|
1997-09-05 10:23:58 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
mii_pollstat(mii);
|
|
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
|
|
ifmr->ifm_status = mii->mii_media_status;
|
2001-05-17 23:50:24 +00:00
|
|
|
|
|
|
|
if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
|
|
|
|
sc->cu_resume_bug = 1;
|
|
|
|
else
|
|
|
|
sc->cu_resume_bug = 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add a buffer to the end of the RFA buffer list.
|
|
|
|
* Return 0 if successful, 1 for failure. A failure results in
|
|
|
|
* adding the 'oldm' (if non-NULL) on to the end of the list -
|
1998-04-17 22:37:19 +00:00
|
|
|
* tossing out its old contents and recycling it.
|
1995-11-28 23:55:26 +00:00
|
|
|
* The RFA struct is stuck at the beginning of mbuf cluster and the
|
|
|
|
* data pointer is fixed up to point just past it.
|
|
|
|
*/
|
|
|
|
static int
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1997-09-05 10:23:58 +00:00
|
|
|
u_int32_t v;
|
1995-11-28 23:55:26 +00:00
|
|
|
struct mbuf *m;
|
|
|
|
struct fxp_rfa *rfa, *p_rfa;
|
|
|
|
|
2002-08-05 00:21:24 +00:00
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
|
|
if (m == NULL) { /* try to recycle the old mbuf instead */
|
1996-09-20 11:05:39 +00:00
|
|
|
if (oldm == NULL)
|
|
|
|
return 1;
|
1995-11-28 23:55:26 +00:00
|
|
|
m = oldm;
|
1996-09-20 11:05:39 +00:00
|
|
|
m->m_data = m->m_ext.ext_buf;
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
1997-09-05 10:23:58 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Move the data pointer up so that the incoming data packet
|
|
|
|
* will be 32-bit aligned.
|
|
|
|
*/
|
|
|
|
m->m_data += RFA_ALIGNMENT_FUDGE;
|
|
|
|
|
1996-09-20 11:05:39 +00:00
|
|
|
/*
|
|
|
|
* Get a pointer to the base of the mbuf cluster and move
|
|
|
|
* data start past it.
|
|
|
|
*/
|
1995-11-28 23:55:26 +00:00
|
|
|
rfa = mtod(m, struct fxp_rfa *);
|
1996-09-20 11:05:39 +00:00
|
|
|
m->m_data += sizeof(struct fxp_rfa);
|
1999-09-30 19:03:12 +00:00
|
|
|
rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
|
1996-09-20 11:05:39 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
/*
|
|
|
|
* Initialize the rest of the RFA. Note that since the RFA
|
|
|
|
* is misaligned, we cannot store values directly. Instead,
|
|
|
|
* we use an optimized, inline copy.
|
|
|
|
*/
|
1999-09-30 19:03:12 +00:00
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
rfa->rfa_status = 0;
|
|
|
|
rfa->rfa_control = FXP_RFA_CONTROL_EL;
|
|
|
|
rfa->actual_size = 0;
|
1997-09-05 10:23:58 +00:00
|
|
|
|
|
|
|
v = -1;
|
1999-09-30 19:03:12 +00:00
|
|
|
fxp_lwcopy(&v, (volatile u_int32_t *) rfa->link_addr);
|
|
|
|
fxp_lwcopy(&v, (volatile u_int32_t *) rfa->rbd_addr);
|
1997-09-05 10:23:58 +00:00
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
/*
|
|
|
|
* If there are other buffers already on the list, attach this
|
|
|
|
* one to the end by fixing up the tail to point to this one.
|
|
|
|
*/
|
1995-11-28 23:55:26 +00:00
|
|
|
if (sc->rfa_headm != NULL) {
|
1997-09-05 10:23:58 +00:00
|
|
|
p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
|
|
|
|
RFA_ALIGNMENT_FUDGE);
|
1995-11-28 23:55:26 +00:00
|
|
|
sc->rfa_tailm->m_next = m;
|
1997-09-05 10:23:58 +00:00
|
|
|
v = vtophys(rfa);
|
1999-09-30 19:03:12 +00:00
|
|
|
fxp_lwcopy(&v, (volatile u_int32_t *) p_rfa->link_addr);
|
2000-06-19 00:58:34 +00:00
|
|
|
p_rfa->rfa_control = 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
} else {
|
|
|
|
sc->rfa_headm = m;
|
|
|
|
}
|
|
|
|
sc->rfa_tailm = m;
|
|
|
|
|
1995-12-01 22:41:56 +00:00
|
|
|
return (m == oldm);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
|
1997-03-21 08:00:13 +00:00
|
|
|
static volatile int
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_miibus_readreg(device_t dev, int phy, int reg)
|
1997-03-17 11:08:16 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
1997-03-17 11:08:16 +00:00
|
|
|
int count = 10000;
|
1997-03-21 08:00:13 +00:00
|
|
|
int value;
|
1997-03-17 11:08:16 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
|
|
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
|
1997-03-17 11:08:16 +00:00
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
|
|
|
|
&& count--)
|
1997-03-21 08:00:13 +00:00
|
|
|
DELAY(10);
|
1997-03-17 11:08:16 +00:00
|
|
|
|
|
|
|
if (count <= 0)
|
2001-03-12 21:30:52 +00:00
|
|
|
device_printf(dev, "fxp_miibus_readreg: timed out\n");
|
1997-03-17 11:08:16 +00:00
|
|
|
|
1997-03-21 08:00:13 +00:00
|
|
|
return (value & 0xffff);
|
1997-03-17 11:08:16 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
|
1997-03-17 11:08:16 +00:00
|
|
|
{
|
2001-03-12 21:30:52 +00:00
|
|
|
struct fxp_softc *sc = device_get_softc(dev);
|
1997-03-17 11:08:16 +00:00
|
|
|
int count = 10000;
|
|
|
|
|
1997-09-05 10:23:58 +00:00
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
|
|
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
|
|
|
|
(value & 0xffff));
|
1997-03-17 11:08:16 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
|
1997-09-05 10:23:58 +00:00
|
|
|
count--)
|
1997-03-21 08:00:13 +00:00
|
|
|
DELAY(10);
|
1997-03-17 11:08:16 +00:00
|
|
|
|
|
|
|
if (count <= 0)
|
2001-03-12 21:30:52 +00:00
|
|
|
device_printf(dev, "fxp_miibus_writereg: timed out\n");
|
1997-03-17 11:08:16 +00:00
|
|
|
}
|
|
|
|
|
1995-11-28 23:55:26 +00:00
|
|
|
static int
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
1995-11-28 23:55:26 +00:00
|
|
|
{
|
1996-02-06 18:51:28 +00:00
|
|
|
struct fxp_softc *sc = ifp->if_softc;
|
1997-09-05 10:23:58 +00:00
|
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
2001-03-12 21:42:45 +00:00
|
|
|
struct mii_data *mii;
|
2001-03-12 21:30:52 +00:00
|
|
|
int s, error = 0;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
2001-03-12 21:30:52 +00:00
|
|
|
s = splimp();
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
switch (command) {
|
|
|
|
case SIOCSIFADDR:
|
|
|
|
case SIOCGIFADDR:
|
1996-12-10 07:29:50 +00:00
|
|
|
case SIOCSIFMTU:
|
|
|
|
error = ether_ioctl(ifp, command, data);
|
1995-11-28 23:55:26 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case SIOCSIFFLAGS:
|
2001-03-12 21:30:52 +00:00
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
|
|
sc->flags |= FXP_FLAG_ALL_MCAST;
|
|
|
|
else
|
|
|
|
sc->flags &= ~FXP_FLAG_ALL_MCAST;
|
1995-11-28 23:55:26 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* If interface is marked up and not running, then start it.
|
|
|
|
* If it is marked down and running, stop it.
|
|
|
|
* XXX If it's up then re-initialize it. This is so flags
|
|
|
|
* such as IFF_PROMISC are handled.
|
|
|
|
*/
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
1996-12-10 07:29:50 +00:00
|
|
|
fxp_init(sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
} else {
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
1995-12-05 02:01:59 +00:00
|
|
|
fxp_stop(sc);
|
1995-11-28 23:55:26 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case SIOCADDMULTI:
|
|
|
|
case SIOCDELMULTI:
|
2001-03-12 21:30:52 +00:00
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
|
|
sc->flags |= FXP_FLAG_ALL_MCAST;
|
|
|
|
else
|
|
|
|
sc->flags &= ~FXP_FLAG_ALL_MCAST;
|
1995-11-28 23:55:26 +00:00
|
|
|
/*
|
1997-01-13 21:26:53 +00:00
|
|
|
* Multicast list has changed; set the hardware filter
|
|
|
|
* accordingly.
|
1995-11-28 23:55:26 +00:00
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
|
1997-09-29 11:27:43 +00:00
|
|
|
fxp_mc_setup(sc);
|
|
|
|
/*
|
2001-03-12 21:30:52 +00:00
|
|
|
* fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
|
1997-09-29 11:27:43 +00:00
|
|
|
* again rather than else {}.
|
|
|
|
*/
|
2001-03-12 21:30:52 +00:00
|
|
|
if (sc->flags & FXP_FLAG_ALL_MCAST)
|
1997-09-29 11:27:43 +00:00
|
|
|
fxp_init(sc);
|
1997-01-13 21:26:53 +00:00
|
|
|
error = 0;
|
1997-09-05 10:23:58 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case SIOCSIFMEDIA:
|
|
|
|
case SIOCGIFMEDIA:
|
2001-03-12 21:30:52 +00:00
|
|
|
if (sc->miibus != NULL) {
|
|
|
|
mii = device_get_softc(sc->miibus);
|
|
|
|
error = ifmedia_ioctl(ifp, ifr,
|
|
|
|
&mii->mii_media, command);
|
|
|
|
} else {
|
|
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
|
|
|
|
}
|
1995-11-28 23:55:26 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
error = EINVAL;
|
|
|
|
}
|
2001-03-12 21:30:52 +00:00
|
|
|
splx(s);
|
1995-11-28 23:55:26 +00:00
|
|
|
return (error);
|
|
|
|
}
|
1997-09-29 11:27:43 +00:00
|
|
|
|
2002-01-07 15:08:54 +00:00
|
|
|
/*
|
|
|
|
* Fill in the multicast address list and return number of entries.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
fxp_mc_addrs(struct fxp_softc *sc)
|
|
|
|
{
|
|
|
|
struct fxp_cb_mcs *mcsp = sc->mcsp;
|
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
|
|
struct ifmultiaddr *ifma;
|
|
|
|
int nmcasts;
|
|
|
|
|
|
|
|
nmcasts = 0;
|
|
|
|
if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
|
|
|
|
#if __FreeBSD_version < 500000
|
|
|
|
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
|
|
#else
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
|
|
#endif
|
|
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
|
|
continue;
|
|
|
|
if (nmcasts >= MAXMCADDR) {
|
|
|
|
sc->flags |= FXP_FLAG_ALL_MCAST;
|
|
|
|
nmcasts = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
|
|
(void *)(uintptr_t)(volatile void *)
|
|
|
|
&sc->mcsp->mc_addr[nmcasts][0], 6);
|
|
|
|
nmcasts++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mcsp->mc_cnt = nmcasts * 6;
|
|
|
|
return (nmcasts);
|
|
|
|
}
|
|
|
|
|
1997-09-29 11:27:43 +00:00
|
|
|
/*
|
|
|
|
* Program the multicast filter.
|
|
|
|
*
|
|
|
|
* We have an artificial restriction that the multicast setup command
|
|
|
|
* must be the first command in the chain, so we take steps to ensure
|
1998-08-04 08:53:12 +00:00
|
|
|
* this. By requiring this, it allows us to keep up the performance of
|
1997-09-29 11:27:43 +00:00
|
|
|
* the pre-initialized command ring (esp. link pointers) by not actually
|
1998-04-17 22:37:19 +00:00
|
|
|
* inserting the mcsetup command in the ring - i.e. its link pointer
|
1997-09-29 11:27:43 +00:00
|
|
|
* points to the TxCB ring, but the mcsetup descriptor itself is not part
|
|
|
|
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
|
|
|
|
* lead into the regular TxCB ring when it completes.
|
|
|
|
*
|
|
|
|
* This function must be called at splimp.
|
|
|
|
*/
|
|
|
|
static void
|
2001-03-12 21:30:52 +00:00
|
|
|
fxp_mc_setup(struct fxp_softc *sc)
|
1997-09-29 11:27:43 +00:00
|
|
|
{
|
|
|
|
struct fxp_cb_mcs *mcsp = sc->mcsp;
|
|
|
|
struct ifnet *ifp = &sc->sc_if;
|
2000-09-17 22:12:12 +00:00
|
|
|
int count;
|
1997-09-29 11:27:43 +00:00
|
|
|
|
1998-08-04 08:53:12 +00:00
|
|
|
/*
|
|
|
|
* If there are queued commands, we must wait until they are all
|
|
|
|
* completed. If we are already waiting, then add a NOP command
|
|
|
|
* with interrupt option so that we're notified when all commands
|
|
|
|
* have been completed - fxp_start() ensures that no additional
|
|
|
|
* TX commands will be added when need_mcsetup is true.
|
|
|
|
*/
|
1997-09-29 11:27:43 +00:00
|
|
|
if (sc->tx_queued) {
|
1998-08-04 08:53:12 +00:00
|
|
|
struct fxp_cb_tx *txp;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* need_mcsetup will be true if we are already waiting for the
|
|
|
|
* NOP command to be completed (see below). In this case, bail.
|
|
|
|
*/
|
|
|
|
if (sc->need_mcsetup)
|
|
|
|
return;
|
1997-09-29 11:27:43 +00:00
|
|
|
sc->need_mcsetup = 1;
|
1998-08-04 08:53:12 +00:00
|
|
|
|
|
|
|
/*
|
2001-10-25 05:32:01 +00:00
|
|
|
* Add a NOP command with interrupt so that we are notified
|
|
|
|
* when all TX commands have been processed.
|
1998-08-04 08:53:12 +00:00
|
|
|
*/
|
|
|
|
txp = sc->cbl_last->next;
|
|
|
|
txp->mb_head = NULL;
|
|
|
|
txp->cb_status = 0;
|
2001-05-13 00:03:39 +00:00
|
|
|
txp->cb_command = FXP_CB_COMMAND_NOP |
|
|
|
|
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
|
1998-08-04 08:53:12 +00:00
|
|
|
/*
|
|
|
|
* Advance the end of list forward.
|
|
|
|
*/
|
|
|
|
sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
|
|
|
|
sc->cbl_last = txp;
|
|
|
|
sc->tx_queued++;
|
|
|
|
/*
|
|
|
|
* Issue a resume in case the CU has just suspended.
|
|
|
|
*/
|
|
|
|
fxp_scb_wait(sc);
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
|
1998-08-04 08:53:12 +00:00
|
|
|
/*
|
|
|
|
* Set a 5 second timer just in case we don't hear from the
|
|
|
|
* card again.
|
|
|
|
*/
|
|
|
|
ifp->if_timer = 5;
|
|
|
|
|
1997-09-29 11:27:43 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
sc->need_mcsetup = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize multicast setup descriptor.
|
|
|
|
*/
|
|
|
|
mcsp->next = sc->cbl_base;
|
|
|
|
mcsp->mb_head = NULL;
|
|
|
|
mcsp->cb_status = 0;
|
2001-05-13 00:03:39 +00:00
|
|
|
mcsp->cb_command = FXP_CB_COMMAND_MCAS |
|
|
|
|
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
|
1997-09-29 11:27:43 +00:00
|
|
|
mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
|
2002-01-07 15:08:54 +00:00
|
|
|
(void) fxp_mc_addrs(sc);
|
1997-09-29 11:27:43 +00:00
|
|
|
sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
|
|
|
|
sc->tx_queued = 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wait until command unit is not active. This should never
|
|
|
|
* be the case when nothing is queued, but make sure anyway.
|
|
|
|
*/
|
2000-09-17 22:12:12 +00:00
|
|
|
count = 100;
|
1997-09-29 11:27:43 +00:00
|
|
|
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
|
2000-09-17 22:12:12 +00:00
|
|
|
FXP_SCB_CUS_ACTIVE && --count)
|
|
|
|
DELAY(10);
|
|
|
|
if (count == 0) {
|
2001-03-12 21:30:52 +00:00
|
|
|
device_printf(sc->dev, "command queue timeout\n");
|
2000-09-17 22:12:12 +00:00
|
|
|
return;
|
|
|
|
}
|
1997-09-29 11:27:43 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Start the multicast setup command.
|
|
|
|
*/
|
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
|
2001-05-17 23:50:24 +00:00
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
1997-09-29 11:27:43 +00:00
|
|
|
|
1998-08-04 08:53:12 +00:00
|
|
|
ifp->if_timer = 2;
|
1997-09-29 11:27:43 +00:00
|
|
|
return;
|
|
|
|
}
|
2001-10-25 05:32:01 +00:00
|
|
|
|
|
|
|
static u_int32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
|
|
|
|
static u_int32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
|
|
|
|
static u_int32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
|
|
|
|
static u_int32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
|
|
|
|
static u_int32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
|
|
|
|
static u_int32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
|
|
|
|
|
|
|
|
#define UCODE(x) x, sizeof(x)
|
|
|
|
|
|
|
|
struct ucode {
|
|
|
|
u_int32_t revision;
|
|
|
|
u_int32_t *ucode;
|
|
|
|
int length;
|
|
|
|
u_short int_delay_offset;
|
|
|
|
u_short bundle_max_offset;
|
|
|
|
} ucode_table[] = {
|
|
|
|
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
|
|
|
|
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
|
|
|
|
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
|
|
|
|
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
|
|
|
|
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
|
|
|
|
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
|
|
|
|
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ 0, NULL, 0, 0, 0 }
|
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
fxp_load_ucode(struct fxp_softc *sc)
|
|
|
|
{
|
|
|
|
struct ucode *uc;
|
|
|
|
struct fxp_cb_ucode *cbp;
|
|
|
|
|
|
|
|
for (uc = ucode_table; uc->ucode != NULL; uc++)
|
|
|
|
if (sc->revision == uc->revision)
|
|
|
|
break;
|
|
|
|
if (uc->ucode == NULL)
|
|
|
|
return;
|
|
|
|
cbp = (struct fxp_cb_ucode *)sc->cbl_base;
|
|
|
|
cbp->cb_status = 0;
|
|
|
|
cbp->cb_command = FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL;
|
|
|
|
cbp->link_addr = -1; /* (no) next command */
|
|
|
|
memcpy(cbp->ucode, uc->ucode, uc->length);
|
|
|
|
if (uc->int_delay_offset)
|
|
|
|
*(u_short *)&cbp->ucode[uc->int_delay_offset] =
|
2001-10-25 19:36:44 +00:00
|
|
|
sc->tunable_int_delay + sc->tunable_int_delay / 2;
|
2001-10-25 05:32:01 +00:00
|
|
|
if (uc->bundle_max_offset)
|
|
|
|
*(u_short *)&cbp->ucode[uc->bundle_max_offset] =
|
|
|
|
sc->tunable_bundle_max;
|
|
|
|
/*
|
|
|
|
* Download the ucode to the chip.
|
|
|
|
*/
|
|
|
|
fxp_scb_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
|
|
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/* ...and wait for it to complete. */
|
|
|
|
fxp_dma_wait(&cbp->cb_status, sc);
|
|
|
|
device_printf(sc->dev,
|
|
|
|
"Microcode loaded, int_delay: %d usec bundle_max: %d\n",
|
|
|
|
sc->tunable_int_delay,
|
|
|
|
uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
|
|
|
|
sc->flags |= FXP_FLAG_UCODE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
|
|
{
|
|
|
|
int error, value;
|
|
|
|
|
|
|
|
value = *(int *)arg1;
|
|
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
|
|
return (error);
|
|
|
|
if (value < low || value > high)
|
|
|
|
return (EINVAL);
|
|
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt delay is expressed in microseconds, a multiplier is used
|
|
|
|
* to convert this to the appropriate clock ticks before using.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
|
|
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
|
|
|
|
}
|