1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-20 11:11:24 +00:00
freebsd/lib/libkvm/kvm_ia64.c

376 lines
9.1 KiB
C
Raw Normal View History

/* $FreeBSD$ */
/* $NetBSD: kvm_alpha.c,v 1.7.2.1 1997/11/02 20:34:26 mellon Exp $ */
/*
* Copyright (c) 1994, 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/types.h>
#include <sys/elf64.h>
#include <sys/mman.h>
#ifndef CROSS_LIBKVM
#include <machine/atomic.h>
#include <machine/bootinfo.h>
#include <machine/elf.h>
#include <machine/pte.h>
#else
#include "../../sys/ia64/include/atomic.h"
#include "../../sys/ia64/include/bootinfo.h"
#include "../../sys/ia64/include/elf.h"
#include "../../sys/ia64/include/pte.h"
#endif
#include <kvm.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include "kvm_private.h"
#define REGION_BASE(n) (((uint64_t)(n)) << 61)
#define REGION_ADDR(x) ((x) & ((1LL<<61)-1LL))
#define NKPTEPG(ps) ((ps) / sizeof(struct ia64_lpte))
#define NKPTEDIR(ps) ((ps) >> 3)
#define KPTE_PTE_INDEX(va,ps) (((va)/(ps)) % NKPTEPG(ps))
#define KPTE_DIR0_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) / NKPTEDIR(ps))
#define KPTE_DIR1_INDEX(va,ps) ((((va)/(ps)) / NKPTEPG(ps)) % NKPTEDIR(ps))
#define PBVM_BASE 0x9ffc000000000000UL
#define PBVM_PGSZ (64 * 1024)
typedef size_t (a2p_f)(kvm_t *, uint64_t, off_t *);
struct vmstate {
void *mmapbase;
size_t mmapsize;
size_t pagesize;
u_long kptdir;
u_long *pbvm_pgtbl;
u_int pbvm_pgtblsz;
a2p_f *kvatop;
};
/*
* Map the ELF headers into the process' address space. We do this in two
* steps: first the ELF header itself and using that information the whole
* set of headers.
*/
static int
ia64_maphdrs(kvm_t *kd, size_t sz)
{
struct vmstate *vm = kd->vmst;
/* munmap() previous mmap(). */
if (vm->mmapbase != NULL) {
munmap(vm->mmapbase, vm->mmapsize);
vm->mmapbase = NULL;
}
vm->mmapsize = sz;
vm->mmapbase = mmap(NULL, sz, PROT_READ, MAP_PRIVATE, kd->pmfd, 0);
if (vm->mmapbase == MAP_FAILED) {
_kvm_err(kd, kd->program, "cannot mmap corefile");
return (-1);
}
return (0);
}
/*
* Physical core support.
*/
static size_t
phys_addr2off(kvm_t *kd, uint64_t pa, off_t *ofs, size_t pgsz)
{
Elf64_Ehdr *e;
Elf64_Phdr *p;
int n;
if (pa != REGION_ADDR(pa))
goto fail;
e = (Elf64_Ehdr *)(kd->vmst->mmapbase);
n = e->e_phnum;
p = (Elf64_Phdr *)(void *)((uintptr_t)(void *)e + e->e_phoff);
while (n && (pa < p->p_paddr || pa >= p->p_paddr + p->p_memsz))
p++, n--;
if (n == 0)
goto fail;
*ofs = (pa - p->p_paddr) + p->p_offset;
if (pgsz == 0)
return (p->p_memsz - (pa - p->p_paddr));
return (pgsz - ((size_t)pa & (pgsz - 1)));
fail:
_kvm_err(kd, kd->program, "invalid physical address %#jx",
(uintmax_t)pa);
return (0);
}
static size_t
phys_kvatop(kvm_t *kd, uint64_t va, off_t *ofs)
{
struct ia64_lpte pte;
uint64_t pa, pgaddr, pt0addr, pt1addr;
size_t pgno, pgsz, pt0no, pt1no;
if (va >= REGION_BASE(6)) {
/* Regions 6 and 7: direct mapped. */
pa = REGION_ADDR(va);
return (phys_addr2off(kd, pa, ofs, 0));
} else if (va >= REGION_BASE(5)) {
/* Region 5: Kernel Virtual Memory. */
va = REGION_ADDR(va);
pgsz = kd->vmst->pagesize;
pt0no = KPTE_DIR0_INDEX(va, pgsz);
pt1no = KPTE_DIR1_INDEX(va, pgsz);
pgno = KPTE_PTE_INDEX(va, pgsz);
if (pt0no >= NKPTEDIR(pgsz))
goto fail;
pt0addr = kd->vmst->kptdir + (pt0no << 3);
if (kvm_read(kd, pt0addr, &pt1addr, 8) != 8)
goto fail;
if (pt1addr == 0)
goto fail;
pt1addr += pt1no << 3;
if (kvm_read(kd, pt1addr, &pgaddr, 8) != 8)
goto fail;
if (pgaddr == 0)
goto fail;
pgaddr += pgno * sizeof(pte);
if (kvm_read(kd, pgaddr, &pte, sizeof(pte)) != sizeof(pte))
goto fail;
if (!(pte.pte & PTE_PRESENT))
goto fail;
pa = (pte.pte & PTE_PPN_MASK) + (va & (pgsz - 1));
return (phys_addr2off(kd, pa, ofs, pgsz));
} else if (va >= PBVM_BASE) {
/* Region 4: Pre-Boot Virtual Memory (PBVM). */
va -= PBVM_BASE;
pgsz = PBVM_PGSZ;
pt0no = va / pgsz;
if (pt0no >= (kd->vmst->pbvm_pgtblsz >> 3))
goto fail;
pt0addr = kd->vmst->pbvm_pgtbl[pt0no];
if (!(pt0addr & PTE_PRESENT))
goto fail;
pa = (pt0addr & PTE_PPN_MASK) + va % pgsz;
return (phys_addr2off(kd, pa, ofs, pgsz));
}
fail:
_kvm_err(kd, kd->program, "invalid kernel virtual address %#jx",
(uintmax_t)va);
*ofs = -1;
return (0);
}
static ssize_t
phys_read(kvm_t *kd, uint64_t pa, void *buf, size_t bufsz)
{
off_t ofs;
size_t sz;
sz = phys_addr2off(kd, pa, &ofs, 0);
if (sz < bufsz)
return ((ssize_t)sz);
if (lseek(kd->pmfd, ofs, 0) == -1)
return (-1);
return (read(kd->pmfd, buf, bufsz));
}
/*
* Virtual core support (aka minidump).
*/
static size_t
virt_addr2off(kvm_t *kd, uint64_t va, off_t *ofs, size_t pgsz)
{
Elf64_Ehdr *e;
Elf64_Phdr *p;
int n;
if (va < REGION_BASE(4))
goto fail;
e = (Elf64_Ehdr *)(kd->vmst->mmapbase);
n = e->e_phnum;
p = (Elf64_Phdr *)(void *)((uintptr_t)(void *)e + e->e_phoff);
while (n && (va < p->p_vaddr || va >= p->p_vaddr + p->p_memsz))
p++, n--;
if (n == 0)
goto fail;
*ofs = (va - p->p_vaddr) + p->p_offset;
if (pgsz == 0)
return (p->p_memsz - (va - p->p_vaddr));
return (pgsz - ((size_t)va & (pgsz - 1)));
fail:
_kvm_err(kd, kd->program, "invalid virtual address %#jx",
(uintmax_t)va);
return (0);
}
static size_t
virt_kvatop(kvm_t *kd, uint64_t va, off_t *ofs)
{
return (virt_addr2off(kd, va, ofs, 0));
}
/*
* KVM architecture support functions.
*/
void
_kvm_freevtop(kvm_t *kd)
{
struct vmstate *vm = kd->vmst;
if (vm->pbvm_pgtbl != NULL)
free(vm->pbvm_pgtbl);
if (vm->mmapbase != NULL)
munmap(vm->mmapbase, vm->mmapsize);
free(vm);
kd->vmst = NULL;
}
int
_kvm_initvtop(kvm_t *kd)
{
struct bootinfo bi;
struct nlist nl[2];
uint64_t va;
Elf64_Ehdr *ehdr;
size_t hdrsz;
ssize_t sz;
kd->vmst = (struct vmstate *)_kvm_malloc(kd, sizeof(*kd->vmst));
if (kd->vmst == NULL) {
_kvm_err(kd, kd->program, "cannot allocate vm");
return (-1);
}
#ifndef CROSS_LIBKVM
kd->vmst->pagesize = getpagesize();
#else
kd->vmst->pagesize = 8192;
#endif
if (ia64_maphdrs(kd, sizeof(Elf64_Ehdr)) == -1)
return (-1);
ehdr = kd->vmst->mmapbase;
hdrsz = ehdr->e_phoff + ehdr->e_phentsize * ehdr->e_phnum;
if (ia64_maphdrs(kd, hdrsz) == -1)
return (-1);
kd->vmst->kvatop = (ehdr->e_flags & EF_IA_64_ABSOLUTE) ?
phys_kvatop : virt_kvatop;
/*
* Load the PBVM page table. We need this to resolve PBVM addresses.
* The PBVM page table is obtained from the bootinfo structure, of
* which the address is given to us in e_entry. If e_entry is 0, then
* this is assumed to be a pre-PBVM kernel.
* Note that the address of the bootinfo structure is either physical
* or virtual, depending on whether the core is physical or virtual.
*/
if (ehdr->e_entry != 0 && (ehdr->e_flags & EF_IA_64_ABSOLUTE) != 0) {
sz = phys_read(kd, ehdr->e_entry, &bi, sizeof(bi));
if (sz != sizeof(bi)) {
_kvm_err(kd, kd->program,
"cannot read bootinfo at physical address %#jx",
(uintmax_t)ehdr->e_entry);
return (-1);
}
if (bi.bi_magic != BOOTINFO_MAGIC) {
_kvm_err(kd, kd->program, "invalid bootinfo");
return (-1);
}
kd->vmst->pbvm_pgtbl = _kvm_malloc(kd, bi.bi_pbvm_pgtblsz);
if (kd->vmst->pbvm_pgtbl == NULL) {
_kvm_err(kd, kd->program, "cannot allocate page table");
return (-1);
}
kd->vmst->pbvm_pgtblsz = bi.bi_pbvm_pgtblsz;
sz = phys_read(kd, bi.bi_pbvm_pgtbl, kd->vmst->pbvm_pgtbl,
bi.bi_pbvm_pgtblsz);
if (sz != bi.bi_pbvm_pgtblsz) {
_kvm_err(kd, kd->program,
"cannot read page table at physical address %#jx",
(uintmax_t)bi.bi_pbvm_pgtbl);
return (-1);
}
} else {
kd->vmst->pbvm_pgtbl = NULL;
kd->vmst->pbvm_pgtblsz = 0;
}
/*
* At this point we've got enough information to use kvm_read() for
* direct mapped (ie region 6 and region 7) address, such as symbol
* addresses/values.
*/
nl[0].n_name = "ia64_kptdir";
nl[1].n_name = 0;
if (kvm_nlist(kd, nl) != 0) {
_kvm_err(kd, kd->program, "bad namelist");
return (-1);
}
if (kvm_read(kd, (nl[0].n_value), &va, sizeof(va)) != sizeof(va)) {
_kvm_err(kd, kd->program, "cannot read kptdir");
return (-1);
}
if (va == REGION_BASE(5)) {
_kvm_err(kd, kd->program, "kptdir is itself virtual");
return (-1);
}
kd->vmst->kptdir = va;
return (0);
}
int
_kvm_kvatop(kvm_t *kd, u_long va, off_t *ofs)
{
size_t sz;
sz = kd->vmst->kvatop(kd, va, ofs);
return ((sz > INT_MAX) ? INT_MAX : sz);
}