1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-22 11:17:19 +00:00
freebsd/sys/arm/include/pte.h

302 lines
11 KiB
C
Raw Normal View History

/* $NetBSD: pte.h,v 1.1 2001/11/23 17:39:04 thorpej Exp $ */
/*
* Copyright (c) 1994 Mark Brinicombe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the RiscBSD team.
* 4. The name "RiscBSD" nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY RISCBSD ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL RISCBSD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _MACHINE_PTE_H_
#define _MACHINE_PTE_H_
#define PDSHIFT 20 /* LOG2(NBPDR) */
#define NBPD (1 << PDSHIFT) /* bytes/page dir */
#define NPTEPD (NBPD / PAGE_SIZE)
#ifndef LOCORE
typedef uint32_t pd_entry_t; /* page directory entry */
typedef uint32_t pt_entry_t; /* page table entry */
#endif
#define PD_MASK 0xfff00000 /* page directory address bits */
#define PT_MASK 0x000ff000 /* page table address bits */
#define PG_FRAME 0xfffff000
/* The PT_SIZE definition is misleading... A page table is only 0x400
* bytes long. But since VM mapping can only be done to 0x1000 a single
* 1KB blocks cannot be steered to a va by itself. Therefore the
* pages tables are allocated in blocks of 4. i.e. if a 1 KB block
* was allocated for a PT then the other 3KB would also get mapped
* whenever the 1KB was mapped.
*/
#define PT_RSIZE 0x0400 /* Real page table size */
#define PT_SIZE 0x1000
#define PD_SIZE 0x4000
/* Page table types and masks */
#define L1_PAGE 0x01 /* L1 page table mapping */
#define L1_SECTION 0x02 /* L1 section mapping */
#define L1_FPAGE 0x03 /* L1 fine page mapping */
#define L1_MASK 0x03 /* Mask for L1 entry type */
#define L2_LPAGE 0x01 /* L2 large page (64KB) */
#define L2_SPAGE 0x02 /* L2 small page (4KB) */
#define L2_MASK 0x03 /* Mask for L2 entry type */
#define L2_INVAL 0x00 /* L2 invalid type */
/* PTE construction macros */
#define L2_LPTE(p, a, f) ((p) | PT_AP(a) | L2_LPAGE | (f))
#define L2_SPTE(p, a, f) ((p) | PT_AP(a) | L2_SPAGE | (f))
#define L2_PTE(p, a) L2_SPTE((p), (a), PT_CACHEABLE)
#define L2_PTE_NC(p, a) L2_SPTE((p), (a), PT_B)
#define L2_PTE_NC_NB(p, a) L2_SPTE((p), (a), 0)
#define L1_SECPTE(p, a, f) ((p) | ((a) << AP_SECTION_SHIFT) | (f) \
| L1_SECTION | PT_U)
#define L1_PTE(p) ((p) | 0x00 | L1_PAGE | PT_U)
#define L1_SEC(p, c) L1_SECPTE((p), AP_KRW, (c))
#define L1_SEC_SIZE (1 << PDSHIFT)
#define L2_LPAGE_SIZE (NBPG * 16)
/* Domain types */
#define DOMAIN_FAULT 0x00
#define DOMAIN_CLIENT 0x01
#define DOMAIN_RESERVED 0x02
#define DOMAIN_MANAGER 0x03
/* L1 and L2 address masks */
#define L1_ADDR_MASK 0xfffffc00
#define L2_ADDR_MASK 0xfffff000
/*
* The ARM MMU architecture was introduced with ARM v3 (previous ARM
* architecture versions used an optional off-CPU memory controller
* to perform address translation).
*
* The ARM MMU consists of a TLB and translation table walking logic.
* There is typically one TLB per memory interface (or, put another
* way, one TLB per software-visible cache).
*
* The ARM MMU is capable of mapping memory in the following chunks:
*
* 1M Sections (L1 table)
*
* 64K Large Pages (L2 table)
*
* 4K Small Pages (L2 table)
*
* 1K Tiny Pages (L2 table)
*
* There are two types of L2 tables: Coarse Tables and Fine Tables.
* Coarse Tables can map Large and Small Pages. Fine Tables can
* map Tiny Pages.
*
* Coarse Tables can define 4 Subpages within Large and Small pages.
* Subpages define different permissions for each Subpage within
* a Page.
*
* Coarse Tables are 1K in length. Fine tables are 4K in length.
*
* The Translation Table Base register holds the pointer to the
* L1 Table. The L1 Table is a 16K contiguous chunk of memory
* aligned to a 16K boundary. Each entry in the L1 Table maps
* 1M of virtual address space, either via a Section mapping or
* via an L2 Table.
*
* In addition, the Fast Context Switching Extension (FCSE) is available
* on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
* TLB/cache flushes on context switch by use of a smaller address space
* and a "process ID" that modifies the virtual address before being
* presented to the translation logic.
*/
#define L1_S_SIZE 0x00100000 /* 1M */
#define L1_S_OFFSET (L1_S_SIZE - 1)
#define L1_S_FRAME (~L1_S_OFFSET)
#define L1_S_SHIFT 20
#define L2_L_SIZE 0x00010000 /* 64K */
#define L2_L_OFFSET (L2_L_SIZE - 1)
#define L2_L_FRAME (~L2_L_OFFSET)
#define L2_L_SHIFT 16
#define L2_S_SIZE 0x00001000 /* 4K */
#define L2_S_OFFSET (L2_S_SIZE - 1)
#define L2_S_FRAME (~L2_S_OFFSET)
#define L2_S_SHIFT 12
#define L2_T_SIZE 0x00000400 /* 1K */
#define L2_T_OFFSET (L2_T_SIZE - 1)
#define L2_T_FRAME (~L2_T_OFFSET)
#define L2_T_SHIFT 10
/*
* The NetBSD VM implementation only works on whole pages (4K),
* whereas the ARM MMU's Coarse tables are sized in terms of 1K
* (16K L1 table, 1K L2 table).
*
* So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
* table.
*/
#define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
#define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
#define L1_TABLE_SIZE 0x4000 /* 16K */
#define L2_TABLE_SIZE 0x1000 /* 4K */
/*
* The new pmap deals with the 1KB coarse L2 tables by
* allocating them from a pool. Until every port has been converted,
* keep the old L2_TABLE_SIZE define lying around. Converted ports
* should use L2_TABLE_SIZE_REAL until then.
*/
#define L2_TABLE_SIZE_REAL 0x400 /* 1K */
/*
* ARM L1 Descriptors
*/
#define L1_TYPE_INV 0x00 /* Invalid (fault) */
#define L1_TYPE_C 0x01 /* Coarse L2 */
#define L1_TYPE_S 0x02 /* Section */
#define L1_TYPE_F 0x03 /* Fine L2 */
#define L1_TYPE_MASK 0x03 /* mask of type bits */
/* L1 Section Descriptor */
#define L1_S_B 0x00000004 /* bufferable Section */
#define L1_S_C 0x00000008 /* cacheable Section */
#define L1_S_IMP 0x00000010 /* implementation defined */
#define L1_S_DOM(x) ((x) << 5) /* domain */
#define L1_S_DOM_MASK L1_S_DOM(0xf)
#define L1_S_AP(x) ((x) << 10) /* access permissions */
#define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
#define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
#define L1_S_XSCALE_TEX(x) ((x) << 12) /* Type Extension */
/* L1 Coarse Descriptor */
#define L1_C_IMP0 0x00000004 /* implementation defined */
#define L1_C_IMP1 0x00000008 /* implementation defined */
#define L1_C_IMP2 0x00000010 /* implementation defined */
#define L1_C_DOM(x) ((x) << 5) /* domain */
#define L1_C_DOM_MASK L1_C_DOM(0xf)
#define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
#define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
/* L1 Fine Descriptor */
#define L1_F_IMP0 0x00000004 /* implementation defined */
#define L1_F_IMP1 0x00000008 /* implementation defined */
#define L1_F_IMP2 0x00000010 /* implementation defined */
#define L1_F_DOM(x) ((x) << 5) /* domain */
#define L1_F_DOM_MASK L1_F_DOM(0xf)
#define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
#define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
/*
* ARM L2 Descriptors
*/
#define L2_TYPE_INV 0x00 /* Invalid (fault) */
#define L2_TYPE_L 0x01 /* Large Page */
#define L2_TYPE_S 0x02 /* Small Page */
#define L2_TYPE_T 0x03 /* Tiny Page */
#define L2_TYPE_MASK 0x03 /* mask of type bits */
/*
* This L2 Descriptor type is available on XScale processors
* when using a Coarse L1 Descriptor. The Extended Small
* Descriptor has the same format as the XScale Tiny Descriptor,
* but describes a 4K page, rather than a 1K page.
*/
#define L2_TYPE_XSCALE_XS 0x03 /* XScale Extended Small Page */
#define L2_B 0x00000004 /* Bufferable page */
#define L2_C 0x00000008 /* Cacheable page */
#define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
#define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
#define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
#define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
#define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
#define L2_XSCALE_L_TEX(x) ((x) << 12) /* Type Extension */
#define L2_XSCALE_T_TEX(x) ((x) << 6) /* Type Extension */
/*
* Access Permissions for L1 and L2 Descriptors.
*/
#define AP_W 0x01 /* writable */
#define AP_U 0x02 /* user */
/*
* Short-hand for common AP_* constants.
*
* Note: These values assume the S (System) bit is set and
* the R (ROM) bit is clear in CP15 register 1.
*/
#define AP_KR 0x00 /* kernel read */
#define AP_KRW 0x01 /* kernel read/write */
#define AP_KRWUR 0x02 /* kernel read/write usr read */
#define AP_KRWURW 0x03 /* kernel read/write usr read/write */
/*
* Domain Types for the Domain Access Control Register.
*/
#define DOMAIN_FAULT 0x00 /* no access */
#define DOMAIN_CLIENT 0x01 /* client */
#define DOMAIN_RESERVED 0x02 /* reserved */
#define DOMAIN_MANAGER 0x03 /* manager */
/*
* Type Extension bits for XScale processors.
*
* Behavior of C and B when X == 0:
*
* C B Cacheable Bufferable Write Policy Line Allocate Policy
* 0 0 N N - -
* 0 1 N Y - -
* 1 0 Y Y Write-through Read Allocate
* 1 1 Y Y Write-back Read Allocate
*
* Behavior of C and B when X == 1:
* C B Cacheable Bufferable Write Policy Line Allocate Policy
* 0 0 - - - - DO NOT USE
* 0 1 N Y - -
* 1 0 Mini-Data - - -
* 1 1 Y Y Write-back R/W Allocate
*/
#define TEX_XSCALE_X 0x01 /* X modifies C and B */
#endif /* !_MACHINE_PTE_H_ */
/* End of pte.h */